Organocatalytic Asymmetric Synthesis of both *cis*- and *trans*-Configured Pyrano[2,3-*b*]chromenes via Different Dehydration Pathway

Xue-Jiao Lv,^{†,§} Wei-Wei Zhao,^{†,§} Ying-Han Chen,[†] Sheng-Biao Wan,^{†,‡}

and Yan-Kai Liu*,†,‡

⁺Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

[‡]Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.

Supporting Information

Contents

A. General information	3
B. Optimization of the [3+3] reaction pathway	5
C. Procedures for [3+3] reaction and characterization of products.	6
D. Catalyst recycling studies	12
E. Mechanism of [3+3] reaction pathway	14
F. Optimization of the dehydration reaction	15
G. Procedures for <i>cis</i> - 5 and characterization of products	16
H. The larger scale transformation of 5a	23
I. Procedure for <i>trans</i> - 6 and characterization of product	23
J. Transformation between 6 and 5a	24
K. Synthetic transformation	25
L. NMR spectra and HPLC traces	34
M. Single crystal X-Ray diffraction data	87

A. General information

The ¹H and ¹³C NMR spectra were recorded at 500 MHz for ¹H and at 125 MHz for ¹³C. The chemical shifts (δ) for ¹H and ¹³C are given in ppm relative to residual signals of the solvents (CDCl₃ at 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR). Coupling constants are given in Hz. The following abbreviations are used to indicate the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. High-resolution mass spectra (HRMS) were obtained from the Waters Q-Tof Ultima Global. X-ray data were obtained from Zhongke chemical technology service center. Optical rotations are reported as follows: [α]_D²⁰ (c in g per 100 mL, solvent: CHCl₃).

Note: NMR signals containing common solvent contaminants were list. H_2O in CDCl₃ at 1.56 ppm ¹H NMR, Ethyl acetate in CDCl₃ at 2.05 (s), 4.12 (q), 1.26 (t) ppm ¹H NMR; Dichloromethane in CDCl₃ at 5.30 (s) ppm ¹H NMR; Acetone in CDCl₃ at 2.17 (s) ppm ¹H NMR.

All the reactions were set up under air and using freshly distilled solvents, without any precautions to exclude moisture, unless otherwise noted open air chemistry on the bench-top. Chromatographic purification of products was accomplished using force-flow chromatography (FC) on silica gel (300-400 mesh). For thin layer chromatography (TLC) analysis throughout this work, Merck pre-coated TLC plates (silica gel 60 GF254, 0.25 mm) were used, using UV light as the visualizing agent and an phosphomolybdic acid or basic aqueous potassium permanganate (KMnO₄) as stain developing solutions. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator.

HPLC analyses on chiral stationary phase were performed on a Hitachi Chromaste. Daicel Chiralpak IA, IC or IB columns with *n*-hexane/*i*-PrOH as the eluent were used. HPLC traces were compared to racemic samples which prepared by mixture of two enantiomeric final products obtained using (*S*) and (*R*) catalyst.

Commercial reagents and solvents were purchased from Sigma Aldrich, Fluka, and Alfa Aesar used as received, without further purification. All the lactols^[1], β , γ -unsaturated α -ketoesters^[2] were synthesized according to literature procedures.

^[1] R. Miyaji, K. Asano, S. Matsubara, *Org. Biomol. Chem.* **2014**, 12, 119-122.

^[2] Y.-Z. Hua, M.-M. Liu, P.-J. Huang, X.-X. Song, M.-C. Wang, J.-B. Chang. *Chem. Eur. J.* 2015, 21, 11994.

B. Optimization of the [3+3] reaction pathway

Entry ^[a]	cat.	solvent	additive	time (h)	yield (%) ^[b]	ee (%) ^[c]	dr ^[d]
1	3	МеОН	PhCOOH	6	77/67 ^[e]	>99	>20:1
2	3a	МеОН	PhCOOH	7	79	>99	>20:1
3	3b	МеОН	PhCOOH	10	76	>99	>20:1
4	3	CH_2Cl_2	PhCOOH	29	62	>99	>20:1
5	3	CHCl ₃	PhCOOH	36	60	>99	>20:1
6	3	DMF	PhCOOH	24	60	>99	>20:1
7	3	THF	PhCOOH	20	62	>99	>20:1
8	3	CH ₃ CN	PhCOOH	12	76	>99	>20:1
9	3	toluene	PhCOOH	36	81	>99	>20:1
10	3	MeOH	2-FPhCOOH	10	60	>99	>20:1
11	3	MeOH	4-NO ₂ PhCOOH	10	59	>99	>20:1
12	3	MeOH	(CH ₃) ₃ CCOOH	14	53	>99	>20:1

[*a*] Unless otherwise specified, all reactions were carried out using **1a** (0.1 mmol, 1.0 equiv) and unsaturated ketoester **2a** (0.12 mmol, 1.2 equiv) in solvent (0.2 mL) with cat. **3** (20 mol %) and additive (20 mol %) at 40 °C. After workup, the mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 12:1) to get product **4aa**. [*b*] Isolated yield of **4aa** for one step. [*c*] Determined by HPLC analyses of isolated compound **4aa** on chiral stationary phases. [*d*] Determined by ¹H NMR. [*e*] Isolated yield of **4aa** was given based on filtration. DMF = *N*,*N*-dimethylformamide; THF = tetrahydrofuran.

C. Procedures for [3+3] reaction and characterization of products

General procedure: A glass vial equipped with a magnetic stirring bar was charged with lactol **1a** (0.10 mmol, 1.0 equiv), and unsaturated ketoester **2** (0.12 mmol, 1.2 equiv) in MeOH (0.2 mL) with **3** (20 mol %) and BA (PhCOOH) (20 mol %) at 40 °C until the material **1a** disappeared. After completion of the reaction, the reaction mixture was purified by filtration to afford **4** for NMR and HPLC analysis after washed twice with methanol.

Methyl(2*S*,4*S*,4a*R*,10a*R*)-2-hydroxy-4-phenyl-3,4,4a,10a-tetrahydro-2*H*,5*H*-pyrano[2,3-*b*]chromene-2-carboxylate (4aa)

White solid, **67%** yield, ¹**H NMR** (500 MHz, CDCl₃) 7.37 (t, *J* = 7.4 Hz, 2H), 7.33 – 7.27 (m, 3H), 7.10 (t, *J* = 7.4 Hz, 1H), 6.94 – 6.88 (m, 2H), 6.84 (dd, *J* = 10.7, 4.1 Hz, 1H), 5.52 (d, *J* = 8.9 Hz, 1H), 4.27 (d, *J* = 1.9 Hz, 1H), 3.89 (s, 3H), 3.09 (td, *J* = 12.7, 3.7 Hz, 1H), 2.59 – 2.44 (m, 3H), 2.18 (tdd, *J* = 11.5, 8.9, 5.7 Hz, 1H), 2.02 (dd, *J* = 13.4, 3.8 Hz, 1H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) 170.0, 152.9, 141.0, 129.3, 129.1, 127.8, 127.8, 127.5, 121.5, 121.4, 117.1, 98.2, 96.1, 53.9, 41.5, 40.7, 38.7, 28.6 ppm. **HRMS:** [M+Na]⁺ *calcd.* For $C_{20}H_{20}NaO_5^+$ m/z: 363.1203; found: 363.1200. [α]_D²⁰ +39.8 (*c* = 2.68 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column (*n*-hexane/*i*-PrOH = 85/15, 1 mL/min), λ = 210 nm, t_{major} = 14.67 min, t_{minor} = 8.49 min, *ee* >99%. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

Methyl(2*S*,4*S*,4a*R*,10a*R*)-2-hydroxy-4-(*p*-tolyl)-3,4,4a,10a-tetrahydro-2*H*,5*H*-pyrano[2,3-*b*]chromene-2-carboxylate (4ab)

White solid, **72%** yield, **¹H NMR** (500 MHz, CDCl₃) δ 7.17 (s, 4H), 7.10 (t, *J* = 7.5 Hz, 1H), 6.94 – 6.87 (m, 2H), 6.84 (t, *J* = 7.3 Hz, 1H), 5.51 (d, *J* = 8.9 Hz, 1H), 4.25 (d, *J* = 1.7 Hz, 1H), 3.88 (s, 3H), 3.05 (td, *J* = 12.7, 3.7 Hz, 1H), 2.54 – 2.41 (m, 3H), 2.36 (s, 3H), 2.21 – 2.11 (m, 1H), 1.99 (dd, *J* = 13.4, 3.7 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 169.8, 152.7, 137.7, 136.9, 129.5, 129.1, 127.6, 127.4, 121.3, 121.2, 116.9, 98.1, 95.9, 53.6, 40.8, 40.6, 38.6, 28.4, 21.1 ppm. HRMS: [M+Na]⁺ *calcd*. For C₂₁H₂₂NaO₅⁺ m/z: 377.1359; found: 377.1352. [α]_D²⁰ +45.0 (*c* = 1.34 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column (*n*-hexane/*i*-PrOH = 85/15, 1 mL/min), λ = 210 nm, *t_{major}* = 14.52 min, *t_{minor}* = 8.06 min, *ee* >99%. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

Methyl(2*S*,4*S*,4a*R*,10a*R*)-2-hydroxy-4-(*m*-tolyl)-3,4,4a,10a-tetrahydro-2*H*,5*H*-pyrano[2,3-*b*]chromene-2-carboxylate (4ac)

White solid, **59%** yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.25 (dd, *J* = 9.1, 5.6 Hz, 1H), 7.09 (dd, *J* = 13.1, 8.3 Hz, 4H), 6.95 – 6.89 (m, 2H), 6.84 (t, *J* = 7.4 Hz, 1H), 5.51 (d, *J* = 8.9 Hz, 1H), 4.27 (d, *J* = 1.8 Hz, 1H), 3.89 (s, 3H), 3.05 (td, *J* = 12.5, 3.6 Hz, 1H), 2.55 – 2.43 (m, 3H), 2.37 (s, 3H), 2.23 – 2.13 (m, 1H), 2.00 (dd, *J* = 13.4, 3.7 Hz, 1H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 169.8, 152.8, 140.7, 138.5, 129.1, 128.74, 128.2, 128.0, 127.6, 124.6, 121.3, 121.2, 116.9, 98.1, 95.9, 53.6, 41.2, 40.5, 38.6, 28.4, 21.5 ppm. **HRMS**: [M+Na]⁺ *calcd*. For C₂₁H₂₂NaO₅⁺ m/z: 377.1359; found: 377.1355. **[\alpha]_D²⁰** +44.9 (*c* = 1.79 in CHCl₃). The

enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column (*n*-hexane/*i*-PrOH = 85/15, 1 mL/min), λ = 210 nm, t_{major} = 9.85 min, t_{minor} = 6.99 min, *ee* > **99%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

Methyl(2*S*,4*S*,4*aR*,10*aR*)-4-(4-fluorophenyl)-2-hydroxy-3,4,4a,10atetrahydro-2*H*,5*H*-pyrano[2,3-*b*]chromene-2-carboxylate (4ad)

White solid, **68%** yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.25 (dd, *J* = 8.6, 5.4 Hz, 2H), 7.08 (dt, *J* = 17.2, 8.1 Hz, 3H), 6.91 (d, *J* = 8.4 Hz, 2H), 6.85 (t, *J* = 7.4 Hz, 1H), 5.50 (d, *J* = 8.8 Hz, 1H), 4.25 (d, *J* = 1.8 Hz, 1H), 3.89 (s, 3H), 3.08 (td, *J* = 12.7, 3.7 Hz, 1H), 2.57 – 2.40 (m, 3H), 2.13 (tdd, *J* = 11.6, 8.9, 5.5 Hz, 1H), 1.99 (dd, *J* = 13.4, 3.7 Hz, 1H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 169.7, 162.9, 160.9, 152.7, 136.5, 129.1, 129.0, 128.9, 127.7, 121.3, 121.0, 116.9, 115.8, 115.7, 97.9, 95.8, 53.7, 40.8, 40.6, 38.6, 28.3 ppm. **HRMS**: [M+Na]⁺ *calcd*. For C₂₀H₁₉FNaO₅⁺ m/z: 381.1109; found: 381.1110. [α]_D²⁰ +41.3 (*c* = 2.00 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column (*n*-hexane/*i*-PrOH = 85/15, 1 mL/min), λ = 210 nm, *t_{major}* = 16.67 min, *t_{minor}* = 8.61 min, *ee* >99%. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

Methyl(2*S*,4*S*,4*aR*,10*aR*)-4-(4-chlorophenyl)-2-hydroxy-3,4,4a,10atetrahydro-2*H*,5*H*-pyrano[2,3-*b*]chromene-2-carboxylate (4ae)

White solid, **73%** yield, ¹**H NMR** (500 MHz, CDCl₃) *δ* 7.34 (d, *J* = 8.2 Hz, 2H), 7.22 (d, *J* = 8.3 Hz, 2H), 7.10 (t, *J* = 7.7 Hz, 1H), 6.91 (d, *J* = 9.1 Hz, 2H), 6.85 (t, *J* = 7.4 Hz, 1H), 5.50 (d, *J* = 8.8 Hz, 1H), 4.29 (d, *J* = 1.3 Hz, 1H), 3.89 (s, 3H), 3.08 (td, *J* = 12.5, 3.6 Hz, 1H), 2.56

– 2.39 (m, 3H), 2.13 (dtd, *J* = 11.6, 9.1, 5.6 Hz, 1H), 1.99 (dd, *J* = 13.4, 3.6 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 169.6, 152.7, 139.2, 133.0, 129.1, 129.0, 128.9, 127.7, 121.3, 121.0, 116.9, 97.9, 95.8, 53.7, 40.8, 40.6, 38.4, 28.3 ppm. HRMS: [M+Na]⁺ *calcd*. For $C_{20}H_{19}CINaO_5^+$ m/z: 397.0813; found: 397.0815. [α]_D²⁰ +38.9 (*c* = 0.91 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column (*n*-hexane/*i*-PrOH = 85/15, 1 mL/min), λ = 210 nm, t_{major} = 17.41 min, t_{minor} = 9.03 min, *ee* >99%. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

Methyl(2*S*,4*S*,4a*R*,10a*R*)-4-(3-bromophenyl)-2-hydroxy-3,4,4a,10atetrahydro-2*H*,5*H*-pyrano[2,3-*b*]chromene-2-carboxylate (4af)

White solid, **57%** yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.46 – 7.41 (m, 2H), 7.25 – 7.19 (m, 2H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.92 (dd, *J* = 6.9, 4.9 Hz, 2H), 6.85 (t, *J* = 7.3 Hz, 1H), 5.50 (d, *J* = 8.8 Hz, 1H), 4.25 (d, *J* = 1.8 Hz, 1H), 3.89 (s, 3H), 3.07 (td, *J* = 12.7, 3.7 Hz, 1H), 2.56 – 2.39 (m, 3H), 2.14 (m, 1H), 2.00 (dd, *J* = 13.4, 3.7 Hz, 1H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 169.6, 152.7, 143.2, 130.6, 130.5, 130.5, 129.1, 127.7, 126.3, 123.0, 121.4, 120.9, 116.9, 97.8, 95.7, 53.7, 41.1, 40.5, 38.4, 28.3 ppm. **HRMS:** [M+Na]⁺ *calcd*. For C₂₀H₁₉⁷⁹BrNaO₅⁺ m/z: 441.0308; found: 441.0313; For C₂₀H₁₉⁸¹BrNaO₅⁺ m/z: 443.0288; found: 443.0298. [α]_D²⁰ +26.6 (*c* = 2.11 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column (*n*-hexane/*i*-PrOH = 85/15, 1 mL/min), λ = 230 nm, t_{major} = 11.01 min, t_{minor} = 8.08 min, *ee* = **99%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >**20:1**.

Methyl(2*S*,4*S*,4a*R*,10a*R*)-2-hydroxy-4-(naphthalen-2-yl)-3,4,4a,10atetrahydro-2*H*,5*H*-pyrano[2,3-*b*]chromene-2-carboxylate (4ag)

White solid, **63%** yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.85 (ddd, *J* = 11.4, 8.6, 6.3 Hz, 3H), 7.74 (s, 1H), 7.54 – 7.45 (m, 2H), 7.42 (dd, *J* = 8.5, 1.4 Hz, 1H), 7.10 (t, *J* = 6.9 Hz, 1H), 6.93 (d, *J* = 8.2 Hz, 1H), 6.88 – 6.79 (m, 2H), 5.57 (d, *J* = 8.8 Hz, 1H), 4.28 (d, *J* = 1.9 Hz, 1H), 3.90 (s, 3H), 3.27 (td, *J* = 12.6, 3.7 Hz, 1H), 2.64 – 2.54 (m, 2H), 2.49 (dd, *J* = 16.6, 5.2 Hz, 1H), 2.38 – 2.24 (m, 1H), 2.08 (dd, *J* = 13.4, 3.7 Hz, 1H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 169.8, 152.7, 138.1, 133.5, 132.7, 129.1, 128.7, 127.7, 127.6, 126.5, 126.4, 125.9, 125.3, 121.3, 121.2, 116.9, 98.1, 95.9, 53.7, 41.5, 40.5, 38.5, 28.4 ppm. **HRMS:** [M+Na]⁺ *calcd*. For C₂₄H₂₂NaO₅⁺ m/z: 413.1359; found: 413.1363. **[\alpha]**_D²⁰ +24.0 (*c* = 0.79 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column (*n*-hexane/*i*-PrOH = 85/15, 1 mL/min), λ = 230 nm, *t*_{major} = 15.06 min, *t*_{minor} = 9.23 min, *ee* = 96%. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

Methyl(2*S*,4*S*,4*aR*,10*aR*)-2-hydroxy-4-(thiophen-2-yl)-3,4,4a,10atetrahydro-2*H*,5*H*-pyrano[2,3-*b*]chromene-2-carboxylate (4ah)

White solid, **69%** yield, ¹**H NMR** (500 MHz, CDCl₃) *δ* 7.43 (d, *J* = 6.0 Hz, 2H), 7.22 (t, *J* = 8.6 Hz, 2H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.95 – 6.88 (m, 2H), 6.86 (q, *J* = 7.7 Hz, 1H), 5.50 (d, *J* = 8.8 Hz, 1H), 4.31 (s, 1H), 3.89 (s, 3H), 3.12 – 3.01 (m, 1H), 2.48 (dt, *J* = 26.3, 12.6 Hz, 3H), 2.22 – 2.08 (m, 1H), 2.00 (dd, *J* = 13.3, 3.3 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) *δ* 169.6, 152.6, 144.5, 129.2, 127.7, 126.9, 124.6, 123.9, 121.3, 121.1, 116.8, 97.8, 95.6, 53.7, 42.2, 39.7, 36.8, 28.5 ppm. **HRMS:** [M+Na]⁺ *calcd.* For C₁₈H₁₈NaO₅S⁺ m/z: 369.0767;

found: 369.0765. $[\alpha]_D^{20}$ +24.5 (c = 0.2 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column (n-hexane/i-PrOH = 85/15, 1 mL/min), $\lambda = 210$ nm, $t_{major} = 13.20$ min, $t_{minor} = 9.17$ min, ee = 94%. The diastereomeric ratio was determined by ¹H NMR, dr > 20:1.

Ethyl(2*S*,4*S*,4*aR*,10*aR*)-4-(4-chlorophenyl)-2-hydroxy-3,4,4a,10atetrahydro-2*H*,5*H*-pyrano[2,3-*b*]chromene-2-carboxylate (4ai)

White solid, **72%** yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.34 (d, *J* = 8.1 Hz, 2H), 7.22 (d, *J* = 8.2 Hz, 2H), 7.10 (t, *J* = 7.6 Hz, 1H), 6.94 – 6.88 (m, 2H), 6.85 (t, *J* = 7.4 Hz, 1H), 5.50 (d, *J* = 8.8 Hz, 1H), 4.43 – 4.21 (m, 3H), 3.11 – 3.04 (m, 1H), 2.56 – 2.39 (m, 3H), 2.19 – 2.09 (m, 1H), 1.98 (dd, *J* = 13.3, 3.4 Hz, 1H), 1.37 (t, *J* = 7.1 Hz, 3H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 169.1, 152.7, 139.4, 135.1, 133.0, 129.1, 128.9, 127.7, 121.3, 121.0, 116.9, 97.9, 95.7, 63.2, 40.8, 40.5, 38.4, 28.3, 14.0 ppm. **HRMS:** [M+Na]⁺ *calcd*. For C₂₁H₂₁ClNaO₅⁺ m/z: 411.0970; found: 411.0973. [α]_D²⁰ +50.2 (*c* = 1.30 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column (*n*-hexane/*i*-PrOH = 85/15, 1 mL/min), λ = 210 nm, *t_{major}* = 19.71 min, *t_{minor}* = 9.65 min, *ee* >99%. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

	O OH	0COOM +	Me 3 (2 BA (3 (20 mol %) BA (20 mol %) MeOH, 40 ^o C		H OH MCOOMe 4aa Ph	
	1a , 1.5 mmol	Ph 2a	Me				
recycle	<i>t</i> [h]	yield (%)	ee (%)	recycle	<i>t</i> [h]	yield (%)	ee (%)
1	6	61	>99	5	66	71	>99
2	16	59	>99	6	120	57	96
3	22	87	>99	7	163	84	96
4	54	77	>99	8	200	66	93

D. Catalyst recycling studies

A glass vial equipped with a magnetic stirring bar was charged with lactol **1a** (1.5 mmol, 1.0 equiv), and unsaturated ketoester **2a** (1.8 mmol, 1.2 equiv) in MeOH (1.5 mL) with **3** (20 mol %) and BA (PhCOOH) (20 mol %) at 40 °C until the material **1a** disappeared. After completion of the reaction, the reaction mixture was purified by filtration to afford **4aa** for NMR and HPLC analysis after washed twice with methanol. The filtrate was evaporated under vacuum and the remaining catalyst **3** and BA was used in the next run. In the seventh running, only lactol **1a** (1.5 mmol, 1.0 equiv) was added in the solution of filtrate.

E. Mechanism of [3+3] reaction pathway

The reaction could start with the addition of **3** to the hydroxyaldehyde, which is from the equilibrium of lactol **1a**, providing the intermediate enamine **17**, and then the enamine **17** would react with the β , γ -unsaturated α -ketoester **2a** in a Michael reaction to generate **18**. Zwitterion **18** would undergo proton transfer delivering **19**, which could provide aminoacetal **20** after an intramolecular aminoacetalization. Hydrolysis of aminoacetal **20** releasing catalyst was followed by spontaneous intramolecular hemiacetalization to afford substituted hemiacetal **21** and **21'**. Because of the steric hindrance of substituted hemiacetal, the hydroxyl group of the hemiacetal attacked the keto of product **21** from its *Re*-face to get the product **4aa**. While the product **21'**, which is the equilibrium of **21**, cannot complete the attack, that can effectively convert to the substituted hemiacetal **21** to finish the hemiketalization.

F. Optimization of the dehydration reaction

1a	OH + Ph 2a	OOMe 3 (20 mol BA (20 mc MeOH, 40	%) 0 °C	4aa	acid, CH ₂ Cl ₂	5a
Entry ^[a]	acid	acid loading	time (h)	yield (%) ^[b]	ee (%) ^[c]	dr ^[d]
$1^{[e]}$	p-TsOH	1.0	>24	63	>99	>20:1
2	$BF_3 \cdot OEt_2$	1.0	>24	70	>99	>20:1
3	$BF_3 \cdot OEt_2$	5.0	7	77	>99	>20:1
4	$BF_3 OEt_2$	10.0	7	78	>99	>20:1
5	BF3·OEt2	15.0	6	77	>99	>20:1

[*a*] Unless otherwise specified, all reactions were carried out using **1a** (0.1 mmol, 1.0 equiv) and unsaturated ketoester **2a** (0.12 mmol, 1.2 equiv) in MeOH (0.2 mL) with **3** (20 mol %) and BA (PhCOOH) (20 mol %) at 40 °C. After workup, the mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 12:1) to get product **4aa**. The acid was added to the solution of compound **4aa** dissolved in redistilled CH_2CI_2 (0.2 mmol in 1 mL) at 25 °C. After full conversion of the second step, the reaction mixture was purified by flash chromatography on gel (petroleum ether/ethyl acetate = 25/1) to give product **5a**. [*b*] Isolated yield of **5a** for two steps. [*c*] Determined by HPLC analyses of isolated compound **5a** on chiral stationary phases. [*d*] Determined by ¹H NMR. [*e*] The acid was added to the solution of compound **5a** of compound **4aa** dissolved in redistilled CH_2CI_2 at 40 °C. *p*-TsOH = *p*-Toluenesulfonic acid.

G. Procedures for cis-5 and characterization of products

General procedure: A glass vial equipped with a magnetic stirring bar was charged with lactol **1** (0.10 mmol, 1.0 equiv), and unsaturated ketoester **2** (0.12 mmol, 1.2 equiv) in MeOH (0.2 mL) with **3** (20 mol %) and BA (PhCOOH) (20 mol %) at 40 °C until the material **1** disappeared. After completion of the reaction, the mixture was purified by flash chromatography on silica gel to afford the hemiketal intermediate **4**. The BF₃OEt₂ (5.0 equiv) was added to the solution of compound **4** (1.0 equiv) dissolved in redistilled CH₂Cl₂ (0.2 mmol in 1 mL) at 25 °C. After full conversion of the second step, the reaction mixture was purified by flash chromatography on gel to give product **5** for NMR and HPLC analysis.

Methyl(4*S*,4a*R*,10a*S*)-4-phenyl-4a,10a-dihydro-4*H*,5*H*-pyrano[2,3*b*]chromene-2-carboxylate (5a)

White solid, **77%** yield, **¹H NMR** (500 MHz, CDCl₃) δ 7.35 (t, *J* = 7.4 Hz, 2H), 7.29 (t, *J* = 7.3 Hz, 1H), 7.16 (t, *J* = 6.6 Hz, 3H), 7.05 (d, *J* = 7.4 Hz, 1H), 6.96 – 6.89 (m, 2H), 6.25 (d, *J* = 3.4 Hz, 1H), 5.75 (d, *J* = 1.8 Hz, 1H), 3.85 (s, 3H), 3.45 (dd, *J* = 7.5, 3.3 Hz, 1H), 2.91 (dd, *J* = 16.7, 5.7 Hz, 1H), 2.71 (dd, *J* = 16.7, 6.1 Hz, 1H), 2.38 (dt, *J* = 7.7, 3.9 Hz, 1H) ppm. ¹³C **NMR** (125 MHz, CDCl₃) δ 162.6, 151.3, 141.7, 140.8, 129.3, 128.9, 128.3, 128.0, 127.3, 121.7, 119.4, 117.1, 113.7, 94.6, 52.4, 39.6, 36.0, 26.7 ppm. **HRMS**: [M+Na]⁺ *calcd*. For C₂₀H₁₈NaO₄⁺ m/z: 345.1097; found: 345.1099. [α]_D²⁰ +80.4 (*c* = 1.67 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column

(*n*-hexane/*i*-PrOH = 85/15, 1 mL/min), λ = 230 nm, t_{major} = 8.30 min, t_{minor} = 6.76 min, *ee* >99%. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

Methyl(4*S*,4a*R*,10a*S*)-4-(p-tolyl)-4a,10a-dihydro-4*H*,5*H*-pyrano[2,3*b*]chromene-2-carboxylate (5b)

White solid, **71%** yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.21 – 7.12 (m, 3H), 7.08 – 7.01 (m, 3H), 6.94 – 6.83 (m, 2H), 6.24 (d, *J* = 3.4 Hz, 1H), 5.74 (d, *J* = 1.9 Hz, 1H), 3.84 (s, 3H), 3.42 (dd, *J* = 7.4, 3.4 Hz, 1H), 2.90 (dd, *J* = 16.7, 5.7 Hz, 1H), 2.71 (dd, *J* = 16.7, 6.1 Hz, 1H), 2.39 – 2.35 (m, 1H), 2.35 (s, 3H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 162.6, 151.3, 140.7, 138.7, 137.0, 129.5, 129.3, 128.1, 128.0, 121.7, 119.5, 117.1, 114.0, 94.6, 52.4, 39.2, 36.0, 26.7, 21.0 ppm. **HRMS:** [M+Na]⁺ *calcd.* For C₂₁H₂₀NaO₄⁺ m/z: 359.1254; found: 359.1260. [α]_D²⁰ +84.4 (*c* = 1.78 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column (*n*-hexane/*i*-PrOH = 75/25, 1 mL/min), λ = 230 nm, *t_{major}* = 13.09 min, *t_{minor}* = 8.75 min, *ee* = 94%. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

Methyl(4*S*,4a*R*,10a*S*)-4-(m-tolyl)-4a,10a-dihydro-4*H*,5*H*-pyrano[2,3*b*]chromene-2-carboxylate (5c)

White solid, **74%** yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.23 (t, *J* = 7.5 Hz, 1H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.10 (d, *J* = 7.6 Hz, 1H), 7.04 (t, *J* = 6.9 Hz, 1H), 7.01 – 6.86 (m, 4H), 6.25 (d, *J* = 3.4 Hz, 1H), 5.74 (d, *J* = 1.9 Hz, 1H), 3.85 (s, 3H), 3.42 (dd, *J* = 7.3, 3.4 Hz, 1H), 2.90 (dd,

J = 16.7, 5.7 Hz, 1H), 2.76 – 2.68 (m, 1H), 2.43 – 2.36 (m, 1H), 2.35 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 162.6, 151.3, 141.7, 140.7, 138.6, 129.3, 128.9, 128.7, 128.1, 128.0, 125.4, 121.7, 119.5, 117.1, 113.8, 94.6, 52.4, 39.6, 35.9, 26.7, 21.4 ppm. HRMS: [M+Na]⁺ *calcd*. For C₂₁H₂₀NaO₄⁺ m/z: 359.1254; found: 359.1254. [α]_D²⁰ +88.6 (*c* = 1.77 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column (*n*-hexane/*i*-PrOH = 75/25, 1 mL/min), λ = 230 nm, *t_{major}* = 12.95 min, *t_{minor}* = 8.06 min, *ee* = 97%. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

Methyl(4S,4aR,10aS)-4-(4-fluorophenyl)-4a,10a-dihydro-4H,5H-

pyrano[2,3-b]chromene-2-carboxylate (5d)

White solid, **85%** yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.19 – 7.08 (m, 3H), 7.03 (t, *J* = 8.6 Hz, 3H), 6.92 (dd, *J* = 13.0, 7.7 Hz, 2H), 6.21 (d, *J* = 3.3 Hz, 1H), 5.73 (d, *J* = 1.7 Hz, 1H), 3.85 (s, 3H), 3.44 (dd, *J* = 7.6, 3.3 Hz, 1H), 2.92 (dd, *J* = 16.7, 5.6 Hz, 1H), 2.68 (dd, *J* = 16.8, 5.9 Hz, 1H), 2.34 (td, *J* = 7.6, 1.9 Hz, 1H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 163.0, 162.58, 151.2, 140.9, 137.4, 129.8, 129.7, 129.30, 128.1, 121.8, 119.2, 117.1, 115.8, 115.6, 113.4, 94.6, 52.5, 38.7, 36.1, 26.6 ppm. **HRMS:** [M+Na]⁺ *calcd.* For C₂₀H₁₇FNaO₄⁺ m/z: 363.1003; found: 363.1002. [α]_D²⁰ +14.0 (*c* = 7.48 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column (*n*-hexane/*i*-PrOH = 75/25, 1 mL/min), λ = 230 nm, *t_{major}* = 13.38 min, *t_{minor}* = 8.97 min, *ee* >99%. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

Methyl(4*S*,4a*R*,10a*S*)-4-(4-chlorophenyl)-4a,10a-dihydro-4*H*,5*H*pyrano[2,3-*b*]chromene-2-carboxylate (5e)

White solid, **61%** yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.32 (d, *J* = 8.2 Hz, 2H), 7.16 (t, *J* = 7.5 Hz, 1H), 7.10 (d, *J* = 8.3 Hz, 2H), 7.04 (d, *J* = 7.4 Hz, 1H), 6.92 (dd, *J* = 14.2, 7.7 Hz, 2H), 6.20 (d, *J* = 3.2 Hz, 1H), 5.73 (d, *J* = 1.5 Hz, 1H), 3.85 (s, 3H), 3.43 (dd, *J* = 7.7, 3.2 Hz, 1H), 2.92 (dd, *J* = 16.8, 5.6 Hz, 1H), 2.67 (dd, *J* = 16.8, 5.8 Hz, 1H), 2.39 – 2.10 (m, 1H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 162.4, 151.2, 141.0, 140.2, 133.2, 129.6, 129.3, 129.0, 128.1, 121.8, 119.1, 117.1, 113.0, 94.5, 52.5, 38.8, 36.0, 26.6 ppm. **HRMS**: [M+Na]⁺ *calcd*. For C₂₀H₁₇ClNaO₄⁺ m/z: 379.0708; found: 379.0703. [α]_D²⁰ +100.0 (*c* = 5.10 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column (*n*-hexane/*i*-PrOH = 75/25, 1 mL/min), λ = 230 nm, *t_{major}* = 13.23 min, *t_{minor}* = 9.25 min, *ee* >99%. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

Methyl(4*S*,4a*R*,10a*S*)-4-(3-bromophenyl)-4a,10a-dihydro-4*H*,5*H*pyrano[2,3-*b*]chromene-2-carboxylate (5f)

White solid, **83%** yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.42 (d, *J* = 7.9 Hz, 1H), 7.32 (s, 1H), 7.22 (t, *J* = 7.8 Hz, 1H), 7.16 (dd, *J* = 11.2, 4.2 Hz, 1H), 7.07 (dd, *J* = 19.3, 7.5 Hz, 2H), 6.93 (dd, *J* = 15.5, 7.8 Hz, 2H), 6.19 (d, *J* = 3.4 Hz, 1H), 5.73 (d, *J* = 1.9 Hz, 1H), 3.85 (s, 3H), 3.42 (dd, *J* = 7.6, 3.3 Hz, 1H), 2.93 (dd, *J* = 16.8, 5.7 Hz, 1H), 2.69 (dd, *J* = 16.8, 6.0 Hz, 1H), 2.37 (qd, *J* = 5.9, 2.0 Hz, 1H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 162.4, 151.2, 144.0, 141.1, 131.2, 130.6, 130.4, 129.3, 128.1, 127.0, 123.0, 121.9, 119.1, 117.1, 112.7, 94.5, 52.5, 39.2, 35.9, 26.6 ppm. **HRMS:** [M+Na]⁺ *calcd*. For C₂₀H₁₇⁷⁹BrNaO₄⁺ m/z: 423.0202; found: 423.0205. For C₂₀H₁₇⁸¹BrNaO₄⁺ m/z: 425.0182; found: 425.0192. [α]_D²⁰ +82.8 (*c* = 2.05 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel

Chiralpak IC column (*n*-hexane/*i*-PrOH = 75/25, 1 mL/min), λ = 230 nm, t_{major} = 13.75 min, t_{minor} = 8.37 min, *ee* = 99%. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

Methyl(4*S*,4a*R*,10a*S*)-4-(thiophen-2-yl)-4a,10a-dihydro-4*H*,5*H*-pyrano[2,3*b*]chromene-2-carboxylate (5g)

White solid, **57%** yield, **¹H NMR** (500 MHz, CDCl₃) δ 7.24 (dd, *J* = 5.1, 1.1 Hz, 1H), 7.18 – 7.13 (m, 1H), 7.05 (d, *J* = 7.9 Hz, 1H), 6.97 (dd, *J* = 5.1, 3.5 Hz, 1H), 6.93 (dd, *J* = 11.6, 4.3 Hz, 2H), 6.86 (d, *J* = 3.3 Hz, 1H), 6.29 (d, *J* = 3.8 Hz, 1H), 5.75 (d, *J* = 1.9 Hz, 1H), 3.84 (s, 3H), 3.76 (dd, *J* = 6.0, 3.9 Hz, 1H), 2.92 (dd, *J* = 16.6, 5.8 Hz, 1H), 2.78 (dd, *J* = 16.6, 7.6 Hz, 1H), 2.48 (qd, *J* = 6.0, 1.9 Hz, 1H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 162.4, 151.1, 145.0, 140.4, 129.4, 128.0, 127.0, 125.5, 124.7, 121.8, 119.5, 117.1, 112.5, 94.3, 52.5, 36.5, 35.8, 26.3 ppm. **HRMS:** [M+Na]⁺ *calcd*. For C₁₈H₁₆NaO₄S⁺ m/z: 351.0662; found: 351.0669. [α]₀²⁰ +67.8 (*c* = 1.29 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column (*n*-hexane/*i*-PrOH = 75/25, 1 mL/min), λ = 230 nm, *t_{major}* = 13.43 min, *t_{minor}* = 18.85 min, *ee* >99%. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

Methyl(4*S*,4a*R*,10a*S*)-7-chloro-4-phenyl-4a,10a-dihydro-4*H*,5*H*-pyrano[2,3*b*]chromene-2-carboxylate (5h)

White solid, **62%** yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.35 (t, *J* = 7.3 Hz, 2H), 7.32 – 7.27 (m, 1H), 7.16 (d, *J* = 7.1 Hz, 2H), 7.11 (dd, *J* = 8.7, 2.3 Hz, 1H), 7.03 (d, *J* = 2.1 Hz, 1H), 6.85 (d, *J* = 8.7 Hz, 1H), 6.25 (d, *J* = 3.4 Hz, 1H), 5.72 (d, *J* = 1.8 Hz, 1H), 3.84 (s, 3H), 3.42

(dd, *J* = 7.3, 3.4 Hz, 1H), 2.88 (dd, *J* = 16.9, 5.6 Hz, 1H), 2.68 (dd, *J* = 16.9, 6.3 Hz, 1H), 2.42 – 2.31 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 162.4, 149.9 141.4, 140.8 128.9, 128.9 128.2, 128.1 127.5 126.5 121.1, 118.5 113.5 94.5, 52.5 39.6, 35.7 26.5 ppm. HRMS: [M+Na]⁺ *calcd*. For C₂₀H₁₇ClNaO₄⁺ m/z: 379.0708; found: 379.0700. [α]_D²⁰ +82.3 (*c* = 0.96 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column (*n*-hexane/*i*-PrOH = 75/25, 1 mL/min), λ = 230 nm, *t_{major}* = 14.78 min, *t_{minor}* = 7.64 min, *ee* = 98%. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

Methyl(4*S*,4a*R*,10a*S*)-8-methyl-4-phenyl-4a,10a-dihydro-4*H*,5*H*pyrano[2,3-*b*]chromene-2-carboxylate (5i)

White solid, **53%** yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.35 (t, *J* = 7.4 Hz, 2H), 7.28 (t, *J* = 7.3 Hz, 1H), 7.17 (d, *J* = 7.3 Hz, 2H), 6.96 (d, *J* = 8.0 Hz, 1H), 6.87 – 6.78 (m, 2H), 6.25 (d, *J* = 3.3 Hz, 1H), 5.72 (d, *J* = 1.5 Hz, 1H), 3.84 (s, 3H), 3.45 (dd, *J* = 7.5, 3.3 Hz, 1H), 2.87 (dd, *J* = 16.7, 5.6 Hz, 1H), 2.67 (dd, *J* = 16.7, 5.9 Hz, 1H), 2.37 (q, *J* = 5.7 Hz, 1H), 2.27 (s, 3H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 162.6, 149.0, 141.8 140.8, 131.0, 129.6, 128.8, 128.6, 128.3 127.3 119.0, 116.8, 113.7, 94.7, 52.4, 39.5, 36.1 26.7, 20.5 ppm. **HRMS**: [M+Na]⁺ *calcd*. For C₂₁H₂₀NaO₄⁺ m/z: 359.1254; found: 359.1260. **[α]**_D²⁰ +63.9 (*c* = 1.04 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column (*n*-hexane/*i*-PrOH = 75/25, 1 mL/min), λ = 230 nm, *t*_{major} = 15.52 min, *t*_{minor} = 9.05 min, *ee* = 93%. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

Methyl(4*S*,4a*R*,10a*S*)-4-(naphthalen-2-yl)-4a,10a-dihydro-4*H*,5*H*pyrano[2,3-*b*]chromene-2-carboxylate (5j)

White solid, **67%** yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.84 (d, *J* = 8.5 Hz, 2H), 7.81 – 7.77 (m, 1H), 7.59 (s, 1H), 7.53 – 7.47 (m, 2H), 7.31 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.18 (t, *J* = 7.2 Hz, 1H), 7.07 (d, *J* = 7.2 Hz, 1H), 6.98 – 6.91 (m, 2H), 6.34 (d, *J* = 3.4 Hz, 1H), 5.79 (d, *J* = 1.9 Hz, 1H), 3.87 (s, 3H), 3.63 (dd, *J* = 7.4, 3.4 Hz, 1H), 2.93 (dd, *J* = 16.7, 5.7 Hz, 1H), 2.76 (dd, *J* = 16.8, 6.1 Hz, 1H), 2.50 (td, *J* = 7.7, 1.9 Hz, 1H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 162.6, 151.3, 141.0, 139.0, 133.3, 132.6, 129.4, 128.8, 128.0, 127.7, 127.7, 127.2, 126.5, 126.1, 126.1, 121.8, 119.5, 117.2, 113.5, 94.6, 52.5, 39.7, 35.8, 26.7 ppm. **HRMS:** [M+Na]⁺ *calcd.* For C₂₄H₂₀NaO₄⁺ m/z: 395.1254; found: 395.1255. **[\alpha]**_D²⁰ +128.1 (*c* = 1.88 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column (*n*-hexane/*i*-PrOH = 75/25, 1 mL/min), λ = 230 nm, *t_{major}* = 15.32 min, *t_{minor}* 9.94 min, *ee* = **99%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

Ethyl(4*S*,4a*R*,10a*S*)-4-(4-chlorophenyl)-4a,10a-dihydro-4*H*,5*H*-pyrano[2,3*b*]chromene-2-carboxylate (5k)

White solid, **70%** yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.32 (d, *J* = 8.4 Hz, 2H), 7.16 (t, *J* = 7.5 Hz, 1H), 7.10 (d, *J* = 8.4 Hz, 2H), 7.04 (d, *J* = 7.3 Hz, 1H), 6.96 – 6.88 (m, 2H), 6.18 (d, *J* = 3.2 Hz, 1H), 5.74 (d, *J* = 1.9 Hz, 1H), 4.41 – 4.22 (m, 2H), 3.42 (dd, *J* = 8.0, 3.2 Hz, 1H), 2.92 (dd, *J* = 16.8, 5.6 Hz, 1H), 2.67 (dd, *J* = 16.8, 5.5 Hz, 1H), 2.37 – 2.28 (m, 1H), 1.34 (t, *J* = 7.1 Hz, 3H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 162.0, 151.3, 141.2, 140.2, 133.2, 129.6, 129.3, 129.0, 128.1, 121.8, 119.1, 117.2, 112.8, 94.6, 61.6, 38.7, 35.9, 26.7, 14.2 ppm. **HRMS:** [M+Na]⁺ *calcd*. For C₂₁H₁₉ClNaO₄⁺ m/z: 393.0864; found: 393.0861. [α]_D²⁰ +38.3 (*c* = 3.42 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel

Chiralpak IC column (*n*-hexane/*i*-PrOH = 75/25, 1 mL/min), λ = 230 nm, t_{major} = 14.15 min, t_{minor} = 9.23 min, *ee* >99%. The diastereometric ratio was determined by ¹H NMR, *dr* >20:1.

H. The larger scale transformation of 5a

A glass vial equipped with a magnetic stirring bar was charged with **4aa** (1.0 mmol, 1.0 equiv) in CH_2Cl_2 (5 mL) at 0 °C. To the reaction mixture was added $BF_3 OEt_2$ (617µL, 5.0 equiv) at 0 °C. Then return the reaction mixture to 25 °C until **4aa** consumed for about 10 h. After completion of the reaction, the reaction mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 25/1) to give product **5a** (95%, >99% *ee*).

I. Procedure for trans-6 and characterization of product

A glass vial equipped with a magnetic stirring bar was charged with **4aa** (1.0 mmol, 1.0 equiv) in CH_2Cl_2 (5 mL) at 0 °C. To the reaction mixture was added TEA (834 µL, 6.0 mmol, 6.0 equiv) and MsCl (232 µL, 3.0 mmol, 3.0 equiv) at 0 °C. Then return the reaction mixture to 25 °C for 15 h. After completion of the reaction, the reaction mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give product **6** for NMR and HPLC analysis.

Methyl(4S,4aR,10aR)-4-phenyl-4a,10a-dihydro-4H,5H-pyrano[2,3-

b]chromene-2-carboxylate (6)

White solid, **66%** yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.37 (t, *J* = 7.3 Hz, 2H), 7.31 (t, *J* = 7.2 Hz, 1H), 7.23 (d, *J* = 7.2 Hz, 2H), 7.12 (t, *J* = 7.6 Hz, 1H), 6.98 (d, *J* = 8.2 Hz, 1H), 6.94 (d, *J* = 7.4 Hz, 1H), 6.85 (t, *J* = 7.4 Hz, 1H), 6.17 (d, *J* = 1.9 Hz, 1H), 5.56 (d, *J* = 9.2 Hz, 1H), 3.86 (s, 3H), 3.42 (dd, *J* = 10.4, 1.7 Hz, 1H), 2.76 (dd, *J* = 16.4, 5.3 Hz, 1H), 2.64 (dd, *J* = 16.2, 12.3 Hz, 1H), 2.23 – 2.17 (m, 1H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 162.4, 152.4, 142.1, 140.1, 129.0, 128.8, 127.9, 127.9, 127.6, 121.4, 120.5, 116.8, 115.0, 110.0, 99.5, 52.5, 44.9, 39.0, 28.8 ppm. **HRMS:** [M+Na]⁺ *calcd*. For C₂₀H₁₈NaO₄⁺ m/z: 345.1097; found: 345.1099. **[\alpha]**_D²⁰ +102.2 (*c* = 1.06 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column (*n*-hexane/*i*-PrOH = 80/20, 1 mL/min), λ = 230 nm, *t*_{major} = 8.51 min, *t*_{minor} = 6.97 min, *ee* = **99%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

J. Transformation between 6 and 5a

A glass vial equipped with a magnetic stirring bar was charged with **6** (0.1 mmol, 1.0 equiv) in CH_2Cl_2 (0.5 mL) at 0 °C. To the reaction mixture was added BF_3OEt_2 (62 µL, 5.0 equiv) at 0 °C. Then return the reaction mixture to 25 °C until **6** consumed. After completion of the reaction, the reaction mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 25/1) to give product **5a** (65%, 99% *ee*).

K. Synthetic transformation

Methyl(4*S*,4a*R*,10a*R*)-4-phenyl-1,4a,5,10a-tetrahydro-4*H*-chromeno[2,3*b*]pyridine-2-carboxylate (7)

To the solution of **4a** (68 mg, 0.2 mmol) in the EtOH (1 mL) was added NH₄OAc (31 mg, 0.4 mmol) at room temperature. Then return the reaction to the 80 °C and reflux for 1 h. After completion of the reaction, the solvent was removed under vacuum. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 25/1) to afford the desired product **7** as a colorless oil (63 mg, 98%). **¹H NMR** (500 MHz, CDCl₃) δ 7.33 (t, *J* = 7.3 Hz, 2H), 7.27 (dd, *J* = 9.7, 4.7 Hz, 1H), 7.16 (dd, *J* = 8.8, 7.7 Hz, 3H), 7.02 (d, *J* = 7.4 Hz, 1H), 6.89 (t, *J* = 7.3 Hz, 1H), 6.85 (d, *J* = 8.1 Hz, 1H), 5.81 (d, *J* = 1.7 Hz, 1H), 5.30 – 5.25 (m, 2H), 3.81 (s, 3H), 3.44 (dd, *J* = 11.6, 2.5 Hz, 1H), 2.94 (dd, *J* = 17.0, 6.0 Hz, 1H), 2.57 (d, *J* = 16.9 Hz, 1H), 2.38 (dd, *J* = 11.6, 6.0 Hz, 1H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 164.4, 152.0, 143.1, 129.8, 129.5, 128.6, 128.1, 127.9, 126.9, 120.9, 119.2, 117.1, 111.9, 80.4, 52.2, 39.4, 36.1, 28.0 ppm. **HRMS:** [M+H]⁺ *calcd.* For C₂₀H₂₀NO₃⁺ m/z: 322.1438; found: 322.1437. **[α]**_D²⁰ -67.5 (*c* = 2.77 in CHCl₃). The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

(1*S*,6*S*,6a*R*,12a*R*)-1,6-diphenyl-1,2,6a,12a-tetrahydro-7*H*chromeno[3',2':5,6]pyrido[2,1-*c*][1,4]oxazin-4(6*H*)-one (8)

To the solution of **4aa** (68 mg, 0.2 mmol) in the CH₂Cl₂ (1 mL) was added *D*-2-Phenylglycinol (55 mg, 0.4 mmol) at room temperature. After stirring at room temprerature for 36 h, remove the soluvent under vacuum and the mixture was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 20/1) to afford the desired product **8** as a white solid (42 mg, 51%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.46 – 7.36 (m, 5H), 7.33 (t, *J* = 7.3 Hz, 2H), 7.30 – 7.25 (m, 1H), 7.16 (dd, *J* = 13.1, 6.1 Hz, 3H), 6.96 (d, *J* = 7.3 Hz, 1H), 6.89 – 6.82 (m, 2H), 6.37 (d, *J* = 2.9 Hz, 1H), 4.86 (dd, *J* = 9.4, 3.3 Hz, 1H), 4.82 (d, *J* = 1.7 Hz, 1H), 4.56 (dd, *J* = 11.3, 9.5 Hz, 1H), 4.45 (dd, *J* = 11.4, 3.3 Hz, 1H), 3.46 (dd, *J* = 11.6, 2.8 Hz, 1H), 2.78 (dd, *J* = 17.0, 5.8 Hz, 1H), 2.53 (d, *J* = 16.7 Hz, 1H), 2.46 – 2.38 (m, 1H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 161.4, 151.9, 142.0, 135.0, 129.9, 129.7, 129.2, 129.1, 128.7, 128.6, 128.2, 127.9, 127.1, 121.1, 119.3, 119.0, 117.0, 82.3, 71.4, 56.8, 40.3, 36.3, 28.1 ppm. **HRMS:** [M+H]⁺ *calcd*. For C₂₇H₂₄NO₃⁺ m/z: 410.1751; found: 410.1751. **[\alpha]**_D²⁰ -80.2 (*c* = 2.06 in CHCl₃). The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

Methyl(2*R*,4*S*,4a*R*,10a*R*)-2-fluoro-4-phenyl-3,4,4a,10a-tetrahydro-2*H*,5*H*pyrano[2,3-*b*]chromene-2-carboxylate (9)

To the solution of **4aa** (68 mg, 0.2 mmol) in the CH₂Cl₂ (1 mL) was added drop wise DAST (Et₂NSF₃, 0.22 mmol) at -40 °C under N₂ atmosphere. Then return the reaction to -10 °C gradually and stir at the temperature for 4 h until the material **4aa** consumed. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 25/1) to afford the desired product **9** as a colorless oil (32 mg, 47%). **¹H NMR** (500 MHz, CDCl₃) δ 7.39 (t, *J* = 7.5 Hz, 2H), 7.33 (t, *J* = 7.3 Hz, 1H), 7.29 – 7.25 (m, 2H), 7.13 (t, *J* = 7.4 Hz, 1H), 6.97 (d, *J* = 8.2 Hz, 1H), 6.92 (d, *J* = 7.2 Hz, 1H), 6.87 (t, *J* = 7.3 Hz, 1H), 5.50 (d, *J* = 9.0 Hz, 1H), 3.90 (s, 3H), 3.05 (td, *J* = 11.5, 5.3 Hz, 1H), 2.53 (d, *J* = 8.5 Hz, 2H), 2.44 – 2.32 (m, 2H), 2.31 – 2.17 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 165.4, 152.4, 139.6, 129.1, 127.8, 127.6, 127.5, 121.6, 120.8, 117.0, 109.3, 107.5, 98.9, 53.4, 40.6, 39.7, 37.9, 28.2 ppm. **HRMS:** [M+Na]⁺ *calcd*. For C₂₀H₁₉FNaO₄⁺ m/z: 365.1160; found: 365.1154. [**α**]₀²⁰ +42.9 (*c* = 1.26 in CHCl₃). The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

Methyl(2*R*,4*S*,4a*R*,10a*R*)-4-phenyl-3,4,4a,10a-tetrahydro-2*H*,5*H*pyrano[2,3-*b*]chromene-2-carboxylate (10)

Hydrogenate a solution of **5a** (32 mg, 0.1 mmol) in MeOH (1 mL) at atmospheric pressure using 10% Pd/C (3 mg) as the catalyst. And the reaction mixture was stirred at 40 °C for 48 h. After completion of the reaction, filter the catalyst and the solvent was removed under vacuum. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 25/1) to afford the desired product **10** as a white solid (29 mg, 90%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.29 (t, *J* = 7.3 Hz, 2H), 7.26 – 7.19 (m, 1H), 7.10 (dd, *J* = 11.7, 4.3 Hz, 3H), 6.83 (q, *J* = 7.6 Hz, 2H), 6.72 (d, *J* = 8.2 Hz, 1H), 5.62 (s, 1H), 4.52 (d, *J* = 4.9 Hz, 1H), 3.87 (s, 3H), 3.04 (td, *J* = 11.9, 3.5 Hz, 1H), 2.78 (dd, *J* = 16.7, 5.3 Hz, 1H), 2.37 (t, *J* = 16.2 Hz, 3H), 2.15 – 2.05 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 171.9, 152.8, 142.5, 129.4, 128.9, 127.8, 127.8, 127.1, 121.4, 119.1, 116.5, 97.2, 70.3, 52.2, 37.3, 34.7, 32.0, 27.5 ppm. HRMS: [M+Na]⁺ calcd. For C₂₀H₂₀NaO₄⁺ m/z: 347.1254; found: 347.1255; [**α**]_D²⁰ -3.74 (*c* = 2.81 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column (*n*-hexane/*i*-PrOH = 85/15, 1 mL/min), λ = 210 nm, t_{major} = 9.13 min, t_{minor} = 10.21 min, *ee* = **97%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >**20:1**.

(2*R*,4*S*,4a*R*,10a*R*)-4-phenyl-3,4,4a,10a-tetrahydro-2*H*,5*H*-pyrano[2,3*b*]chromene-2-carbaldehyde (11)

To a magnetically stirred suspension of LiAlH₄ (29 mg, 0.75 mmol) in 1 mL of anhydrous tetrahydrofuran (THF), cooled to 0 °C, was added drop wise a solution of **10** (80 mg, 0.25 mmol) in anhydrous tetrahydrofuran (1 mL) under N₂ atmosphere. After stirring at this temperature for about 1 h (TLC monitoring) the mixture was diluted with a small amount of 15% KOH solution. The white suspension was filtered, the filtrate was evaporated and obtained crude was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 8/1) to get reduction product as a white solid (68 mg, 93 %).

To the solution of reduction product in the CH_2Cl_2 (3 mL) was added drop wise (CO)₂Cl₂ (63 µL, 0.75 mmol) and DMSO (159 µL, 2.25 mmol) in CH₂Cl₂ (2.5 mL) at -78 °C. After stirring at this temperature for 30 min, TEA (521 μ L, 3.75 mmol) was added. When the reaction finished, the mixture was diluted with NH_4Cl (aq.) and extracted with ethyl acetate (3 x 5mL) and H_2O (3 x 5mL) until no product was visible in TLC. The organic layer was dried with Na₂SO₄, filtered and the filtrate was evaporated and obtained crude was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 8/1) to get product **11** as colorless oil (30 mg, 41%). ¹**H NMR** (500 MHz, CDCl₃) δ 9.75 (s, 1H), 7.31 (t, J = 7.3 Hz, 2H), 7.27 – 7.24 (m, 1H), 7.16 (dd, J = 11.4, 4.9 Hz, 1H), 7.08 (d, J = 7.1 Hz, 2H), 6.90 (dd, J = 10.7, 7.9 Hz, 3H), 5.75 (d, J = 2.6 Hz, 1H), 4.70 (dd, J = 12.3, 2.6 Hz, 1H), 2.92 – 2.81 (m, 2H), 2.44 – 2.38 (m, 1H), 2.38 – 2.33 (m, 1H), 2.15 – 2.08 (m, 1H), 1.81 (dd, J = 25.6, 12.6 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 200.2, 153.1, 141.8, 129.3, 128.8, 127.7, 127.4, 127.2, 121.3, 118.7, 116.3, 96.7, 75.0, 38.3, 37.4, 32.7, 27.1 ppm. **HRMS:** $[M+H]^+$ calcd. For $C_{19}H_{19}O_{3^+}$ m/z: 295.1329; found: 295.1328; $[\alpha]_D^{20}$ –17.9 $(c = 0.68 \text{ in CHCl}_3)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column (*n*-hexane/*i*-PrOH = 80/20, 1 mL/min), λ = 210 nm, t_{major} = 8.75 min, t_{minor} = 9.34 min, *ee* = 98%. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

(4a*R*,10a*R*)-2-(diphenylmethylene)-4-phenyl-4a,10a-dihydro-2*H*,5*H*pyrano[2,3-*b*]chromene (12)

To a solution of **5a** (32 mg, 0.1 mmol) in 2 mL of anhydrous tetrahydrofuran (THF) was added drop wise PhMgBr (0.4 mmol in Et₂O, 4.0 eq.) at 0 °C. Then return the reaction to 80 °C for 12 h until the material is consumed. When the reaction finished, the mixture was diluted with NH_4Cl (aq.) and extracted with ethyl acetate (3 x 5mL) and H_2O (3 x 5mL) until no product was visible in TLC. The organic layer was dried with Na₂SO₄, filtered and the filtrate was evaporated and obtained crude was purified by column chromatography on a silica gel to get product **16** as white solid. To the solution of **16** in CH_2Cl_2 (400 µL) was added *p*-TsOH (20 mol %) and stirred at room temperature for 2 h until the compound 16 was consumed. The mixture was purified by column chromatography on a silica gel to get product **12** as white solid (33 mg, 77%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.46 - 7.42 (m, 2H), 7.42 - 7.32 (m, 8H), 7.31 - 7.26 (m, 5H), 7.21 -7.14 (m, 2H), 7.03 (dd, / = 16.1, 7.6 Hz, 2H), 6.96 - 6.91 (m, 1H), 6.69 (s, 1H), 5.87 (d, / = 2.2 Hz, 1H), 3.26 (ddd, J = 9.8, 7.7, 2.2 Hz, 1H), 2.99 (d, J = 8.1 Hz, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 151.3, 145.9, 140.5, 139.3, 138.3, 137.3, 131.7, 130.5, 128.9, 128.8, 128.2, 128.2, 127.9, 127.6, 127.1, 126.5, 125.1, 124.0, 121.4, 120.7, 118.4, 116.8, 95.6, 33.4, 26.9 ppm. **HRMS:** $[M+H]^+$ calcd. For $C_{31}H_{25}O_2^+$ m/z: 429.1849; found: 429.1848. $[\alpha]_D^{20}$ +195.6 (c = 1.27 in CHCl₃). The diastereometric ratio was determined by ¹H NMR, dr > 20:1.

2-methylallyl(4*S*,4a*R*,10a*S*)-4-phenyl-4a,10a-dihydro-4*H*,5*H*-pyrano[2,3*b*]chromene-2-carboxylate (13)

To a solvent of 5a (32mg, 0.1 mmol) in MeOH (400 µL) was added LiOH (0.2 mmol, 2.0 eq.). The reaction mixture was stirred at room temperature for 12 h. After the reaction completed (detected by TLC), the reaction mixture was acidified to pH=1 with 1 N HCl. The mixture was then extracted with ethyl acetate (3 x 10mL) until no product was visible in TLC, the organic layer was dried with Na₂SO₄, filtered and the solvent was removed under vacuum to get crude product **15** as a white solid. To a solvent of **15** in dry DMF (200 µL) was added KI (33 mg, 2.0 eq.), K₂CO₃ (28 mg, 2.0 eq.) and 3-chloro-2methylprop-1-ene (20 µL, 2.0 eq.) The solution was stirred at room temperature for 12 h. After completion of the reaction, the reaction mixture was purified by flash chromatography to get **13** as a light yellow oil (34 mg, 94%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.36 (dd, J = 10.0, 4.6 Hz, 2H), 7.29 (dd, J = 8.4, 6.2 Hz, 1H), 7.17 (dd, J = 9.9, 3.0 Hz, 3H), 7.05 (d, J = 7.0 Hz, 1H), 6.96 - 6.89 (m, 2H), 6.26 (d, J = 3.3 Hz, 1H), 5.76 (d, J = 2.0 Hz, 1H), 5.03 (s, 1H), 4.96 (s, 1H), 4.67 (dd, J = 32.1, 13.1 Hz, 2H), 3.45 (dd, J = 7.9, 3.3 Hz, 1H), 2.92 (dd, J = 16.8, 5.7 Hz, 1H), 2.71 (dd, J = 16.8, 5.6 Hz, 1H), 2.39 (dtd, J = 7.8, 5.7, 2.0 Hz, 1H), 1.79 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 161.7, 151.3, 141.7, 140.8, 139.4, 129.3, 128.9, 128.3, 128.0, 127.3, 121.7, 119.3, 117.1, 113.8, 113.5, 94.7, 68.5, 39.3, 36.0, 26.7, 19.6 ppm. **HRMS:** [M+Na]⁺ *calcd*. For C₂₃H₂₂NaO₄⁺ m/z: 385.1410; found: 385.1414. $[\alpha]_{D}^{20}$ +32.2 (*c* = 1.74 in CHCl₃). The diastereometric ratio was determined by ¹H NMR, *dr* >20:1.

Methyl(4*S*,4a*R*,10a*S*)-4-hydroxy-4-phenyl-4a,10a-dihydro-4*H*,5*H*pyrano[2,3-*b*]chromene-2-carboxylate (14)

To a solvent of **5a** (32 mg, 0.1 mmol) in CH₂Cl₂ (0.5 mL) with a magnetic rotor was added DBU (15 mg, 1.0 eq., 0.1 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 12 h. After the reaction completed (detected by TLC), reaction mixture was purified by column chromatograph on a silica gel (petroleum ether/ethyl acetate = 10/1) to get product **14** as a white solid (15 mg, 45%). ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 7.3 Hz, 2H), 7.41 (dt, *J* = 20.9, 7.0 Hz, 3H), 7.11 (t, *J* = 7.4 Hz, 1H), 6.96 (d, *J* = 8.1 Hz, 1H), 6.86 – 6.77 (m, 2H), 6.42 (d, *J* = 1.2 Hz, 1H), 6.13 (s, 1H), 3.84 (s, 3H), 2.53 – 2.44 (m, 2H), 2.35 – 2.25 (m, 1H), 1.69 (dd, *J* = 16.1, 5.6 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 162.7, 150.9, 143.8, 142.6, 129.6, 128.8, 128.6, 127.9, 126.1, 121.9, 120.9, 117.2, 112.4, 95.8, 73.1, 52.9, 40.3, 22.8 ppm. HRMS: [M+Na]⁺ calcd. For C₂₀H₁₈NaO₄⁺ m/z: 361.0837; found: 361.0842. **[\alpha]₀²⁰ +174.9 (***c* **= 0.51 in CHCl₃). The diastereomeric ratio was determined by ¹H NMR,** *dr* **>20:1.**

L. NMR spectra and HPLC traces

The ¹H NMR spectrum of 4aa (500 MHz, CDCl₃)

The HPLC of racemic 4aa

0.30 -ОН 0 COOMe 363216, 14.693 0.25 247710, 8,453 0.20 (AU) rac-4aa Absorbance 0.15 0.10 0.05 0.00 THE P nhunhunhu 10 12 14 15 16 17 7 8 9 11 13 Retention Time (min) Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No. RT Area Area % BC 8.453 1 3247710 49.126 ΒB 2 14.693 3363216 50.874 BB 6610926 100.000

The HPLC of chiral 4aa

Chrom Type: Fixed WL Chromatogram, 210 nm

The ¹H NMR spectrum of 4ab (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 4ab (125 MHz, CDCl₃)

The HPLC of racemic 4ab

Chrom Type: Fixed WL Chromatogram, 210 nm

No.	RT	Area	Area %	BC
1 2	8.027 14.520	1691718 1809841	48.313 51.687	BB BB
		3501559	100.000	

The HPLC of chiral 4ab

Chrom Type: Fixed WL Chromatogram, 210 nm OH ✔…COOMe 0 0 0.15 Absorbance (AU) 0.10 4ab Сн₃ 8.060 0.05 0.00 7 8 10 11 12 13 14 15 16 9 Retention Time (min)

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	8.060	1336	0.064	BB
2	14.520	2086345	99.936	BB
		2087681	100.000	
		2087681	100.000	

The ¹H NMR spectrum of 4ac (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 4ac (125 MHz, CDCl₃)

The HPLC of racemic 4ac

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	7.000 9.847	1535424 1555527	49.675 50.325	BB BB
		3090951	100.000	

The HPLC of chiral 4ac

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	6.987	74	0.006	вв
2	9.847	1224503	99.994	BB
		1224577	100.000	

The ¹³C NMR spectrum of 4ad (125 MHz, CDCl₃)

The HPLC of racemic 4ad

No.	RT	Area	Area %	BC
1	8.600	823556	50.067	BB
2	16.687	821358	49.933	BB
		1644914	100.000	

The HPLC of chiral 4ad

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

	Alea 5	Area	RT	No.
BB	0.334	11610	8.613	1
ВВ	33.000	5400021	10.007	2
-	100.000	3477631	10.007	

The ¹³C NMR spectrum of 4ae (125 MHz, CDCl₃)

The HPLC of racemic 4ae

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	9.020	2067745	51.187	BB
2	17.400	1971853	48.813	BB
		4039598	100.000	

The HPLC of chiral 4ae

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	9.027 17.413	3289 1549719	0.212 99.788	BB BB
		1553008	100.000	

The ¹³C NMR spectrum of 4af (125 MHz, CDCl₃)

The HPLC of racemic 4af

The HPLC of chiral 4af

Chrom Type: Fixed WL Chromatogram, 230 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	8.067	119767	0.601	BB
2	11.013	19794234	99.399	BB
		19914001	100.000	

The ¹³C NMR spectrum of 4ag (125 MHz, CDCl₃)

The ¹H NMR spectrum of 4ag (500 MHz, CDCl₃)

The HPLC of racemic 4ag

Chrom Type: Fixed WL Chromatogram, 230 nm

Chrom Type: Fixed WL Chromatogram, 230 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	9.200 15.053	3339504 3712577	47.355 52.645	BB BB
-		7052081	100.000	

The HPLC of chiral 4g

Chrom Type: Fixed WL Chromatogram, 230 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	9.227 15.060	122985 5986256	2.013 97.987	BB BB
		6109241	100.000	

The ¹H NMR spectrum of 4ah (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 4ah (125 MHz, CDCl₃)

The HPLC of racemic 4ah

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	9.180 13.227	1436068 1489648	49.084 50.916	BB BB
		2925716	100.000	

The HPLC of chiral 4ah

Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	9.167	312250	2.870	BB
2	13.200	10569453	97.130	BB
		10881703	100.000	

The ¹³C NMR spectrum of 4ai (125 MHz, CDCl₃)

The HPLC of racemic 4ai

The HPLC of chiral 4ai

7333163

100.000

The ¹H NMR spectrum of 5a (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5a (125 MHz, CDCl₃)

The HPLC of racemic 5a

The HPLC of chiral 5a

	RI	Area	Alea 5	BC
1	6.760	56334	0.387	BB
2	8.300	14484341	99.613	BB
		14540675	100.000	

The ¹H NMR spectrum of 5b (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5b (125 MHz, CDCl₃)

The HPLC of racemic 5b

No.	RT	Area	Area 🖇	BC
1	8.700	13043508	49.700	BB
2	12.780	13200919	49.700 50.300	BB
		26244427	100.000	

The HPLC of chiral 5b

No.	RT	Area	Area %	BC
1 2	8.753 13.087	80654 2752032	2.847 97.153	BB BB
		2832686	100.000	

The ¹H NMR spectrum of 5c (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5c (125 MHz, CDCl₃)

The HPLC of racemic 5c

The HPLC of chiral 5c

No.	RT	Area	Area %	BC
1	8.060	78997	1.447	BB
2	12.953	5379763	1.447 98.553	BB
		5458760	100.000	

The ¹H NMR spectrum of 5d (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5d (125 MHz, CDCl₃)

The HPLC of racemic 5d

The HPLC of chiral 5d

No.	RT	Area	Area %	BC
1 2	8.973 13.380	8161 2331756	0.349 99.651	BB BB
		2339917	100.000	

The ¹H NMR spectrum of 5e (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5e (125 MHz, CDCl₃)

The HPLC of racemic 5e

The HPLC of chiral 5e

No.	RT	Area	Area %	BC
1 2	9.247 13.227	47118 10398013	0.451 99.549	BB BB
		10445131	100.000	

The ¹H NMR spectrum of 5f (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5f (125 MHz, CDCl₃)

The HPLC of racemic 5f

No.	RT	Area	Area %	BC
1 2	8.373 13.780	3234365 3252844	49.858 50.142	BB BB
		6487209	100.000	

The HPLC of chiral 5f

Calculation Method: AREA

No.	RT	Area	Area %	BC
1 2	8.373 13.753	53837 9958437	0.538 99.462	BB BB
		10012274	100.000	

The ¹H NMR spectrum of 5g (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5g (125 MHz, CDCl₃)

The HPLC of racemic 5g

The HPLC of chiral 5g

Chrom Type: Fixed WL Chromatogram, 230 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	13.427 18.853	11568488 1123	99.990 0.010	BB BB
		11569611	100.000	

The ¹H NMR spectrum of 5h (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5h (125 MHz, CDCl₃)

The HPLC of racemic 5h

No.	RT	Area	Area %	BC
1 2	7.640 14.820	2342620 2365528	49.757 50.243	BB BB
		4708148	100.000	

The HPLC of chiral 5h

Chrom Type: Fixed WL Chromatogram, 230 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	7.640 14.780	119210 14528209	0.814 99.186	BB BB
		14647419	100.000	

The ¹H NMR spectrum of 5i (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5i (125 MHz, CDCl₃)

The HPLC of racemic 5i

Chrom Type: Fixed WL Chromatogram, 230 nm

200 200	100000		2223-2223-2323-232 (222-232)	
1	9.033	6431523	49.917	BB
2	15.560	6453025	50.083	BB
		12884548	100.000	

The HPLC of chiral 5i

Calculation Method: AREA

No.	RT	Area	Area %	BC
1 2	9.047 15.520	158553 4079241	3.741 96.259	BB BB
		4237794	100.000	

The ¹H NMR spectrum of 5j (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5j (125 MHz, CDCl₃)

The HPLC of racemic 5j

The HPLC of chiral 5j

Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	9.940 15.320	180226 32222397	0.556 99.444	BB BB
		32402623	100.000	

The ¹H NMR spectrum of 5k (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5k (125 MHz, CDCl₃)

The HPLC of racemic 5k

NO.	KI	Alea	Alea %	DC
1	9.200	3678817	50.509	BB
2	14.153	3604705	49.491	BB
		7283522	100.000	

The HPLC of chiral 5k

The ¹³C NMR spectrum of 6 (125 MHz, CDCl₃)

The ¹H NMR spectrum of 6 (500 MHz, CDCl₃)

The HPLC of racemic 6

The HPLC of chiral 6

The ¹H NMR spectrum of 7 (500 MHz, CDCl₃)

fl (ppm) Ó

The ¹³C NMR spectrum of 8 (125 MHz, CDCl₃)

The ¹H NMR spectrum of 8 (500 MHz, CDCl₃)

The ¹H NMR spectrum of 9 (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 9 (125 MHz, CDCl₃)

The ¹H NMR spectrum of 10 (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 10 (125 MHz, CDCl₃)

The NOSEY spectrum of 10 (500 MHz, CDCl₃)

The HPLC of racemic 10

Chrom Type: Fixed WL Chromatogram, 230 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	9.093	13648719	48.935	BB
2	10.047	14242974	51.065	BB
		27891693	100.000	

The HPLC of chiral 10

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	9.133	5255833	98.548	BB
2	10.207	77441	1.452	BB
		5333274	100.000	

The ¹H NMR spectrum of 11 (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 11 (125 MHz, CDCl₃)

The HPLC of racemic 11

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	9.120 10.053	5345808 5554129	49.044 50.956	BB BB
		10899937	100.000	

The HPLC of chiral 11

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	8.753	5331844	99.113	BB
2	9.340	47712	0.887	ВВ
		5379556	100.000	

The ¹H NMR spectrum of 12 (500 MHz, CDCl₃)

The ¹H NMR spectrum of 13 (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 13 (125 MHz, CDCl₃)

The ¹H NMR spectrum of 14 (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 14 (125 MHz, CDCl₃)

The NOE pectrum of 14 (500 MHz, CDCl₃)

M. Single crystal X-Ray diffraction data

[CCDC 1895258-1895260 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.].

Absolute configuration of 4ai - CCDC 1895258

Absolute configuration of **5k** - CCDC 1895259

		O TO COOEt	
Bond precision:	C-C = 0.0046 A	Wavelengt	th=0.71073
Cell:	a=10.5134(13)	b=7.5193(9)	c=22.921(3)
	alpha=90	beta=90	gamma=90
Temperature:	296 K		
	Calculated	Reporte	d
Volume	1812.0(4)	1812.0(4	4)
Space group	P 21 21 21	P 21 21	21
Hall group	P 2ac 2ab	P 2ac 2a	ab
Moiety formula	C21 H19 C1 O4	C21 H19	C1 04
Sum formula	C21 H19 C1 O4	C21 H19	C1 04
Mr	370.81	370.81	
Dx,g cm-3	1.359	1.359	
Z	4	4	
Mu (mm-1)	0.234	0.234	
F000	776.0	776.0	
F000'	776.96		
h,k,lmax	13,9,29	13,9,29	
Nref	4195[2410]	4139	
Tmin, Tmax		0.694,0	.746
Tmin'			
Correction meth AbsCorr = MULTI	od= # Reported T I -SCAN	Limits: Tmin=0.694	4 Tmax=0.746
Data completene	ss= 1.72/0.99	Theta(max) = 27.	593
R(reflections) =	0.0472(3342)	wR2 (reflections)= 0.1190(4139)
S = 1.036	Npar=	236	

Relative configuration of **6** - CCDC 1895260

	8008-10-8 00-5-8 0 0 0 0 0 0		DOMe
Bond precision:	C-C = 0.0037 A	Waveleng	th=0.71073
Cell: Temperature:	a=10.3231(13) alpha=90 100 K	b=8.3376(10) beta=116.926(2)	c=10.6510(13) gamma=90
Volume Space group Hall group Moiety formula Sum formula Mr Dx,g cm-3 Z Mu (mm-1) F000 F000' h,k,lmax Nref Tmin,Tmax Tmin'	Calculated 817.35(17) P 21 P 2yb C20 H18 04 C20 H18 04 322.34 1.310 2 0.091 340.0 340.18 13,10,13 3766[2013]	Reporte 817.35(P 1 21 P 2yb C20 H18 C20 H18 322.34 1.310 2 0.091 340.0 13,10,1 3389 0.688,0	d 17) 1 04 04 3 3
Correction meth AbsCorr = MULTI	nod= # Reported T I-SCAN	Limits: Tmin=0.68	8 Tmax=0.746
Data completene	ess= 1.68/0.90	Theta(max) = 27 .	530
R(reflections)=	= 0.0357(3014)	wR2(reflections) = 0.0905(3389)
S = 1.048	Npar=	218	