Asymmetric Total Synthesis of (+)-Astellatol

and (-)-Astellatene

Nan Zhao, ^a Shengling Xie, ^a Peilin Tian, ^a Rongbiao Tong, ^c Chengqing Ning*^{a,b} and Jing Xu*^a

 ^a Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China.
^b SUSTech Academy for Advanced Interdisciplinary Studies, Shenzhen, China.
^c Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
Email: xuj@sustech.edu.cn; ningcq@sustech.edu.cn

Ι	Experimental Procedures and Spectroscopic Data of Compounds	S2
II	References	S32
III	¹ H and ¹³ C NMR Spectra of compounds	S33
IV	Comparison of NMR Data of Natural and Synthetic Astellatol	S141
V	Comparison of NMR Data of Natural and Synthetic Astellatene	S142
VI	Crystallographic Data	S143

I. Experimental Procedures and Spectroscopic Data of Compounds:

General information:

Unless indicated, all commercially available reagents and anhydrous solvents were purchased at the highest commercial quality and were used as received without further purification. All non-aqueous reactions were carried out under argon atmosphere using dry glassware that had been flame-dried under a stream of argon unless otherwise noted. Flash column chromatography was performed on silica gel (Qingdao Haiyang Chemical Co., Ltd., 200–300 meshes) using petroleum ether/ethyl acetate mixtures of increasing polarity.

The progress of all the reactions was monitored by thin-layer chromatography (TLC) using UV light as a visualizing agent and aqueous ammonium cerium nitrate/ammonium molybdate or basic aqueous potassium permanganate or 5% phosphomolybdic acid in EtOH as a developing agent. ¹H NMR and ¹³C NMR spectra were recorded on either 400 MHz/500 MHz Bruker instruments. Chemical shifts (δ) are quoted in parts per million (ppm) referenced to the appropriate residual solvent peak (CDCl₃), with the abbreviations s, d, dd, ddd, dt, t, td, qd, dq and m denoting singlet, doublet, double doublet doublet, double triplet, triplet, triple doublet, quartet, quadruple doublet, double quartet and multiplet, respectively. *J* = coupling constants given in Hertz (Hz). High resolution Mass spectra (HRMS) were recorded on a micromass Autospec-Ultima ETOF spectrometer. Optical rotation data were collected on an Autopol automatic polarimeter (Rudolph Research Analytical) using HPLC grade anhydrous MeOH. Melting points (m.p.) were uncorrected and were recorded on a SGW X-4 apparatus. IR spectra were recorded on a Bruker-Alpha spectrometer.

To a solution of the compound **15** (0.5 g, 1.82 mmol) in dry THF (20 mL) at 0 °C under N₂ was added dropwise vinylmagnesium bromide (5.5 mL, 1.0 mol/L). The resulting mixture was stirred for 1 hour at room temperature. The reaction was quenched with 1M HCl at 0 °C, and the mixture was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, concentrated, and purified by column chromatography (petroleum ether/EtOAc, 30:1) to afford compound **16** (0.36 g, 83%) as a colorless oil.

16: $R_{\rm f} = 0.60$ (silica gel, petroleum ether/EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.6 Hz, 1H), 7.15 (d, J = 2.4 Hz, 1H), 6.89 (dd, J = 8.6, 2.4 Hz, 1H), 6.81 (dd, J = 17.4, 10.5 Hz, 1H), 6.18 (d, J = 17.3 Hz, 1H), 5.99 (d, J = 10.5 Hz, 1H), 3.84 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 193.7, 161.8, 136.0, 132.4, 131.4, 131.2, 121.3, 119.2, 113.2, 55.8 ppm; HRMS (m/z): [M+H]⁺ calcd for C₁₀H₁₀BrO₂⁺ 240.9864; found 240.9857.

To a solution of the compound **16** (1.44 g, 6.0 mmol) and compound **14** (0.94 g, 6.0 mmol) in dry EtOH (60 mL) at room temperature was added dropwise DBU (0.22 mL, 1.5 mmol). The resulting mixture was stirred for 1 hour at room temperature and then concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc, 10:1) to afford compound **17** (1.83 g, 77%) as a colorless oil.

17: $R_{\rm f} = 0.35$ (silica gel, petroleum ether/EtOAc = 7:1); $[\alpha]^{25}{}_{\rm D} = +7.6$ (*c* = 9.3 in MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.7 Hz, 1H), 7.14 (d, *J* = 2.5 Hz, 1H), 6.87 (dd, *J* = 8.7, 2.4 Hz, 1H), 3.83 (s, 3H), 3.69 (s, 3H), 3.39–3.26 (m, 1H), 3.06–2.89 (m, 1H), 2.54 (ddd, *J* = 19.0, 8.5, 1.8 Hz, 1H), 2.30–2.23 (m, 3H), 2.13–2.00 (m, 2H), 1.84–1.70 (m, 1H), 1.06 (d, *J* = 6.8 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 216.4, 201.1, 170.8, 161.7, 132.5, 131.1, 120.8, 119.5, 113.0, 61.8, 55.7, 51.9, 41.9, 38.6, 37.0, 28.2, 27.1, 15.9 ppm; HRMS (m/z): [M+H]⁺ calcd for C₁₈H₂₂BrO₅⁺ 397.0651; found 397.0642.

To a solution of the compound **17** (0.75 g, 1.89 mmol) in dry CH_2Cl_2 (3.8 mL) at room temperature was added ethyleneglycol (1.05 mL, 18.9 mmol), trimethyl orthoformate (6.2 mL, 56.7 mmol) and PTSA (72 mg, 0.38 mmol). The resulting mixture was stirred for 12 hours at room temperature. The reaction was quenched with H₂O, and the mixture was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, concentrated, and purified by column chromatography (petroleum ether/EtOAc, 8:1) to afford compound **20** (0.39 g, 47%) as a colorless oil.

20: $R_{\rm f} = 0.36$ (silica gel, petroleum ether/EtOAc = 7:1); $[\alpha]^{25}{}_{\rm D} = +12.1$ (*c* = 2.68 in MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.7 Hz, 1H), 7.14 (d, *J* = 2.6 Hz, 1H), 6.80 (dd, *J* = 8.7, 2.6 Hz, 1H), 4.02 (td, *J* = 5.6, 3.0 Hz, 2H), 3.79 (s, 3H), 3.75 (td, *J* = 5.8, 5.4, 2.7 Hz, 2H), 3.64 (s, 3H), 2.50 (ddd, *J* = 18.8, 8.4, 1.5 Hz, 1H), 2.35 (ddd, *J* = 13.5, 12.2, 4.2 Hz, 1H), 2.29–2.12 (m, 2H), 2.07–1.96 (m, 2H), 1.95–1.87 (m, 1H), 1.84–1.69 (m, 2H), 1.01 (d, *J* = 6.8 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 216.3, 171.2, 159.7, 132.3, 129.5, 121.0, 120.3, 112.7, 110.0, 64.5, 64.5, 62.4, 55.6, 51.8, 40.1, 38.8, 32.3, 28.3, 25.8, 16.0 ppm; HRMS (m/z): [M+H]⁺ calcd for C₂₀H₂₆BrO₆⁺ 441.0913; found 441.0905.

To a solution of Ph₃PBrMe (9.85 g, 27.5 mmol) and *t*-BuOK (3.09 g, 27.5 mmol) in THF (50 mL) at 0 °C was added dropwise 2-bromo-4-methoxyacetophenone (4.21 g, 18.4 mmol) in dry THF (15 mL). The resulting mixture was stirred overnight at room temperature. The reaction was quenched with saturated aqueous NH₄Cl and extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, concentrated, and purified by column chromatography (petroleum ether) to afford 2-bromo-4-methoxy-1-(prop-1-en-2-yl)benzene (3.64 g, 87%) as a yellow oil.

2-bromo-4-methoxy-1-(prop-1-en-2-yl)benzene: $R_{\rm f} = 0.60$ (silica gel, petroleum ether/EtOAc = 30:1); ¹H NMR (500 MHz, CDCl₃) δ 7.12 (d, J = 2.5 Hz, 1H), 7.11 (d, J = 8.5 Hz, 1H), 6.82 (dd, J = 8.5, 2.5 Hz, 1H), 5.24–5.18 (m, 1H), 4.93 (dt, J = 2.0, 1.0 Hz, 1H), 3.80 (s, 3H), 2.08–2.09 (m, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 159.0, 145.5, 137.2, 130.3, 121.9, 118.0, 116.2, 113.4, 55.6, 23.9 ppm; HRMS (m/z): [M+H]⁺ calcd for C₁₀H₁₂OBr⁺ 227.0066, found 227.0061.

To a solution of 2-bromo-4-methoxy-1-(prop-1-en-2-yl)benzene (5.00 g, 21.8 mmol) in *i*-PrOH (100 mL) was added bis(pinacolato)diboron (13.80 g, 54.5 mmol) and KOAc (5.35g, 54.5 mmol). After the reaction system was vacuumed and backfilled with argon, PdCl₂(dppf) (798 mg, 1.09 mmol) was added. Then the solution was stirred at 80 °C for 4 hours. The solution was cooled and filtered. The filtrate was evaporated under reduced pressure and the residue was purified by column chromatography (petroleum ether/EtOAc = 50:1) gave the compound **22** (5.25 g, 88%) as bright yellow oil.

22: $R_{\rm f} = 0.42$ (silica gel, petroleum ether/EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.18 (d, J = 8.5 Hz, 1H), 7.15 (d, J = 3.0 Hz, 1H), 6.89 (dd, J = 8.5, 2.5 Hz, 1H), 5.03 (s, 1H), 4.86 (s, 1H), 3.82 (s, 3H), 2.12 (s, 3H), 1.33 (s, 12H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 158.0, 147.1, 142.1, 128.5, 118.9, 115.8, 115.8, 113.9, 83.8, 83.8, 55.4, 24.8, 24.8, 24.8, 24.8, 24.7 ppm; HRMS (m/z): [M+H]⁺ calcd for C₁₆H₂₄O₃B⁺ 275.1813, found 275.1809.

To a solution of NaH (0.50 g, 12.5 mmol, 60% suspension in mineral oil) and HMPA (2.2 mL, 12.5 mmol) in THF (10 mL) at room temperature was dropwise added keto ester (1.92 g, 10.4 mmol) in THF (5 mL). After resulting mixture was stirred at room temperature for 1 hour, allyl bromide was added (1.06 mL, 12.5 mmol). The reaction was stirred at room temperature overnight. The reaction was quenched with H₂O and extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, concentrated, and purified by column chromatography (petroleum ether/EtOAc = 20:1) to afford products (1.53 g, 75%) as colorless oil.

Carboxylate: $R_f = 0.64$ (silica gel, petroleum ether/EtOAc = 10:1); $[\alpha]^{25}{}_D = +42.9$ (c = 0.14 in MeOH); ¹H NMR (500 MHz, CDCl₃) δ 5.64–5.49 (m, 1H), 5.06 (d, J = 6.5, 1H), 5.03 (s, 1H), 3.63 (s, 3H), 2.59 (dd, J = 14.0, 6.0 Hz, 1H), 2.52–2.41 (m, 2H), 2.34–2.24 (m, 1H), 2.14–1.96 (m, 2H), 1.80–1.68 (m, 1H), 0.97 (d, J = 6.5, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 216.0, 171.0, 133.1, 119.5, 162.9, 51.9, 38.9, 38.6, 35.7, 28.2, 15.5 ppm; HRMS (m/z): [M+H]⁺ calcd for C₁₁H₁₇O₃⁺ 197.1172, found 197.1169.

To a solution of the carboxylate (3.2 g, 16.3 mmol) in THF (10 mL) at -78 °C was dropwise added KHMDS (24.5 mL, 24.5 mmol, 1.0 mol/L in THF). The solution was stirred at -78 °C

for 1 hour, and a solution of PhNTf₂ (8.7 g, 24.5 mmol) in THF (10 mL) was dropwise added. The reaction was stirred at -78 °C for 1 hour. The reaction was quenched with saturated aqueous NaCl and extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, concentrated, and purified by column chromatography (petroleum ether) to afford the triflate **23** (4.87 g, 91%) as colorless oil.

23: $R_{\rm f} = 0.57$ (silica gel, petroleum ether/EtOAc = 50:1); $[\alpha]^{25}{}_{\rm D} = +10.0$ (c = 0.25 in MeOH); ¹H NMR (500 MHz, CDCl₃) δ 5.80 (s, 1H), 5.74–5.65 (m, 1H), 5.13 (d, J = 4.5 Hz, 1H), 5.11 (s, 1H), 3.69 (s, 3H), 2.56–2.40 (m, 4H), 2.17–2.04 (m, 1H), 0.95 (d, J = 7.0 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 171.8, 148.1, 132.7, 119.7, 119.7, 118.3, 60.6, 52.0, 39.1, 37.2, 35.0, 15.8 ppm; HRMS (m/z): [M+H]⁺ calcd for C₁₂H₁₆O₅F₃S⁺ 329.0665, found 329.0658.

To a solution of pinacol ester **22** (5.04 g, 18.4 mmol) and triflate **23** (5.04 g, 15.4 mmol) in dioxane (280 mL) was added NaOH solution (3N, 55.4 mL). After the reaction system was vacuumed and backfilled with argon, PdCl₂(dppf) (563 mg, 0.77 mmol) was added. The reaction mixture was then stirred at 100 °C for 3 hours. The solution was cooled and filtered. The filtrate was evaporated under reduced pressure and the residue was purified by column chromatography (petroleum ether/EtOAc = 50:1) gave the triene **24** (4.33 g, 86%) as yellow oil.

24: $R_{\rm f} = 0.36$ (silica gel, petroleum ether/EtOAc = 20:1); $[\alpha]^{25}{}_{\rm D} = -45.8$ (c = 0.12 in MeOH); ¹H NMR (500 MHz, CDCl₃) δ 7.08 (d, J = 8.0 Hz, 1H), 6.71 (dd, J = 8.5, 2.5 Hz, 1H), 6.43 (d, J = 2.5 Hz, 1H), 6.37 (s, 1H), 5.63 (ddd, J = 24.7, 10.4, 7.3 Hz, 1H), 5.05 (s, 1H), 4.95 (s, 1H), 4.93 (s, 1H), 4.92 (d, J = 8.0 Hz, 1H), 3.74 (s, 6H), 2.57 (ddt, J = 32.1, 16.7, 7.7 Hz, 4H), 2.36–2.25 (m, 1H), 1.98 (s, 3H), 1.00 (d, J = 6.0 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 176.0, 158.4, 147.8, 142.9, 136.1, 136.0, 135.1, 134.5, 131.4, 118.1, 115.8, 112.1, 111.9, 62.9, 55.3, 51.8, 41.7, 39.8, 37.9, 23.7, 14.8 ppm; HRMS (m/z): [M+H]⁺ calcd for C₂₁H₂₇O₃⁺ 327.1955, found 327.1948.

To a solution of compound **24** (3.32 g, 10.2 mmol) in dry CH_2Cl_2 (840 mL) at room temperature was added Grubbs II catalyst (1.73 g, 2.04 mmol). The resulting mixture was stirred for 2 hours reflux. The solution was cooled and filtered. The filtrate was evaporated under reduced pressure and the residue was purified by column chromatography (petroleum ether/EtOAc = 50:1) gave the compound **25** (2.78 g, 91.4%) as colorless oil.

25: $R_{\rm f} = 0.33$ (silica gel, petroleum ether/EtOAc = 20:1); $[\alpha]^{25}{}_{\rm D} = -24.0$ (*c* = 0.25 in MeOH); ¹H NMR (500 MHz, CDCl₃) δ 7.18 (d, *J* = 8.5 Hz, 1H), 6.83 (dd, *J* = 8.5, 3.0 Hz, 1H), 6.77 (d, *J* = 2.5 Hz, 1H), 5.77–5.72 (m, 2H), 3.81 (s, 3H), 3.64 (s, 3H), 2.64–2.52 (m, 1H), 2.44 (ddd, *J* = 15.4, 7.5, 3.1 Hz, 1H), 2.34–2.14 (m, 3H), 2.02 (s, 3H), 1.01 (d, *J* = 7.0 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 174.7, 158.3, 147.0, 139.0, 138.6, 132.8, 130.0, 127.5, 122.7, 113.3, 112.9, 74.7, 55.4, 51.6, 42.9, 39.3, 30.1, 24.0, 14.6 ppm; HRMS (m/z): [M+H]⁺ calcd for C₁₉H₂₃O₃⁺ 299.1642, found 299.1635.

To a solution of compound **25** (1.52 g, 5.1 mmol) in MeOH (50 mL) at room temperature was added Pd(OH)₂/C (3.04 g). After the reaction system was vacuumed and backfilled with hydrogen (balloon pressure), the solution was stirred at room temperature overnight. The solution was filtered and the filtrate was evaporated under reduced pressure gave the compound **26** (1.54 g, quant.) as colorless oil without further purification.

26: $R_{\rm f} = 0.36$ (silica gel, petroleum ether/EtOAc = 20:1); $[\alpha]^{25}{}_{\rm D} = -28.6$ (c = 0.14 in MeOH); ¹H NMR (500 MHz, CDCl₃) δ 7.10 (d, J = 11.0 Hz, 1H), 7.02 (d, J = 3.0 Hz, 1H), 6.68 (dd, J = 11.0, 3.5, Hz, 1H), 3.79 (s, 3H), 3.54 (t, J = 9.8 Hz, 1H), 3.39 (s, 3H), 2.98–2.92 (m, 1H), 2.77–2.70 (m, 1H), 2.60 (dd, J = 13.5, 5.5 Hz, 1H), 2.10–1.99 (m, 2H), 1.94–1.91 (m, 1H), 1.73–1.60 (m, 2H), 1.49–1.44 (m, 2H), 1.35 (d, J = 9.0 Hz, 3H), 0.90 (d, J = 8.5 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 173.9, 157.3, 140.8, 139.1, 124.8, 113.7, 110.1, 58.1, 55.4, 50.5, 50.5, 48.8, 40.2, 35.7, 34.2, 31.3, 26.9, 21.9, 16.1 ppm; HRMS (m/z): [M+H]⁺ calcd for C₁₉H₂₇O₃⁺ 303.1955, found 303.1947.

To solution of compound **26** (2.7 g, 8.9 mmol) in dry CH_2Cl_2 (50 mL) at 0 °C was dropwise added DIBAL-H (17.8 mL, 26.7 mmol, 1.5 mol/L in THF). The resulting mixture was stirred at 0 °C for 1 hour. The reaction was quenched with 1N HCl and extracted with CH_2Cl_2 (3 × 20 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, concentrated. The residue without purified, gave the primary alcohol **27** (2.44 g, quant.) as colorless oil.

27: $R_{\rm f} = 0.44$ (silica gel, petroleum ether/EtOAc = 10:1); $[\alpha]^{25}{}_{\rm D} = -36.0$ (c = 0.22 in MeOH); ¹H NMR (500 MHz, CDCl₃) δ 7.18 (d, J = 10.5 Hz, 1H), 6.94 (d, J = 3.0 Hz, 1H), 6.72 (dd, J = 10.5, 3.5 Hz, 1H), 3.79 (s, 3H), 3.40 (dd, J = 14.0, 11.0 Hz, 1H), 3.29 (d, J = 14.0 Hz, 1H), 3.17 (d, J = 14.5 Hz, 1H), 2.97 (q, J = 8.2, 7.1 Hz, 1H), 2.42–2.31 (m, 1H), 2.21–2.12 (m, 1H), 2.00 (dtd, J = 12.1, 10.4, 9.4, 6.4 Hz, 1H), 1.88 (ddt, J = 17.8, 8.4, 4.7 Hz, 3H), 1.58 (dddd, J = 24.1, 17.4, 8.0, 5.0 Hz, 4H), 1.47–1.33 (m, 5H), 1.05 (d, J = 9.0 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 157.6, 142.2, 139.0, 125.2, 113.1, 109.4, 63.4, 55.2, 50.1, 47.8, 47.6, 39.8, 36.1, 33.1, 30.9, 26.1, 21.8, 15.5 ppm; HRMS (m/z): [M+H]⁺ calcd for C₁₈H₂₇O₂⁺ 275.2006, found 275.1999.

To a solution of Na (263 mg, 11.4 mmol) in NH₃ (~10 mL) at -78 °C was dropwise added primary alcohol **27** (157 mg, 0.57 mmol) in THF (2 mL). After the solution was stirred for 20 minutes, *t*-BuOH (4 mL) was added. The solution was stirred for 15 minutes, the reaction was warmed to -45 °C and stirred for another 2 hours. The solution was quenched with MeOH at -45 °C. Saturated NH₄Cl solution (10 mL) was added and the mixture was extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with brine, dried over NaSO₄, concentrated.

The crude residue was treated with 1M HCl (2 mL) in dioxane (6 mL) and stirred at room temperature for 1 hour. The reaction was neutralized with saturated aqueous NaHCO₃ until PH \approx 7. The solution was extracted with EtOAc (3 × 10 mL), the combined organic layers were washed with brine, dried over Na₂SO₄, concentrated. The residue was purified by column chromatography (petroleum ether/EtOAc = 20:1) gave the compound **29** (73 mg, 49%) as colorless oil.

29: $R_{\rm f} = 0.46$ (silica gel, petroleum ether/EtOAc = 10:1); $[\alpha]^{25}_{\rm D} = +4.3$ (*c* = 0.23 in MeOH); ¹H NMR (400 MHz, CDCl₃) δ 3.67 (d, *J* = 10.4 Hz, 1H), 3.29 (d, *J* = 8.3 Hz, 1H), 2.63–2.46 (m, 3H), 2.31 (d, J = 14.4 Hz, 1H), 2.26–2.14 (m, 1H), 2.12–2.01 (m, 1H), 1.93–1.75 (m, 7H), 1.68–1.59 (m, 2H), 1.51–1.40 (m, 1H), 1.28–1.17 (m, 2H), 0.94 (d, J = 7.2 Hz, 3H), 0.83 (d, J = 6.5 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 211.6, 88.6, 71.5, 58.0, 54.2, 52.0, 48.2, 42.5, 40.8, 39.4, 33.8, 31.5, 27.2, 24.0, 21.7, 19.9, 15.6 ppm; HRMS (m/z): [M+H]⁺ calcd for C₁₇H₂₇O₂⁺ 263.2011, found 263.2004.

To a solution of Na (0.83 g, 36.0 mmol) in NH₃ (~20 mL) at -78 °C was dropwise added primary alcohol **27** (0.5 g, 1.8 mmol) in THF (8 mL). After the solution was stirred for 20 minutes, *t*-BuOH (8 mL) was added. The solution was stirred for 15 minutes, the reaction was warmed to -45 °C and stirred for another 2 hours. The solution was quenched with MeOH at -45 °C. Saturated NH₄Cl solution (20 mL) was added and the mixture was extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, concentrated.

The residue was then treated with Dess-Martin periodinane. To a solution of the residue and NaHCO₃ (166 mg, 2.0 mmol) in CH₂Cl₂ (20 mL) at 0 °C was added Dess-Martin periodinane (800 mg, 2.0 mmol). The reaction mixture was stirred at 0 °C for 10 minutes. The reaction was quenched with saturated Na₂S₂O₃ solution and extracted with CH₂Cl₂ (3×20 mL). The extract was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure.

The crude residue was treated with 1M HCl (6 mL) in dioxane (15 mL) and stirred at room temperature for 1 hour. The reaction was neutralized with saturated aqueous NaHCO₃ until PH \approx 7. The solution was extracted with EtOAc (3 × 20 mL), the combined organic layers were washed with brine, dried over Na₂SO₄, concentrated, and purified by column chromatography (petroleum ether/EtOAc = 15:1) gave the aldehyde **31** (160 mg, 34%) as colorless oil.

31: $R_f = 0.40$ (silica gel, petroleum ether/EtOAc = 5:1); $[\alpha]^{25}{}_D = -44.0$ (c = 0.22 in MeOH); ¹H NMR (500 MHz, CDCl₃) δ 9.60 (d, J = 1.5 Hz, 1H), 6.20 (d, J = 2.5, 1H), 3.22 (t, J = 9.5Hz, 1H), 2.58–2.48 (m, 2H), 2.46–2.38 (m, 2H), 2.31–2.20 (m, 2H), 2.18–2.10 (m, 1H), 2.08– 1.99 (m, 3H), 1.73–1.66 (m, 1H), 1.55–1.47 (m, 1H), 1.37–1.30 (m, 2H), 1.07–1.04 (m, 1H), 1.01 (d, J = 7.0 Hz, 3H), 0.90 (d, J = 7.0 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 205.5, 199.6, 167.0, 127.0, 62.9, 49.8, 48.6, 45.1, 38.0, 35.2, 34.5, 31.0, 27.9, 26.8, 23.4, 21.3, 15.5 ppm; HRMS (m/z): [M+H]⁺ calcd for C₁₇H₂₅O₂⁺ 261.1849, found 261.1843.

To a solution of aldehyde **31** (50 mg, 0.2 mmol), MeOH (0.15 mL) and HMPA (0.8 mL) in dry THF (1.5 mL) at -78 °C was dropwise added SmI₂ (4 mL, 0.1 mol/L in THF). The resulting mixture was stirred at -78 °C for 30 minutes. The reaction was quenched by open the system to air. Then saturated aqueous NH₄Cl (10 mL) was added and the solution was extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, concentrated, and purified by column chromatography (petroleum ether/EtOAc = 15:1) gave the compound **32** (21.7 mg, 41%) as white solid.

32: $R_f = 0.55$ (silica gel, petroleum ether/EtOAc = 5:1); $[\alpha]^{25}_D = +40.2$ (*c* = 0.35 in MeOH); ¹H NMR (500 MHz, CDCl₃) δ 3.92 (s, 1H), 2.49–2.38 (m, 3H), 2.37–2.34 (m, 2H), 2.34–2.27 (m, 2H), 2.19–2.11 (m, 1H), 1.98–1.93 (m, 3H), 1.80–1.75 (m, 2H), 1.57–1.43 (m, 3H), 1.34–1.22 (m, 3H), 1.01 (d, *J* = 7.0 Hz, 3H), 0.87 (d, *J* = 7.0 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 214.1, 73.7, 57.7, 52.1, 51.8, 47.7, 43.2, 42.1, 41.9, 34.5, 32.4, 30.4, 29.3, 23.5, 23.2, 22.0, 13.2 ppm; HRMS (m/z): [M+H–H₂O]⁺ calcd for C₁₇H₂₅O⁺ 245.1900, found 245.1896.

To a stirred solution of chiral β -keto ester **38** (20.0 g, 128.1 mmol) in 1,4-dioxane (256 mL) were added Cs₂CO₃ (83.5 g, 256.3 mmol), 4-iodo-2-methylbut-1-ene (**37**, 50.3 g, 256.6 mmol), and HMPA (27.3 g, 152.3 mmol), and the reaction mixture was heated at 80 °C for 10 hours. After cooling, the mixture was treated with saturated aqueous NH₄Cl and extracted with EtOAc (3 × 200 mL), washed with brine, dried over anhydrous Na₂SO₄, concentrated in reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 100:1) to give the desired product **38** (20.1 g, 70%) as yellow oil.

38: $R_{\rm f}$ = 0.61 (silica gel, petroleum ether/EtOAc = 10:1); $[\alpha]^{25}{}_{\rm D}$ = +60.0 (*c* = 0.56 in MeOH); IR (film): $\nu_{\rm max}$ =1735, 1685, 1250, 1175, 1130, 880, 742 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.67 (s, 2H), 3.65 (s, 3H), 2.51 (dd, *J* = 18.9, 8.4 Hz, 1H), 2.29 (dt, *J* = 11.9, 6.7 Hz, 1H), 2.22–2.08 (m, 2H), 2.08–1.93 (m, 2H), 1.86–1.78 (m, 2H), 1.75 (dd, *J* = 17.0, 6.8 Hz, 1H), 1.70 (s, 3H), 1.02 (d, *J* = 6.9 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 216.4, 171.2, 145.4, 110.1, 62.9, 51.8, 39.7, 38.9, 32.2, 30.0, 28.3, 22.3, 15.9 ppm; HRMS (m/z): [M+H]⁺ calcd for C₁₃H₂₁O₃⁺ 225.1485; found 225.1478.

To a solution of methoxypropadiene (**39**, 12.5 g, 178.3 mmol) in dry THF (150 mL) at -78 °C, *n*-BuLi (2.4 M in hexanes, 70.6 mL, 169.5 mmol) was added and the reaction mixture was stirred at -78 °C for 10 minutes. Then a solution of **38** (20.0 g, 89.2 mmol) in dry THF (20 mL) was added within 5 minutes. The reaction was stirred at the same temperature for 1 hour and quenched with H₂O (100 mL). The resulting mixture was allowed to warm to room temperature and extracted with EtOAc (3 × 150 mL). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 10:1) to give the desired product **40** (19.5 g, 78%) as yellow oil.

40: $R_{\rm f}$ = 0.32 (silica gel, petroleum ether/EtOAc= 10:1); $[\alpha]^{25}{}_{\rm D}$ = -38.0 (*c* = 1.46 in MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.13 (dd, *J* = 17.1, 10.4 Hz, 1H), 6.40 (dd, *J* = 17.1, 2.0 Hz, 1H), 5.74 (dd, *J* = 10.4, 2.0 Hz, 1H), 4.62 (s, 1H), 4.56 (s, 1H), 4.22 (s, 1H), 3.75 (s, 3H), 2.42 (dd, *J* = 16.2, 9.2 Hz, 1H), 2.24–2.13 (m, 1H), 2.11–2.01 (m, 2H), 2.00–1.88 (m, 3H), 1.72– 1.65 (m, 1H), 1.64 (s, 3H), 1.49–1.41 (m, 1H), 0.94 (d, *J* = 7.0 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 202.3, 174.6, 146.0, 131.5, 129.9, 109.7, 90.4, 64.0, 51.5, 43.4, 37.7, 33.4, 31.7, 30.6, 22.5, 17.0 ppm; HRMS (m/z): [M+H]⁺ calcd for C₁₆H₂₅O₄⁺ 281.1753; found 281.1746.

The crude compound **40** could be used in this step without further purification. To a stirred solution of the crude product **40** in CH₂Cl₂ (100 mL) were sequentially added Et₃N (50.0 mL, 0.36 mol) and TMSOTf (32.0 mL, 0.18 mol) at 0 °C. Upon completion, the reaction mixture was quenched with water and extracted with CH₂Cl₂ (3×100 mL). The combined organic extract was washed with brine and concentrated under reduced pressure. To a solution of the above-obtained crude product in THF (100 mL), was added 1M HCl (135 mL). The reaction mixture was stirred for 10 minutes at room temperature and quenched with water and extracted with EtOAc (3×100 mL). The combined organic extract was washed with brine, dried over anhydrous Na₂SO₄, concentrated, and purified by column chromatography

(petroleum ether/EtOAc = 100:1) to afford the compound 42 (22.63 g, 92%) as pale-yellow oil.

42: $R_{\rm f} = 0.67$ (silica gel, petroleum ether/EtOAc = 20:1); $[\alpha]^{25}{}_{\rm D} = -41.9$ (c = 0.53 in MeOH) IR (film): $v_{\rm max} = 2953$, 1729, 1694, 1606, 1456, 1398, 1252, 1172, 1135, 887, 842 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.07 (dd, J = 17.2, 10.3 Hz, 1H), 6.32 (dd, J = 17.2, 2.0 Hz, 1H), 5.67 (dd, J = 10.3, 2.0 Hz, 1H), 4.63 (s, 1H), 4.57 (s, 1H), 3.70 (s, 3H), 2.21–1.98 (m, 6H), 1.83–1.67 (m, 2H), 1.65 (d, J = 4.3 Hz, 3H), 1.47 (ddd, J = 13.4, 11.8, 5.6 Hz, 1H), 1.01 (d, J = 6.5 Hz, 3H), 0.08 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 203.6, 172.3, 146.4, 132.7, 128.4, 109.5, 93.8, 65.1, 51.1, 41.0, 35.8, 33.7, 33.0, 32.4, 22.6, 17.3, 1.9 ppm; HRMS (m/z): [M+H]⁺ calcd for C₁₉H₃₃O₄Si⁺ 353.2143; found 353.2132.

A solution of enone 42 (15.0 g, 42.6 mmol) in toluene (1700 mL) was heated to 90 °C. To this solution the Grubbs second-generation catalyst (1.85 g, 2.2 mmol) in toluene (20 mL) was added using a syringe pump over a period of 2 hours. The reaction mixture was stirred at 90 °C for 2 hours and cooled to room temperature. The volatile was removed under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 70:1) to give the corresponding 5,7-bicyclic enone (12.6 g, 91%).

5/7-Bicyclic enone: $R_{\rm f} = 0.52$ (silica gel, petroleum ether/EtOAc = 20:1); $[\alpha]^{25}_{\rm D} = +11.5$ (c = 0.52 in MeOH); IR (film): $v_{\rm max} = 2955$, 2344, 2322, 1728, 1676, 1251, 1218, 1178, 1137, 909, 863, 841 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.63 (s, 1H), 3.71 (s, 3H), 2.91–2.81 (m, 1H), 2.55–2.45 (m, 2H), 2.16 (dd, J = 18.6, 7.3 Hz, 1H), 2.06 (td, J = 12.2, 5.2 Hz, 1H), 1.96–1.89 (m, 1H), 1.88 (s, 3H), 1.75–1.63 (m, 2H), 1.18 (dd, J = 14.2, 10.8 Hz, 1H), 0.81 (d, J = 6.7 Hz, 3H), -0.05 (s, 9H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 205.3, 173.1, 159.6, 124.2, 94.9, 62.9, 51.3, 42.2, 35.6, 34.0, 32.6, 31.4, 26.0, 15.3, 1.3 ppm; HRMS (m/z): [M+Na]⁺ calcd for C₁₇H₂₈O₄NaSi⁺ 347.1649; found 347.1643.

5/7-Bicyclic ketone 36: The above-obtained 5,7-Bicyclic enone (20.0 g, 61.6 mmol) and Pd/C (2.0 g) were mixed in MeOH (100 mL) in a Parr high-pressure reactor under hydrogen (730 psi). The reaction mixture was stirred at room temperature for 8 hours, filtered and washed with ethyl acetate. The filtrate was concentrated and purified by column chromatography (petroleum ether/EtOAc = 80:1) to give the compound 36 (19.7 g, 60.4 mmol, 98%).

36: $R_{\rm f} = 0.61$ (silica gel, petroleum ether/EtOAc = 20:1); $[\alpha]^{25}{}_{\rm D} = +1.4$ (*c* = 0.69 in MeOH); IR (film): $v_{\rm max} = 2335$, 2320, 1725, 1256, 1220, 1170, 1124, 841 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.70 (s, 3H), 3.09–3.01 (m, 1H), 2.54 (dd, *J* = 15.1, 9.2 Hz, 1H), 2.39 (ddd, *J* = 12.8, 9.0, 6.4 Hz, 1H), 2.14 (ddd, *J* = 10.1, 5.5, 1.3 Hz, 1H), 2.09–2.01 (m, 1H), 1.98–1.73 (m, 4H), 1.73–1.52 (m, 3H), 1.00 (d, *J* = 6.4 Hz, 3H), 0.79 (d, *J* = 6.8 Hz, 3H), 0.10 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 216.2, 173.5, 94.5, 62.7, 51.3, 46.0, 43.2, 35.4, 35.3, 34.7, 31.9, 30.8, 23.2, 14.9, 1.8 ppm; HRMS (m/z): [M+H]⁺ calcd for C₁₇H₃₁O₄Si⁺ 327.1986; found 327.1979; [M+Na]⁺ calcd for C₁₇H₃₀O₄NaSi⁺ 349.1806; found 349.1797.

To a solution of compound 5/7-Bicyclic enone (120 mg, 0.37 mmol) in THF (5 mL) at room temperature was added 10% HCl water solution (2 mL) dropwise. The reaction mixture was allowed to stir overnight. Water (10 mL) was added and the solution was extracted with EtOAc (3 × 10 mL). The extract was washed with saturated aqueous NaHCO₃ solution, washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 20:1) to give the compound **41** (78 mg, 84%).

41: $R_{\rm f}$ = 0.35 (silica gel, petroleum ether/EtOAc = 8:1); $[\alpha]^{25}{}_{\rm D}$ = +17.8 (*c* = 0.37 in MeOH); ¹H NMR (400 MHz, CDCl₃) δ 5.84 (s, 1H), 3.91 (s, 1H), 3.71 (s, 3H), 2.54–2.20 (m, 4H), 2.01–1.95 (m, 1H), 1.90 (s, 3H), 1.88–1.63 (m, 4H), 0.98 (d, *J* = 6.9 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 203.1, 173.3, 156.0, 124.4, 91.7, 62.8, 51.7, 42.6, 37.2, 32.9, 32.8, 31.1, 26.1, 16.1 ppm; HRMS (m/z): [M+H]⁺ calcd for C₁₄H₂₁O₄⁺ 253.1440; found 253.1432.

Tertiary alcohol **43**: To a solution of compound **36** (13.1 g, 40.0 mmol) in THF (250 mL) at room temperature was added 10% HCl water solution (200 mL) dropwise. The reaction mixture was allowed to stir overnight. Water (100 mL) was added and the solution was extracted with EtOAc (3×200 mL). The extract was washed with saturated aqueous NaHCO₃ solution, washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced

pressure. The crude product was purified by recrystallization (petroleum ether/EtOAc = 50:1) to give the compound **43** (8.20 g, 81%) as white solid.

43: $R_{\rm f} = 0.53$ (silica gel, petroleum ether/EtOAc = 10:1); $[\alpha]^{25}{}_{\rm D} = -17.9$ (c = 0.56 in MeOH); IR (film): $v_{\rm max} = 2953$, 1722, 1699, 1457, 1205, 734 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.26 (s, 1H), 3.74 (s, 3H), 3.09 (t, J = 10.8 Hz, 1H), 2.63–2.57 (m, 1H), 2.44 (dd, J = 15.5, 8.5 Hz, 1H), 2.18 (ddd, J = 10.5, 5.0, 1.5 Hz, 1H), 1.90–1.86 (m, 1H), 1.78–1.62 (m, 5H), 1.40–1.32 (m, 1H), 0.99–0.94 (m, 4H), 0.83 (d, J = 7.0 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 212.4, 175.0, 90.9, 61.9, 51.9, 45.7, 45.1, 36.4, 35.3, 34.2, 32.3, 30.8, 23.0, 16.0 ppm; HRMS (m/z): $[M+H]^+$ calcd for C₁₄H₂₃O₄⁺ 255.1591; found 255.1583; $[M+Na]^+$ calcd for C₁₄H₂₂O₄Na⁺ 277.1410; found 277.1402; CCDC 1589760 contains the supplementary crystallographic data for **43** (m.p. 112–114 °C) and is available free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

6/6-Bicyclic byproduct 44: To a stirred solution of compound **36** (200 mg, 0.61 mmol) in THF (10 ml) was added TBAF (0.92 ml, 0.92 mmol, 1.0 mol/L in THF) at 0 °C. The reaction mixture was stirred for 30 minutes at 0 °C and was then quenched with saturated aqueous NH₄Cl and extracted with EtOAc (3×10 mL). The organic extract was washed with brine (3×10 mL), dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude oil was purified by column chromatography (petroleum ether/EtOAc = 8:1) to give **44** (131 mg, 84%) as white solid.

44: $R_{\rm f} = 0.27$ (silica gel, petroleum ether/EtOAc = 8:1); $[\alpha]^{25}{}_{\rm D} = +66.7$ (*c* = 1.2 in MeOH); IR (film): $v_{\rm max} = 2958$, 2910, 2850, 1731, 1693, 1457, 1260, 1185, 1146, 1076, 1015, 990, 790 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 3.64 (s, 3H), 2.85 (ddd, *J* = 16.0, 12.5, 8.0 Hz, 1H), 2.48 (s, 1H), 2.41 (ddd, *J* = 13.0, 7.0, 4.5 Hz, 1H), 2.24 (ddd, *J* = 16.0, 5.5, 1.0 Hz, 1H), 2.14 (dt, *J* = 7.0, 3.0 Hz, 1H), 1.89 (ddd, *J* = 14.5, 3.5, 1.5 Hz, 1H), 1.78–1.72 (m, 2H), 1.66–1.59 (m, 2H), 1.37 (ddd, *J* = 26.0, 13.0, 5.5 Hz, 1H), 1.11 (dd, *J* = 14.5, 12.5 Hz, 1H), 0.88–0.82 (m, 7H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 209.1, 173.2, 75.0, 58.1, 51.4, 37.5, 35.7, 32.7, 31.7, 30.5, 27.4, 26.3, 22.3, 15.8 ppm; HRMS (*m/z*): [M+H]⁺ calcd for C₁₄H₂₃O₄⁺ 255.1591; found 255.1585; CCDC 1589761 contains the supplementary crystallographic data for **44** (m.p. 122–124 °C) and is available free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Ketone 45 and *epi*-45: To a vigorously degassed solution of compound 43 (4.0 g, 15.7 mmol) in THF (150 mL) and MeOH (25 mL), a freshly prepared SmI₂ solution (314 mL, 0.1 M in THF) was added dropwise at -78 °C. The reaction mixture was allowed to stir for 1 hour at the same temperature. The reaction was quenched with saturated aqueous Na₂S₂O₃ (50 mL) and the solution was extracted with EtOAc (3 × 150 mL), washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 40:1) to give the compound 45 (1.89 g, 51%) as colorless crystals and compound *epi*-45 (1.62 g, 43%) as colorless oil.

From *epi*-45 to 45: To a solution of compound *epi*-45 (6.0 g, 25.2 mmol) in toluene (150 mL) was added NaOMe (1.36 g, 25.2 mmol) at room temperature. The reaction mixture was stirred overnight at room temperature. Then water (100 mL) was added and the solution was extracted with EtOAc (3×100 mL) and washed with brine. The extract was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 40:1) to give the compound **45** (1.28 g, 21%) as colorless crystals and compound *epi*-45 (3.74 g, 62%) was recovered as colorless oil.

45: $R_{\rm f} = 0.47$ (silica gel, petroleum ether/EtOAc = 10:1); $[\alpha]^{25}{}_{\rm D} = +114.4$ (*c* = 0.90 in MeOH); IR (film): $v_{\rm max} = 1721$, 1697, 1457, 1201, 713 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.53 (s, 3H), 2.70 (t, *J* = 9.6 Hz, 1H), 2.48–2.45 (m, 1H), 2.33 (d, *J* = 17.6 Hz, 1H), 2.24 (dd, *J* = 10.8, 18.8 Hz, 1H), 1.91 (dd, *J* = 11.6, 17.6 Hz, 1H), 1.84–1.63 (m, 5H), 1.36–1.12 (m, 3H), 0.84 (d, *J* = 6.4 Hz, 3H), 0.80 (d, *J* = 6.8 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 210.4, 173.5, 60.8, 58.3, 52.4, 51.1, 48.1, 37.9, 36.4, 30.3, 29.8, 24.5, 23.7, 15.1 ppm; HRMS (*m/z*): [M+H]⁺ calcd for C₁₄H₂₃O₃⁺ 239.1642; found 239.1636; [M+Na]⁺ calcd for C₁₄H₂₂O₃Na⁺ 261.1461; found 261.1455.

epi-45: $R_{\rm f} = 0.64$ (silica gel, petroleum ether/EtOAc = 10:1); $[\alpha]^{25}{}_{\rm D} = -64.3$ (c = 0.56 in MeOH); IR (film): $v_{\rm max} = 1725$, 1696, 1458, 1201, 705 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.72 (t, J = 8.0 Hz, 1H), 3.66 (s, 3H), 2.26–2.13 (m, 3H), 2.05–1.95 (m, 1H), 1.70–1.66 (m, 4H), 1.53 (br, 1H), 1.22–1.15 (m, 1H), 1.11–1.00 (m, 2H), 0.85 (d, J = 6.8 Hz, 3H), 0.77 (d, J = 6.4 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 211.5, 175.8, 57.6, 57.6, 52.3, 51.6, 48.1, 35.3, 35.2, 34.0, 32.4, 24.5, 23.2, 15.7 ppm; HRMS (m/z): $[M+H]^+$ calcd for C₁₄H₂₃O₃⁺ 239.1642; found 239.1639; $[M+Na]^+$ calcd for C₁₄H₂₂O₃Na⁺261.1461; found 261.1457.

To a solution of compound **45** (5.20 g, 21.8 mmol) in THF (100 mL), a freshly prepared LDA solution in THF (21.8 mL, 2.0 mol/L) was added at -78 °C. The reaction mixture was allowed to stir for 1 hour at the same temperature. Then methallyl bromide (4.42 mL, 43.6 mmol) was added and the reaction mixture was allowed to stir for 2 hours while the reaction temperature was gradiently raised to room temperature. The reaction was quenched with saturated aqueous NH₄Cl (50 mL) and the solution was extracted with EtOAc (3 × 100 mL), washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 40:1) to give the compound **47** (5.30 g, 83%) as colorless oil.

47: $R_{\rm f} = 0.37$ (silica gel, petroleum ether/EtOAc = 20:1); $[\alpha]^{25}{}_{\rm D} = +16.3$ (c = 0.49 in MeOH); IR (film): $v_{\rm max} = 2953$, 2873, 1722, 1699, 1457, 1205, 1167, 734 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.67 (s, 1H), 4.49 (s, 1H), 3.60 (s, 3H), 3.11 (t, J = 9.5 Hz, 1H), 2.49–2.36 (m, 3H), 2.15–2.04 (m, 2H), 1.90–1.86 (m, 2H), 1.74–1.49 (m, 9H), 0.99 (d, J = 6.0 Hz, 3H), 0.85 (d, J = 5.6 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 211.4, 173.4, 143.2, 112.6, 60.7, 59.5, 57.4, 51.1, 48.6, 40.8, 38.3, 35.8, 34.9, 31.6, 24.7, 22.2, 22.0, 14.9 ppm; HRMS (m/z): [M+H]⁺ calcd for C₁₈H₂₉O₃⁺ 293.2111; found 293.2100; [M+Na]⁺ calcd for C₁₈H₂₈O₃Na⁺ 315.1931; found 215.1920.

Under argon atmosphere, a flame-dried round-bottom flask was charged with magnesium (5.23 g, 218 mmol), HgCl₂ (2.96 g, 10.9 mmol) and THF (150 mL). The suspension was cooled to 0 °C, propargyl bromide (16.4 mL, 218 mmol) was then added dropwise, allowing the reaction mixture to reflux gently. Upon completion, the mixture was stirred at 50 °C for 1 hour then was cooled to room temperature. To this freshly prepared Grignard reagent, a solution of compound **47** (3.20 g, 10.9 mmol) in THF (50 mL) was added dropwise and the reaction mixture was stirred at room temperature for 2 hours. The mixture was then poured into ice-water (100 mL) and saturated aqueous NaCl (50 mL) and extracted with EtOAc (3 × 50 mL), washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced

pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 60:1) to give the corresponding propargyl-substituted lactone **48** (2.74 g, 84%) as white solid.

48: $R_{\rm f} = 0.40$ (silica gel, petroleum ether/EtOAc = 20:1); $[\alpha]^{25}{}_{\rm D} = -51.8$ (*c* = 0.56 in MeOH); IR (film): $v_{\rm max} = 2957, 2933, 2361, 1758, 1264, 734, 703 {\rm cm}^{-1}$; ¹H NMR (400 MHz, CDCl₃) δ 4.80 (s, 1H), 4.76 (s, 1H), 2.63 (d, *J* = 1.6 Hz, 2H), 2.56 (dd, *J* = 10.8, 4.0 Hz, 1H), 2.18–2.08 (m, 4H), 1.99–1.93 (m, 2H), 1.86–1.74 (m, 5H), 1.71–1.65 (m, 3H), 1.57–1.48 (m, 1H), 1.46–1.39 (m, 1H), 1.32–1.27 (m, 1H), 1.24 (d, *J* = 6.8 Hz, 3H), 1.03 (d, *J* = 6.8 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 179.2, 144.4, 112.7, 89.0, 79.8, 72.1, 59.6, 48.5, 48.2, 44.9, 40.5, 36.6, 34.3, 34.1, 30.0, 28.8, 25.3, 22.5, 22.3, 13.3 ppm; HRMS (*m*/*z*): [M+H]⁺ calcd for C₂₀H₂₉O₂⁺ 301.2162; found 301.2154.

To a solution of the propargyl-substituted lactone **48** (280 mg, 0.93 mmol) in anhydrous toluene (10 mL), $Co_2(CO)_8$ (350 mg, 1.02 mmol) was added. Then reaction mixture was stirred at 70 °C for 12 hours. The reaction mixture was then concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 7:1) to give the lactone **49** (128 mg, 42%) as white solid and C-7 epimer **50** (64 mg, 21%) as white solid.

49: $R_{\rm f} = 0.37$ (silica gel, petroleum ether/EtOAc = 3:1); $[\alpha]^{25}{}_{\rm D} = +5.9$ (c = 1.1 in MeOH); ¹H NMR (400 MHz, CDCl₃) δ 5.81 (d, J = 1.6 Hz, 1H), 2.99 (d, J = 13.6 Hz, 1H), 2.82 (d, J = 14.9 Hz, 1H), 2.36–2.25 (m, 2H), 2.20–2.08 (m, 3H), 1.85–1.74 (m, 4H), 1.70–1.56 (m, 2H), 1.56–1.47 (m, 1H), 1.35–1.27 (m, 6H), 1.21 (d, J = 6.7 Hz, 3H), 1.14 (m, 1H), 1.04 (d, J = 6.5 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 207.5, 182.2, 178.1, 128.2, 89.3, 60.4, 51.3, 48.8, 47.9, 44.7, 42.7, 42.7, 38.2, 36.2, 36.0, 33.6, 31.8, 25.1, 24.6, 23.4, 13.9 ppm; HRMS (m/z): $[M+H]^+$ calcd for C₂₁H₂₉O₃⁺ 329.2117; found 329.2107.

C-7 epimer 50: $R_f = 0.39$ (silica gel, petroleum ether/EtOAc = 3:1); $[\alpha]^{25}{}_D = -10.6$ (c = 1.3 in MeOH); ¹H NMR (400 MHz, CDCl₃) δ 5.90 (s, 1H), 2.81 (d, J = 13.5 Hz, 1H), 2.71–2.60 (m, 2H), 2.29 (d, J = 7.0 Hz, 2H), 2.16–2.08 (m, 1H), 1.93–1.80 (m, 5H), 1.66–1.59 (m, 1H), 1.41–1.31 (m, 3H), 1.31–1.26 (m, 1H), 1.20–1.19 (m, 6H), 1.15–1.02 (m, 2H), 0.95 (d, J = 5.8 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 207.6, 183.5, 178.3, 128.6, 90.4, 60.2, 50.5, 50.4, 49.8, 44.3, 44.0, 37.3, 36.8, 35.5, 35.3, 33.1, 32.7, 28.3, 25.6, 23.2, 14.1 ppm; HRMS (m/z): [M+H]⁺ calcd for C₂₁H₂₉O₃⁺ 329.2117; found 329.2107.

To a solution of compound **49** (120 mg, 0.37 mmol) in HMPA (5 mL) was added DBU (0.27 mL, 1.83 mmol). The solution was stirred at room temperature for 30 minutes. CH_2Cl_2 (5 mL) and DIPEA (0.13 mL, 0.73 mmol) was then added. To this mixture a solution of $Et_3O^+BF_4^-$ in CH_2Cl_2 (0.73 mL, 0.73 mmol, 1.0 mol/L) was added dropwise. The reaction was allowed to stirred at room temperature for 1 hour. To the reaction mixture water (10 mL) was added and the mixture was extracted with EtOAc (3 × 10 mL), washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 30:1) to give the compound **54** (111 mg, 85%) as colorless oil.

54: $R_{\rm f} = 0.45$ (silica gel, petroleum ether/EtOAc = 3:1); $[\alpha]^{25}{}_{\rm D} = -18.3$ (c = 0.03 in MeOH); ¹H NMR (400 MHz, CDCl₃) δ 6.38 (t, J = 2.3 Hz, 1H), 5.65 (s, 1H), 4.19 (dq, J = 10.8, 7.1 Hz, 1H), 3.94 (dq, J = 10.9, 7.1 Hz, 1H), 2.85 (t, J = 9.2 Hz, 1H), 2.48 (dt, J = 14.1, 3.5 Hz, 1H), 2.31–2.14 (m, 3H), 2.14–2.05 (m, 1H), 2.05–1.97 (m, 1H), 1.95–1.87 (m, 3H), 1.85–1.77 (m, 1H), 1.67–1.61 (m, 2H), 1.44–1.36 (m, 2H), 1.21 (t, J = 7.1 Hz, 4H), 1.05 (s, 3H), 0.93 (d, J = 6.3 Hz, 3H), 0.89 (d, J = 6.5 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 208.0, 179.4, 173.7, 159.6, 121.8, 118.6, 77.4, 77.1, 76.8, 60.1, 59.1, 54.1, 51.7, 48.4, 44.1, 40.6, 40.5, 39.1, 38.5, 35.8, 30.7, 30.0, 24.9, 21.2, 15.3, 14.3 ppm; HRMS (m/z): $[M+H]^+$ calcd for C₂₃H₃₃O₃⁺357.2430; found 357.2420.

To a solution of compound **54** (111 mg, 0.31 mmol) in CH_2Cl_2 (5 mL), a solution of DIBAL-H (1.6 mL, 1.56 mmol, 1.0 mol/L) was added dropwise at 0 °C. The reaction mixture was allowed to stirred at the same temperature for 1 hour. The reaction was quenched with 3N NaOH solution (3 mL) and was extracted with CH_2Cl_2 (3 × 10 mL), washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude diol was used in the next step directly.

The above-obtained crude diol was dissolved in CH_2Cl_2 , TPAP (18 mg, 0.05 mmol) and NMO (146 mg, 1.24 mmol) was added at room temperature. The resultant reaction mixture was stirred at room temperature for 1 hour. The solution was filtered and the filtrate was

evaporated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 30:1) to give the aldehyde **55** (68 mg, 70%) as yellow oil.

55: $R_{\rm f} = 0.62$ (silica gel, petroleum ether/EtOAc = 3:1); $[\alpha]^{27}{}_{\rm D} = -29.8$ (*c* = 0.1 in MeOH); ¹H NMR (400 MHz, CDCl₃) δ 9.62 (s, 1H), 6.43 (t, *J* = 2.4 Hz, 1H), 5.67 (s, 1H), 2.88 (t, *J* = 9.3 Hz, 1H), 2.57 (dt, *J* = 14.1, 3.9 Hz, 1H), 2.34–2.13 (m, 4H), 2.08–1.83 (m, 5H), 1.73–1.61 (m, 1H), 1.53–1.25 (m, 4H), 1.08 (s, 3H), 1.00 (d, *J* = 6.8 Hz, 3H), 0.94 (d, *J* = 6.9 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 208.0, 207.3, 179.0, 158.0, 122.3, 119.4, 62.1, 52.7, 51.9, 48.4, 44.3, 40.7, 40.7, 38.5, 35.8, 35.5, 30.6, 29.5, 25.4, 21.5, 15.6 ppm; HRMS (*m/z*): [M+H]⁺ calcd for C₂₁H₂₉O₂⁺313.2168; found 313.2157.

To a vigorously degassed solution of aldehyde **55** (50 mg, 0.16 mmol) in THF (3 mL), MeOH (0.3 mL) and HMPA (1.6 mL), freshly prepared SmI₂ (3.2 mL, 0.32 mmol, 0.1 M in THF) was added dropwise at -78 °C and stirred for 1 hour. The reaction was quenched with saturated aqueous NH₄Cl (5 mL), extracted with EtOAc (3 × 10 mL), washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 15:1) to give regioisomer of **56** (21 mg, 42%) as white solid and **56** (10 mg, 20%) as colorless oil.

Regioisomer of 56: $R_{\rm f} = 0.53$ (silica gel, petroleum ether/EtOAc = 5:1); $[\alpha]^{25}{}_{\rm D} = -27.1$ (c = 0.35 in MeOH); ¹H NMR (400 MHz, CDCl₃) δ 5.33–5.29 (m, 2H), 3.92 (d, J = 4.7 Hz, 1H), 3.03 (d, J = 20.1 Hz, 1H), 2.80 (d, J = 21.5 Hz, 1H), 2.31 (d, J = 17.5 Hz, 1H), 2.17 (dd, J = 9.1, 2.7 Hz, 1H), 2.10–2.06 (m, 1H), 2.03–1.96 (m, 3H), 1.83–1.76 (m, 1H), 1.71–1.63 (m, 3H), 1.58–1.52 (m, 2H), 1.51–1.46 (m, 1H), 1.36–1.31 (m, 1H), 1.28–1.23 (m, 1H), 1.20–1.17 (m, 1H), 1.15 (s, 3H), 1.07 (d, J = 5.8 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 216.7, 141.4, 127.3, 74.2, 57.2, 56.5, 49.4, 44.1, 42.6, 42.5, 40.8, 39.1, 38.3, 34.9, 34.8, 34.6, 30.6, 25.2, 24.6, 22.9, 13.0 ppm; HRMS (m/z): $[M+H]^+$ calcd for C₂₁H₃₁O₂⁺ 315.2324; found 315.2316.

56: $R_{\rm f} = 0.49$ (silica gel, petroleum ether/EtOAc = 3:1); $[\alpha]^{25}{}_{\rm D} = +70.5$ (c = 0.22 in MeOH); ¹H NMR (400 MHz, CDCl₃) δ 5.73 (s, 1H), 3.71 (s, 1H), 2.54 (d, J = 2.6 Hz, 2H), 2.26 (d, J = 18.6 Hz, 1H), 2.18–2.10 (m, 3H), 2.00–1.91 (m, 2H), 1.82–1.67 (m, 2H), 1.59–1.38 (m, 5H), 1.31–1.18 (m, 6H), 1.04 (d, J = 6.3 Hz, 3H), 0.91 (d, J = 6.6 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 208.5, 187.3, 126.7, 74.5, 57.6, 52.0, 51.5, 43.8, 43.2, 41.7, 41.4, 39.8, 36.5, 34.9, 34.3, 34.0, 30.6, 24.3, 23.9, 23.3, 12.8 ppm; HRMS (*m/z*): [M+H]⁺ calcd for C₂₁H₃₁O₂⁺ 315.2324; found 315.2316.

To a solution of $PdCl_2(PPh_3)_2$ (0.70 g, 1.0 mmol), CuI (1.58 g, 8.3 mmol) in THF (100 mL, degassed), 2-bromopropene (18.5 mL, 208 mmol) and Et₃N (4.6 mL, 33.2 mmol) was added. Upon completion of the addition, a solution of propargyl-substituted lactone **48** (2.5 g, 8.3 mmol) in THF (50 mL) was added dropwise. The resulted reaction mixture was then stirred for 4 hours at room temperature. The reaction mixture was poured into saturated aqueous NH₄Cl (100 mL) and EtOAc (100 mL), and extracted with EtOAc (3 × 100 mL). The extract was washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 60:1) to give the PKR precursor **35** (2.25 g, 80%) as yellow oil.

35: $R_{\rm f} = 0.26$ (silica gel, petroleum ether/EtOAc = 40:1); $[\alpha]^{25}{}_{\rm D} = -56.6$ (c = 0.53 in MeOH); IR (film): $v_{\rm max} = 2932$, 2872, 1758, 1264, 731, 703 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.19 (s, 1H), 5.14 (s, 1H), 4.79 (s, 1H), 4.75 (s, 1H), 2.74 (s, 2H), 2.57 (dd, J = 4.0, 10.8 Hz, 1H), 2.18–2.08 (m, 3H), 2.02–1.93 (m, 2H), 1.84–1.74 (m, 8H), 1.71–1.64 (m, 3H), 1.56–1.40 (m, 2H), 1.31–1.27 (m, 1H), 1.23 (d, J = 6.8 Hz, 3H), 1.02 (d, J = 6.8 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 179.4, 144.4, 127.0, 121.2, 112.4, 89.4, 85.1, 84.5, 59.6, 48.7, 48.2, 45.0, 40.4, 36.5, 34.3, 33.9, 29.9, 29.6, 25.4, 23.7, 22.5, 22.3, 13.3 ppm; HRMS (m/z): [M+H]⁺ calcd for C₂₃H₃₃O₂⁺ 341.2475; found 341.2475.

To a solution of compound **35** (1.80 g, 5.3 mmol) in anhydrous toluene (10 mL), $Co_2(CO)_8$ (1.99 g, 5.8 mmol) was added. The reaction mixture was stirred at 70 °C for 12 hours. The reaction mixture was then concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 10:1) to give the lactone **59** (1.33 g, 68%) as white solid and **C-7 epimer of 59** (0.31 g, 16%) as colorless oil.

59: $R_{\rm f} = 0.37$ (silica gel, petroleum ether/EtOAc = 5:1); $[\alpha]^{25}{}_{\rm D} = +31.7$ (c = 0.41 in MeOH); IR (film): $v_{\rm max} = 2957, 2931, 2872, 1760, 1699, 1457, 1242, 1189, 1145, 734, 703 cm⁻¹; ¹H$ NMR (400 MHz, CDCl₃) δ 5.19 (s, 1H), 4.79 (s, 1H), 3.19 (d, J = 14.3 Hz, 1H), 2.71 (d, J = 14.4 Hz, 1H), 2.36–2.22 (m, 2H), 2.19–2.05 (m, 3H), 1.91 (s, 3H), 1.85–1.70 (m, 3H), 1.61– 1.45 (m, 4H), 1.31–1.13 (m, 9H), 1.03 (d, J = 6.4 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 205.9, 178.1, 173.9, 140.6, 136.5, 118.0, 90.0, 60.4, 51.2, 48.7, 47.6, 44.0, 42.9, 40.7, 38.2, 35.8, 34.4, 33.7, 31.8, 25.6, 25.1, 23.2, 21.3, 13.6 ppm; HRMS (*m/z*): [M+H]⁺ calcd for C₂₄H₃₃O₃⁺ 369.2424; found 369.2414.

C-7 epimer of 59: $R_f = 0.38$ (silica gel, petroleum ether/EtOAc = 5:1); $[\alpha]^{25}_{D} = -93.3$ (c = 0.60 in MeOH); IR (film): $v_{max} = 2956$, 2936, 2870, 1760, 1698, 1455, 1240, 1189, 733, 704 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.14–5.13 (m, 1H), 5.02 (s, 1H), 3.02 (d, J = 13.7 Hz, 1H), 2.65 (dd, J = 9.4, 6.0 Hz, 1H), 2.58 (d, J = 13.8 Hz, 1H), 2.38–2.27 (m, 2H), 2.14 (dd, J = 10.0, 4.3 Hz, 1H), 1.96–1.78 (m, 8H), 1.67–1.63 (m, 1H), 1.41–1.30 (m, 5H), 1.22 (d, J = 6.9 Hz, 3H), 1.18 (s, 3H), 1.13–1.08 (m, 1H), 0.98 (d, J = 5.7 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 206.1, 178.3, 175.4, 141.5, 136.5, 117.3, 90.6, 60.1, 50.6, 50.0, 49.8, 44.1, 42.4, 37.0, 35.7, 35.6, 35.5, 33.2, 32.6, 28.7, 25.6, 23.2, 22.3, 14.2 ppm; HRMS (m/z): [M+H]⁺ calcd for C₂₄H₃₃O₃⁺ 369.2424; found 369.2414.

To a solution of compound **59** (22 mg, 0.06 mmol) in EtOAc (10 mL) was added Pd/C (10 mg). The reaction flask was vacuumed and backfilled with hydrogen (balloon pressure), the reaction mixture was stirred at room temperature for 10 minutes. The solution was filtered and the filtrate was evaporated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 10:1) to give the lactone **60** (8 mg, 36%) as white solid, lactone **61** (3 mg, 14%) as colorless oil and lactone **62** (6 mg, 27%) as white solid.

60: $R_{\rm f} = 0.45$ (silica gel, petroleum ether/EtOAc = 5:1); $[\alpha]^{25}{}_{\rm D} = -10.0$ (c = 0.10 in MeOH); IR (film): $v_{\rm max} = 2956$, 2925, 2865, 1710, 1454, 1354, 1267, 1203, 1147, 993, 803, 768 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 3.02 (d, J = 14.4 Hz, 1H), 2.70 (d, J = 14.5 Hz, 1H), 2.67–2.63 (m, 1H), 2.32 (dd, J = 10.0, 5.8 Hz, 1H), 2.26 (d, J = 18.2 Hz, 1H), 2.17–2.04 (m, 3H), 1.88–1.83 (m, 3H), 1.79–1.73 (m, 1H), 1.68–1.58 (m, 4H), 1.56–1.50 (m, 1H), 1.25–1.21 (m, 11H), 1.15 (d, J = 6.9 Hz, 3H), 1.06 (d, J = 6.5 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 207.5, 178.3, 171.5, 142.4, 89.9, 60.6, 51.8, 48.9, 47.9, 43.8, 43.0, 40.3, 38.3, 36.2, 33.8, 33.6, 31.9, 25.9, 25.8, 25.4, 23.4, 21.1, 19.4, 13.9 ppm; HRMS (m/z): [M + H]⁺ calcd for C₂₄H₃₅O₃⁺ 371.2581; found 371.2574. CCDC 1589762 contains the supplementary crystallographic data

for **60** (m.p. 110–112 °C) and is available free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data request/cif</u>.

Lactone 61: $R_f = 0.48$ (silica gel, petroleum ether/EtOAc = 5:1); $[\alpha]^{25}{}_D = -25.0$ (c = 0.43 in MeOH); ¹H NMR (500 MHz, CDCl₃) δ 2.70 (d, J = 13.5 Hz, 1H), 2.53 (dd, J = 10.2, 5.4 Hz, 1H), 2.28–2.15 (m, 6H), 2.03–1.93 (m, 1H), 1.91–1.79 (m, 7H), 1.77–1.70 (m, 3H), 1.67–1.60 (m, 2H), 1.55–1.47 (m, 1H), 1.45–1.38 (m, 3H), 1.22 (d, J = 7.0 Hz, 3H), 1.06–1.02 (m, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 206.6, 179.6, 151.4, 133.8, 88.8, 60.3, 53.8, 50.2, 48.7, 44.18, 43.9, 38.8, 38.7, 35.8, 35.5, 35.1, 33.4, 33.4, 27.0, 24.8, 24.4, 23.1, 21.0, 14.2 ppm; HRMS (m/z): [M + H]⁺ calcd for C₂₄H₃₅O₃⁺ 371.2581; found 371.2579.

Lactone 62: $R_f = 0.52$ (silica gel, petroleum ether/EtOAc = 5:1); $[\alpha]^{25}{}_D = +7.5$ (c = 0.20 in MeOH); ¹H NMR (400 MHz, CDCl₃) δ 2.44 (dd, J = 10.4, 5.0 Hz, 1H), 2.23–2.12 (m, 2H), 2.06 (d, J = 17.1 Hz, 1H), 2.01–1.81 (m, 7H), 1.80–1.62 (m, 3H), 1.62–1.59 (m, 1H), 1.58–1.52 (m, 1H), 1.51–1.42 (m, 1H), 1.37–1.26 (m, 3H), 1.23 (d, J = 6.6 Hz, 3H), 1.17 (s, 3H), 1.10–0.97 (m, 7H), 0.92 (d, J = 6.7 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 219.0, 178.9, 88.8, 60.7, 56.4, 54.5, 49.7, 48.2, 43.7, 39.3, 37.3, 36.1, 35.5, 33.3, 33.3, 32.6, 28.7, 25.8, 25.2, 23.2, 23.2, 20.8, 18.7, 13.6 ppm; HRMS (m/z): [M + H]⁺ calcd for C₂₄H₃₇O₃⁺ 373.2743; found 373.2737. CCDC 1903613 contains the supplementary crystallographic data for **62** (m.p. 108–110 °C) and is available free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

To a solution of **59** (1.25 g, 3.4 mmol) in HMPA (30 mL) was added DBU (2.54 mL, 17.0 mmol). The solution was stirred at room temperature for 30 minutes. CH_2Cl_2 (50 mL) and DIPEA (1.18 mL, 6.8 mmol) was then added. To this mixture a solution of $Et_3O^+BF_4^-$ in CH_2Cl_2 (6.8 mL, 6.8 mmol, 1.0 mol/L) was added dropwise. The reaction was allowed to stirred at room temperature for 1 hour. To the reaction mixture water (30 mL) was added and the mixture was extracted with EtOAc (3 × 50 mL), washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 30:1) to give the compound **63** (1.18 g, 88%) as colorless oil.

63: $R_{\rm f} = 0.41$ (silica gel, petroleum ether/EtOAc = 10:1); $[\alpha]^{25}{}_{\rm D} = -103.8$ (*c* = 0.52 in MeOH); IR (film): $v_{\rm max} = 2957$, 2931, 2870, 1763, 1692, 1450, 1240, 733, 710 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.51 (s, 1H), 5.14 (t, J = 1.6 Hz, 1H), 4.92 (s, 1H), 4.18 (dq, J = 10.9, 7.1 Hz, 1H), 3.94 (dq, J = 10.9, 7.1 Hz, 1H), 2.86 (t, J = 9.2 Hz, 1H), 2.47 (d, J = 13.5 Hz, 1H), 2.31–2.08 (m, 4H), 1.95–1.74 (m, 7H), 1.80 (dt, J = 12.5, 4.6 Hz, 1H), 1.67–1.61 (m, 2H), 1.40–1.34 (m, 2H), 1.20 (t, J = 7.1 Hz, 4H), 1.03 (s, 3H), 0.93 (d, J = 6.1 Hz, 3H), 0.89 (d, J = 6.4 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 206.2, 173.8, 171.6, 158.7, 137.1, 134.1, 118.1, 116.8, 60.1, 59.2, 54.4, 51.5, 48.5, 44.1, 40.7, 39.2, 38.6, 38.6, 35.8, 30.7, 30.2, 25.1, 22.4, 21.3, 16.0, 14.4 ppm; HRMS (m/z): [M+H]⁺ calcd for C₂₆H₃₇O₃⁺ 397.2737; found 397.2724.

To a solution of compound **63** (1.19 g, 3.0 mmol) in CH₂Cl₂ (50 mL), a solution of DIBAL-H (15.0 mL, 15.0 mmol, 1.0 mol/L) was added dropwise at 0 °C. The reaction mixture was allowed to stirred at the same temperature for 1 hour. The reaction was quenched with 3N NaOH solution (30 mL) and was extracted with CH₂Cl₂ (3×30 mL), washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude diol was used in the next step directly.

The above-obtained crude diol was dissolved in CH_2Cl_2 , TPAP (158 mg, 0.45 mmol) and NMO (1.41 g, 12.0 mmol) was added at room temperature. The resultant reaction mixture was stirred at room temperature for 1 hour. The solution was filtered and the filtrate was evaporated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 30:1) to give the aldehyde **34** (784 mg, 74%) as yellow oil.

34: $R_{\rm f} = 0.40$ (silica gel, petroleum ether/EtOAc = 10:1); $[\alpha]^{25}{}_{\rm D} = -78.0$ (c = 0.41 in MeOH); IR (film): $v_{\rm max} = 2857$, 2831, 1763, 1741, 1450, 1431, 1244, 1220, 704 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.61 (s, 1H), 6.55 (t, J = 2.4 Hz, 1H), 5.14 (s, 1H), 4.91 (s, 1H), 2.88 (t, J = 9.3 Hz, 1H), 2.55 (dt, J = 14.0, 3.8 Hz, 1H), 2.29 (d, J = 17.5 Hz, 1H), 2.25–2.18 (m, 2H), 2.14 (d, J = 17.5 Hz, 1H), 2.03–1.92 (m, 6H), 1.90–1.82 (m, 2H), 1.68–1.62 (m, 1H), 1.53–1.42 (m, 1H), 1.39–1.28 (m, 3H), 1.04 (s, 3H), 0.98 (d, J = 6.7 Hz, 3H), 0.92 (d, J = 6.9 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 207.3, 206.1, 171.0, 157.1, 137.0, 134.5, 118.7, 116.9, 61.9, 52.9, 51.5, 48.3, 44.1, 40.7, 38.7, 38.4, 35.7, 35.4, 30.5, 29.5, 25.4, 22.3, 21.4, 15.5 ppm; HRMS (m/z): $[M+H]^+$ calcd for C₂₄H₃₃O₂⁺ 353.2475; found 353.2472.

To a vigorously degassed solution of aldehyde **34** (550 mg, 1.56 mmol) in THF (26 mL), MeOH (1.5 mL) and HMPA (7.7 mL), freshly prepared SmI₂ (31 mL, 3.12 mmol, 0.1 M in THF) was added dropwise at -78 °C and stirred for 1 hour. The reaction was quenched with saturated aqueous NH₄Cl (10 mL), extracted with EtOAc (3 × 30 mL), washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 15:1) to give **64** (123 mg, 22%) as white solid and **65** (232 mg, 42%) as yellow oil. The stereochemical assignment of the C-18 hydroxyl group was based on our previous studies of a similar substrate².

64: $R_{\rm f} = 0.26$ (silica gel, petroleum ether/EtOAc = 10:1); $[\alpha]^{25}{}_{\rm D} = +122.2$ (c = 0.18 in MeOH); IR (film): $v_{\rm max} = 2952$, 2877, 2362, 2322, 1690, 1684, 1507, 1263, 749 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.17 (s, 1H), 4.77 (s, 1H), 3.69 (s, 1H), 2.74 (d, J = 14.6 Hz, 1H), 2.44 (d, J = 14.6 Hz, 1H), 2.28 (d, J = 18.4 Hz, 1H), 2.18–2.12 (m, 2H), 2.10–2.05 (m, 1H), 1.97–1.93 (m, 5H), 1.78–1.70 (m, 3H), 1.58–1.54 (m, 1H), 1.48–1.40 (m, 2H), 1.32–1.27 (m, 2H), 1.24 (s, 3H), 1.21–1.14 (m, 1H), 1.05 (d, J = 6.3 Hz, 3H), 0.99–0.94 (m, 1H), 0.91 (d, J = 6.6 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 206.6, 178.8, 139.4, 137.3, 117.2, 74.7, 57.6, 52.2, 51.9, 43.1, 41.9, 41.5, 41.3, 39.6, 36.5, 35.0, 34.1, 32.5, 30.7, 25.3, 24.2, 23.2, 21.8, 12.9 ppm; HRMS (m/z): [M+H]⁺ calcd for C₂₄H₃₅O₂⁺ 355.2632; found 355.2622.

65: $R_{\rm f} = 0.49$ (silica gel, petroleum ether/EtOAc = 10:1); $[\alpha]^{25}{}_{\rm D} = +4.4$ (*c* = 0.49 in MeOH); IR (film): $v_{\rm max} = 2950$, 2355, 2300, 1678, 1638, 1480, 1255, 764 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.42 (s, 1H), 3.97 (d, *J* = 4.5 Hz, 1H), 2.31 (s, 3H), 2.24 (s, 1H), 2.17 (dd, *J* = 9.1, 1.7 Hz, 1H), 2.09–2.05 (m, 4H), 1.97 (d, *J* = 9.6 Hz, 2H), 1.82–1.76 (m, 1H), 1.69–1.66 (m, 1H), 1.54–1.46 (m, 3H), 1.41 (s, 3H), 1.33–1.25 (m, 3H), 1.07–1.04 (m, 6H), 0.97–0.92 (m, 4H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 206.3, 149.4, 145.7, 130.8, 129.0, 74.4, 57.2, 56.1, 49.9, 44.4, 42.5, 38.7, 38.5, 37.9, 34.9, 34.8, 34.7, 30.6, 26.5, 25.5, 24.6, 22.8, 21.9, 13.0 ppm; HRMS (*m/z*): [M+H]⁺ calcd for C₂₄H₃₅O₂⁺ 355.2632; found 355.2623. The stereochemical assignment of the C-18 hydroxyl group was based on our previous studies of a similar substrate².

From 64 to enone 66: A flame-dried flask was charged with compound 64 (120 mg, 0.34 mmol) and Crabtree's catalyst (24 mg) in CH_2Cl_2 (5 mL). The flask was vacuumed and backfilled with hydrogen (balloon pressure) and the reaction mixture was stirred at room temperature for 1 hour. The solution was evaporated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 20:1) to give 66 (118 mg, 98%) as white solid.

From 65 to enone 66: To a solution of compound 65 (230 mg, 0.65 mmol) in ethyl acetate (20 mL) was added Pd/C (115 mg). The flask was vacuumed and backfilled with hydrogen (balloon pressure), the reaction mixture was stirred at room temperature for 1 hour. The solution was filtered and the filtrate was evaporated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 20:1) to give 66 (192 mg, 83%) as white solid.

66: $R_{\rm f} = 0.28$ (silica gel, petroleum ether/EtOAc = 10:1); $[\alpha]^{25}{}_{\rm D} = +56.3$ (c = 0.16 in MeOH); IR (film): $v_{\rm max} = 3750, 3745, 2957, 2361, 2322, 1698, 1558, 1507, 1275, 764 cm⁻¹; ¹H NMR$ $(400 MHz, CDCl₃) <math>\delta$ 3.72 (s, 1H), 2.65 (dt, J = 13.9, 6.9 Hz, 1H), 2.55 (d, J = 14.6 Hz, 1H), 2.38 (d, J = 14.6 Hz, 1H), 2.18 (d, J = 18.2 Hz, 1H), 2.16–2.07 (m, 4H), 2.03–1.93 (m, 2H), 1.82–1.76 (m, 1H), 1.72–1.66 (m, 1H), 1.57–1.38 (m, 5H), 1.32–1.23 (m, 2H), 1.19–1.17 (m, 6H), 1.13 (d, J = 6.9 Hz, 3H), 1.04 (d, J = 6.3 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 208.2, 176.2, 140.8, 74.8, 57.6, 52.3, 51.5, 42.6, 41.9, 41.5, 40.7, 39.5, 36.4, 35.0, 34.1, 31.4, 30.7, 25.7, 25.4, 24.2, 23.2, 21.1, 19.7, 12.9 ppm; HRMS (m/z): [M+H]⁺ calcd for C₂₄H₃₇O₂⁺ 357.2788; found 357.2777.

Under argon atmosphere, compound **66** (250 mg, 0.70 mmol) was dissolved in CH₂Cl₂ (25 mL), NMO (328 mg, 2.8 mmol) and TPAP (37 mg, 0.105 mmol) was added at room temperature. The resulting reaction mixture was stirred at room temperature for 1 hour. The mixture was then filtered and the filtrate was evaporated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 20:1) to give the diketone **33** (244 mg, 98%) as colorless oil.

33: $R_{\rm f} = 0.44$ (silica gel, petroleum ether/EtOAc = 10:1); $[\alpha]^{25}{}_{\rm D} = +148.8$ (*c* = 0.43 in MeOH); IR (film): $v_{\rm max} = 3870$, 3745, 3724, 2985, 2931, 2874, 2361, 2329, 1759, 1671, 1457, 764 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.66–2.59 (m, 2H), 2.43 (d, *J* = 15.0 Hz, 1H), 2.35 (d, *J* = 9.1 Hz, 1H), 2.21 (d, J = 18.1 Hz, 1H), 2.10–2.05 (m, 2H), 1.92–1.83 (m, 2H), 1.73–1.44 (m, 6H), 1.33–1.27 (m, 2H), 1.25–1.12 (m, 14H), 1.00 (d, J = 6.0 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 220.0, 207.3, 173.4, 142.1, 77.4, 67.5, 52.3, 43.2, 42.3, 42.1, 41.1, 40.7, 36.4, 35.1, 34.4, 26.9, 25.8, 25.7, 25.3, 23.6, 22.5, 21.2, 19.6, 13.6 ppm; HRMS (*m/z*): [M+H]⁺ calcd for C₂₄H₃₅O₂⁺ 355.2632; found 355.2625.

To a solution of compound **33** (244 mg, 0.69 mmol) in THF (25 mL), a solution of NaHMDS (2.61 mL, 2.61 mmol, 1.0 mol/L in THF) was added dropwise at -78 °C. The reaction mixture was stirred at the same temperature for 6 minutes. To this mixture a solution of (±)-3-phenyl-2-(phenylsulfonyl)-1,2-oxaziridine (721 mg, 2.76 mmol) in THF (3.0 mL) was added and the resulting mixture was stirred at -78 °C for 30 minutes. The reaction was quenched with saturated aqueous NH₄Cl (10 mL) and the mixture was extracted with EtOAc (3 × 20 mL), washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 15:1) to give the compound **68** (251 mg, 99%) as white solid.

68: $R_{\rm f} = 0.68$ (silica gel, petroleum ether/EtOAc = 6:1); $[\alpha]^{25}{}_{\rm D} = +103.8$ (c = 0.26 in MeOH); IR (film): $v_{\rm max} = 3750$, 3735, 2361, 2322, 1699, 1558, 1262, 764 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.61 (d, J = 2.6 Hz, 1H), 3.22 (d, J = 2.7 Hz, 1H), 2.69–2.60 (m, 2H), 2.49 (d, J = 15.0 Hz, 1H), 2.38 (d, J = 9.0 Hz, 1H), 1.96 (dd, J = 2.6, 13.7 Hz, 1H), 1.93–1.82 (m, 2H), 1.73–1.68 (m, 2H), 1.66–1.53 (m, 4H), 1.45 (d, J = 13.3 Hz, 1H), 1.40 (s, 1H), 1.33–1.27 (m, 2H), 1.25–1.23 (m, 6H), 1.15–1.11 (m, 6H), 1.01 (d, J = 6.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 220.0, 208.0, 174.8, 139.6, 79.0, 77.5, 68.2, 43.9, 42.7, 42.4, 41.2, 36.3, 35.3, 35.1, 34.6, 26.9, 25.7, 25.4, 25.3, 24.0, 22.7, 21.2, 19.7, 13.6 ppm; HRMS (m/z): $[M+H]^+$ calcd for C₂₄H₃₅O₃⁺ 371.2581; found 371.2575.

To a solution of compound **68** (150 mg, 0.40 mmol) in MeOH (15 mL) was added CeCl₃•7H₂O (166 mg, 0.45 mmol) and NaBH₄ (30 mg, 0.80 mmol) at 0 °C,. The reaction mixture was stirred at room temperature for 1 hour. The reaction was quenched with saturated aqueous NH₄Cl (10 mL) and extracted with EtOAc (3×10 mL), washed with brine, dried

over anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude compound **69** was used in next step directly.

The crude compound **69** and Crabtree's catalyst (30 mg) in CH_2Cl_2 (5 mL) was stirred at room temperature for 1 hour under pressured hydrogen (500 psi) in a Parr apparatus. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 6:1) to give the **70** (118 mg, 79%) as white solid.

70: $R_f = 0.31$ (silica gel, petroleum ether/EtOAc = 4:1); $[\alpha]^{25}_D = -11.8$ (c = 0.17 in MeOH); IR (film): $v_{max} = 3758$, 3755, 2362, 2322, 1717, 1558, 1507, 1276, 1261, 764, 750 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.23 (s, 1H), 3.56 (d, J = 4.5 Hz, 1H), 2.84 (s, 1H), 2.52 (s, 1H), 2.45 (d, J = 8.8 Hz, 1H), 2.12–2.05 (m, 1H), 1.87–1.80 (m, 2H), 1.74 (dd, J = 8.1, 13.4 Hz, 1H), 1.67–1.54 (m, 8H), 1.49–1.39 (m, 2H), 1.35–1.23 (m, 4H), 1.12 (d, J = 6.8 Hz, 3H), 0.98–0.92 (m, 9H), 0.78 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 223.2, 78.9, 77.2, 75.9, 66.8, 54.6, 45.4, 42.2, 42.0, 40.5, 39.1, 36.5, 36.2, 35.3, 34.7, 29.4, 27.0, 25.4, 24.4, 22.6, 22.0, 21.9, 18.9, 13.5 ppm; HRMS (m/z): [M+H]⁺ calcd for C₂₄H₃₉O₃⁺ 375.2894; found 375.2888. CCDC 1589763 contains the supplementary crystallographic data for **70** (m.p. 128–130 °C) and is available free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

To a solution of compound **70** (80 mg, 0.21 mmol) in toluene (20 mL), was added thiocarbonyl diimidazole (374 mg, 2.1 mmol) at rt. The reaction mixture was refluxed and stirred for 48 hours and then cooled to room temperature. 1M HCl solution (10 mL) and EtOAc (10 mL) was added to the reaction mixture and it was extracted with EtOAc (3×10 mL), washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 20:1) to give the corresponding cyclic thionocarbonate (70 mg, 80%) as white solid.

The cyclic thionocarbonate: $R_{\rm f} = 0.39$ (silica, petroleum ether/EtOAc = 10:1); $[\alpha]^{25}{}_{\rm D} =$ +15.4 (c = 0.13 in MeOH); IR (film): $v_{\rm max} = 3750$, 3735, 2362, 2322, 1558, 1507, 750 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.29 (d, J = 6.5 Hz, 1H), 4.76 (d, J = 6.5 Hz, 1H), 2.45 (d, J =9.0 Hz, 1H), 1.89–1.82 (m, 4H), 1.74–1.53 (m, 9H), 1.37–1.16 (m, 5H), 1.12 (d, J = 6.8 Hz, 3H), 0.99–0.95 (m, 9H), 0.89 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 221.7, 192.0, 92.6, 90.1, 76.5, 66.0, 55.3, 45.9, 42.3, 42.0, 40.3, 36.8, 36.2, 35.3, 34.5, 27.9, 26.9, 25.2, 24.2, 22.5, 22.2, 22.1, 18.9, 13.5 ppm; HRMS (*m/z*): [M+H]⁺ calcd for C₂₅H₃₇O₃⁺ 417.2458; found 417.2449.

A solution of the cyclic thionocarbonate (70 mg, 0.17 mmol) and $P(OCH_3)_3$ (10 mL) was refluxed and stirred for 48 hours. The reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography (petroleum ether/EtOAc = 100:1) to give the alkene **71** (53 mg, 93%) as white solid.

71: $R_{\rm f} = 0.29$ (silica gel, petroleum ether/EtOAc = 50:1); $[\alpha]^{25}{}_{\rm D} = -66.7$ (*c* = 0.18 in MeOH); IR (film): $v_{\rm max} = 3750, 3735, 2956, 2931, 2869, 2362, 2329, 1759, 1507, 1457, 1262, 749 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 5.85 (d, *J* = 6.0 Hz, 1H), 5.81 (dd, *J* = 2.8, 5.9 Hz, 1H), 2.42 (d, *J* = 8.5 Hz, 1H), 2.05–1.99 (m, 1H), 1.94 (dd, *J* = 3.5, 12.6 Hz, 1H), 1.90–1.80 (m, 2H), 1.77–1.59 (m, 8H), 1.57–1.50 (m, 1H), 1.48–1.41 (m, 1H), 1.34–1.19 (m, 4H), 1.15 (d, *J* = 6.8 Hz, 3H), 0.98–0.95 (m, 6H), 0.92 (d, *J* = 6.4 Hz, 3H), 0.83 (d, *J* = 6.7 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 223.0, 142.6, 133.9, 75.4, 67.7, 54.5, 46.8, 46.4, 43.9, 42.0, 41.3, 40.6, 36.4, 35.4, 34.9, 29.9, 27.1, 25.3, 23.7, 22.8, 22.7, 22.6, 22.5, 13.5 ppm; HRMS (*m*/*z*): [M+H]⁺ calcd for C₂₄H₃₇O⁺ 341.2839; found 341.2833.

To a solution of alkene **71** (50 mg, 0.15 mmol) in THF (10 mL), MeLi (0.75 mL, 0.75 mmol, 1.0 mol/L in Et₂O) was added dropwise at room temperature. The reaction mixture was then stirred at 50 °C for 1 hour, and then re-cooled to 0 °C before it was quenched with saturated aqueous NH₄Cl (5 mL). The mixture was extracted with ethyl acetate (3 × 10 mL), washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 40:1) to give the corresponding tertiary alcohol (46 mg, 88%) as colorless oil.

The tertiary alcohol: $R_f = 0.44$ (silica gel, petroleum ether/EtOAc = 20:1); $[\alpha]^{25}_D = -100.0$ (c = 0.14 in MeOH); IR (film): $v_{max} = 3750$, 3745, 2953, 2870, 2361, 2322, 1699, 1569, 1521, 1276, 1262, 764, 749 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.86 (d, J = 5.9 Hz, 1H), 5.80 (dd, J = 5.8, 2.8 Hz, 1H), 2.19–2.08 (m, 3H), 2.04–1.98 (m, 2H), 1.90 (t, J = 10.0 Hz, 2H), 1.75–1.64 (m, 5H), 1.56–1.49 (m, 3H), 1.40 (s, 3H), 1.29–1.24 (m, 1H), 1.20–1.14 (m, 1H), 1.10 (d, J = 6.7 Hz, 3H), 1.02 (d, J = 5.8 Hz, 4H), 0.97 (d, J = 6.4 Hz, 3H), 0.93 (s, 3H), 0.84 (d, J = 5.8 Hz, 1H), 2.19–2.08 (m, 2H), 0.97 (d, J = 6.4 Hz, 3H), 0.93 (s, 3H), 0.84 (d, J = 5.8 Hz, 2.8 Hz, 2.8 Hz, 2.8 Hz, 4H), 0.97 (d, J = 6.4 Hz, 3H), 0.93 (s, 3H), 0.84 (d, J = 5.8 Hz, 2.8 Hz, 2.8 Hz, 2.8 Hz, 4.8 Hz, 0.97 (d, J = 6.4 Hz, 3.8 Hz, 0.93 (s, 3H), 0.84 (d, J = 5.8 Hz, 2.8 Hz, 0.91 (m, 2.8 Hz, 2.8 Hz, 0.91 (m, 2.8 Hz, 0.91 (6.7 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 143.0, 134.0, 79.5, 59.5, 54.9, 50.2, 46.9, 46.0, 45.9, 42.8, 42.1, 40.7, 36.5, 35.9, 35.6, 35.2, 30.0, 25.9, 24.7, 23.9, 23.8, 23.6, 22.7, 22.6, 14.6 ppm; HRMS (*m/z*): [M–H₂O+H]⁺ calcd for C₂₅H₃₉⁺ 339.3046; found 339.3039.

To a solution of the above-obtained tertiary alcohol (25 mg, 0.07 mmol) in CH₂Cl₂ (6 mL) was added pyridine (0.03 mL, 0.35 mmol) and SOCl₂ (0.015 mL, 0.21 mmol) at 0 °C. The reaction mixture was stirred at 0 °C for 1 hour and quenched with saturated aqueous NaHCO₃ (2 mL). The mixture was extracted with CH₂Cl₂ (3×10 mL), washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether) to give the corresponding diene (17 mg, 71%) as colorless oil.

The diene: $R_f = 1.0$ (silica gel, petroleum ether); $[\alpha]^{25}{}_D = -70.6$ (c = 0.17 in MeOH); IR (film): $v_{max} = 1275$, 1262, 760, 704 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.85 (d, J = 6.0 Hz, 1H), 5.80 (dd, J = 2.7, 5.8 Hz, 1H), 4.86 (s, 1H), 4.66 (s, 1H), 2.15–2.13 (m, 1H), 2.03–2.00 (m, 1H), 1.86 (dd, J = 3.6, 12.5 Hz, 1H), 1.77–1.75 (m, 1H), 1.73–1.69 (m, 2H), 1.67–1.62 (m, 3H), 1.60–1.58 (m, 1H), 1.54–1.52 (m, 2H), 1.51–1.46 (m, 2H), 1.44–1.36 (m, 3H), 1.22–1.14 (m, 2H), 1.02 (d, J = 6.5 Hz, 3H), 0.98 (s, 3H), 0.96 (d, J = 2.7 Hz, 3H), 0.94 (d, J = 2.6 Hz, 3H), 0.84 (d, J = 6.7 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 161.5, 143.0, 133.9, 102.6, 59.4, 54.5, 50.5, 47.6, 47.2, 46.5, 44.8, 42.8, 41.6, 37.2, 35.2, 34.4, 31.3, 30.1, 27.1, 25.0, 23.8, 23.4, 22.8, 22.6, 13.5 ppm; HRMS (m/z): [M+H]⁺ calcd for C₂₅H₃₉⁺ 339.3046; found 339.3033.

Astellatol 1: To a solution of the above-obtained diene (15 mg, 0.044 mmol) in THF (2 mL) at 0 °C was added BH₃•Me₂S (0.07 mL, 0.066 mmol, 1.0 mol/L in THF) dropwise. The reaction mixture was stirred at room temperature for 30 minutes and then cooled to 0 °C. To this mixture MeOH (0.1 mL), aqueous NaOH (3N, 1 mL) and aqueous H₂O₂ (30 wt%, 1 mL) were added dropwise. The reaction mixture was stirred at 55 °C for 30 min and was cooled to room temperature. The reaction was quenched with saturated aqueous NH₄Cl (5 mL). The mixture was extracted with EtOAc (3 × 10 mL), washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 15:1) to give astellatol 1 (8.7 mg, 56%) as colorless oil and the C-6 regioisomer (2.4 mg, 15%) as colorless oil.

Astellatol 1: $R_f = 0.43$ (silica gel, petroleum ether/EtOAc = 10:1); $[\alpha]^{25}_D = +7.9$ (c = 0.63 in MeOH); IR (film): $v_{max} = 3750, 3735, 2928, 2856, 2362, 2329, 1558, 1541, 1507, 1276, 1261, 750 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 4.80 (s, 1H), 4.64 (s, 1H), 4.29 (ddd, J = 4.2, 7.4, 8.6 Hz, 1H), 2.10 (d, J = 8.7 Hz, 1H), 1.97 (dd, J = 11.5, 7.1 Hz, 1H), 1.77 (dd, J = 12.9, 3.2 Hz, 2H), 1.71–1.58 (m, 5H), 1.56–1.46 (m, 4H), 1.44–1.32 (m, 4H), 1.20–1.10 (m, 2H), 1.08–1.03

(m, 1H), 1.00 (d, J = 6.4, 3H), 0.98 (d, J = 8.0 Hz, 3H), 0.98 (d, J = 8.0 Hz, 3H), 0.91 (d, J = 6.4 Hz, 3H), 0.84 (t, J = 12.0 Hz, 1H), 0.83 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 161.1, 102.1, 77.4, 59.5, 57.1, 50.7, 49.8, 46.0, 45.2, 44.5, 43.5, 42.6, 41.7, 36.9, 35.0, 33.9, 31.0, 29.7, 27.0, 24.9, 24.0, 23.0, 21.9, 20.1, 13.2 ppm; HRMS (m/z): [M–H₂O+H]⁺ calcd for C₂₅H₃₉⁺ 339.3046; found 339.3043.

The C-6 regioisomer: $R_{\rm f} = 0.50$ (silica gel, petroleum ether/EtOAc = 10:1); $[\alpha]^{25}{}_{\rm D} = -50.0$ (*c* = 0.1 in MeOH); IR (film): $v_{\rm max} = 3745$, 3724, 2950, 2928, 2871, 2363, 2322, 1558, 1541, 1507, 1457, 1275, 1261, 764, 750 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.84 (s, 1H), 4.66 (s, 1H), 3.73 (d, *J* = 5.0 Hz, 1H), 2.15–2.13 (m, 1H), 1.97–1.91 (m, 1H), 1.80–1.66 (m, 6H), 1.64–1.63 (m, 1H), 1.59–1.54 (m, 4H), 1.53–1.47 (m, 3H), 1.46–1.38 (m, 3H), 1.19–1.14 (m, 2H), 1.02 (d, *J* = 6.5 Hz, 3H), 0.96–0.94 (m, 6H), 0.83–0.80 (m, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 161.5, 102.4, 80.0, 59.8, 49.8, 46.6, 46.1, 45.2, 44.8, 42.8, 40.6, 38.0, 37.4, 36.5, 35.2, 34.2, 31.3, 30.8, 27.3, 25.2, 24.3, 23.3, 22.5, 19.5, 13.5 ppm; HRMS (*m/z*): [M–H₂O+H]⁺ calcd for C₂₅H₃₉⁺ 339.3046; found 339.3041.

To a solution of the tertiary alcohol (6.1 mg, 0.017 mmol) in MeOH (1 mL) was added PtO_2 (1 mg). The flask was vacuumed and backfilled with hydrogen (balloon pressure), the reaction mixture was stirred at room temperature for 1 hour. The solution was filtered and the filtrate was evaporated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc = 10:1) to give the product (5.7 mg, 94%) as colorless oil.

 $R_{\rm f} = 0.44$ (silica gel, petroleum ether/EtOAc = 20:1); $[\alpha]^{25}{}_{\rm D} = -65.0$ (c = 0.12 in MeOH); ¹H NMR (400 MHz, CDCl₃) δ 2.27–2.17 (m, 1H), 2.16–2.06 (m, 3H), 2.06–1.86 (m, 4H), 1.80–1.67 (m, 3H), 1.49–1.43 (m, 3H), 1.38 (s, 3H), 1.34–1.25 (m, 7H), 1.19–1.15 (m, 1H), 1.10 (d, J = 6.5 Hz, 3H), 1.01 (d, J = 5.4 Hz, 3H), 0.95 (d, J = 5.6 Hz, 3H), 0.93–0.87 (m, 2H), 0.82 (d, J = 5.8 Hz, 3H), 0.78 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 79.6, 59.9, 49.9, 47.3, 46.7, 46.0, 45.4, 42.1, 41.2, 41.0, 40.2, 36.5, 36.0, 35.4, 35.4, 31.5, 28.4, 26.8, 24.7, 24.1, 23.8, 23.7, 22.7, 19.1, 14.6 ppm; HRMS (m/z): $[M+H]^+$ calcd for C₂₅H₄₃O₃⁺ 359.3314; found 359.3303.

To a solution of the above-obtained tertiary alcohol (5 mg, 0.014 mmol) in CH_2Cl_2 (2 mL) was added pyridine (6 µL, 0.07 mmol) and $SOCl_2$ (3 µL, 0.042 mmol) at 0 °C. The reaction mixture was stirred at 0 °C for 1 hour and quenched with saturated aqueous NaHCO₃ (1 mL). The mixture was extracted with CH_2Cl_2 (3 × 5 mL), washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether) to give the **astellatene 2** (2.9 mg, 62%) as colorless oil.

astellatene 2: $R_f = 1.0$ (silica, petroleum ether); $[\alpha]^{25}{}_D = -2.0$ (c = 0.1 in benzene); ¹H NMR (600 MHz, CDCl₃) δ 4.83 (s, 1H), 4.64 (s, 1H), 2.09 (d, J = 7.4 Hz, 1H), 1.84–1.74 (m, 3H), 1.73–1.56 (m, 5H), 1.54–1.40 (m, 7H), 1.40–1.36 (m, 1H), 1.35–1.31 (m, 1H), 1.22–1.16 (m, 2H), 1.09–1.06 (m, 1H), 1.05–0.99 (m, 4H), 0.94 (d, J = 4.3 Hz, 6H), 0.82 (s, 6H), 0.77–0.72 (m, 1H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 161.7, 102.1, 59.5, 50.0, 46.8, 46.7, 46.6, 44.7, 44.1, 42.7, 41.5, 41.1, 37.1, 35.1, 34.1, 31.3, 31.2, 29.7, 28.0, 27.8, 24.9, 24.1, 23.1, 19.0, 13.4 ppm; HRMS (m/z): $[M+H]^+$ calcd for C₂₅H₄₁⁺ 341.3208; found 341.3200.

II. References

- 1. Marx, J. N. & Norman, L. R. Synthesis of (-)-acorone and related spirocyclic sesquiterpenes. J. Org. Chem. 40, 1602–1606 (1975).
- Zhao, N., Xie, S., Chen, G. & Xu, J. Concise synthesis of astellatol core skeleton. *Chem. Eur. J.* 22, 12634–12636 (2016).

The above references have also been cited in the manuscript main text.

III. ¹H and ¹³C NMR Spectra of compounds

216.4	201.1	170.8	161.7	132.5 131.1 120.8 119.5 113.0	77.5 77.2 76.8	61.8 55.7 51.9	41.9 38.6 37.0	28.2 27.1	15.9
					\searrow	$\langle \langle \langle \rangle \rangle$	177	57	

0 Br MeO₂C ≿o 17 ¹³C NMR spectrum (101 MHz, CDCI₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

- 216.0

— 171.0

— 133.1 — 119.5

 $\begin{pmatrix} 77.4 \\ 76.9 \\ 76.9 \\ -62.9 \\ -51.9 \\ -51.9 \\ -38.6 \\ -38.7 \\ -15.5 \\ -15.5 \end{pmatrix}$

CO₂Me

¹³C NMR spectrum (126 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR spectrum (101MHz, CDCl₃)

 $\begin{array}{c} 1.33\\ 1.31\\ 1.27\\ 1.26\\ 1.26\\ 1.26\\ 1.28\\ 1.28\\ 1.19\\ 1.18\\ 1.18\\ 1.18\\ 1.18\\ 1.08\\ 0.96\\ 0.94\\ 0.94\end{array}$

— 223.2

IV. Comparison of NMR Data of Natural and Synthetic Astellatol

•.•	Natural Astellatol ^b			Synthetic Astellatol ^{<i>c</i>}		
position	$\delta_{\rm C}$	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{ m C}$	$\delta_{\rm H} (J \text{ in Hz})$		
1	49.8		49.8			
2a	27.0	1.41 (t, 13.5)	27.0	$1.30-1.44 \text{ (m)}^{d}$		
2b	45.0	1.60 (dd, 2.7)	45.0	1.58 - 1.71 (m)"		
3	45.3	1.66 (ddd, 10.2)	45.2	$1.58-1.71 \text{ (m)}^{a}$		
4	57.2	1.41(td, 4.2, 10.2)	57.1	1.30-1.44 (m) ^a		
5	//.4	4.28 (ddd, /.1, 8./)	//.4	4.29 (ddd, 4.2, 7.4, 8.6)		
6a 6b	50.9	1.13 (dd, 11.5) 1.97 (dd)	50.7	$1.10-1.20 \text{ (m)}^{\circ}$ 1.97 (dd. 7.1, 11.5)		
7	41.7		41.7			
8a 8h	43.6	0.84 (t, 12.2)	43.5	0.84 (t, 12.0) 1.77 (dd. 3.2, 12.0)		
9	46.0	1.06 (ddd, 9.0)	46.0	$1.03-1.08 \text{ (m)}^{d}$		
10	37.0	1.34 (m)	36.9	$1.30-1.44 \text{ (m)}^{d}$		
11a	22.0	1.48 (ddt, 12.7, 4.5, 2.4)	22.0	$1.46-1.56 (m)^d$		
11b	55.9	1.65 (qd, 12.8, 4.7)	55.9	$1.58 - 1.71 \text{ (m)}^{d}$		
12a	31.1	1.17 (td, 12.8)	31.0	$1.10-1.20 \text{ (m)}^{d}$		
12b	50.5	1.76 (ddd)	50.5	1.77 (dd, 3.2, 12.9)		
13	59.5 12.6	1.47 (m)	59.5 12.6	$1.46 \cdot 1.56 \text{ (m)}^{d}$		
14	42.0	1.47 (III)	42.0	1.40 - 1.50 (III)		
15a 15h	35.0	1.3/(qd, 12.1, 7.2)	35.0	$1.30-1.44 \text{ (m)}^{a}$		
130		1.70 (dt)		1.38–1.71 (m)		
16a	24.9	1.48–1.58 (d, 9.0)	24 9	$1.46 - 1.56 \text{ (m)}^{d}$		
16b	27.7	1.48–1.58 (d, 1.7)	27.7	$1.46-1.56 \text{ (m)}^{d}$		
17	44.6	2.10 (dd)	44.5	2.10 (d, 8.7)		
18	161.1		161.1			
19a	102.1	4.63 (s)	102 1	4.64 (s)		
19b	102.1	4.80 (s)	102.1	4.80 (s)		
20	29.7	1.67 (m)	29.7	$1.58-1.71 \text{ (m)}^{d}$		
21	24.0	0.98 (d)	24.0	0.98 (d, 8.0)		
22	21.8	0.98 (d)	21.9	0.98 (d, 8.0)		
23	20.1	0.83 (s)	20.1	0.83 (s)		
24	23.0	0.91 (d)	23.0	0.91 (d, 6.4)		
25	13.2	1.00 (d)	13.2	1.00 (d, 6.4)		

Table S1. NMR data^{*a*} for natural Astellatol and synthetic Astellatol in CDCl₃.

^{*a*} $\delta_{\rm C}$ is relative to CDCl₃ at δ 76.9, $\delta_{\rm H}$ is relative to CDCl₃ at δ 7.25.

^b ¹H NMR spectra were recorded at 600 MHz; ¹³C NMR spectra were recorded at 150 MHz;
 ^c ¹H NMR spectra were recorded at 400 MHz; ¹³C NMR spectra were recorded at 101 MHz;

^d Overlapped

Natural Astellatene ^b			Synthetic Astellatene ^c		
position	$\delta_{ m C}$	$\delta_{ m H} \left(J ext{ in Hz} ight)$	$\delta_{ m C}$	$\delta_{\mathrm{H}} \left(J \text{ in Hz} \right)$	
1a	44.13	1.81 (dd, 12.4, 3.2)	44.13	$1.74-1.84 \text{ (m)}^{d}$	
1b		0.75 (t, 12.4)	10.75	0.72–0.77 (m)	
2	46.76	1.08 (m)	46.76	$1.06-1.09 \text{ (m)}^{a}$	
3	37.13	1.34(m)	37.13	1.31 - 1.35 (m)	
4a 41-	34.04	1.69 (m)	34.05	1.56-1./3 (m) "	
40 50		1.49 (m) 1.77 (m)		$1.40-1.34 \text{ (m)}^{-1}$	
Ja 5h	31.20	1.77 (III) 1 19 (dd 8 4 4 8)	31.21	1.74-1.64 (III) 1.16 1.22 (m) ^d	
6	59 52	1.19 (uu, 8.4, 4.8)	59 52	1.10–1.22 (III)	
7	42 70	1 47 (m)	42 71	$1 40 - 1 54 (m)^d$	
,	12.70		12.71	1.10 1.21 (iii)	
8a	35.11	1.71 (m)	35.11	$1.56-1.73 \text{ (m)}^{a}$	
8b		1.40 (m)		1.36–1.40 (m)	
9a	27.76	1.53 (m)	27.76	$1.40 - 1.54 \text{ (m)}^{a}$	
90 10	1167	1.53 (m)	1167	$1.40 - 1.54 \text{ (m)}^{-1}$	
10	44.07	2.09 (III)	44.07	2.09 (d, 7.4)	
11	50.01		50.02		
12	50.01	1.64 (m)	50.02	$1.56 \ 1.72 \ (m)^d$	
13a 13b	27.97	1.04 (m) 1.47 (m)	27.97	1.30-1.75 (m) 1.40-1.54 (m) ^d	
1.1	16 61	1.22 (m)	16.61	$1.46 \ 1.22 \ (m)^d$	
14 15	40.01	1.22 (m)	40.01	1.16–1.22 (m)	
15	41.4/	1 45 ()	41.4/	1 40 1 54 ()d	
16a 16b	41.06	1.45 (m)	41.07	$1.40-1.54 \text{ (m)}^{\circ}$	
100		1.03 (m)		0.99–1.03 (m)	
17a	29.7	1.78 (m)	29.71	$1.74-1.84 \text{ (m)}^{d}$	
17b	27.1	1.49 (m)	29.71	$1.40-1.54 \ (m)^d$	
18	46.72	1.62 (m)	46.73	$1.56-1.73 \text{ (m)}^{d}$	
19	31.31	1.60 (m)	31.32	$1.56-1.73 \text{ (m)}^{d}$	
20	24.05	0.94 (d, 6.4)	24.05	0.94 (d, 4.3)	
21	13.36	1.02 (d, 6.4)	13.37	$0.99-1.05 (m)^{d}$	
22a	102.06	4.83 (s)	102.07	4.83 (s)	
22b	102.06	4.64 (s)	102.07	4.64 (s)	
23	18.94	0.82 (s)	18.95	0.82 (s)	
24	24.91	0.94 (d, 6.4)	24.92	0.94 (d, 4.3)	
25	23.13	0.82 (d, 6.4)	23.14	0.82 (s)	

Table S2. NMR data^{*a*} for natural (+)-Astellatene and synthetic (-)-Astellatene in CDCl₃.

 $^{a}\delta_{\rm C}$ is relative to CDCl₃ at δ 77.0, $\delta_{\rm H}$ is relative to CDCl₃ at δ 7.26.

^b ¹H NMR spectra were recorded at 400 MHz; ¹³C NMR spectra were recorded at 100 MHz;
 ^c ¹H NMR spectra were recorded at 600 MHz; ¹³C NMR spectra were recorded at 150 MHz;
 ^d Overlapped

V. Crystallographic Data

ORTEP of (-)-43

Crystal data and structure refinement for compound (-)-43

Identification code	cu dm16384 0m				
Empirical formula	C14 H22 O4				
Formula weight	254.31				
Temperature	296 K				
Wavelength	1.54178 Å				
Crystal system	Orthorhombic	Orthorhombic			
Space group	P 21 21 21				
Unit cell dimensions	a = 7.7082(4) Å	a= 90°.			
	b = 9.8033(6) Å	b= 90°.			
	c = 17.7454(10) Å	g = 90°.			
Volume	1340.95(13) Å ³				
Z	4				
Density (calculated)	1.260 Mg/m ³				
Absorption coefficient	0.742 mm ⁻¹				
F(000)	552				
Crystal size	0.3 x 0.25 x 0.2 mm ³				
Theta range for data collection	4.984 to 69.644°.	4.984 to 69.644°.			
Index ranges	-8<=h<=9, -11<=k<=1	-8<=h<=9, -11<=k<=11, -21<=l<=21			
Reflections collected	9607				
Independent reflections	2473 [R(int) = 0.0419]				
	143				

Completeness to theta = 67.679°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7532 and 0.5253
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2473 / 0 / 168
Goodness-of-fit on F ²	1.022
Final R indices [I>2sigma(I)]	R1 = 0.0360, wR2 = 0.0979
R indices (all data)	R1 = 0.0377, wR2 = 0.0987
Absolute structure parameter	0.04(7)
Extinction coefficient	0.0092(12)
Largest diff. peak and hole	0.294 and -0.153 e.Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(\mathring{A}2)$

	Х	У	Z	U(eq)
$\overline{O(1)}$	4805(2)	2025(2)	2049(1)	65(1)
O(1)	4893(2) 2825(2)	5925(2)	2046(1) 2044(1)	$\frac{03(1)}{49(1)}$
O(2)	2823(2) 3004(2)	5903(2)	2944(1) 4619(1)	$\frac{49(1)}{77(1)}$
O(3)	362(2)	5363(2)	4228(1)	45(1)
C(1)	2728(2)	4403(2)	3545(1)	33(1)
C(2)	1262(3)	3563(2)	3179(1)	36(1)
C(3)	64(2)	4273(2)	2616(1)	36(1)
C(4)	693(3)	4204(2)	1799(1)	39(1)
C(5)	2328(3)	5066(3)	1662(1)	48(1)
C(6)	3760(3)	4728(2)	2209(1)	42(1)
C(7)	3732(2)	5392(2)	2995(1)	36(1)
C(8)	5571(3)	5529(2)	3331(2)	53(1)
C(9)	5834(3)	4339(3)	3873(2)	54(1)
C(10)	4207(3)	3451(2)	3828(1)	43(1)
C(11)	3812(4)	2661(3)	4544(2)	61(1)
C(12)	2079(3)	5314(2)	4186(1)	40(1)
C(13)	-351(3)	6260(3)	4797(1)	56(1)
C(14)	-729(3)	4636(3)	1257(1)	53(1)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U12
O(1)	52(1)	59(1)	84(1)	-7(1)	22(1)	19(1)
O(2)	36(1)	24(1)	86(1)	-1(1)	-4(1)	2(1)
O(3)	47(1)	98(2)	86(1)	-53(1)	-10(1)	-5(1)
O(4)	35(1)	55(1)	46(1)	-14(1)	6(1)	-2(1)
C(1)	29(1)	29(1)	42(1)	-2(1)	1(1)	-1(1)
C(2)	39(1)	30(1)	38(1)	-2(1)	3(1)	-7(1)
C(3)	33(1)	38(1)	38(1)	-4(1)	1(1)	-4(1)
C(4)	48(1)	34(1)	37(1)	-4(1)	1(1)	3(1)
C(5)	48(1)	54(1)	42(1)	5(1)	12(1)	2(1)
C(6)	34(1)	36(1)	56(1)	2(1)	15(1)	1(1)
C(7)	27(1)	27(1)	55(1)	2(1)	4(1)	1(1)
C(8)	29(1)	47(1)	83(2)	7(1)	-6(1)	-4(1)
C(9)	32(1)	62(1)	68(1)	9(1)	-5(1)	4(1)
-------	-------	-------	-------	--------	--------	-------
C(10)	43(1)	37(1)	50(1)	1(1)	-4(1)	6(1)
C(11)	62(1)	58(1)	63(1)	18(1)	-14(1)	-7(1)
C(12)	35(1)	39(1)	45(1)	-8(1)	0(1)	-4(1)
C(13)	51(1)	64(1)	52(1)	-16(1)	11(1)	8(1)
C(14)	61(1)	52(1)	44(1)	1(1)	-8(1)	-1(1)

Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å2 $x \ 10^3$)

	Х	У	Z	U(eq)	
H(2)	3519	7283	2965	73	
H(2A)	1790	2792	2924	43	
H(2B)	545	3198	3581	43	
H(3A)	-53	5223	2760	44	
H(3B)	-1077	3859	2646	44	
H(4)	985	3251	1689	47	
H(5A)	2737	4913	1152	58	
H(5B)	2035	6025	1710	58	
H(8A)	6433	5501	2933	64	
H(8B)	5683	6389	3597	64	
H(9A)	5997	4673	4382	65	
H(9B)	6850	3816	3730	65	
H(10)	4411	2776	3430	52	
H(11A)	4747	2042	4648	91	
H(11B)	2756	2155	4479	91	
H(11C)	3683	3285	4956	91	
H(13A)	-196	5858	5286	84	
H(13B)	-1566	6395	4704	84	
H(13C)	237	7123	4779	84	
H(14A)	-1696	4025	1302	79	
H(14B)	-293	4609	750	79	
H(14C)	-1095	5547	1375	79	

Hydrogen bonds for compound (–)-43[Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(2)-H(2)O(1)#1	0.82	2.02	2.839(2)	175.2

ORTEP of (+)-44

Crystal data and structure refinement	for compound (+)-44	
Identification code	cu dm16391 0m	
Empirical formula	C14 H22 O4	
Formula weight	254.31	
Temperature	130 K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 11.5456(4) Å	a= 90°.
	b = 8.4616(2) Å	b= 91.069(2)°.
	c = 13.8894(4) Å	g = 90°.
Volume	1356.68(7) Å ³	
Z	4	
Density (calculated)	1.245 Mg/m ³	
Absorption coefficient	0.734 mm ⁻¹	
F(000)	552	
Crystal size	0.2 x 0.15 x 0.11 mm ³	
Theta range for data collection	4.936 to 69.404°.	
Index ranges	-13<=h<=12, -9<=k<=10	, - 16<=l<=16
Reflections collected	10460	
Independent reflections	4331 [R(int) = 0.0562]	
Completeness to theta = 67.679°	95.8 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.7532 and 0.5348	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	4331 / 1 / 333	

Goodness-of-fit on F ²	1.048
Final R indices [I>2sigma(I)]	R1 = 0.0468, wR2 = 0.1173
R indices (all data)	R1 = 0.0495, wR2 = 0.1200
Absolute structure parameter	-0.10(14)
Extinction coefficient	n/a
Largest diff. peak and hole	0.211 and -0.236 e.Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(\mathring{A}2)$

	X	у	Z	U(eq)
O(1)	-2876(2)	-336(3)	2560(2)	46(1)
O(2)	-702(2)	-2699(2)	2200(2)	31(1)
O(3)	-1134(2)	2152(3)	2218(2)	42(1)
O(4)	768(2)	2544(2)	2246(1)	29(1)
C(1)	-2063(3)	-627(4)	2062(3)	35(1)
C(2)	-2166(3)	-713(5)	979(3)	44(1)
C(3)	-1149(3)	40(5)	459(2)	42(1)
C(4)	42(3)	-405(4)	894(2)	30(1)
C(5)	94(2)	-111(3)	2004(2)	23(1)
C(6)	1282(2)	-611(3)	2436(2)	24(1)
C(7)	1333(2)	-537(4)	3532(2)	28(1)
C(8)	363(3)	-1488(4)	3992(2)	33(1)
C(9)	-812(3)	-956(4)	3584(2)	31(1)
C(10)	-871(2)	-1089(3)	2488(2)	26(1)
C(11)	996(3)	432(4)	345(2)	41(1)
C(12)	404(4)	-1345(5)	5091(2)	47(1)
C(13)	-170(2)	1625(3)	2181(2)	26(1)
C(14)	528(3)	4218(3)	2344(2)	32(1)
O(1A)	7415(2)	5712(3)	3059(2)	41(1)
O(2A)	6060(2)	2432(2)	3242(1)	29(1)
O(3A)	3147(2)	6109(3)	2263(2)	39(1)
O(4A)	4894(2)	6955(2)	2735(1)	26(1)
C(1A)	6579(3)	5082(3)	3388(2)	29(1)
C(2A)	6286(3)	5190(4)	4448(2)	39(1)
C(3A)	4997(3)	5323(4)	4629(2)	39(1)
C(4A)	4250(3)	4150(3)	4057(2)	30(1)
C(5A)	4500(2)	4220(3)	2954(2)	23(1)
C(6A)	3820(3)	2932(3)	2405(2)	32(1)
C(7A)	4110(3)	2909(4)	1332(2)	41(1)
C(8A)	5394(3)	2705(4)	1167(2)	40(1)
C(9A)	6101(3)	3927(4)	1732(2)	30(1)
C(10A)	5812(2)	3938(3)	2802(2)	24(1)
C(11A)	2973(3)	4362(5)	4294(3)	49(1)
C(12A)	5679(5)	2810(5)	91(2)	60(1)
C(13A)	4095(2)	5831(3)	2594(2)	23(1)
C(14A)	4519(3)	8557(3)	2558(2)	29(1)

U	11 U ²	2 U33	U23	U13	U12	

O(1)	28(1)	41(1)	70(2)	-20(1)	8(1)	2(1)
O(2)	32(1)	19(1)	42(1)	-7(1)	12(1)	-2(1)
O(3)	30(1)	23(1)	72(2)	-9(1)	-9(1)	7(1)
O(4)	33(1)	18(1)	37(1)	-1(1)	-5(1)	-1(1)
C(1)	23(2)	27(2)	55(2)	-15(1)	2(1)	1(1)
C(2)	32(2)	48(2)	53(2)	-22(2)	-14(1)	6(2)
C(3)	42(2)	44(2)	40(2)	-9(2)	-14(1)	7(2)
C(4)	34(2)	27(1)	27(1)	-2(1)	-4(1)	1(1)
C(5)	24(1)	18(1)	28(1)	-3(1)	-1(1)	2(1)
C(6)	24(1)	22(1)	25(1)	2(1)	2(1)	4(1)
C(7)	30(2)	30(1)	26(1)	2(1)	-3(1)	2(1)
C(8)	46(2)	26(2)	27(1)	0(1)	6(1)	-1(1)
C(9)	34(2)	26(1)	34(1)	-7(1)	13(1)	-5(1)
C(10)	25(1)	20(1)	34(1)	-9(1)	5(1)	2(1)
C(11)	50(2)	45(2)	27(1)	4(1)	-1(1)	-7(2)
C(12)	68(2)	44(2)	28(1)	5(1)	10(2)	-5(2)
C(13)	28(1)	21(1)	30(1)	-2(1)	-7(1)	2(1)
C(14)	41(2)	18(1)	36(1)	-1(1)	-6(1)	0(1)
O(1A)	30(1)	30(1)	64(1)	6(1)	0(1)	-2(1)
O(2A)	38(1)	20(1)	31(1)	4(1)	1(1)	8(1)
O(3A)	31(1)	25(1)	60(1)	5(1)	-13(1)	1(1)
O(4A)	26(1)	15(1)	37(1)	3(1)	-2(1)	2(1)
C(1A)	30(2)	20(1)	37(1)	2(1)	-5(1)	4(1)
C(2A)	44(2)	38(2)	33(2)	-7(1)	-14(1)	3(1)
C(3A)	55(2)	36(2)	24(1)	-3(1)	1(1)	7(2)
C(4A)	40(2)	26(2)	26(1)	7(1)	8(1)	4(1)
C(5A)	27(1)	17(1)	26(1)	2(1)	2(1)	0(1)
C(6A)	33(2)	18(1)	44(2)	0(1)	-4(1)	-1(1)
C(7A)	57(2)	26(2)	39(2)	-10(1)	-20(2)	3(1)
C(8A)	65(2)	29(2)	24(1)	-3(1)	-1(1)	11(2)
C(9A)	37(2)	27(1)	26(1)	3(1)	5(1)	9(1)
C(10A)	31(2)	17(1)	24(1)	4(1)	0(1)	5(1)
C(11A)	48(2)	50(2)	50(2)	12(2)	20(2)	3(2)
C(12A)	104(4)	48(2)	26(2)	-8(2)	1(2)	17(2)
C(13A)	26(1)	18(1)	26(1)	1(1)	3(1)	0(1)
C(14A)	29(1)	15(1)	42(2)	5(1)	-2(1)	2(1)

Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å $2x \ 10^3$)

	Х	У	Z	U(eq)
H(2)	-1213	-3271	2445	46
H(2A)	-2890	-179	769	53
H(2B)	-2226	-1837	785	53
H(3A)	-1236	1203	479	50
H(3B)	-1179	-289	-225	50
H(4)	147	-1566	792	36
H(6A)	1455	-1704	2228	28
H(6B)	1889	88	2176	28
H(7A)	1275	579	3739	34
H(7B)	2090	-951	3764	34
H(8)	472	-2625	3821	40
H(9A)	-1430	-1614	3864	37

H(9B)	-952	155	3773	37
H(11A)	914	192	-343	61
H(11B)	1755	67	583	61
H(11C)	933	1576	443	61
H(12A)	335	-231	5274	70
H(12B)	1141	-1767	5340	70
H(12C)	-238	-1946	5363	70
H(14A)	14	4562	1815	47
H(14B)	1256	4813	2322	47
H(14C)	153	4412	2960	47
H(2AA)	6621	2007	2966	44
H(2AB)	6683	6123	4730	46
H(2AC)	6591	4240	4782	46
H(3AA)	4741	6409	4465	46
H(3AB)	4865	5160	5324	46
H(4A)	4477	3070	4283	37
H(6AA)	4005	1888	2691	38
H(6AB)	2980	3119	2476	38
H(7AA)	3683	2032	1013	49
H(7AB)	3846	3910	1031	49
H(8A)	5625	1632	1403	47
H(9AA)	5949	4988	1458	36
H(9AB)	6936	3696	1662	36
H(11D)	2881	4331	4994	73
H(11E)	2519	3508	3995	73
H(11F)	2700	5382	4045	73
H(12D)	5219	2030	-270	89
H(12E)	6505	2596	5	89
H(12F)	5496	3873	-148	89
H(14D)	4210	8646	1899	43
H(14E)	5178	9277	2643	43
H(14F)	3914	8838	3014	43

Hydrogen	bonds for	compound	(+)-44[Å	and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(2)-H(2)O(1A)#1	0.84	2.01	2.838(3)	170.1	
O(2A)-H(2AA)O(1)#2	0.84	2.14	2.817(3)	137.0	

ORTEP of (-)-60

Crystal data and structure refinement for compound (-)-60

Identification code	cu_dm17282_0m			
Empirical formula	C24 H34 O3			
Formula weight	370.51			
Temperature	296 K			
Wavelength	1.54178 Å			
Crystal system	Monoclinic			
Space group	P 1 21 1			
Unit cell dimensions	a = 6.6500(2) Å	a= 90°.		
	b = 11.1580(3) Å	b=101.781(2)°.		
	c = 14.5580(4) Å	g = 90°.		
Volume	1057.46(5) Å ³			
Ζ	2			
Density (calculated)	1.164 Mg/m ³			
Absorption coefficient	0.585 mm ⁻¹			
F(000)	404			
Crystal size	0.15 x 0.08 x 0.02 mm ³			
Theta range for data collection	3.101 to 69.615°.			
Index ranges	-7<=h<=6, -13<=k<=13	3, - 17<=l<=17		
Reflections collected	8052			
Independent reflections	3544 [R(int) = 0.0421]			
Completeness to theta = 67.679°	95.9 %			
Absorption correction	Semi-empirical from eq	uivalents		
Max. and min. transmission	0.7532 and 0.5187			
Refinement method	Full-matrix least-square	es on F ²		
Data / restraints / parameters	3544 / 1 / 249			
Goodness-of-fit on F ²	1.052			
Final R indices [I>2sigma(I)]	R1 = 0.0438, WR2 = 0.1	.191		
R indices (all data)	R1 = 0.0472, wR2 = 0.1	R1 = 0.0472, wR2 = 0.1225		

Absolute structure parameter	0.24(17)
Extinction coefficient	n/a
Largest diff. peak and hole	0.116 and -0.187 e.Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(\mathring{A}2)$

	Х	у	Z	U(eq)	
O(1)	4233(3)	5964(2)	5987(1)	46(1)	
O(2)	4101(3)	6651(2)	4544(1)	67(1)	
O(3)	9450(6)	2942(3)	10098(2)	112(1)	
C(1)	5682(4)	5886(2)	6893(2)	42(1)	
C(2)	7772(4)	6236(2)	6669(2)	44(1)	
C(3)	9174(5)	5246(3)	6399(2)	57(1)	
C(4)	9203(5)	5432(3)	5373(2)	58(1)	
C(5)	8832(4)	6771(3)	5217(2)	56(1)	
C(6)	7149(4)	7025(2)	5780(2)	47(1)	
C(7)	6827(5)	8347(3)	5973(2)	59(1)	
C(8)	4993(5)	8605(3)	6437(2)	62(1)	
C(9)	5133(5)	8128(3)	7427(2)	59(1)	
C(10)	5012(4)	6756(2)	7595(2)	50(1)	
C(11)	6260(5)	6488(3)	8591(2)	58(1)	
C(12)	6089(6)	5209(3)	8923(2)	62(1)	
C(13)	7791(7)	4864(3)	9775(2)	80(1)	
C(14)	8498(7)	3641(3)	9537(2)	76(1)	
C(15)	7798(5)	3462(2)	8511(2)	58(1)	
C(16)	6509(5)	4344(2)	8180(2)	51(1)	
C(17)	5413(4)	4584(2)	7197(2)	45(1)	
C(18)	8424(6)	7160(4)	4192(2)	78(1)	
C(19)	5061(4)	6534(2)	5332(2)	48(1)	
C(20)	3415(8)	8729(4)	7834(3)	91(1)	
C(21)	3942(7)	4979(4)	9142(3)	86(1)	
C(22)	8424(6)	2398(3)	8003(2)	64(1)	
C(23)	7348(9)	1268(4)	8245(4)	102(1)	
C(24)	10741(7)	2228(4)	8178(3)	81(1)	

	U ¹¹	U ²²	U ³³	U ²³	U13	U12	
O(1)	38(1)	47(1)	52(1)	2(1)	4(1)	-4(1)	
O(2)	57(1)	85(2)	53(1)	12(1)	-1(1)	0(1)	
O(3)	162(3)	105(3)	59(2)	15(2)	-2(2)	34(2)	
C(1)	39(1)	38(1)	48(1)	-3(1)	5(1)	-3(1)	
C(2)	38(1)	43(1)	48(1)	1(1)	4(1)	-3(1)	
C(3)	46(2)	58(2)	68(2)	8(1)	13(1)	9(1)	
C(4)	46(2)	62(2)	67(2)	-3(1)	15(1)	1(1)	
C(5)	48(2)	62(2)	58(2)	5(1)	13(1)	-8(1)	
C(6)	43(1)	44(1)	52(1)	6(1)	7(1)	-3(1)	
C(7)	64(2)	43(2)	68(2)	6(1)	10(1)	-3(1)	
C(8)	66(2)	41(1)	77(2)	0(1)	9(1)	6(1)	
C(9)	62(2)	43(1)	72(2)	-9(1)	15(1)	2(1)	

C(10)	50(2)	45(1)	58(1)	-7(1)	15(1)	-3(1)	
C(11)	73(2)	50(1)	51(1)	-12(1)	16(1)	-4(1)	
C(12)	86(2)	55(2)	47(1)	-3(1)	20(1)	-7(1)	
C(13)	126(3)	69(2)	40(1)	-4(1)	10(2)	-6(2)	
C(14)	104(3)	71(2)	49(2)	12(1)	9(2)	3(2)	
C(15)	76(2)	46(2)	49(1)	5(1)	8(1)	-5(1)	
C(16)	65(2)	41(1)	48(1)	-1(1)	15(1)	-10(1)	
C(17)	49(2)	38(1)	49(1)	-4(1)	10(1)	-8(1)	
C(18)	79(3)	92(3)	68(2)	16(2)	27(2)	-5(2)	
C(19)	44(2)	48(1)	50(1)	5(1)	4(1)	3(1)	
C(20)	111(3)	57(2)	116(3)	-15(2)	49(3)	18(2)	
C(21)	110(3)	80(2)	84(2)	-9(2)	55(2)	-16(2)	
C(22)	85(2)	46(2)	58(2)	4(1)	7(1)	3(1)	
C(23)	118(4)	54(2)	131(4)	-2(2)	19(3)	-14(2)	
C(24)	91(3)	72(2)	80(2)	6(2)	16(2)	11(2)	

Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å2 $x \ 10^3$)

	Х	У	Z	U(eq)	
H(2)	8550	6719	7183	53	
H(3A)	10551	5312	6777	69	
H(3B)	8635	4459	6497	69	
H(4A)	8129	4969	4977	70	
H(4B)	10520	5201	5238	70	
H(5)	10079	7185	5537	67	
H(7A)	6631	8782	5384	71	
H(7B)	8063	8654	6376	71	
H(8A)	4806	9467	6450	74	
H(8B)	3770	8272	6040	74	
H(9)	6444	8406	7802	71	
H(10)	3573	6572	7602	60	
H(11A)	7696	6662	8604	69	
H(11B)	5806	7027	9030	69	
H(13A)	8913	5435	9858	95	
H(13B)	7250	4836	10345	95	
H(17A)	3961	4420	7142	54	
H(17B)	5930	4045	6776	54	
H(18A)	7292	6710	3842	117	
H(18B)	9626	7016	3938	117	
H(18C)	8098	7999	4149	117	
H(20A)	2107	8557	7438	136	
H(20B)	3629	9580	7864	136	
H(20C)	3442	8424	8453	136	
H(21A)	2908	5107	8586	129	
H(21B)	3719	5519	9625	129	
H(21C)	3865	4168	9352	129	
H(22)	7949	2543	7330	77	
H(23A)	7814	1084	8898	153	
H(23B)	7663	612	7873	153	
H(23C)	5890	1398	8117	153	
H(24A)	11363	2928	7972	121	
H(24B)	11055	1541	7836	121	
H(24C)	11265	2109	8837	121	

ORTEP of (-)-62

Crystal data and structure refinement for compound (-)-62

Identification code	cu d8v17002 0m		
Empirical formula	C24 H36 O3		
Formula weight	372.53		
Temperature	293.15 K		
Wavelength	1.54184 Å		
Crystal system	Orthorhombic		
Space group	P212121		
Unit cell dimensions	$a = 8.9194(8) \text{ Å} = 90^{\circ}.$		
	$b = 12.8315(12) \text{ Å} = 90^{\circ}.$		
	$c = 18.5057(18) \text{ Å} = 90^{\circ}.$		
Volume	2118.0(3) Å3		
Ζ	4		
Density (calculated)	1.168 Mg/m3		
Absorption coefficient	0.584 mm-1		
F(000)	816		
Crystal size	0.3 x 0.18 x 0.15 mm3		
Theta range for data collection	4.193 to 70.136°.		
Index ranges	-10<=h<=10, -15<=k<=15, -22<=l<=22		
Reflections collected	11725		
Independent reflections	3872 [R(int) = 0.0398]		
Completeness to theta = 67.684°	98.1 %		
Absorption correction Semi-empirical from equivalents			
Max. and min. transmission 0.7533 and 0.5138			
Refinement method Full-matrix least-squares on F2			
Data / restraints / parameters	3872 / 0 / 249		

Goodness-of-fit on F2	1.069
Final R indices [I>2sigma(I)]	R1 = 0.0659, wR2 = 0.1672
R indices (all data)	R1 = 0.0724, wR2 = 0.1734
Absolute structure parameter	0.10(16)
Extinction coefficient	n/a
Largest diff. peak and hole	0.398 and -0.219 e.Å-3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(\mathring{A}2)$

	Х	У	Z	U(eq)
O(1)	4825(6)	1796(3)	5188(2)	93(1)
O(2)	2749(3)	6688(2)	6089(2)	57(1)
O(3)	1046(5)	7571(3)	6715(2)	84(1)
C(1)	5114(5)	2721(4)	5222(3)	64(1)
C(2)	5650(5)	3380(4)	4612(2)	63(1)
C(3)	5223(5)	4495(3)	4815(2)	51(1)
C(4)	3565(5)	4695(3)	4636(2)	50(1)
C(5)	2881(4)	5695(3)	4955(2)	46(1)
C(6)	1313(5)	5841(3)	4603(2)	51(1)
C(7)	184(5)	6530(4)	4996(2)	61(1)
C(8)	-567(5)	6029(4)	5647(2)	65(1)
C(9)	488(5)	5802(3)	6287(2)	53(1)
C(10)	-346(5)	5387(4)	6957(2)	67(1)
C(11)	917(6)	4921(5)	7410(3)	74(1)
C(12)	1975(6)	4425(4)	6866(2)	63(1)
C(13)	1716(4)	4986(3)	6126(2)	48(1)
C(14)	2981(5)	5633(3)	5789(2)	46(1)
C(15)	4614(5)	5408(3)	6007(2)	52(1)
C(16)	5390(5)	4483(3)	5645(2)	52(1)
C(17)	4909(5)	3384(3)	5889(2)	55(1)
C(18)	5748(6)	3008(4)	6582(3)	72(1)
C(19)	4927(9)	2078(6)	6924(4)	132(3)
C(20)	7324(7)	2724(5)	6443(3)	91(2)
C(21)	6246(5)	5300(4)	4448(2)	67(1)
C(22)	1509(6)	6279(5)	3834(3)	77(2)
C(23)	1391(6)	6777(4)	6414(2)	59(1)
C(24)	-1378(8)	6147(6)	7362(4)	108(2)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	120(3)	57(2)	103(3)	-9(2)	3(3)	4(2)
O(2)	69(2)	46(2)	56(2)	-10(1)	-7(1)	1(1)
O(3)	116(3)	65(2)	70(2)	-20(2)	1(2)	20(2)
C(1)	54(2)	63(3)	74(3)	-2(2)	-3(2)	13(2)
C(2)	60(2)	68(3)	60(2)	-7(2)	3(2)	11(2)
C(3)	51(2)	55(2)	48(2)	2(2)	3(2)	-2(2)
C(4)	56(2)	54(2)	40(2)	-4(2)	-4(2)	1(2)
C(5)	50(2)	48(2)	41(2)	2(2)	-6(2)	-3(2)
C(6)	58(2)	53(2)	42(2)	1(2)	-9(2)	6(2)
C(7)	72(3)	62(3)	49(2)	-1(2)	-12(2)	19(2)
C(8)	58(2)	83(3)	54(2)	2(2)	-9(2)	19(2)
. /				. /		

C(9)	55(2)	62(2)	41(2)	-6(2)	-4(2)	10(2)	
C(10)	60(3)	85(3)	55(2)	3(2)	7(2)	12(2)	
C(11)	77(3)	92(4)	52(2)	9(3)	9(2)	19(3)	
C(12)	67(3)	69(3)	53(2)	12(2)	9(2)	12(2)	
C(13)	54(2)	49(2)	42(2)	-4(2)	-2(2)	4(2)	
C(14)	54(2)	40(2)	45(2)	-6(2)	-5(2)	2(2)	
C(15)	53(2)	57(2)	47(2)	3(2)	-6(2)	-9(2)	
C(16)	51(2)	59(2)	47(2)	9(2)	-4(2)	-1(2)	
C(17)	48(2)	59(2)	57(2)	8(2)	4(2)	3(2)	
C(18)	78(3)	75(3)	63(3)	23(2)	4(2)	11(3)	
C(19)	129(6)	132(6)	136(6)	91(5)	16(5)	3(5)	
C(20)	85(4)	102(4)	85(4)	11(4)	-9(3)	22(3)	
C(21)	60(2)	82(3)	58(2)	18(2)	6(2)	-7(2)	
C(22)	80(3)	100(4)	50(2)	17(3)	-4(2)	20(3)	
C(23)	75(3)	58(3)	45(2)	-7(2)	-8(2)	16(2)	
C(24)	101(5)	144(6)	78(4)	11(4)	29(3)	57(5)	

Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å $2x \ 10^3$)

	Х	У	Ζ	U(eq)
H(2A)	5168	3176	4164	75
H(2B)	6727	3316	4554	75
H(4A)	2984	4105	4807	60
H(4B)	3459	4721	4115	60
H(5)	3510	6280	4799	56
H(6)	862	5148	4556	62
H(7A)	692	7158	5154	73
H(7B)	-588	6737	4656	73
H(8A)	-1026	5380	5495	78
H(8B)	-1363	6486	5813	78
H(10)	-973	4806	6794	80
H(11A)	1426	5459	7684	89
H(11B)	529	4402	7742	89
H(12A)	1766	3686	6821	75
H(12B)	3007	4510	7021	75
H(13)	1342	4483	5770	58
H(15A)	5201	6028	5907	63
H(15B)	4639	5297	6525	63
H(16)	6463	4547	5750	63
H(17)	3835	3407	6000	65
H(18)	5741	3582	6931	86
H(19A)	4910	1508	6589	198
H(19B)	3918	2277	7041	198
H(19C)	5440	1870	7357	198
H(20A)	7854	2676	6893	136
H(20B)	7784	3247	6145	136
H(20C)	7362	2063	6200	136
H(21A)	7273	5091	4503	100
H(21B)	6100	5969	4668	100
H(21C)	6003	5340	3943	100
H(22A)	543	6359	3611	115
H(22B)	2106	5807	3553	115
H(22C)	1999	6944	3858	115
H(24A)	-1854	5791	7756	162
H(24B)	-2128	6407	7037	162
H(24C)	-796	6718	7545	162

ORTEP of (-)-70

Crystal data and structure refinement for compound (-)-70

Identification code cu_cxy0173_0m Empirical formula $C_{24}H_{38}O_3$ Formula weight 374.54 100 Temperature/K Crystal system orthorhombic Space group $P2_{1}2_{1}2_{1}$ a/Å 6.4921(16) b/Å 9.3712(19) c/Å 33.896(7) $\alpha/^{\circ}$ 90 β/° 90 γ/° 90 Volume/Å³ 2062.2(8) Ζ 4 $\rho_{calc}g/cm^3$ 1.206 μ/mm^{-1} 0.600 F(000) 824.0 Crystal size/mm³ $0.41 \times 0.36 \times 0.35$ Radiation CuKa ($\lambda = 1.54184$) 2Θ range for data collection/° 5.214 to 136.42 $-7 \le h \le 7, -10 \le k \le$ Index ranges $11, -40 \le 1 \le 40$ 20427 Reflections collected 156

Independent reflections	$3772 [R_{int} = 0.0278, R_{sigma} = 0.0203]$
Data/restraints/parameters	3772/0/250
Goodness-of-fit on F ²	1.071
Final R indexes [I>= 2σ (I)]	$\begin{array}{l} R_1 = 0.0280, wR_2 = \\ 0.0739 \end{array}$
Final R indexes [all data]	$R_1 = 0.0287, wR_2 = 0.0743$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.15
Flack parameter	0.07(5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(\mbox{\ensuremath{\mathcal{A}}}\mbox{\$

	x	У	Z	U(eq)
01	608.0(18)	10364.1(13)	2713.0(3)	20.2(3)
O2	-1504(2)	12507.7(13)	2448.5(3)	23.2(3)
03	-3151.5(19)	9568.5(13)	4668.1(3)	21.4(3)
C1	-6301(3)	12573(2)	3298.7(5)	22.4(4)
C2	-4194(3)	13296.3(18)	3296.3(5)	18.5(3)
C3	-2358(3)	12361.0(17)	3167.5(4)	16.5(3)
C4	-1709(3)	11079.5(17)	3433.2(5)	15.7(3)
C5	-2386(3)	10913.7(18)	3860.6(5)	17.0(3)
C6	-1040(2)	9757.0(17)	4054.6(5)	16.7(3)
C7	-1536(3)	9545.8(17)	4491.1(5)	16.8(3)
C8	749(3)	9522.5(18)	4611.7(5)	17.9(3)
С9	1395(3)	10641.4(18)	4916.3(5)	20.2(4)
C10	446(3)	10477(2)	5325.4(5)	24.0(4)
C11	-1558(3)	10180.3(18)	2777.2(5)	17.8(3)
C12	-2520(3)	11690.4(18)	2749.2(5)	18.2(3)
C13	1496(3)	8004.3(18)	4678.5(5)	19.8(4)
C14	387(3)	6893.2(18)	4423.4(5)	20.9(4)
C15	456(3)	7151.6(17)	3975.8(5)	19.6(4)
C16	63(3)	5714(2)	3770.6(5)	29.3(4)
C17	-1072(3)	8308.9(17)	3822.6(5)	16.7(3)
C18	-716(3)	8540.2(17)	3375.3(5)	18.1(3)
C19	-2101(3)	9697.2(17)	3198.3(4)	16.6(3)
C20	-4350(3)	9169.8(18)	3190.0(5)	19.5(3)
C21	867(3)	12035.7(18)	4701.5(5)	20.4(4)
C22	1638(3)	11773.5(18)	4278.1(5)	20.2(4)
C23	1189(2)	10183.1(17)	4192.7(5)	17.3(4)
C24	-4285(3)	14642.7(19)	3037.5(5)	23.4(4)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	19.9(6)	18.3(6)	22.4(6)	-1.4(5)	4.9(5)	0.9(5)
O2	29.1(7)	20.6(6)	19.9(6)	4.8(5)	6.8(5)	1.1(5)
O3	19.0(6)	23.9(6)	21.2(6)	3.6(5)	3.1(5)	-0.3(5)

C1	19.5(8)	23.4(9)	24.4(8)	0.0(7)	1.1(7)	3.3(7)
C2	21.0(8)	17.9(8)	16.5(7)	-0.5(6)	-0.6(7)	1.5(7)
C3	17.1(8)	16.4(8)	15.9(7)	0.5(6)	-0.7(6)	-1.8(6)
C4	14.8(7)	15.4(8)	16.9(8)	0.1(6)	0.0(6)	-0.2(6)
C5	18.0(8)	16.1(8)	17.0(8)	0.7(6)	0.7(6)	0.7(7)
C6	17.4(8)	16.2(8)	16.4(8)	0.8(6)	0.5(6)	-0.6(6)
C7	19.6(8)	12.6(8)	18.3(8)	1.6(6)	0.0(6)	-0.6(6)
C8	17.7(8)	19.6(8)	16.3(8)	0.4(6)	0.2(6)	0.1(7)
C9	18.3(8)	22.9(9)	19.6(8)	-1.9(7)	-1.6(6)	0.2(7)
C10	26.6(9)	25.9(9)	19.5(8)	-1.0(7)	-1.6(7)	4.9(8)
C11	18.1(8)	18.2(8)	17.3(8)	-0.6(6)	0.3(6)	-1.2(6)
C12	19.8(8)	18.9(8)	15.9(8)	2.3(6)	1.2(6)	-0.7(7)
C13	21.1(8)	20.6(8)	17.5(8)	2.4(6)	-2.3(7)	2.4(7)
C14	25.3(9)	15.2(8)	22.2(8)	2.8(6)	-1.7(7)	1.9(7)
C15	21.3(8)	16.3(8)	21.3(8)	0.1(6)	-0.9(7)	1.3(7)
C16	43.8(12)	17.4(9)	26.6(9)	-0.8(7)	-6.9(8)	4.4(8)
C17	17.6(8)	14.9(8)	17.6(8)	0.8(6)	-0.3(6)	-1.2(6)
C18	20.5(8)	16.4(8)	17.5(8)	-0.5(6)	0.9(7)	-0.5(7)
C19	18.6(8)	15.8(8)	15.5(7)	-0.6(6)	0.2(6)	-0.3(6)
C20	20.8(8)	18.7(8)	18.9(8)	0.7(6)	-0.8(7)	-3.7(7)
C21	21.2(8)	19.2(8)	20.9(8)	-3.5(6)	-0.8(7)	-0.9(7)
C22	21.3(8)	18.3(8)	20.8(8)	-0.4(6)	1.2(7)	-4.0(7)
C23	16.4(8)	17.5(8)	18.0(8)	0.5(6)	1.3(6)	0.0(6)
C24	23.8(9)	20.0(8)	26.5(9)	2.7(7)	-0.8(7)	3.5(8)

*Hydrogen coordinates (*x 10⁴*) and isotropic displacement parameters (*Å2x 10³*)*

Atom	x	у	Z	U(eq)
H1	1085	9540	2645	30
H2	-350	12110	2431	35
H1A	-7320	13232	3393	34
H1B	-6259	11754	3469	34
H1C	-6648	12277	3036	34
H2A	-3917	13611	3567	22
Н3	-1163	12999	3159	20
H4	-204	11150	3448	19
H5A	-3825	10638	3872	20
H5B	-2226	11812	4000	20
Н9	2896	10594	4945	24
H10A	-1028	10511	5305	36
H10B	914	11239	5492	36
H10C	855	9579	5436	36
H11	-2157	9537	2580	21
H12	-3979	11596	2680	22
H13A	1302	7761	4954	24
H13B	2960	7961	4623	24
H14A	-1044	6855	4505	25
H14B	988	5966	4477	25
H15	1853	7460	3908	24
		158		

H16A	990	5010	3874	44
H16B	287	5816	3492	44
H16C	-1332	5420	3817	44
H17	-2462	7913	3852	20
H18A	713	8801	3333	22
H18B	-965	7649	3238	22
H20A	-4429	8297	3042	29
H20B	-5204	9879	3068	29
H20C	-4816	9005	3455	29
H21A	1571	12841	4821	25
H21B	-605	12212	4705	25
H22A	3102	11968	4258	24
H22B	912	12380	4093	24
H23	2290	9698	4047	21
H24A	-4518	14374	2768	35
H24B	-3004	15150	3057	35
H24C	-5388	15245	3126	35