Supporting Information

An efficient approch to access 1,1,2-triarylethanes enabled by organo-photoredox-catalyzed decarboxylative addition reaction

Jing Guo, Gong-Bin Huang, Qiao-Lei Wu, Ying Xie, Jiang Weng,* Gui Lu*

Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China

E-mail: wengj2@mail.sysu.edu.cn; lugui@mail.sysu.edu.cn

Table of Contents

1. General Information	S2
2. General Procedure for the Synthesis of Substrates	S2
3. The Fluorescence Quenching Studies and Radical Trapping	
Experiment	S2
4. Characterization of Compounds 1j, 3a-3al and 4a	S4
5. References	S16
6. Copies of ¹ H and ¹³ C NMR Spectra of Products 1j, 3a-3al and 4a	S17

1. General Information

All the commercial reagents were used as such without further purification. All solvents were used as commercial anhydrous grade without further purification. The flash column chromatography was carried out over silica gel (230-400 mesh). ¹H and ¹³C NMR spectra were recorded on a Bruker Avance-400 MHz spectrometer and Bruker Avance-500 MHz spectrometer. Chemical shifts in ¹H NMR spectra were reported in parts per million (ppm, δ) downfield from the internal standard Me₄Si (TMS, $\delta = 0$ ppm). Chemical shifts in ¹³C NMR spectra were reported relative to the central line of the chloroform signal ($\delta = 77.0$ ppm). Peaks were labeled as singlet (s), doublet (d), triplet (t), quartet (q), and multiplet (m). High resolution mass spectra were obtained with a Shimadzu LCMS-IT-TOF mass spectrometer. Chemical yields refer to pure isolated substances.

2. General Procedure for the Synthesis of Substrates

(a) General synthetic method of *p*-QMs derivatives^[1]

In a dry 100 mL round-bottom flask, a solution of phenols (25.0 mmol) and the corresponding aldehydes (25.0 mmol) in toluene (100 mL) was heated to reflux. Piperidine (50.0 mmol, 4.95 mL) was dropwise added within 1 h. The reaction mixture was continued to reflux for 12-18 h. After cooling just below the boiling point of the reaction mixture, acetic anhydride (50.0 mmol, 2.55 g) was added and the stirring was continued for 15 min. Then the reaction mixture was cooled to room temperature, poured into water and extracted with CH_2Cl_2 . The combined organic phases were dried over anhydrous Na_2SO_4 and solvents were removed under reduced pressure. The crude products were purified by flash column chromatography and further recrystallized from *n*-hexane, affording the desired *p*-QMs **1a-1n**.

3. The Fluorescence Quenching Studies and Radical Trapping Experiment

(a) The Fluorescence Quenching Studies

a) Fluorescence quenching of excited 4CzIPN* with arylacetic acid (2a), p-QM (1a) or carboxylate anion (2a+KOH)

in DMF (excitation wavelength: 365 nm). 4CzIPN (1.25 nM) in DMF (black line), 4CzIPN (1.25 nM) with **2a** (1 μ M) in DMF (red line), 4CzIPN (1.25 nM) with **2a** (1 μ M) and KOH (1 μ M) in DMF (blue line), 4CzIPN (1.25 nM) with **1a** (1 μ M) in DMF (pink line).

b) 4CzIPN emission quenching by different concentrations of p-QM 1a (excitation wavelength: 365 nm).

c) 4CzIPN emission quenching by different concentrations of carboxylate anion (**2a**+KOH) (excitation wavelength: 365 nm).

d) Stern-Volmer emission quenching studies of 4CzIPN by carboxylate anion (2a+KOH) or p-QM (1a)

(b) Radical Trapping Experiments

4. Characterization of Compounds 1j, 3a-3al and 4a

2,6-di-*tert*-**Butyl-4-(4-phenoxybenzylidene)cyclohexa-2,5-dienone (1j)**. ¹H NMR (400 MHz, CDCl₃) δ : 7.54 (s, 1H), 7.45 (s, 2H), 7.39 (m, 2H), 7.18 (m, 1H), 7.13 (s, 1H), 7.09 (m, 2H), 7.04 (m, 2H), 7.00 (s, 1H), 1.39-1.29 (m, 18H). ¹³C NMR (126 MHz, CDCl₃) δ : 186.5, 158.8, 155.9, 149.3, 147.5, 142.0, 135.3, 132.2, 132.2, 131.2, 130.0, 130.0, 127.6, 124.3, 120.0, 120.0, 118.2, 118.2, 35.5, 35.0, 29.6, 29.6. ESI-HRMS: *m/z* [M+H]⁺ calcd. for C₂₇H₃₁O₂: 387.2319; found: 387.2321.

2,6-di-*tert*-**Butyl-4-(2-(4-methoxyphenyl)-1**-*o*-tolylethyl)phenol (3a). Yield: 31.4 mg, 73%. Yellow solid, M.p. 122-124 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.33 (d, J = 7.7 Hz, 1H), 7.13 (m, 1H), 7.04-6.93 (m, 2H), 6.77 (d, J = 17.5 Hz, 4H), 6.67-6.54 (m, 2H), 4.91 (s, 1H), 4.17 (t, J = 7.7 Hz, 1H), 3.67 (s, 3H), 3.29-2.93 (m, 2H), 2.06 (s, 3H), 1.27 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 157.7, 151.8, 143.1, 136.2, 135.2, 134.5, 133.0, 130.2, 130.2, 130.0, 130.0, 126.8, 125.9, 125.7, 124.7, 124.7, 113.3, 113.3, 55.2, 48.7, 42.1, 34.3, 34.3, 30.3, 20.0. ESI-HRMS: *m/z* [M-H]⁻ calcd. for C₃₀H₃₇O₂: 429.2799; found: 429.2801.

2,6-di-*tert*-**Butyl-4-(2-(4-methoxyphenyl)-1-phenylethyl)phenol** (**3b**). Yield: 21.6 mg, 52%. Yellow solid, M.p. 127-129 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.19 (m, 5H), 6.94 (s, 2H), 6.86 (d, J = 8.2 Hz, 2H), 6.70 (d, J = 8.2 Hz, 2H), 5.01 (s, 1H), 4.17-3.95 (m, 1H), 3.71 (d, J = 17.3 Hz, 3H), 3.38-3.09 (m, 2H), 1.33 (d, J = 29.6 Hz, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 157.7, 152.0, 144.9,

135.4, 135.2, 132.9, 130.1, 130.1, 128.9, 128.2, 128.2, 128.2, 128.2, 125.9, 124.5, 124.5, 113.4, 113.4, 55.2, 53.5, 42.0, 34.3, 34.3, 30.3. ESI-HRMS: *m*/*z* [M-H]⁻ calcd. for C₂₉H₃₅O₂: 415.2643; found: 415.2643.

2,6-di-*tert*-**Butyl-4-(1-(2-methoxyphenyl)-2-(4-methoxyphenyl)ethyl)phenol** (**3c**). Yield: 38.4 mg, 86%. Yellow solid, M.p. 105-107 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.30 (d, J = 9.2 Hz, 1H), 7.16 (m, 1H), 7.05 (s, 2H), 7.01-6.90 (m, 3H), 6.87-6.68 (m, 3H), 5.00 (s, 1H), 4.62 (t, J = 7.8 Hz, 1H), 3.75 (d, J = 12.6 Hz, 6H), 3.25 (m, 2H), 1.41 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 157.6, 157.0, 151.7, 135.1, 134.7, 133.8, 133.4, 130.0, 130.0, 128.1, 126.8, 125.5, 124.9, 124.9, 120.4, 113.3, 113.3, 110.8, 55.5, 55.2, 45.3, 40.9, 34.3, 34.3, 30.4. ESI-HRMS: m/z [M-H]⁻ calcd. for C₃₀H₃₇O₃: 445.2748; found: 445.2746.

2,6-di-*tert*-**Butyl-4-(1-(2-chlorophenyl)-2-(4-methoxyphenyl)ethyl)phenol (3d).** Yield: 33.8 mg, 75%. Yellow solid, M.p. 139-141 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.38 (m, 1H), 7.32-7.16 (m, 2H), 7.11-7.03 (m, 1H), 7.01-6.88 (m, 4H), 6.79-6.52 (m, 2H), 5.01 (s, 1H), 4.70 (t, *J* = 7.8 Hz, 1H), 3.73 (s, 3H), 3.24 (d, *J* = 2.0 Hz, 2H), 1.37 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 157.8, 152.1, 142.5, 135.4, 135.4, 134.2, 133.5, 132.3, 129.9, 129.9, 129.6, 128.7, 127.0, 126.7, 124.8, 124.8, 113.5, 113.5, 55.2, 48.3, 41.0, 34.3, 34.3, 30.4. ESI-HRMS: *m/z* [M-H]⁻ calcd. for C₂₉H₃₄O₂Cl: 449.2253; found: 449.2256.

4-(1-(2-Bromophenyl)-2-(4-methoxyphenyl)ethyl)-2,6-di*tert***-butylphenol (3e)**. Yield: 30.6 mg, 62%. Yellow solid, M.p. 140-142 °C. ¹H NMR (500 MHz, CDCl₃) δ : 7.47 (d, *J* = 7.9 Hz, 1H), 7.37 (d, *J* = 7.8 Hz, 1H), 7.26 (d, *J* = 7.2 Hz, 1H), 7.10-6.89 (m, 5H), 6.71 (d, *J* = 8.2 Hz, 2H), 5.02 (s, 1H), 4.71 (m, 1H), 3.73 (s, 3H), 3.35-3.14 (m, 2H), 1.38 (s, 18H). ¹³C NMR (126 MHz, CDCl₃) δ : 157.8, 152.1, 144.2, 135.4, 135.4, 133.4, 132.9, 132.2, 129.9, 129.9, 128.9, 127.4, 127.4, 125.3, 124.8, 113.4, 113.4, 55.2, 50.8, 41.2, 34.4, 34.4, 30.4. ESI-HRMS: *m/z* [M-H]⁻ calcd. for C₂₉H₃₄O₂Br: 493.1748; found: 493.1754.

2,6-di*tert*-**Butyl-4-(1-(3-methoxyphenyl)-2-(4-methoxyphenyl)ethyl)phenol (3f).** Yield: 35.7 mg, 80%. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.07 (m, 1H), 6.88 (s, 2H), 6.80 (d, J = 8.6 Hz, 2H), 6.74 (d, J = 7.6 Hz, 1H), 6.68 (m, 1H), 6.62 (m, 3H), 4.93 (s, 1H), 3.95 (m, 1H), 3.66 (d, J = 2.5 Hz, 6H), 3.28-2.94 (m, 2H), 1.30 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 159.4, 157.7, 152.0, 135.4, 135.4, 135.0, 132.86, 130.0, 130.0, 129.1, 124.5, 124.5, 120.6, 114.2, 114.2, 113.4, 113.4, 111.1, 55.2, 55.1, 53.5, 42.0, 34.3, 34.4, 30.4. ESI-HRMS: m/z [M-H]⁻ calcd. for C₃₀H₃₇O₃: 445.2748; found: 445.2751.

2,6-di-*tert*-**Butyl-4-(2-(4-methoxyphenyl)-1-***p*-tolylethyl)phenol (3g). Yield: 29.2 mg, 68%. Yellow solid, M.p. 117-119 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.10 (d, *J* = 7.8 Hz, 2H), 7.04 (d, *J* = 7.8 Hz, 2H), 6.94 (s, 2H), 6.87 (d, *J* = 8.2 Hz, 2H), 6.70 (d, *J* = 8.2 Hz, 2H), 4.99 (s, 1H), 4.02 (t, *J* = 7.8 Hz, 1H), 3.73 (s, 3H), 3.21 (m, 2H), 2.28 (s, 3H), 1.37 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 157.6, 151.9, 141.9, 135.4, 135.4, 135.4, 135.3, 133.0, 130.1, 130.1, 128.9, 128.9, 128.0, 124.5, 124.5, 113.4, 113.4, 55.2, 53.1, 42.1, 34.3, 34.3, 30.3, 21.0. ESI-HRMS: *m/z* [M-H]⁻ calcd. for C₃₀H₃₇O₂: 429.2799; found: 429.2797.

4-(1,2-bis(4-Methoxyphenyl)ethyl)-2,6-di*tert*-**butylphenol (3h).** Yield: 27.7 mg, 62%. Yellow solid, M.p. 230-232 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.15-7.05 (m, 2H), 6.93 (s, 2H), 6.88-6.82 (m, 2H), 6.81-6.74 (m, 2H), 6.73-6.65 (m, 2H), 5.00 (s, 1H), 4.01 (t, J = 7.8 Hz, 1H), 3.75 (d, J = 12.1 Hz, 6H), 3.31-3.05 (m, 2H), 1.37 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 157.7, 157.7, 151.9, 137.1, 135.6, 135.4, 133.0, 130.1,129.5, 129.5, 129.1, 129.1, 124.4, 124.4, 113.6, 113.6, 113.4, 113.4, 55.2, 55.2, 52.6, 42.3, 34.3, 34.3, 30.3. ESI-HRMS: m/z [M-H]⁻ calcd. for C₃₀H₃₇O₃: 445.2748; found: 445.2750.

2,6-di-*tert*-**Butyl-4-(2-(4-methoxyphenyl)-1-(4-phenoxyphenyl)ethyl)phenol (3i).** Yield: 33.5 mg, 66%. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.30 (m, 2H), 7.14 (m, 2H), 7.09-7.03 (m, 1H), 7.02-6.81 (m, 8H), 6.77-6.66 (m, 2H), 5.04 (s, 1H), 4.05 (t, J = 7.8 Hz, 1H), 3.75 (s, 3H), 3.30-3.10 (m, 2H), 1.38 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 157.7, 157.7, 155.0, 152.0, 140.0, 135.4, 135.2, 132.8, 130.1, 130.1, 129.6, 129.6, 129.4, 129.4, 128.4, 124.5, 124.5, 122.9, 118.9, 118.9, 118.4, 118.4, 113.4, 113.4, 55.2, 52.8, 42.2, 34.4, 34.4, 30.3. ESI-HRMS: *m/z* [M-H]⁻ calcd. for C₃₅H₃₉O₃: 507.2905; found: 507.2912.

2,6-di-*tert*-**Butyl-4-(1-(4-chlorophenyl)-2-(4-methoxyphenyl)ethyl)phenol (3j).** Yield: 27.9 mg, 62%. Yellow solid, M.p. 124-126 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.22-7.15 (m, 2H), 7.09 (d, J = 8.5 Hz, 2H), 6.92 (s, 2H), 6.87-6.81 (m, 2H), 6.76-6.66 (m, 2H), 5.03 (s, 1H), 4.04 (t, J = 7.8 Hz, 1H), 3.74 (s, 3H), 3.19 (m, 2H), 1.38 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 157.8, 152.1, 143.4, 135.6, 135.6, 134.7, 132.4, 131.6, 130.0, 130.0, 129.5, 129.5, 128.3, 128.3, 124.4, 124.4, 113.5, 113.5, 55.2, 52.8, 41.9, 34.4, 34.4, 30.3. ESI-HRMS: m/z [M-H]⁻ calcd. for C₂₉H₃₄O₂Cl: 449.2253; found: 449.2242.

4-(1-(3,5-di-*tert***-Butyl-4-hydroxyphenyl)-2-(4-methoxyphenyl)ethyl)benzonitrile (3k).** Yield: 30.9 mg, 70%. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.60-7.38 (m, 2H), 7.24 (d, J = 8.3 Hz, 2H), 6.93 (s, 2H), 6.89-6.76 (m, 2H), 6.71 (d, J = 8.6 Hz, 2H), 5.10 (s, 1H), 4.13 (m, 1H), 3.72 (s, 3H), 3.37-3.02 (m, 2H), 1.38 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 158.0, 152.4, 150.6, 135.9, 135.9, 133.8, 132.1, 132.1, 131.8, 130.0, 130.0, 129.0, 129.0, 124.4, 124.4, 119.2, 113.6, 113.6, 109.8, 55.2, 53.5, 41.5, 34.4, 34.3, 30.3. ESI-HRMS: m/z [M-H]⁻ calcd. for C₃₀H₃₄NO₂: 440.2595; found: 440.2594.

2,6-di-*tert*-**Butyl-4-(2-(4-methoxyphenyl)-1-(4-nitrophenyl)ethyl)phenol (3l).** Yield: 35.6 mg, 77%. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 8.25-7.93 (m, 2H), 7.29 (d, J = 8.7 Hz, 2H), 7.05-6.60 (m, 6H), 5.09 (s, 1H), 4.19 (m, 1H), 3.74 (s, 3H), 3.42-3.11 (m, 2H), 1.39 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 158.0, 152.8, 152.5, 146.3, 136.0, 136.0, 133.6, 131.6, 129.9, 129.9, 129.0, 129.0, 124.4, 124.4, 123.5, 123.5, 113.7, 113.7, 55.2, 53.3, 41.5, 34.4, 34.4, 30.3. ESI-HRMS: *m/z* [M-H]⁻ calcd. for C₂₉H₃₄NO₄: 460.2493; found: 460.2495.

2,6-di-*tert*-**Butyl-4-(1-(3,5-dichlorophenyl)-2-(4-methoxyphenyl)ethyl)phenol (3m).** Yield: 31.9 mg, 66%. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.07 (m, 1H), 7.02-6.95 (m, 2H), 6.85-6.72 (m, 4H), 6.65 (d, J = 8.5 Hz, 2H), 5.00 (s, 1H), 3.92 (t, J = 7.8 Hz, 1H), 3.67 (s, 3H), 3.10 (d, J = 7.8 Hz, 2H), 1.31 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 158.0, 152.4, 148.4, 135.8, 135.8, 134.5, 133.6, 131.8, 130.0, 130.0, 129.4, 126.7, 126.2, 124.4, 124.4, 113.6, 113.6, 55.3, 53.1, 41.6, 34.4, 34.4, 30.3. ESI-HRMS: m/z [M-H]⁻ calcd. for C₂₉H₃₃O₂Cl₂: 483.1863; found: 483.1852.

2,6-di-*iso*-**Propyl-4-(2-(4-methoxyphenyl)-1-phenylethyl)phenol (3n).** Yield: 27.9 mg, 72%. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.24-7.11 (m, 5H), 6.96-6.77 (m, 4H), 6.70 (d, J = 8.1 Hz, 2H), 4.64 (s, 1H), 4.08 (t, J = 7.7 Hz, 1H), 3.73 (s, 3H), 3.24 (m, 2H), 3.08 (m, 2H), 1.19 (m, 12H). ¹³C NMR (126 MHz, CDCl₃) δ : 157.7, 148.2, 145.0, 136.4, 133.3, 132.8, 130.0, 130.0, 128.2, 128.2, 128.1, 128.1, 125.9, 125.9, 123.1, 123.1, 113.4, 113.4, 55.2, 53.3, 41.9, 27.3, 27.3, 22.8, 22.8. ESI-HRMS: m/z [M-H]⁻ calcd. for C₂₇H₃₁O₂: 387.2330; found: 387.2337.

2,6-di*tert*-**Butyl-4-(2-(2-methoxyphenyl)-1***-o*-tolylethyl)phenol (30). Yield: 36.1 mg, 84%. Yellow solid, M.p. 107-109 °C. ¹H NMR (400 MHz, CDCl₃) δ: 7.47 (d, *J* = 7.7 Hz, 1H), 7.23 (m, 1H), 7.18-7.05 (m, 3H), 6.86 (s, 2H), 6.83-6.68 (m, 3H), 4.96 (s, 1H), 4.43 (t, *J* = 7.6 Hz, 1H), 3.74 (s, 3H), 3.30 (m, 2H), 2.16 (s, 3H), 1.36 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ: 157.7, 151.6, 143.4, 136.3, 135.0, 134.9, 134.7, 130.8, 130.1, 129.2, 127.0, 126.9, 125.7, 125.6, 124.8, 124.8,

120.0, 110.1, 55.2, 46.5, 37.0, 34.2, 34.3, 30.3, 19.8. ESI-HRMS: *m*/*z* [M-H]⁻ calcd. for C₃₀H₃₇O₂: 429.2799; found: 429.2801.

2,6-di-*tert*-**Butyl-4-(1,2-di-***o*-**tolylethyl)phenol (3p).** Yield: 25.7 mg, 62%. Yellow solid, M.p. 109-111 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.48 (m, 1H), 7.27-7.20 (m, 1H), 7.15-6.94 (m, 5H), 6.80 (d, *J* = 7.4 Hz, 1H), 6.71 (s, 2H), 4.95 (s, 1H), 4.23 (t, *J* = 7.5 Hz, 1H), 3.24 (d, *J* = 7.5 Hz, 2H), 2.12-2.02 (m, 3H), 1.98 (s, 3H), 1.30 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 151.8, 143.1, 139.0, 136.6, 136.4, 135.2, 134.2, 130.3, 130.0, 129.8, 126.7, 125.9, 125.8, 125.8, 125.5, 124.8, 124.8, 124.8, 47.8, 40.0, 34.2, 34.2, 30.2, 19.8, 19.2. ESI-HRMS: *m*/*z* [M-H]⁻ calcd. for C₃₀H₃₇O: 413.2850; found: 413.2848.

2,6-di-*tert*-**Butyl-4-(2-(2-fluorophenyl)-1-***o*-**tolylethyl)phenol (3q).** Yield: 22.2 mg, 53%. Yellow solid, M.p. 127-129 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.37 (d, J = 7.7 Hz, 1H), 7.17-7.09 (m, 1H), 7.07-6.93 (m, 3H), 6.90-6.75 (m, 4H), 6.71 (m, 1H), 4.90 (s, 1H), 4.29 (t, J = 7.8 Hz, 1H), 3.35-3.05 (m, 2H), 2.09 (s, 3H), 1.26 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 151.9, 142.7, 136.3, 135.3, 134.1, 131.5 (d, J = 24 Hz, 1C), 130.3, 130.3, 127.5 (d, J = 40 Hz, 1C), 127.4, 126.6, 125.9 (d, J = 16 Hz, 2C), 124.7, 124.7, 123.5 (d, J = 12 Hz, 1C), 115.0, 114.8, 46.9, 35.9, 34.3, 34.3, 30.3, 19.9. ESI-HRMS: m/z [M-H]⁻ calcd. for C₂₉H₃₄OF: 417.2599; found: 417.2586.

2,6-di-*tert*-**Butyl-4-(2-(3-methoxyphenyl)-1**-*o*-tolylethyl)phenol (3r). Yield: 30.1 mg, 70%. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.46-7.38 (m, 1H), 7.24-7.16 (m, 1H), 7.12-7.02 (m, 3H), 6.85 (s, 2H), 6.66 (m, 1H), 6.59 (m, 1H), 6.34 (m, 1H), 4.98 (s, 1H), 4.26 (t, *J* = 7.7 Hz, 1H), 3.61 (s, 3H), 3.24 (t, *J* = 7.6 Hz, 2H), 2.14 (s, 3H), 1.34 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 159.1, 151.8, 143.1, 142.4, 136.3, 135.3, 134.3, 130.3, 128.9, 126.7, 125.9, 125.8, 124.8, 124.8, 124.8, 121.6, 114.5, 111.6, 54.9, 48.6, 43.1, 34.3, 34.3, 30.3, 20.0. ESI-HRMS: *m/z* [M-H]⁻ calcd. for C₃₀H₃₇O₂: 429.2799; found: 429.2792.

2,6-di-*tert*-**Butyl-4-(1-(***o***-tolyl)-2-(3-(trifluoromethyl)phenyl)ethyl)phenol (3s).** Yield: 23.4 mg, 50%. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.43 (d, *J* = 7.8 Hz, 1H), 7.37 (d, *J* = 7.8 Hz, 1H), 7.24 (d, *J* = 13.0 Hz, 3H), 7.14-7.04 (m, 3H), 6.82 (s, 2H), 4.99 (s, 1H), 4.25 (t, *J* = 7.8 Hz, 1H), 3.45-3.16 (m, 2H), 2.13 (s, 3H), 1.33 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 152.0, 142.5, 141.8, 136.1, 135.5, 133.5, 132.5, 130.4, 128.3, 126.5, 126.0, 126.0, 125.9 (d, *J* = 12 Hz, 1C), 124.7, 124.7, 124.7, 124.7, 122.6, 122.5, 48.6, 42.7, 34.3, 34.3, 30.3, 19.9. ESI-HRMS: *m/z* [M-H]⁻ calcd. for C₃₀H₃₄F₃O: 467.2567; found: 467.2564.

2,6-di*tert*-**Butyl-4-(2-(3,4-dimethoxyphenyl)-1-(***o***-tolyl)ethyl)phenol (3t**). Yield: 21.6 mg, 47%. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.45-7.39 (m, 1H), 7.24-7.17 (m, 1H), 7.13-7.01 (m, 2H), 6.88 (s, 2H), 6.70 (d, *J* = 8.2 Hz, 1H), 6.56 (m, 1H), 6.19 (d, *J* = 2.0 Hz, 1H), 4.99 (s, 1H), 4.21 (t, *J* = 7.7 Hz, 1H), 3.81 (s, 3H), 3.59 (s, 3H), 3.21 (d, *J* = 7.6 Hz, 2H), 2.13 (s, 3H), 1.35 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 151.8, 148.2, 147.1, 143.2, 136.3, 135.4, 134.5, 133.5, 130.3, 126.7, 125.9, 125.8, 124.8, 124.8, 124.8, 121.0, 112.6, 111.0, 55.9, 55.4, 48.9, 42.6, 34.3, 34.3, 30.3, 20.0. ESI-HRMS: *m/z* [M-H]⁻ calcd. for C₃₁H₃₉O₃: 459.2905; found: 459.2907.

2,6-di-*tert*-**Butyl-4-(1-(***o***-tolyl-2***-p***-tolylethyl)phenol (3u**). Yield: 25.3 mg, 61%. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.40 (d, J = 7.8 Hz, 1H), 7.25 (s, 1H), 7.23-7.12 (m, 1H), 7.11-7.01 (m, 2H), 6.95 (d, J = 7.7 Hz, 2H), 6.88-6.76 (m, 3H), 4.96 (s, 1H), 4.28 (t, J = 7.7 Hz, 1H), 3.22 (m, 2H), 2.26 (s, 3H), 2.13 (s, 3H), 1.34 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 151.8, 143.1, 137.7, 136.2, 135.3, 135.0, 134.6, 130.2, 130.2, 129.0, 129.0, 128.6, 128.6, 126.8, 125.8, 125.7, 124.7, 124.7, 48.5, 42.5, 34.3, 34.3, 30.3, 21.0, 19.9. ESI-HRMS: m/z [M-H]⁻ calcd. for C₃₀H₃₇O: 413.2850; found: 413.2846.

2,6-di-*tert*-**Butyl-4-(2-(4-fluorophenyl)-1-(***o*-tolylethyl)**phenol (3v)**. Yield: 18.4 mg, 44%. Yellow solid, M.p. 126-128 °C. ¹H NMR (500 MHz, CDCl₃) δ : 7.47-7.32 (m, 1H), 7.20 (m, 1H), 7.12-7.01 (m, 2H), 6.82 (s, 6H), 5.00 (s, 1H), 4.23 (t, *J* = 7.7 Hz, 1H), 3.23 (dd, *J* = 9.8, 7.7 Hz, 2H), 2.12 (s, 3H), 1.34 (s, 18H). ¹³C NMR (126 MHz, CDCl₃) δ : 162.2, 160.3, 151.9, 142.8, 136.5, 136.2, 135.4, 134.2, 130.5, 130.5, 130.3, 126.7, 126.0 (d, *J* = 12 Hz, 1C), 124.7, 124.7, 124.7, 114.7, 114.6, 48.7, 42.2, 34.3, 34.3, 30.3, 20.0. ESI-HRMS: *m/z* [M-H]⁻ calcd. for C₂₉H₃₄FO: C₂₉H₃₄FO: 417.2599; found: 417.2597.

2,6-di*-tert*-**Butyl-4-(2-(4-chlorophenyl)-1***-o*-tolylethyl)phenol (3w). Yield: 26.0 mg, 60%. Yellow solid, M.p. 125-127 °C. ¹H NMR (400 MHz, CDCl₃) δ: 7.39 (m, 1H), 7.20 (m, 1H), 7.14-6.98 (m, 4H), 6.83 (m, 4H), 5.00 (d, *J* = 1.9 Hz, 1H), 4.24 (m, 1H), 3.40-3.01 (m, 2H), 2.12 (s, 3H), 1.34 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ: 151.9, 142.6, 139.3, 136.2, 135.4, 135.4, 134.1, 131.5, 130.5, 130.4, 128.0, 128.0, 126.7, 126.0, 126.0, 124.7, 124.7, 48.4, 42.3, 34.3, 34.3, 30.3, 20.0. ESI-HRMS: *m/z* [M-H]⁻ calcd. for C₂₉H₃₄OCl: 433.2304; found: 433.2299.

4-(2-(4-Bromophenyl)-1-*o***-tolylethyl)-2,6-di-***tert***-butylphenol (3x). Yield: 23.9 mg, 50%. Yellow solid, M.p. 131-133 °C. ¹H NMR (400 MHz, CDCl₃) \delta: 7.31 (d, J = 7.9 Hz, 1H), 7.24-7.08 (m, 3H), 7.00 (m, 2H), 6.84-6.62 (m, 4H), 4.91 (s, 1H), 4.16 (t, J = 7.7 Hz, 1H), 3.27-3.01 (m, 2H), 2.05 (s, 3H), 1.27 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) \delta: 151.9, 142.6, 139.9, 136.2, 135.5, 134.0, 131.0, 131.0, 130.9, 130.4, 126.7, 126.0, 125.9, 124.7, 124.6, 124.6, 119.6, 48.4, 42.4, 34.3, 34.3, 30.3, 19.9. ESI-HRMS: m/z [M-H]⁻ calcd. for C₂₉H₃₄OBr: 477.1799; found: 477.1789.**

2,6-di-*tert*-**Butyl-4-(2-(naphthalen-1-yl)-1-***o***-tolylethyl)phenol (3y)**. Yield: 26.1 mg, 58%. Yellow solid, M.p. 120-122 °C. ¹H NMR (400 MHz, CDCl₃) δ: 7.92-7.75 (m, 2H), 7.60 (m, 2H), 7.39 (m, 2H), 7.30-7.16 (m, 2H), 7.15-7.00 (m, 2H), 6.86 (d, *J* = 6.9 Hz, 1H), 6.71 (s, 2H), 4.92 (s, 1H), 4.44 (t, *J* = 7.4 Hz, 1H), 3.71 (t, *J* = 7.2 Hz, 2H), 1.97 (s, 3H), 1.26 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ: 151.8, 143.2, 136.8, 136.5, 135.3, 135.3, 134.4, 133.7, 132.3, 130.3, 128.7, 127.3, 126.7, 126.5, 125.9, 125.9, 125.6, 125.2, 125.1, 124.7, 124.7, 123.8, 47.7, 40.0, 34.2, 34.2, 30.3,

19.8. ESI-HRMS: *m/z* [M-H]⁻ calcd. for C₃₃H₃₇O: 449.2850; found: 449.2837.

2,6-di-*tert*-**Butyl-4-(2-(naphthalen-2-yl)-1***-o***-tolylethyl)phenol (3z)**. Yield: 24.8 mg, 55%. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.71-7.62 (m, 1H), 7.56 (m, 2H), 7.40 (d, J = 7.7 Hz, 1H), 7.35-7.22 (m, 3H), 7.19-7.10 (m, 1H), 7.09-6.92 (m, 3H), 6.79 (s, 2H), 4.89 (s, 1H), 4.32 (t, J = 7.7 Hz, 1H), 3.36 (t, J = 7.7 Hz, 2H), 2.07 (s, 3H), 1.23 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 151.9, 143.0, 138.4, 136.2, 135.4, 135.4, 134.3, 133.4, 132.0, 130.3, 127.8, 127.5, 127.5, 127.4, 126.8, 125.9, 125.9, 125.6, 125.0, 124.8, 124.8, 48.5, 43.2, 34.3, 30.3, 20.0. ESI-HRMS: m/z [M-H]⁻ calcd. for C₃₃H₃₇O: 449.2850; found: 449.2841.

2,6-di-*tert*-**Butyl-4-(2-(thiophen-2-yl)-1***-o***-tolylethyl)phenol (3aa)**. Yield: 25.2 mg, 62%. Brown solid, M.p. 92-94 °C. ¹H NMR (500 MHz, CDCl₃) δ : 7.39 (d, J = 7.7 Hz, 1H), 7.21 (m, 1H), 7.10 (s, 2H), 7.02 (m, 1H), 6.95 (s, 2H), 6.80 (m, 1H), 6.56 (d, J = 3.4 Hz, 1H), 5.02 (s, 1H), 4.35 (t, J = 7.7 Hz, 1H), 3.50 (m, 2H), 2.24 (s, 3H), 1.37 (s, 18H). ¹³C NMR (126 MHz, CDCl₃) δ : 152.0, 143.5, 142.4, 136.3, 135.4, 134.1, 130.4, 129.8, 126.5, 126.3, 126.0, 126.0, 125.2, 124.6, 124.6, 123.2, 48.7, 37.0, 34.3, 34.3, 30.3, 20.0. ESI-HRMS: m/z [M-H]⁻ calcd. for C₂₇H₃₃OS: 405.2258; found: 405.2255.

2,6-di-*tert*-**Butyl-4-(2-(thiophen-3-yl)-1***-o***-tolylethyl)phenol (3ab)**. Yield: 24.4 mg, 60%. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.39 (d, J = 7.7 Hz, 1H), 7.19 (s, 1H), 7.14-7.04 (m, 3H), 6.90 (s, 2H), 6.75-6.53 (m, 2H), 4.99 (s, 1H), 4.29 (t, J = 7.7 Hz, 1H), 3.28 (m, 2H), 2.18 (s, 3H), 1.36 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 151.9, 143.0, 141.1, 136.2, 135.4, 134.6, 130.3, 128.7, 126.6, 125.9, 125.8, 124.6, 124.6, 124.6, 124.5, 121.2, 47.8, 37.4, 34.3, 34.3, 30.3, 19.9. ESI-HRMS: m/z [M-H]⁻ calcd. for C₂₇H₃₃OS: 405.2258; found: 405.2252.

2,6-di-*tert*-**Butyl-4-(2-(2-methyl-1***H***-indol-3-yl)-1-***o***-tolylethyl)phenol (3ac). Yield: 38.1 mg, 84%. Yellow solid, M.p. 147-149 °C. ¹H NMR (400 MHz, CDCl₃) \delta: 7.55-7.51 (s, 1H), 7.45 (s, 1H), 7.27 (s, 1H), 7.17 (m, 2H), 7.07-6.89 (m, 4H), 6.65 (s, 2H), 4.85 (s, 1H), 4.22 (m, 1H), 3.23 (m, 2H), 1.93 (s, 3H), 1.64 (s, 3H), 1.20 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) \delta: 151.8, 143.8, 136.7, 135.2, 135.1, 135.1, 131.9, 130.2, 129.1, 126.7, 125.7, 125.7, 124.8, 124.8, 124.8, 120.6, 119.0, 117.9, 110.2, 109.9, 47.1, 34.2, 34.2, 32.0, 30.3, 19.9, 10.9. ESI-HRMS:** *m/z* **[M-H]⁻ calcd. for C₃₂H₃₈NO: 452.2959; found: 452.2953.**

2,6-di*tert*-**Butyl-4-(1,2,2-triphenylethyl)phenol (3ad).** Yield: 26.8 mg, 58%. Yellow solid, M.p. 146-148 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.23 (d, J = 4.7 Hz, 3H), 7.18-6.91 (m, 12H), 6.83 (s, 1H), 6.75 (s, 1H), 4.86 (d, J = 3.0 Hz, 1H), 4.77 (s, 1H), 4.61 (d, J = 4.8 Hz, 1H), 1.26 (d, J = 6.5 Hz, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 151.6, 144.5, 144.2, 143.7, 143.5, 135.0, 134.9, 133.8, 128.7, 128.7, 128.7, 128.6, 128.6, 128.2, 128.2, 128.1, 127.9, 127.8, 125.9, 125.8, 125.6, 125.5, 125.4, 57.5, 56.4, 34.2, 34.2, 30.3, 30.3. ESI-HRMS: m/z [M-H]⁻ calcd. for C₃₄H₃₇O: 461.2850; found: 461.2841.

tert-Butyl 4-((3,5-di-*tert*-butyl-4-hydroxyphenyl)(*o*-tolyl)methyl)piperidine-1-carboxylate (3ae). Yield: 48.3 mg, 98%. White solid. M.p. 183-185 °C. ¹H NMR (500 MHz, CDCl₃) δ : 7.42 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.19 (m, 1H), 7.11-6.98 (m, 4H), 4.98 (s, 1H), 4.07 (s, 2H), 3.64 (d, *J* = 10.9 Hz, 1H), 2.67 (s, 2H), 2.34 (s, 3H), 2.26-2.02 (m, 1H), 1.67-1.54 (m, 2H), 1.41 (d, *J* = 23.0 Hz, 29H). ¹³C NMR (101 MHz, CDCl₃) δ : 154.8, 151.9, 142.3, 136.3, 135.6, 133.2, 130.6, 126.1, 126.1, 126.1, 125.6, 124.7, 124.7, 79.2, 52.9, 40.7, 40.7, 34.3, 34.3, 31.3, 31.1, 30.4, 28.5, 20.3. ESI-HRMS: *m/z* [M-H]⁻ calcd. for C₃₂H₄₆NO₃: 492.3483; found: 492.3494.

2,6-di*tert*-**Butyl-4-((tetrahydro-2***H***-pyran-4-yl)(***o***-tolyl)methyl)phenol (3af).** Yield: 35.9 mg, 91%. White solid. M.p. 130-132 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.34 (d, *J* = 7.7 Hz, 1H), 7.11 (t, *J* = 7.5 Hz, 1H), 7.06-6.89 (m, 4H), 4.91 (s, 1H), 3.84 (m, 2H), 3.59 (d, *J* = 10.9 Hz, 1H), 3.28 (m, 2H), 2.28 (s, 3H), 2.19 (m, 1H), 1.63-1.42 (m, 2H), 1.35 (s, 18H), 1.19 (d, *J* = 4.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ : 151.9, 142.1, 136.4, 135.5, 133.0, 130.58, 126.2, 126.1, 125.7, 125.6, 124.8, 124.8, 68.3, 68.1, 53.2, 39.7, 34.3, 34.2, 32.3, 32.1, 30.4, 20.4. ESI-HRMS: *m/z* [M-H]⁻ calcd. for C₂₇H₃₇O₂: 393.2799; found: 393.2809.

tert-Butyl 2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-*o*-tolylethylcarbamate (3ag). Yield: 39.9 mg, 91%. White solid. M.p. 124-126 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.32-7.17 (m, 2H), 7.13 (d, J = 7.0 Hz, 2H), 6.96 (s, 2H), 5.06 (s, 1H), 4.51 (s, 1H), 4.25 (t, J = 7.9 Hz, 1H), 3.83-3.49 (m, 2H), 2.29 (s, 3H), 1.39 (d, J = 13.3 Hz, 27H). ¹³C NMR (101 MHz, CDCl₃) δ : 155.8, 152.3, 140.4, 137.0, 135.7, 132.1, 130.8, 126.3, 126.2, 126.1, 126.1, 124.7, 124.7, 79.2, 46.6, 45.2, 34.4, 34.4, 30.3, 28.4, 19.9. ESI-HRMS: m/z [M-H]⁻ calcd. for C₂₆H₄₀NO₃: 438.3014; found: 438.3017.

tert-Butyl 1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-4-methyl-1-*o*-tolylpentan-2-ylcarbamate (3ah). Yield: 42.1 mg, 85%. White solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.49 (dd, J = 22.6, 7.8 Hz, 1H), 7.20 (s, 1H), 7.12-6.91 (m, 4H), 4.99 (d, J = 9.7 Hz, 1H), 4.47 (s, 1H), 4.11 (dd, J = 21.5, 8.6 Hz, 1H), 3.91 (d, J = 8.7 Hz, 1H), 2.32 (d, J = 31.0 Hz, 3H), 1.50-1.27 (m, 29H), 1.00-0.73 (m, 7H). ¹³C NMR (101 MHz, CDCl₃) δ : 155.6, 152.1, 141.4, 135.7, 135.2, 135.2, 132.8, 130.6, 126.4, 125.9, 125.6, 125.6, 124.9, 78.4, 52.8, 51.9, 44.3, 34.3, 34.3, 30.4, 28.4, 25.0, 23.7, 21.8, 20.3. ESI-HRMS: m/z [M-H]⁻ calcd. for C₃₂H₄₈NO₃: 494.3649; found: 494.3652.

tert-Butyl 1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-phenyl-1-*o*-tolylpropan-2-ylcarbamate (3ai). Yield: 42.9 mg, 81%. White solid. ¹H NMR (500 MHz, CDCl₃) δ : 7.55 (s, 1H), 7.29-7.05 (m, 8H), 7.02 (d, J = 5.5 Hz, 2H), 5.00 (d, J = 5.4 Hz, 1H), 4.69 (s, 1H), 4.28 (s, 1H), 3.93 (s, 1H), 2.88 (dd, J = 19.4, 10.6 Hz, 1H), 2.76-2.51 (m, 1H), 2.22 (d, J = 5.3 Hz, 3H), 1.52-1.26 (m, 27H). ¹³C NMR (126 MHz, CDCl₃) δ : 155.0, 152.2, 141.6, 138.4, 136.1, 135.4, 131.4, 130.8, 129.6, 129.6, 128.2, 128.2, 126.4, 126.4, 126.4, 126.2, 126.1, 125.4, 125.4, 78.7, 54.7, 50.3, 39.6, 34.3, 34.3, 30.4, 28.3, 20.3. ESI-HRMS: m/z [M-H]⁻ calcd. for C₃₅H₄₆NO₃: 528.3483; found: 528.3490.

tert-Butyl 1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-*o*-tolylpropan-2-ylcarbamate (3aj). Yield: 37.2 mg, 82%. White solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.53-7.35 (m, 1H), 7.23-7.13 (m, 1H), 7.11 (d, J = 9.4 Hz, 4H), 5.04 (s, 1H), 4.59-4.08 (m, 2H), 4.01-3.67 (m, 1H), 2.44-2.17 (m, 3H), 1.47-1.31 (m, 27H), 1.08 (dd, J = 10.3, 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 155.4, 152.2, 141.8, 140.7, 135.8, 135.4, 132.2, 130.5, 126.7, 126.7, 126.3, 126.0, 125.2, 78.8, 53.6, 53.0, 34.3, 34.3, 30.4, 28.4, 20.8, 20.3. ESI-HRMS: m/z [M-H]⁻ calcd. for C₂₉H₄₂NO₃: 452.3171; found: 452.3170.

tert-Butyl 1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-(1*H*-indol-3-yl)-1-*o*-tolylpropan-2ylcarbamate (3ak). Yield: 47.2 mg, 83%. White solid. ¹H NMR (400 MHz, CDCl₃) δ : 8.27-7.89 (m, 1H), 7.84-7.46 (m, 1H), 7.42 (s, 1H), 7.34-7.21 (m, 2H), 7.20-6.95 (m, 6H), 6.88 (s, 1H), 5.13-4.88 (m, 1H), 4.87-4.59 (m, 1H), 4.40 (d, J = 22.0 Hz, 1H), 4.07-3.80 (m, 1H), 2.99 (d, J = 55.1 Hz, 2H), 2.29-2.04 (m, 3H), 1.43-1.21 (m, 27H). ¹³C NMR (101 MHz, CDCl₃) δ : 155.3, 152.1, 141.8, 136.3, 135.3, 130.7, 130.7, 128.2, 126.4, 126.4, 126.1, 125.5, 125.5, 122.8, 122.8, 121.8, 121.8, 119.3, 112.3, 110.9, 78.5, 54.1, 50.3, 34.3, 34.3, 30.4, 28.9, 28.3, 20.2. ESI-HRMS: *m*/z [M+H]⁺ calcd. for C₃₇H₄₈N₂O₃: 569.3592; found: 569.3602.

tert-Butyl (1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-methyl-1-*o*-tolylbutan-2-ylcarbamate (3al). Yield: 41.4 mg, 86%. White solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.58 (d, J = 7.9 Hz, 1H), 7.14 (d, J = 2.1 Hz, 5H), 5.14-4.82 (m, 1H), 4.47 (d, J = 2.9 Hz, 1H), 4.27-3.78 (m, 2H), 2.43-2.11 (m, 3H), 1.40 (dd, J = 12.4, 7.4 Hz, 18H), 1.25 (d, J = 5.8 Hz, 9H), 0.97-0.72 (m, 7H). ¹³C NMR (101 MHz, CDCl₃) δ : 155.8, 152.1, 141.6, 135.7, 135.2, 125.2, 132.1, 130.7, 126.4, 126.4, 125.9, 125.3, 125.3, 78.4, 57.9, 50.1, 34.3, 34.3, 30.4, 28.3, 20.8, 20.2, 15.5. ESI-HRMS: *m/z* [M-H]⁻ calcd. for C₃₁H₄₆NO₃: 480.3483; found: 480.3483.

4-(2-(4-Methoxyphenyl)-1-phenylethyl)phenol (4a). Yield: 21.3 mg, 70%. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.24 (d, *J* = 7.5 Hz, 2H), 7.21-7.11 (m, 3H), 7.04 (d, *J* = 8.5 Hz, 2H), 6.89 (d, *J* = 8.6 Hz, 2H), 6.71 (d, *J* = 8.4 Hz, 4H), 4.72 (s, 1H), 4.11 (t, *J* = 7.8 Hz, 1H), 3.74 (s, 3H), 3.25 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ : 157.7, 153.8, 144.9, 136.9, 132.4, 130.0, 130.0, 129.2, 129.2, 128.3, 128.0, 128.0, 126.1, 115.1, 115.1, 113.4, 113.4, 55.2, 52.5, 41.4. ESI-HRMS: *m/z* [M-H]⁻ calcd. for C₂₁H₁₉O₂: 303.1391; found: 303.1387.

5. References

(1) (a) W.-D. Chu, L.-F. Zhang, X. Bao, X.-H. Zhao, C. Zeng, J.-Y. Du, G.-B. Zhang, F.-X. Wang, X.-Y. Ma, C.-A. Fan, *Angew. Chem., Int. Ed.* 2013, **52**, 9229. (b) L. Caruana, F. Kniep, T. K. Johansen, P. H. Poulsen, K. A. Jørgensen, *J. Am. Chem. Soc.* 2014, **136**, 15929. (c) D. Richter, N. Hampel, T. Singer, A. R. Ofial, H. Mayr, *Eur. J. Org. Chem.* 2009, **19**, 3203.

¹H NMR of 3a

¹H NMR of 3b

¹H NMR of 3c

¹H NMR of 3e

¹H NMR of 3f

¹H NMR of 3g

¹H NMR of 3h

¹H NMR of 3j

¹H NMR of 3k

¹³C NMR of 3k

¹H NMR of 3n

¹H NMR of 30

¹H NMR of 3p

¹H NMR of 3q

¹H NMR of 3r

¹H NMR of 3s

¹H NMR of 3u

¹H NMR of 3v

¹H NMR of 3w

¹H NMR of 3x

¹H NMR of 3y

¹H NMR of 3z

¹H NMR of 3aa

¹³C NMR of 3aa

¹H NMR of 3ab

¹H NMR of 3ac

¹H NMR of 3ad

¹H NMR of 4a

¹H NMR of 3ae

¹H NMR of 3af

¹H NMR of 3ag

¹³C NMR of 3ag

¹H NMR of 3ah

¹H NMR of 3ai

¹H NMR of 3aj

¹H NMR of 3ak

¹H NMR of 3al

¹H NMR of 4a

