## Supporting Information

# Intramolecular Cyclization of Imidazo[1,2-a]pyridines via a Silver Mediated/ Palladium Catalyzed C-H Activation Strategy 

Debasmita Saha, ${ }^{1}$ Anupreet Kharbanda, ${ }^{1}$ Nkeseobong Essien, ${ }^{1}$ Lingtian Zhang, ${ }^{1}$ Rose Cooper, ${ }^{1}$ Debasish Basak, ${ }^{2}$ Samantha Kendrick, ${ }^{2}$ Brendan Frett,,${ }^{1, *}$ and Hong-yu Li ${ }^{1, *}{ }^{*}$<br>${ }^{1}$ Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences; Little Rock, Arkansas; ${ }^{2}$ Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences; Little Rock, Arkansas<br>*Email: BAFrett@uams.edu or HLi2@uams.edu

## Table of Contents

I. General experimental methods ..... 1
II. General experimental procedures ..... 1-7
III. Experimental data of intermediates and final compounds ..... 8-18
IV. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of final compounds ..... 19-58
V. Cellular Assay Procedure for Solid Tumors ..... 59
VI. Cellular Assay Procedure for Hematological Tumors ..... 59
VII. Anti-proliferative activity of synthesized compounds ..... 60-63
VIII. Activity of 6af against Lymphoma cell lines ..... 64

## I. General Experimental Methods

General Methods: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on an Agilent 400 NMR spectrometer. Deuterated chloroform and deuterated dimethyl sulfoxide were used as solvents, unless stated otherwise. The spectra were calibrated against the residual solvent peak or TMS. Chemical shifts ( $\delta$ ) and coupling constants $(J)$ are given in ppm (parts per million) and Hz (Hertz). The following abbreviations were used to explain multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{bs}=$ broad singlet. Purity of final compounds was assessed using a Thermo Finnigan LCQ Deca with a Thermo Surveyor LCMS system at wavelengths of 214 and 254 nm and confirmed $>95 \%$. All commercially available compounds were used without purification.

## II. General experimental procedures

## General procedure for synthesis of Imidazo[1,2-a]pyridine-2-carbaldehydes 3a-m.

Imidazo[1,2-a]pyridine carbaldehydes were synthesized by an established two-step process. ${ }^{1}$ 1,1,3-trichloroacetone in dimethoxyethane ( 10 mL ) was added to a solution of 2-aminopyridine $(63 \mathrm{mmol})$ in dimethoxyethane $(60 \mathrm{~mL})$ and the reaction mixture was stirred at room temperature for 12 h . The precipitate was separated by filtration, suspended in ethanol ( 80 mL ), and refluxed for 4 h till the solid dissolved completely. The reaction mixture was evaporated and extracted thoroughly with dichloromethane ( 50 mL ). The combined extracts were dried over anhydrous sodium sulfate and evaporated using a rotary vacuum pump. The resulting dichloromethylimidazo[1,2-a]pyridine and 2.5 g calcium carbonate were suspended in 25 ml of water. The mixture was refluxed for 1 h and filtered. The filtrate was extracted with dichloromethane ( 50 mL ). The combined extracts were dried over anhydrous sodium sulfate and evaporated using a rotary vacuum pump. The residue was purified on a silica gel column ( $1 \%$ MeOH in DCM ) to obtained the product imidazo[1,2- $a$ ]pyridine-2-carbaldehyde (3a) as a solid.


|  <br> 3a <br> 65\% |  <br> 3b <br> 68\% |  |  |  <br> 3e 48\% |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  <br> 3h <br> 48\% |  <br> 3i 50\% |  <br> 3j <br> 56\% |
|  |  |  <br> 31 66\% |  <br> 3m <br> 78\% |  |

Scheme 1: Synthesis of Imidazo[1,2-a]pyridine-2-carbaldehydes

## 1. General procedure for the synthesis of tetrazolyl pyrido imidazo[4,5-c]quinolone 6aa-

 $6 c o$.

Scheme 2: Synthesis of tetrazolyl pyrido imidazo[4,5-c]quinolones
2-Iodoaniline ( 0.04 mmol ), substituted imidazo[1,2-a]pyridine-2-carbaldehydes ( 0.04 mmol ), trimethyl silyl azide ( 0.04 mmol ), and the corresponding isocyanide ( 0.04 mmol ) were stirred in methanol ( 5 ml ) at rt for 24 hr . The reaction was monitored by LCMS, concentrated, dissolved in dimethylacetamide ( 2.0 mL ), and degassed with $\mathrm{N}_{2}$. Palladium acetate ( $10 \mathrm{~mol} \%$ ), triphenyl phosphine ( $20 \mathrm{~mol} \%$ ), AgOAc ( 1.5 equiv.), and $\mathrm{K}_{3} \mathrm{PO}_{4}$ ( 2.0 equiv.) were added to the reaction. The reaction was sealed and heated to $120^{\circ} \mathrm{C}$ for 24 h . The reaction was monitored via LCMS, filtered, diluted with $\mathrm{DCM}(5 \mathrm{ml})$, washed with water ( 2 x 3 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The resulting crude product was purified by flash
chromatography with $50-70 \%$ ethyl acetate/heptane or $1-5 \% \mathrm{DCM} /$ methanol to afford the desired product (6aa-co) as a solid, which was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy.

## 2. Extensive Optimization of the C-H activation step

## Pd catalyst Optimization

The Ugi adduct [ $N$-((1-(tert-butyl)-1H-tetrazol-5-yl)(imidazo[1,2-a]pyridin-2-yl)methyl)-2iodoaniline] ( 0.04 mmol ), a Pd catalyst ( S No. $1-6,10 \mathrm{~mol} \%$ ), triphenyl phosphine ( $20 \mathrm{~mol} \%$ ), AgOAc ( 1.5 equiv.), and $\mathrm{K}_{3} \mathrm{PO}_{4}$ ( 2.0 equiv.) were added to a vial containing degassed dimethylacetamide $(2.0 \mathrm{~mL})$. The reaction vessel was sealed and heated to $120^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction, the reaction yield of the desired product was determined by LCMS.

Table 1: Pd catalyst Optimization

| S No. | Pd Catalyst | Yield (\%) |
| :---: | :---: | :---: |
| 1. | $\mathrm{PdCl}_{2}$ | 16 |
| 2. | $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ | 14 |
| 3. | $\mathrm{Pd}(\mathrm{OAc})_{2}$ | 85 |
| 4. | $\mathrm{Pd}(\mathrm{TFA})_{2}$ | 22 |
| 5. | $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ | 50 |
| 6. | $\mathrm{PdBr}_{2}$ | $<5$ |

## Ag catalyst Optimization

The Ugi adduct [ $N$-((1-(tert-butyl)-1H-tetrazol-5-yl)(imidazo[1,2-a]pyridin-2-yl)methyl)-2iodoaniline] ( 0.04 mmol ), palladium acetate ( $10 \mathrm{~mol} \%$ ), triphenyl phosphine ( $20 \mathrm{~mol} \%$ ), a silver catalyst ( S No. 1-6, 1.5 equiv.), and $\mathrm{K}_{3} \mathrm{PO}_{4}$ ( 2.0 equiv.) were added to a vial containing degassed dimethylacetamide ( 2.0 mL ). The reaction vessel was sealed and heated to $120^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction, the reaction yield of the desired product was determined by LCMS.

Table 2: Ag catalyst Optimization

| S No. | Ag Catalyst | Yield (\%) |
| :---: | :---: | :---: |
| $\mathbf{1 .}$ | AgI | 11 |
| $\mathbf{2 .}$ | $\mathrm{AgNO}_{3}$ | 12 |
| $\mathbf{3 .}$ | $\mathrm{Ag}_{2} \mathrm{O}$ | nd |
| 4. | $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ | $<5$ |
| $\mathbf{5 .}$ | $\mathrm{AgOAc}^{20}$ | 85 |
| $\mathbf{6 .}$ | $\mathrm{AgBF}_{4}$ | nd |

## Ligand Optimization

The Ugi adduct [ $N$-((1-(tert-butyl)-1H-tetrazol-5-yl)(imidazo[1,2-a]pyridin-2-yl)methyl)-2iodoaniline] ( 0.04 mmol ), palladium acetate ( $10 \mathrm{~mol} \%$ ), a ligand ( S No. 1-5, $20 \mathrm{~mol} \%$ ), AgOAc (1.5 equiv.), and $\mathrm{K}_{3} \mathrm{PO}_{4}$ ( 2.0 equiv.) were added to a vial containing degassed dimethylacetamide $(2.0 \mathrm{~mL})$. The reaction vessel was sealed and heated to $120^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction, the reaction yield of the desired product was determined by LCMS.

Table 3: Ligand Optimization

| S No. | Ligand | Yield (\%) |
| :---: | :---: | :---: |
| $\mathbf{1 .}$ | $\mathrm{PPh}_{3}$ | 85 |
| 2. | $\mathrm{S}-\mathrm{Phos}$ | nd |
| 3. | $\mathrm{P}(\mathrm{OMe})_{3}$ | 10 |
| 4. | $2,2^{\prime}-\mathrm{Bipyridine}^{2}$ | nd |
| $\mathbf{5 .}$ | $\mathrm{PMe}_{2} \mathrm{Ph}$ | nd |

## Base Optimization

The Ugi adduct [ $N$-((1-(tert-butyl)-1H-tetrazol-5-yl)(imidazo[1,2-a]pyridin-2-yl)methyl)-2iodoaniline] ( 0.04 mmol ), palladium acetate ( $10 \mathrm{~mol} \%$ ), triphenyl phosphine ( $20 \mathrm{~mol} \%$ ), AgOAc ( 1.5 equiv.), a base ( S No. 1-6, 2.0 equiv.) were added to a vial containing degassed dimethylacetamide ( 2.0 mL ). The reaction vessel was sealed and heated to $120^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction, the reaction yield of the desired product was determined by LCMS.

Table 4: Base Optimization

| S No. | Bases | Yield (\%) |
| :---: | :---: | :---: |
| $\mathbf{1 .}$ | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | 15 |
| $\mathbf{2 .}$ | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | 20 |
| 3. | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | 18 |
| 4. | $\mathrm{K}^{+} t-\mathrm{BuO}^{-}$ | 26 |
| $\mathbf{5 .}$ | $\mathrm{~K}_{3} \mathrm{PO}_{4}$ | 85 |
| $\mathbf{6 .}$ | KOH | 12 |

## Solvent Optimization

The Ugi adduct [ $N$-((1-(tert-butyl)-1H-tetrazol-5-yl)(imidazo[1,2-a]pyridin-2-yl)methyl)-2iodoaniline] ( 0.04 mmol ), palladium acetate ( $10 \mathrm{~mol} \%$ ), triphenyl phosphine ( $20 \mathrm{~mol} \%$ ), AgOAc ( 1.5 equiv.), and $\mathrm{K}_{3} \mathrm{PO}_{4}$ ( 2.0 equiv.) was added to a vial containing a degassed solvent ( S No. 1-7, 2 mL ). The reaction vessel was sealed and heated to $120^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction, the reaction yield of the desired product was determined by LCMS.

Table 5: Solvent Optimization

| S No. | Solvents | Yield (\%) |
| :---: | :---: | :---: |
| $\mathbf{1 .}$ | DMF | 34 |
| $\mathbf{2 .}$ | DMSO | nd |
| $\mathbf{3 .}$ | Toluene | 22 |
| $\mathbf{4 .}$ | DMA | 85 |
| $\mathbf{5 .}$ | NMP | 26 |
| $\mathbf{6 .}$ | Ethanol | nd |
| $\mathbf{7 .}$ | TFE | nd |

## 3. Control experiments for investigating the $\mathbf{C}-\mathbf{H}$ activation reaction mechanism

To confirm the C-H activation reaction mechanism, a set of control experiments were performed. For this, the Ugi-adduct 5a was synthesized by adding 2 -iodoaniline ( 1 eq .), imidazo[1,2-a]pyridine-2-carbaldehydes ( 1 eq .), trimethylsilyl azide ( 1 eq .), and the corresponding isocyanide ( 1 eq.) and stirred in methanol ( 6 ml ) at rt for 24 hrs . After the completion of the reaction, the reaction mixture was concentrated and the Ugi adduct $\mathbf{5 a}$ was isolated. Next, the C-H activation reaction was performed with variations from the standard conditions as follows: palladium acetate ( $10 \mathrm{~mol} \%$ ), triphenyl phosphine ( $20 \mathrm{~mol} \%$ ), AgOAc ( 1.5 eq .), and $\mathrm{K}_{3} \mathrm{PO}_{4}$ ( 2.0 eq .) in dimethylacetamide ( 2.0 mL ) (Table 1). The reaction yield was monitored with LCMS.

Performing the reaction without base afforded less than $10 \%$ of the desired cyclo-aromatized product. No product was detected in the absence of $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}$, or AgOAc , suggesting all components are necessary.


| S No. | Variation in reaction conditions | Yield $^{\mathbf{a}}$ |
| :---: | :---: | :---: |
| 1. | No Base | $<10 \%$ |
| 2. | No $\operatorname{Pd}(\mathrm{OAc})_{2}$ | nd |
| 3. | No AgOAc | $10 \%$ |

When the ratio of $\mathrm{Pd}: \mathrm{PPh}_{3}$ is decreased from 1:2 to $1: 0$ the product yield decreases, suggesting $\mathrm{PPh}_{3}$ has multiple roles.


When AgOAc was replaced by $\mathrm{Cu}(\mathrm{OAc})_{2}$ ( 1.5 eq.) only $24 \%$ of the product was obtained, reinforcing the fact that AgOAc is important beyond acting as an oxidant.


Additionally, competition experiments were also performed by adding equal amounts of starting Ugi substrates subjected to our standard optimized conditions for the C-H activation step.

Differently substituted imidazopyridines $(\mathrm{Me} v s \mathrm{Br})$ formed Me substituted products preferentially. Similarly, a methyl electron donating group on 2-iodoaniline displayed higher reactivity than a bromine electron withdrawing group. This suggests that oxidative addition is reversible and occurs before the rate-limiting step. ${ }^{2,3}$



## Kinetic Isotope Effect Experiments



Scheme 3: Reaction scheme to study kinetic isotope effect

Ugi adduct, $\quad N$-((1-(tert-butyl)-1H-tetrazol-5-yl)(imidazo[1,2-a]pyridin-2-yl)methyl)-2iodoaniline 5a ( 0.02 mmol ) or $N$-((1-(tert-butyl)-1H-tetrazol-5-yl)(imidazo[1,2-a]pyridin-2$\mathrm{yl})$ methyl)-2-iodoaniline $\mathbf{5 a - \mathbf { d } _ { \mathbf { 1 } }}(0.02 \mathrm{mmol})$, were added to two separate dried reaction vessels, equipped with a magnetic stir bar along with palladium acetate ( $10 \mathrm{~mol} \%$ ), triphenyl phosphine ( $20 \mathrm{~mol} \%$ ), AgOAc ( 1.5 equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}$ ( 2.0 equiv.) and degassed dimethylacetamide ( 2.0 mL ). Each reaction was stirred at $120^{\circ} \mathrm{C}$ under argon for a select period of time. Following, the reaction mixture was cooled to room temperature, filtered, and extracted with DCM ( 5 mL ). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and analyzed by LCMS using $p$ nitrobenzaldehyde as an internal standard.

| S No. | 2h | 4h | 8h | 12h |
| :---: | :---: | :---: | :---: | :---: |
| 5a/6aa <br> (\% yield) | 28 | 36 | 48 | 55 |
| 5a-d <br> 1-6aa <br> (\% yield) | 10 | 14 | 22 | 25 |



## References:-

1. S. Dalapati, B. K. Paul, S. Jana, N. Guchhait, Sens. Actuators, B. 2011, 157, 615-620.
2. C. Colletto, S. Islam, F. J.-Hernandez, I. Larrosa, J. Am. Chem. Soc. 2016, 138, 1677-1683.
3. (a) B. P. Fors, S. L. Buchwald, J. Am. Chem. Soc. 2009, 131, 12898-12899; (b) E. V. Vinogradova, B. P. Fors, S. L. Buchwald, J. Am. Chem. Soc. 2012, 134, 11132-11135.

## III. Experimental data of intermediates and final compounds

## Imidazo[1,2-a]pyridine-2-carbaldehyde (3a)



Dark yellow solid; Yield: $65 \% ; \mathrm{R}_{f}=0.30(50 \% \mathrm{EtOAc} / \mathrm{Hexane})$; Melting point:108$110^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta 10.08(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.65$ (dt, $J=5.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{td}, J=6.8,5.7$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}$ ) $\delta$ 188.22, 145.53, 143.36, 128.53, 127.63, 118.93, 118.67, 114.48; LCMS (ESI): Calculated for [M] ${ }^{+} \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$ 147.0514, found 147.1508

## 7-chloroimidazo[1,2-a]pyridine-2-carbaldehyde (3b)



Brown solid; Yield: $68 \% ; \mathrm{R}_{f}=0.29(50 \% \mathrm{EtOAc} /$ Hexane $)$; Melting point: $181-183{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.14(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{dd}, J=7.3,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70-7.69(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 187.54, 145.44, 144.32, 133.15, 126.81, 117.90, 116.39, 115.60; LCMS (ESI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{ClN}_{2} \mathrm{O}$ 181.0124, found 181.0826.

## 6-bromoimidazo[1,2-a]pyridine-2-carbaldehyde (3i)



Dark yellow solid; Yield: $50 \% ; \mathrm{R}_{f}=0.32$ ( $50 \% \mathrm{EtOAc} /$ Hexane); Melting point:208$210^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.15(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.60$ $(\mathrm{d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=9.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $187.65,144.09,130.33,130.31,126.53,119.88,115.22,109.40 ;$ LCMS (ESI): Calculated for $[\mathrm{M}]^{+} \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{BrN}_{2} \mathrm{O}$ 225.9565, found 225.3767.

## 7-bromoimidazo[1,2-a]pyridine-2-carbaldehyde (3j)



Yellow solid; Yield: 56\%; $\mathrm{R}_{f}=0.36$ (50\% EtOAc/Hexane); Melting point: 110$112^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.14(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 187.56$, $140.81,126.72,126.71,121.36,120.52,118.64,115.55$; LCMS (ESI): Calculated for $[\mathrm{M}]^{+} \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{BrN}_{2} \mathrm{O}$ 225.0450, found 225.2704.

## 8-methylimidazo[1,2-a]pyridine-2-carbaldehyde (3k)



Dark brown solid; Yield: $61 \%$; $\mathrm{R}_{f}=0.34$ ( $50 \% \mathrm{EtOAc} /$ Hexane); Melting point:121$122^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.18(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 188.05,146.46,143.17,129.40,124.93,124.31,116.12,114.50,17.08 ;$
LCMS (ESI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$ 161.0670, found 161.2260.
 5-methylimidazo[1,2-a]pyridine-2-carbaldehyde (31)

Dark brown solid; Yield: 66\%; $\mathrm{R}_{f}=0.41$ ( $50 \%$ EtOAc/Hexane); Melting point:169$170^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta 10.10(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=$ $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.38(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}$ ) $\delta 188.23,146.01,143.34,137.09,127.79,116.73,116.14,113.31,18.47$; LCMS (ESI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$ 161.0670, found 161.2346.

## 6-fluoroimidazo[1,2-a]pyridine-2-carbaldehyde (3m)



Light yellow solid; Yield: 78\%; $\mathrm{R}_{f}=0.42$ ( $50 \% \mathrm{EtOAc} /$ Hexane); Melting point:165$167^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.14(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.14-8.12(\mathrm{~m}$, $1 \mathrm{H}), 7.72-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $187.57,154.17(\mathrm{~d}, J=243.41 \mathrm{~Hz}), 144.72,143.46,120.05(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 119.44(\mathrm{~d}$, $J=26.26 \mathrm{~Hz}$ ), $116.38,113.04(\mathrm{~d}, J=40.4 \mathrm{~Hz}) ;$ LCMS (ESI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{FN}_{2} \mathrm{O}$ 165.0419, found 165.2369.

## $N$-((1-(tert-butyl)-1H-tetrazol-5-yl)(imidazo[1,2-a]pyridin-2-yl)methyl)-2-iodoaniline (5a)



Orange-yellow solid; Yield: $89 \% ; \mathrm{R}_{f}=0.40$ ( $50 \%$ EtOAc/Hexane); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta 8.57$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.97 ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.73 (d, $J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.96-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO- $d_{6}$ ) $\delta$ $155.11,145.68,144.54,144.00,139.35,129.78,127.66,125.76,120.49,117.16,112.92,112.88$, $111.48,86.93,62.62,49.48$, 29.77; LCMS (ESI): Calculated for $[M]^{+} \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{IN}_{7} 473.3255$, found 473.8524 .

## 6-(1-(tert-butyl)-1H-tetrazol-5-yl)pyrido [1',2':1,2]imidazo[4,5-c]quinolone (6aa)



Light yellow solid; Yield: $85 \% ; \mathrm{R}_{f}=0.45$ ( $50 \% \mathrm{EtOAc} / \mathrm{Hexane}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.14(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{t}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~m}, 1 \mathrm{H})$, $7.21(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.68$, $148.28,142.49,142.30,137.49,131.64,129.41,129.06,127.34,127.22$, $127.02,119.55,119.21,118.42,113.72,62.52,30.04$; HRMS (EI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{7} 344.1579$, found 344.1618 .

## 6-(1-(4-isopropylphenyl)-1H-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5-c]quinolone (6ab)



Off-white solid; Yield: $68 \% ; \mathrm{R}_{f}=0.60$ ( $50 \%$ EtOAc/Hexane); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.74(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.23$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{~s}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 150.98$, 150.77, 148.32, 148.30, 142.40, 132.97, 131.80, 129.57, 129.20, 127.45, 127.32, 127.31, 127.17, 126.92, 125.46, 119.81, 119.10, 118.49, 113.80, 33.87, 23.79; HRMS (EI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{77} 406.1735$, found 406.1782 .

## 6-(1-benzyl-1 $H$-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5-c]quinolone (6ac)



Dark yellow solid, Yield: $90 \%$; $\mathrm{R}_{f}=0.53$ (50\% EtOAc/Hexane); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.19(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{dd}, J=8.3,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.45(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{td}, J=$ $7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~d}$, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.41(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$
NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 150.45$, 148.60, 142.10, 138.93, 136.61, 134.75, 131.51, 129.37, 129.23, 128.67, 128.28, 128.06, 127.83, 127.43, 127.04, 120.17, 119.21, 118.61, 113.72, 52.86; HRMS (EI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{7} 378.1422$, found 378.1406.

6-(1-(2,4,4-trimethylpentan-2-yl)-1H-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5-c]quinolone (6ad)


Light brown solid; Yield: 73\%; $\mathrm{R}_{f}=0.46$ (50\% EtOAc/Hexane); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.12(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ $-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 150.95,148.34,142.78,142.21$, $137.88,131.62,129.16,128.96,127.24,127.19,126.98,119.63,119.21,118.47,113.56,65.98$, 53.84, 31.82, 30.78, 30.17; HRMS (EI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{7} 400.2142$, found 400.2245 .


## 6-(1-(naphthalen-1-yl)-1H-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5c]quinoline(6ae)

Bright-yellow solid; Yield: 55\% ; $\mathrm{R}_{f}=0.319$ (5\% Methanol in DCM); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ in DMSO-d $\mathrm{d}_{6}$ ) $\delta 9.62(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.27(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.89(\mathrm{~m}, 5 \mathrm{H})$, $7.76(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ in $\mathrm{DMSO}-d_{6}$ ) $\delta 142.20,133.20,132.62,132.26,131.16$, $130.87,129.60,129.42,129.28,129.23,128.62,128.05,127.90,127.75,127.69,127.69,127.66$,
127.59, 124.44, 122.84, 120.83, 120.80, 118.74, 118.69, 114.14; HRMS (EI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{25} \mathrm{H}_{15} \mathrm{~N}_{7} 414.1422$, found 414.1463 .

## (S)-6-(1-(1-phenylethyl)-1H-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5-c]quinolone (6af)



Light brown solid; Yield: 70\%; $\mathrm{R}_{f}=0.50$ (50\% EtOAc/Hexane); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.07(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 8.37 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{td}, J=7.7,7.1$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{td}, J=7.7,7.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-.52(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 150.29,148.48,142.02,140.15,139.28,136.82$, 131.40, 129.23, 129.07, 128.60, 128.07, 127.64, 127.27, 127.02, 126.84, 119.93, 119.14, 118.42, 113.58, 59.38, 22.32; HRMS (EI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{7} 392.1579$, found 392.161.

## 6-(1-cyclohexyl-1H-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5-c]quinoline(6ag)



Light brown solid; Yield: 72\%; $\mathrm{R}_{f}=0.47$ ( $50 \% \mathrm{EtOAc} / \mathrm{Hexane}$ ); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.17(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.38$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.39-$ $5.32(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.79$ $-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.37(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 150.90,148.31,142.76,142.19$, $137.86,131.62,129.09,128.91,127.20,127.13,126.96,119.64,119.16,118.45,113.50,65.93$, 53.79, 31.77, 30.74, 30.12; HRMS (EI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{7}$ 370.1735, found 370.1779 .

## 6-(1-(adamantan-1-yl)-1H-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5-c]quinoline (6ah)



Off-white solid; Yield: $80 \% ; \mathrm{R}_{f}=0.51\left(50 \%\right.$ EtOAc/Hexane); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.16(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.41$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.36$ $(\mathrm{m}, 6 \mathrm{H}), 2.09-2.06(\mathrm{~m}, 3 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 150.43,148.14,142.60,142.32,137.22,131.56,129.59,129.11,127.48,127.29,127.01$, $119.52,119.29,118.41,113.86,63.37,42.08,35.60,29.53$; LCMS (ESI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{7} 422.2048$, found 422.4697.

## 6-(1-(tert-butyl)-1H-tetrazol-5-yl)isoquinolino[2',3':1,2]imidazo[4,5-c]quinoline (6ba)



Light yellow solid; Yield: $90 \% ; \mathrm{R}_{f}=0.69$ ( $50 \% \mathrm{EtOAc} / \mathrm{Hexane}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta 8.86-8.82(\mathrm{~m}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.46-8.42(\mathrm{~m}, 1 \mathrm{H}), 8.24-8.20(\mathrm{~m}, 2 \mathrm{H}), 7.98-7.93(\mathrm{~m}, 3 \mathrm{H}), 7.84$ $(\mathrm{d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(101$ $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 150.80,149.72,143.38,142.14,138.64,134.44$, $133.55,131.21,131.19,130.01,129.22,128.56,128.01,126.78,124.82,122.98,119.00,118.93$, 117.68, 62.79, 29.87; HRMS (EI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{7}$ 394.1735, found 394.1779.

6-(1-(tert-butyl)-1H-tetrazol-5-yl)pyrimido[1',2':1,2]imidazo[4,5$c$ ]quinoline (6bb)


Off-white solid; Yield: $92 \% ; \mathrm{R}_{f}=0.42$ (5\% Methanol in DCM); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.98-8.94(\mathrm{~m}, 3 \mathrm{H}), 8.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-$ $7.86(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 156.30,151.84,150.60,148.30,144.19,136.26,133.83,130.17,129.66$, 128.81, 123.70, 121.94, 118.91, 109.07, 64.04, 30.10; HRMS (EI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{8} 345.1531$, found 345.1568.

6-(1-(tert-butyl)-1H-tetrazol-5-yl)pyrazino[1',2':1,2]imidazo[4,5-
 c]quinolone (6bc)

Light brown solid; Yield*: 56\% (Isolated yield ${ }^{\#} 29 \%$ ); $\mathrm{R}_{f}=0.39$ (5\% Methanol in DCM); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.51(\mathrm{~s}, 1 \mathrm{H}), 9.00(\mathrm{dd}, J=4.8,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.97(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.28,147.22,143.75,142.78,141.78,137.46,131.75,129.91$, $129.65,128.54,126.60,119.96,119.55,118.10,62.70,30.07$; HRMS (EI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{8} 345.1531$, found 345.1566.

## 9-bromo-6-(1-(tert-butyl)-1H-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5$c$ ]quinoline (6bd)



White solid; Yield*: 49\% (Isolated yield ${ }^{\#} 22 \%$ ); $\mathrm{R}_{f}=0.48$ ( $50 \%$ EtOAc/Hexane); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta 9.89$ (s, 1H), 9.19 (d, $J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.94$ $(\mathrm{m}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO- $d_{6}$ ) $\delta 150.74,147.08$, $142.58,142.29,137.79,134.07,131.09,129.71,129.23,128.37,127.55,122.05,119.84,118.56$, 108.16, 62.80, 29.84; HRMS (EI): Calculated for $[M]^{+} \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrN}_{7} 422.29$, found 422.0726 .

## 11-(benzyloxy)-6-(1-(tert-butyl)-1H-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5-c]quinoline

 (6be)

White solid; Yield*: 42\% (Isolated yield 17\%) ${ }^{\#} ; \mathrm{R}_{f}=0.532$ (5\% Methanol in DCM); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta 9.35(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.06(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.44$ $(\mathrm{s}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}$ ) $\delta 150.88,148.28$, 143.57, $142.67,142.25,137.06,136.37,134.06,131.17,129.67,128.99,128.71,128.57$, 128.17, 121.92, 121.25, 118.76, 114.23, 107.98, 70.77, 55.35, 29.78; HRMS (EI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O} 450.1998$, found 450.2037.

6-(1-(tert-butyl)-1H-tetrazol-5-yl)-9methylpyrido[ $\left.1^{\prime}, 2^{\prime}: 1,2\right]$ imidazo[4,5-c]quinolone (6bf)


Off-white solid; Yield: $52 \% ; \mathrm{R}_{f}=0.259$ ( $5 \%$ Methanol in DCM); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.93(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}$ ), $7.91-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.45$ (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.58 (s, 3H), 1.70 (s, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 150.77,147.65,142.70,142.29,137.89$, 132.52, 131.69, 128.80, 127.13, 126.84, 124.44, 123.47, 119.24, 119.00, 118.66, 62.46, 30.04, 18.74; HRMS (EI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{7} 358.1735$, found 358.1777 .

## 6-(1-(tert-butyl)-1H-tetrazol-5-yl)-8-methylpyrido[1',2':1,2]imidazo[4,5$c$ ]quinoline (6bg)



Pale yellow solid; Yield: 71\%; $\mathrm{R}_{f}=0.349$ (5\% Methanol in DCM); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.99(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.40$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 150.82,149.09,142.97,142.38,137.68,131.69,129.93$, 128.76, 127.39, 127.29, 127.08, 124.72, 119.10, 118.69, 113.49, 62.49, 30.01, 17.62; HRMS (EI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{7} 358.1735$, found 358.1772.

## 6-(1-(tert-butyl)-1H-tetrazol-5-yl)-11-methylpyrido[1',2':1,2]imidazo[4,5$c$ quinoline (6bh)



Pale yellow solid; Yield: $56 \% ; \mathrm{R}_{f}=0.279$ (5\% Methanol in DCM); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44-8.37(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.48(\mathrm{~m}$, $1 \mathrm{H}), 6.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 151.01,150.74,142.93,142.64,138.79,138.55,131.36,129.97$, $128.91,127.56,126.65,123.62,119.21,117.18,115.49,62.42,30.05,24.15 ;$ LCMS (ESI): Calculated for [M+Na] ${ }^{+} \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{7} 380.1594$, found 380.0731.

## 6-(1-(tert-butyl)-1H-tetrazol-5-yl)-10-fluoropyrido[1',2':1,2]imidazo[4,5-

 $c$ ]quinoline (6bi)

Light brown solid; Yield: 58\%; $\mathrm{R}_{f}=0.417$ ( $5 \%$ Methanol in DCM); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.10(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 8.01-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.71(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 154.47,151.28(\mathrm{~d}, J=159.58$ $\mathrm{Hz})$, 146.01, 142.89, 142.33, 138.38, 136.80, 131.84, 129.24, 127.75, $122.01(\mathrm{~d}, J=26.23 \mathrm{~Hz}), 120.45(\mathrm{~d}, J=9.09 \mathrm{~Hz}), 118.99,118.29,113.85(\mathrm{~d}, J=42.4 \mathrm{~Hz}), 62.59$, 30.05; HRMS (EI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{7} \mathrm{~F} 362.1485$, found 362.1523.

## 9-chloro-6-(1-cyclohexyl-1H-tetrazol-5-



## yl)pyrido[1',2':1,2]imidazo[4,5-c]quinolone (6ca)



Yellow solid; Yield: $87 \% ; \mathrm{R}_{f}=0.51$ ( $50 \% \mathrm{EtOAc} /$ Hexane); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.29(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.35$ $(\mathrm{m}, 2 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.36(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 149.95,148.26,142.50,139.55,137.32,136.13,131.84,131.77,129.36$, 127.71, 127.30, 119.06, 118.49, 118.09, 115.51, 59.77, 32.99, 25.55, 25.06; LCMS (ESI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClN}_{7} 404.1346$, found 404.4328.

## 8-bromo-6-(1-cyclohexyl-1 H-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5-c]quinolone (6cb)



Light brown solid; Yield: 51\%* (Isolated Yield: 22\%) ${ }^{\#}$; $\mathrm{R}_{f}=0.55(50 \%$
EtOAc/Hexane); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta 9.89$ (brs, 1H), 9.18 (dd, $J=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-8.01(\mathrm{~m}, 2 \mathrm{H}), 8.00$ $-7.94(\mathrm{~m}, 2 \mathrm{H}), 4.93(\mathrm{tt}, J=7.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.06-$ $1.95(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.30(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO- $d_{6}$ ) $\delta 150.70,147.00,142.44,139.72,137.15$, $134.00,131.26,129.77,129.07,128.35,128.10,121.89,119.95,118.53,108.19,59.06,25.11$, 25.00; LCMS (ESI): Calculated for $[\mathrm{M}+2]^{+} \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{Br}_{7} 448.3230$, found 448.3231

## 6-(1-(4-methoxyphenyl)-1H-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5-c]quinolone (6cc)



Pale yellow solid; Yield: $28 \% ; \mathrm{R}_{f}=0.416$ (5\% Methanol in DCM); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.15(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 160.36$, 151.14, 148.56, 142.37, 139.19, 137.24, 131.88, 129.21, 129.08, 128.14, 127.48, $127.21,127.05,127.00,119.98,119.02,118.57,114.00,113.55,55.52$; HRMS (EI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{O}$ 394.1372, found 394.1408.

9-bromo-6-(1-(2,4,4-trimethylpentan-2-yl)-1H-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5$c$ ]quinolone (6cd)


White solid; Yield: 58\%* (Isolated Yield 22\%) ${ }^{\#}$; $\mathrm{R}_{f}=0.447$ (5\% Methanol in DCM); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 9.20(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-8.03(\mathrm{~m}, 2 \mathrm{H}), 8.01-7.95(\mathrm{~m}, 3 \mathrm{H})$, $2.07(\mathrm{~s}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO- $\left.d_{6}\right) \delta$ $150.94,147.02,142.73,142.14,137.85,134.39,134.10,130.96,129.73$, $129.25,128.45,122.09,119.81,118.55,108.14,65.98,53.11,31.77,30.70,29.99$; HRMS (EI): Calculated for $[\mathrm{M}]^{+} \mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrN}_{7} 478.3980$, found 478.1344.

## 6-(1-benzyl-1H-tetrazol-5-yl)-10-bromopyrido [1',2':1,2]imidazo[4,5-c]quinolone (6ce)



Brown solid; 53\% yield; $\mathrm{R}_{f}=0.48$ ( $50 \% \mathrm{EtOAc} / \mathrm{Hexane}$ ); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\left.d_{6}\right) \delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 9.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{t}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-$ $7.59(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.29(\mathrm{~m}, 3 \mathrm{H}), 6.15(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO- $d_{6}$ ) $\delta 151.20,147.03,142.28,135.39,134.02,132.44,131.95$, $131.86,131.14,129.83,129.25,129.13,129.07,128.62,128.39,121.86,119.97,118.45,109.99$, 108.21, 52.15; HRMS (EI): Calculated for [M+2] ${ }^{+} \mathrm{C}_{22} \mathrm{H}_{14} \mathrm{BrN}_{7} 458.0507$, found 458.0547.

## 6-(1-benzyl-1H-tetrazol-5-yl)-9- <br> chloropyrido $\left[1^{\prime}, 2^{\prime}: 1,2\right]$ imidazo $[4,5-c] q u i n o l o n e ~(6 c f)$

Yellow solid; Yield: $65 \%^{*}$ (Isolated Yield 37\%) ${ }^{\#} ; \mathrm{R}_{f}=0.539(5 \%$ Methanol in DCM); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.07$ (d, $J=7.3$
$\mathrm{Hz}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.10$ (brs, $1 \mathrm{H}), 7.93-7.84$ (m, 2H), $7.35-7.31$ (m, 2H), $7.22-7.17$ (m, 4H), 6.39 (s, 2H); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 150.28,148.43,142.27,138.93,136.11,134.67$, $131.64,129.46,128.69,128.32,128.02,127.89,127.81,127.17,119.05,118.67,118.26,115.52$, 109.99, 52.91; HRMS (EI): Calculated for [M+H] ${ }^{+} \mathrm{C}_{22} \mathrm{H}_{14} \mathrm{ClN}_{7} 412.1033$, found 412.1078.

* LCMS Yield \# Yields are low due to poor solubility.


9-chloro-6-(1-(naphthalen-1-yl)-1H-tetrazol-5yl)pyrido [1',2':1,2]imidazo[4,5-c]quinolone (6cg)

White solid; Yield: $52 \%^{*}$ (isolated Yield $\left.32 \%\right)^{\#} ; \mathrm{R}_{f}=0.775(5 \%$ Methanol in DCM); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta 9.71$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.99 (d, $J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{brs}, 1 \mathrm{H}), 8.23(\mathrm{brs}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-$ $7.96(\mathrm{~m}, 4 \mathrm{H}), 7.86(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO- $d_{6}$ ) $151.45,148.51,142.27,138.88,137.64,136.13,133.23$, $132.64,132.02,131.11,130.72,129.87,129.76,128.80,128.28,128.24,128.20,128.08,127.88$, $124.55,122.90,121.34,118.48,117.40,115.04$; HRMS (EI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{25} \mathrm{H}_{14} \mathrm{ClN}_{7}$ 448.1033, found 448.1060.

## 8-methyl-6-(1-(2,4,4-trimethylpentan-2-yl)-1H-tetrazol-5-yl)pyrido[1',2':1,2 ]imidazo[4,5c]quinolone (6ch)



White solid; Yield: $68 \%^{*}$ (Isolated Yield 45\%) ${ }^{\#}$; $\mathrm{R}_{f}=0.371$ (5\% Methanol in DCM); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.02(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H})$, $2.18(\mathrm{~s}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $151.03,149.06,143.29,142.40,137.84,131.79,130.06,128.69,127.40$, 127.16, 127.04, 124.67, 119.09, 118.76, 113.42, 65.85, 53.92, 31.75, 30.70, 30.14, 17.59; HRMS (EI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{7} 414.2361$, found 414.2400.

## 10-fluoro-6-(1-(naphthalen-1-yl)-1H-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5-c]quinolone

 (6ci)

Yellow solid; Yield: 50\%* (Isolated Yield 31\%) ${ }^{\#} ; \mathrm{R}_{f}=0.535$ (5\% Methanol in DCM); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta 9.89-9.88(\mathrm{~m}, 1 \mathrm{H}), 9.08(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.12-8.08(\mathrm{~m}, 1 \mathrm{H})$, $8.01-7.94(\mathrm{~m}, 5 \mathrm{H}), 7.85(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.59(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO- $d_{6}$ ) $\delta 155.94$ (d, $J=291.89 \mathrm{~Hz}$ ), 152.15, 151.47, 146.48, $142.03,139.25,137.81,133.22,132.64,132.04,131.03,129.75,128.79$, $128.22,128.19,127.87,124.55,123.45(\mathrm{~d}, J=26.26 \mathrm{~Hz}), 122.89$, 122.71, $121.53,121.34,119.70(\mathrm{~d}, J=9.09 \mathrm{~Hz}), 118.54,116.49(\mathrm{~d}, J=41.41 \mathrm{~Hz})$; HRMS (EI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{25} \mathrm{H}_{14} \mathrm{FN}_{7} 432.1328$, found 432.1373.

[^0]

6-(1-benzyl-1H-tetrazol-5-yl)-8-methylpyrido[1',2':1,2]imidazo[4,5$c$ ]quinolone (6cj)

Dark yellow solid; Yield: $55 \%^{*}$ (Isolated Yield $\left.25 \%\right)^{\#} ; \mathrm{R}_{f}=0.319$ (5\% Methanol in DCM); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.40-8.34(\mathrm{~m}, 2 \mathrm{H}), 7.93$ $(\mathrm{d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=5.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 2 \mathrm{H}), 3.13(\mathrm{~s}$, $3 \mathrm{H}).) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 151.30,150.63,142.60,138.92$, $138.42,138.02,134.73,131.04,129.95,129.63,128.64,128.25,128.08,127.62,126.67,123.69$, $119.26,117.58,115.56,52.77,23.95$; HRMS (EI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{7}$ 392.1579, found 392.1622.

## 9-bromo-6-(1-cyclohexyl-1H-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5-c]quinolone ( 6 ck )



Off-white solid; Yield: 69\%; $\mathrm{R}_{f}=0.48$ ( $50 \%$ EtOAc/Hexane); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.31(\mathrm{~s}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 8.44 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~m}$, $1 \mathrm{H}), 2.38-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.96(\mathrm{~m}, 2 \mathrm{H})$, $1.69-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 149.89, 146.76, 142.57, $139.88,137.01,132.84,131.92,129.45,127.85,127.49,126.97,120.75,119.17,118.23,108.46$, 59.83, 33.01, 25.58, 25.08; LCMS (ESI): Calculated for [M+2] ${ }^{+} \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BrN}_{7} 450.0820$, found 450.4240 .

## 6-(1-(adamantan-1-yl)-1H-tetrazol-5-yl)-8-methylpyrido[1',2':1,2]imidazo[4,5-c]quinolone (6cl)



Light yellow solid; Yield: 72\%; $\mathrm{R}_{f}=0.70$ ( $50 \% \mathrm{EtOAc} /$ Hexane); 1 H NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta 9.55(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.01(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.91$ $-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-$ $2.55(\mathrm{~m}, 3 \mathrm{H}), 2.22-2.19(\mathrm{~m}, 6 \mathrm{H}), 1.98-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.54-1.42(\mathrm{~m}$, 7H); 13C NMR (101 MHz, DMSO- $d_{6}$ ) $\delta 150.77,149.15,142.08,142.01,137.43,131.16,129.60$, $129.04,128.33,128.02,127.85,127.26,121.22,118.81,114.15,63.35,41.93,35.30,29.25,17.61$; LCMS (ESI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{7} 436.2205$, found 436.5080.

## 6-(1-(adamantan-1-yl)-1H-tetrazol-5-yl)-9-fluoropyrido[1',2':1,2]imidazo[4,5-c]quinoline (6cm)


$\left.\mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 9.85(\mathrm{dd}, J=4.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.08(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.05(\mathrm{dd}, J=10.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.93-7.86(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.11(\mathrm{~m}, 6 \mathrm{H})$, 1.98-1.93 (m, 3H), 1.53-1.41 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO-d $_{6}$ ) $\delta 153.35$ (d, $J=237.35$ Hz ), 150.54, 146.50, 142.86, 142.00, 138.48, 131.08, 129.63, 128.36 (d, $J=3.03 \mathrm{~Hz}$ ), 128.28, $123.37(\mathrm{~d}, J=27.27 \mathrm{~Hz}), 121.67,119.75(\mathrm{~d}, J=9.09 \mathrm{~Hz}), 118.59,116.56(\mathrm{~d}, J=43.43 \mathrm{~Hz})$, 63.25, 42.04, 35.27, 29.23; LCMS (ESI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{25} \mathrm{H}_{22} \mathrm{FN}_{7} 440.1954$, found 440.5656.

## (S)-5-(1-(1-phenylethyl)-1H-tetrazol-5-yl)imidazo[1,2-b:4,5-c']diisoquinoline (6cn)



Brown solid; yield: 82\%; $\mathrm{R}_{f}=0.72$ (50\% EtOAc/Hexane); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.96-8.90(\mathrm{brm}, 1 \mathrm{H}), 8.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.79(\mathrm{~m}, 3 \mathrm{H})$, $7.76-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 150.67,147.73,142.95,139.95,139.03,136.19,131.56,130.76$, $130.41,129.55,128.84,128.74,128.59$, 128.11, 127.53, 126.97, 126.88, 125.93, 123.60, 122.89, $119.41,118.30$, 114.71, 59.34, 22.29; LCMS (ESI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~N}_{7} 442.1735$, found 442.3128 .

## (S)-10-fluoro-6-(1-(1-phenylethyl)-1H-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5c]quinolone (6co)



Dark-yellow solid; Yield: $87 \% ; \mathrm{R}_{f}=0.563$ ( $5 \%$ Methanol in DCM); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.07$ (brs, 1 H ), $8.52-8.45(\mathrm{~m}, 2 \mathrm{H}), 8.14-8.09(\mathrm{~m}$, $1 \mathrm{H}), 7.94(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{q} ., J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.18(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 154.49$, 151. (d, $J=$ $205.03 \mathrm{~Hz}), 146.18,142.09,140.15,139.74,137.62(\mathrm{~d}, J=2.02 \mathrm{~Hz}), 131.61$, $129.32,128.64,128.43(\mathrm{~d}, J=3.03 \mathrm{~Hz}), 128.11,127.70,126.83,121.92$ (d, $J$ $=26.26 \mathrm{~Hz}), 120.81(\mathrm{~d}, J=9.09 \mathrm{~Hz}), 118.63(\mathrm{~d}, J=67.67 \mathrm{~Hz}), 113.92,113.50,59.49,22.34$; HRMS (EI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{23} \mathrm{H}_{16} \mathrm{FN}_{7} 410.1485$, found 410.1510 .

## IV. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of final compounds

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for Imidazo[1,2-a]pyridine-2-carbaldehyde (3a)



${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 7-chloroimidazo[1,2-a]pyridine-2-carbaldehyde (3b)


Cos

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 6-bromoimidazo[1,2-a]pyridine-2-carbaldehyde

```
    i
```





${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 7-bromoimidazo[1,2-a]pyridine-2-carbaldehyde (3j)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 8-methylimidazo[1,2-a]pyridine-2-carbaldehyde (3k)

$\stackrel{3}{1}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 5-methylimidazo[1,2-a]pyridine-2-carbaldehyde (31)

$\stackrel{๊}{7}$





${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 6-fluoroimidazo[1,2-a]pyridine-2-carbaldehyde (3m)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for N -((1-(tert-butyl)-1H-tetrazol-5-yl)(imidazo[1,2-a]pyridin-2-yl)methyl)-2-iodoaniline (5a)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 6-(1-(tert-butyl)-1H-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5$c]$ quinolone (6aa)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 6-(1-(4-isopropylphenyl)-1 $\boldsymbol{H}$-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5-c]quinolone (6ab)






| $\Gamma$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | - 1 | + | 1 | 1 | 1 | 1 | 1 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 70 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | $\mathrm{f}_{1}(\mathrm{ppm})^{80}$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 6-(1-benzyl-1H-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5clquinolone (6ac)



| 70 | 160 | 150 | 140 | 130 | 120 | 110 | 100 |  | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 6-(1-(2,4,4-trimethylpentan-2-yl)-1H-tetrazol-5yl)pyrido [1',2':1,2]imidazo[4,5-i]quinolone (6ad)


${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 6-(1-(naphthalen-1-yl)-1H-tetrazol-5-
yl)pyrido[1',2':1,2]imidazo[4,5-c]quinoline(6ae)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for (S)-6-(1-(1-phenylethyl)-1H-tetrazol-5-
yl)pyrido [1',2':1,2]imidazo[4,5-c]quinolone (6af)

$\stackrel{7}{7}$




| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 |  |  | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 6-(1-cyclohexyl-1H-tetrazol-5-yl)pyrido[ $\mathbf{1}^{\prime}, 2$ ': 1,2 ]imidazo[4,5c]quinoline(6ag)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 6-(1-(adamantan-1-yl)-1H-tetrazol-5-
yl)pyrido[1',2':1,2]imidazo[4,5-c]quinoline (6ah)


${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 6-(1-(tert-butyl)- $\mathbf{1 H}$-tetrazol-5-
yl)isoquinolino[2',3':1,2]imidazo[4,5-c]quinoline (6ba)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 6-(1-(tert-butyl)-1 H -tetrazol-5-
yl)pyrimido[1',2':1,2]imidazo[4,5-c]quinoline (6bb)



| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | $9_{f 1(\mathrm{ppm})}^{80}$ | 70 | 60 | 50 | 40 | 30 | 20 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 6-(1-(tert-butyl)-1H-tetrazol-5-yl)pyrazino[1',2':1,2]imidazo[4,5$c$ lquinolone (6bc)

$\stackrel{E}{i}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 9-bromo-6-(1-(tert-butyl)-1H-tetrazol-5-
yl)pyrido [1',2':1,2]imidazo[4,5-c]quinoline (6bd)

$\stackrel{\stackrel{\rightharpoonup}{a}}{\stackrel{1}{4}}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 11-(benzyloxy)-6-(1-(tert-butyl)-1H-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5-c]quinoline (6be)



${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 6-(1-(tert-butyl)-1 H -tetrazol-5-yl)-9-methylpyrido[1',2':1,2]imidazo[4,5-c]quinolone (6bf)



${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 6-(1-(tert-butyl)-1 $H$-tetrazol-5-yl)-8methylpyrido $\left[1^{\prime}, 2^{\prime}: 1,2\right]$ imidazo $[4,5-c] q u i n o l i n e ~(6 b g) ~$



${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 6-(1-(tert-butyl)-1H-tetrazol-5-yl)-10-
fluoropyrido[1',2':1,2]imidazo[4,5-c]quinoline (6bi)


${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 9-chloro-6-(1-cyclohexyl-1H-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5-c]quinolone (6ca)





${ }^{1} H$ NMR and ${ }^{13}$ C NMR for 8-bromo-6-(1-cyclohexyl-1H-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5-c]quinolone (6cb)


${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 6-(1-(4-methoxyphenyl)-1H-tetrazol-5yl)pyrido [1',2':1,2]imidazo[4,5-c]quinolone (6cc)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 9-bromo-6-(1-(2,4,4-trimethylpentan-2-yl)-1 H -tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5-c]quinolone (6cd)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 6-(1-benzyl-1 $\boldsymbol{H}$-tetrazol-5-yl)-10bromopyrido[ $1^{\prime}, 2$ ':1,2]imidazo[4,5-c]quinolone (6ce)


${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 6-(1-benzyl-1 $\boldsymbol{H}$-tetrazol-5-yl)-9-
chloropyrido [1',2':1,2]imidazo[4,5-c]quinolone (6cf)



${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 9-chloro-6-(1-(naphthalen-1-yl)-1H-tetrazol-5-
yl)pyrido [1',2':1,2]imidazo[4,5-c]quinolone (6cg)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 8-methyl-6-(1-(2,4,4-trimethylpentan-2-yl)-1H-tetrazol-5yl)pyrido[1',2':1,2 ]imidazo[4,5-c]quinolone (6ch)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 10-fluoro-6-(1-(naphthalen-1-yl)-1H-tetrazol-5-
yl)pyrido[1',2':1,2]imidazo[4,5-c]quinolone (6ci)


${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 6-(1-benzyl-1 $\boldsymbol{H}$-tetrazol-5-yl)-8-
methylpyrido[1',2':1,2]imidazo[4,5-c]quinolone (6cj)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 9-bromo-6-(1-cyclohexyl-1 H -tetrazol-5-
yl)pyrido[1',2':1,2]imidazo[4,5-c]quinolone (6ck)





${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 6-(1-(adamantan-1-yl)-1H-tetrazol-5-yl)-8methylpyrido[ $\left.1^{\prime}, 2^{\prime}: 1,2\right]$ imidazo[4,5-c]quinolone (6cl)


${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for 6-(1-(adamantan-1-yl)-1 $H$-tetrazol-5-yl)-9fluoropyrido [1',2':1,2]imidazo[4,5-c]quinoline (6cm )


${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for (S)-5-(1-(1-phenylethyl)-1H-tetrazol-5-yl)imidazo[1,2-b:4,5$c^{\prime}$ ]diisoquinoline (6cn)




${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for (S)-10-fluoro-6-(1-(1-phenylethyl)-1H-tetrazol-5-yl)pyrido[1',2':1,2]imidazo[4,5-c]quinolone (6co)




## V. Cellular Assay Procedure for Solid Tumors

The MCF7 (human breast adenocarcinoma cell line) cells were obtained from American Type Culture Collection, Manassas, VA. MCF7 cells were cultured using the recommended Eagle's Minimum Essential Medium supplemented with $10 \%$ fetal bovine Serum. The cells were maintained at $37{ }^{\circ} \mathrm{C}$ in a humidified atmosphere with $5 \% \mathrm{CO}$ and were sub-cultured two to three times per week. Cell viability assays were performed in 96-well plates (Sigma-Aldrich). Briefly, MCF7 cells were seeded at approximately $5 \times 10^{3}$ cells per well in 96 well plates containing 100 $\mu 1$ medium, and incubated for 24 hours. After 24 hours incubation at $37^{\circ} \mathrm{C}$, inhibitors were then dosed in concentrations ranging from $100 \mu \mathrm{~m}$ to 1 nm . Cells were further incubated for three days, after which the amount of viable cells were quantified. $10 \mu 1$ of Resazurin solution (Biotium) were added to each well and incubated for 6 h before reading at a fluorescence excitation/emission wavelength of $540 / 590 \mathrm{~nm}$. Fluorescence in each well was then measured using a microplate reader (Synergy neo2 multi-mode reader Biotek INC, Winooski, VT). Nonlinear regression method was used in graph pad prism for calculating $\mathrm{IC}_{50}$ values. A similar viability protocol was utilized for KM-12 and SKMEL-28 cells.

## VI. Cellular Assay Procedure for Hematological Tumors

The human diffuse large B-cell lymphoma cell lines, VAL, RIVA, SUDHL6, and U2932 were previously obtained from Dr. Rimsza (Mayo Clinic Scottsdale) and HT and SUDHL4 were obtained from American Type Culture Collection. All cell lines were cultured in $10 \%$ FBS, $5 \%$ penicillin/streptomycin-supplemented Roswell Park Memorial Institute (RMPI) media and tested for mycoplasma every 6 months and last authenticated on 10/29/2018 using the University of Arizona Genetics Core (Tucson, AZ) with the PowerPlex 16 System (Promega). The cells were maintained at $37^{\circ} \mathrm{C}$ in a humidified atmosphere with $5 \% \mathrm{CO}$ and were sub-cultured one to two times per week. Cell viability assays were performed in 96-well plates with all cells seeded at approximately $5 \times 10^{4}$ cells per well containing $90 \mu 1$ medium and incubated over-night. Inhibitors were then dosed with 11 two-fold concentration dilutions ranging from $10 \mu \mathrm{~m}$ to 10 nm . Cells were further incubated for three days, after which the amount of viable cells were quantified using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) colorimetric assay as per the manufacturer's protocol (Promega). Absorbance was measured using a microplate reader (Cytation 5 imaging reader Biotek) and nonlinear regression method was used in GraphPad Prism software (v6) for generating dose-response curves and calculating $\mathrm{IC}_{50}$ values.

## VII. Anti-proliferative activity of synthesized compounds

| $\begin{gathered} \hline \text { S } \\ \text { No. } \end{gathered}$ | Compound Code | Structure | $\begin{gathered} \hline \text { Cell } \mathrm{IC}_{50}(\mu \mathrm{M}) \\ \text { cell lines } \\ \hline \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MCF7 | KM12 | SKMEL |
| 1. | 6 aa |  | 41.14 | 47.17 | 35.83 |
| 2. | 6ab |  | 10.1 | 28.5 | 93.7 |
| 3. | 6 ac |  | 68.02 | 14.6 | 50.86 |
| 4. | 6ad |  | 40.50 | 134.2 | 37.18 |


| 5. | 6ae |  | 41.50 | nd | nd |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6. | 6af |  | 3.0 | 6.6 | 19.3 |
| 7. | $6 a g$ |  | 26.65 | 69.15 | 29.94 |
| 8. | 6ah |  | nd | nd | nd |
| 9. | 6ba |  | 33.62 | nd | nd |
| 10. | 6bb |  | 33.37 | 42.1 | 84.31 |
| 11. | 6bc |  | 60.92 | nd | nd |
| 12. | 6bd |  | 48.02 | nd | nd |
| 13. | 6be |  | 28.03 | nd | nd |
| 14. | 6bf |  | 56.67 | nd | nd |
| 15. | 6bg |  | 40.79 | nd | nd |
| 16. | 6bh |  | 33.91 | nd | nd |

17. 
18. 

VIII. Activity of 6af against Lymphoma cell lines



[^0]:    * LCMS Yield \# Yields are low due to poor solubility.

