Transition metal-free, visible-light-mediated construction of α,β-diamino esters via decarboxylative radical addition at room-

temperature

Guibing Wu^a, Jingwen Wang^a, Chengyu Liu^a, Maolin Sun^a, Lei Zhang^a, Yueyue Ma^a, Ruihua Cheng^b and Jinxing Ye^a*

a: Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

b: School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

E-mail: <u>yejx@ecust.edu.cn</u>

Contents

1. General Information	S2
2. Synthesis of Substrates and Photocatalysts	S2
3. Optimization Studies	S3
4. General Procedure and Characterization of Products	
5. NMR Spectra of Products	S18
6. References	

1. General Information

General Information. Proton nuclear magnetic resonance (¹H-NMR) spectra and carbon nuclear magnetic resonance (¹³C-NMR) spectra were recorded on a Bruker AV-400 spectrometer (400 MHz and 100 MHz). Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane or referenced to residual solvent. Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane or referenced to residual solvent. Chemical shifts for residual solvent. Data are represented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz). High resolution mass spectrometer Mass spectra (EI) were measured on a Waters Micromass GCT spectrometer. Melting points were measured on a XT3A apparatus. Diastereomeric ratios are determined by spectrums.

Starting Materials. Unless otherwise noted, all reactions were performed under nitrogen atmosphere in Schlenk tube, all chemicals were purchased from commercial sources and used as received. All other solvents, including those for NMR analysis, were used without further purification.

2. Synthesis of Substrates and Photocatalysts

Glyoxylic oxime ethers:

cedure 1: To a solution of alcohol (20.0 mmol) in freshly distilled THF (100 mL) was added triphenylphosphine (22.0 mmol) and *N*-hydroxylphthalimide (22.0 mmol). After the solution was cooled to 0°C diisopropylazodicarboxylate (22.0 mmol) was added dropwise. The solution was allowed to warm to room temperature over 3 h. Reaction progress was monitored by TLC. Hydrazine monohydrate (22.0 mmol) was then added and the solution was allowed

to stir for 30 min. The resulting reaction mixture was filtered to remove the white precipitate. The filtrate was concentrated and subjected to flash chromatography. The resulting product was dissolved in ether and treated with HCl (2.0 M solution in ether) to afford the HCl salt of the *O*-alkylhydroxylamine.^[1]

Procedure 2: Glyoxylic acid (13.4 mmol) was dissolved in ethanol, and then *O*-alkylhydroxylamine hydrochloride (13.4 mmol), *p*-TsOH (1.3 mmol) were successively added. The mixture was heated at reflux for 5 hours. Then ethanol was distilled off. The crude mixture was diluted with CH_2Cl_2 . The organic phase was successively washed with saturated NaHCO₃ (1x) and the resulting aqueous phase was back-extracted with CH_2Cl_2 (2x). The combined organic extracts were washed with saturated aqueous NaCl (1x), dried over MgSO₄, filtered and concentrated *in vacuo*. Purification by flash chromatography (eluent: petroleum ether/ethyl acetate) yielded glyoxylic oxime ether as a colorless oil.^[2]

1a, **1f**, **1g**, **1h** were synthesized according to procedure 2. **1b**, **1c**, **1d**, **1e** were synthesized according to procedure 1 and procedure 2.

Alkyl carboxylic acids:

Alkyl carboxylic acids were commercially available while *N*-Cbz-*L*-proline $2i^{[3]}$, *N*-Bz-*L*proline $2j^{[4]}$, Boc-*O*-benzyl-*L*-hydroxyproline $2k^{[5]}$, *N*-Boc-*L*-Methionine $2n^{[6]}$, *N*-Bocsarcosine $2t^{[7]}$ were synthesized according to literature procedures.

Photocatalysts:

fac-Ir(ppy)₃^[8], Ir(dF-CF₃-ppy)₂(dtbpy)PF₆^[9], Ir(ppy)₂(dmbpy)PF₆^[10], Ru(bpy)₃Cl₂·6H₂O^[11], Acr⁺BF₄⁻ I ^[12] were synthesized according to literature procedures, Riboflavin, Rhodamine B, Acr⁺ClO₄⁻ II, Eosin-Yellow were commercially available.

fac-lr(ppy)3

 $Ir(ppy)_2(dmbpy)(PF_6)$

[Ru(bpy)3]²⁺

Riboflavin

Rhodamine B

 $Acr^{+}BF_{4}^{-}I$

 $Acr^+ClO_4^- \mathbf{II}$

3. Optimization Studies

3.1 Solvent Screening

	СО-Н	K ₂ HPO₄•3H ₂ O Acr ⁺ BF₄ ⁻ I	Bn _O N _{CO2} Et
1a	N [•] 00 ₂ 11 – Boc 2a	Solvent Blue LEDs N ₂ , r.t., 24 h	N ^{-Boc} 3a
Entry ^a	Sol	vent	Yield ^b
1	Me	eCN	64 %
2	DCE		40 %
3	EtOH		Trace
4	DMF		25 %
5	THF		47 %
6	EA		60 %
7	1,4-Dioxane		Trace
8	DCM		73 %
9	Toluene		72 %
10	MeOH		Trace
11	Acetone		64 %
12	<i>n</i> -Hexane		65 %
13	H ₂ O		Trace
14	CHCl ₃		35 %
15	DCM/H ₂ O (2 mL / 2 mL)		69 %
16	DCM/H ₂ O (2 mL / 1 mL)		68 %
17 ^[c]	DCM		55 %
18 ^[d]	DCM		61 %

^{*a*} Unless otherwise noted, all reactions were carried out using 1.0 equiv of **1a** (0.2 mmol), 1.0 equiv of **2a** (0.2 mmol), 2.0 mol% Acr⁺BF₄⁻ **I**, 1.5 equiv of K₂HPO₄·3H₂O (0.3 mmol), solvent (0.1 M) under N₂, room temperature and irradiation with blue LEDs for 24 h. ^{*b*} Isolated yield after silica gel chromatography. ^{*c*} The reaction concentration was 0.05 M. ^{*d*} The reaction concentration was 0.4 M.

3.2 Photocatalysts and light resource Screening

Entry ^a	Photocatalyst	Light resource	Usage	Yield ^b
1	<i>fac</i> -Ir(ppy) ₃	Fluorescence	3 mol%	Trace
2	Ir(dF-CF ₃ -ppy) ₂ (dtbpy)PF ₆	Fluorescence	3 mol%	Trace
3	Ir(ppy) ₂ (dmbpy)PF ₆	Fluorescence	3 mol%	Trace
4	Ru(bpy) ₃ Cl ₂ .6H ₂ O	Fluorescence	3 mol%	Trace
5	Riboflavin	Fluorescence	2 mol%	Trace
6	Rhodamine B	Fluorescence	2 mol%	Trace
7	Acr ⁺ ClO ₄ ⁻ II	Fluorescence	2 mol%	15 %
8	Eosin-Yellow	Fluorescence	2 mol%	Trace
9	Acr ⁺ BF ₄ ⁻ I	Fluorescence	2 mol%	24 %
10 ^[c]	-	Fluorescence	0	0
11	<i>fac</i> -Ir(ppy) ₃	Blue	3 mol%	Trace
12	Ir(dF-CF ₃ -ppy) ₂ (dtbpy)PF ₆	Blue	3 mol%	64 %
13	Ir(ppy) ₂ (dmbpy)PF ₆	Blue	3 mol%	Trace
14	Ru(bpy) ₃ Cl ₂ .6H ₂ O	Blue	3 mol%	Trace
15	Riboflavin	Blue	2 mol%	Trace
16	Rhodamine B	Blue	2 mol%	Trace
17	Acr ⁺ ClO ₄ - II	Blue	2 mol%	40 %
18	Eosin-Yellow	Blue	2 mol%	Trace
19	Acr ⁺ BF ₄ ⁻ I	Blue	2 mol%	73 %
20°	-	Blue	0	0
21 ^d	Acr ⁺ BF ₄ ⁻ I	Blue	2 mol%	75 %

^{*a*} Unless otherwise noted, all reactions were carried out using 1.0 equiv of **1a** (0.2 mmol), 1.0 equiv of **2a** (0.2 mmol), 1.5 equiv of K_2 HPO₄·3H₂O (0.3 mmol), DCM (0.1 M) as solvent, under N₂, room temperature and irradiation with light for 24 h. ^{*b*} Isolated yield after silica gel chromatography. ^{*c*} The reaction was carried out without photocatalyst. ^{*d*} The reaction was carried out with toluene.

3.3 Additive Screening

Bn _{∖O} ́N _{≷∕} CO₂Et .	H N CO ₂ H _	Base Acr⁺BF₄⁻ I Toluene Blue LEDs	Bn _O -N _{CO2} Et
1a	2a	N ₂ , r.t., 24 h	3a
Entry ^a	Base	Usage	Yield ^b
1°	-	0	5 %
2	Cs_2CO_3	1.5 eq	84 %

3	KH ₂ PO ₄	1.5 eq	54 %
4	$K_3PO_4 \cdot 3H_2O$	1.5 eq	83 %
5	NaOAc	1.5 eq	69 %
6	$Na_2HPO_4 \cdot 12H_2O$	1.5 eq	10 %
7	Li ₂ CO ₃	1.5 eq	76 %
8	K_2CO_3	1.5 eq	6 %
9	NaHPO ₄ ·2H ₂ O	1.5 eq	32 %
10	NaHCO ₃	1.5 eq	69 %
11	$K_2HPO_4 \cdot 3H_2O$	1.5 eq	72 %
12	Et ₃ N	1.5 eq	25 %
13	DBU	1.5 eq	84 %
14	2,6-lutidine	1.5 eq	20 %
15	DIPEA	1.5 eq	7 %
16	DABCO	1.5 eq	81 %

^{*a*} Unless otherwise noted, all reactions were carried out using 1.0 equiv of **1a** (0.2 mmol), 1.0 equiv of **2a** (0.2 mmol), 2.0 mol% Acr⁺BF₄⁻ **I**, toluene (0.1 M) as solvent, 1.5 equiv of additive, under N₂, room temperature and irradiation with blue LEDs for 24 h. ^{*b*} Isolated yield after silica gel chromatography. ^{*c*} The reaction was carried out without base.

Bn∖_∠N∖∖∠CO	2Et + CO ₂ H	Cs ₂ CO ₃ Acr⁺BF₄⁻ I	Bn _O N _{CO2} Et
1a	Boc 2a	Toluene Blue LEDs N ₂ , r.t., 24 h	N∽Boc 3a
Entry ^a	Base	Usage	Yield ^b
1	Cs ₂ CO ₃	0.5 eq	75 %
2	Cs_2CO_3	1.0 eq	82 %
3	Cs_2CO_3	1.5 eq	83 %
4	Cs ₂ CO ₃	2.0 eq	85 %
5	Cs_2CO_3	2.5 eq	93 %
6	Cs_2CO_3	3.0 eq	81 %

^{*a*} Unless otherwise noted, all reactions were carried out using 1.0 equiv of **1a** (0.2 mmol), 1.0 equiv of **2a** (0.2 mmol), 2.0 mol% Acr⁺BF₄⁻ **I**, toluene (0.1 M) as solvent, Cs₂CO₃, under N₂, room temperature and irradiation with blue LEDs for 24 h. ^{*b*} Isolated yield after silica gel chromatography.

3.4 Substrate ratio Screening

Bn Ns	CO2Et + CO2H -	Cs ₂ CO ₃ Acr ⁺ BF ₄ ⁻ I	Bn _O N _{CO2} Et
,0, ~	Boc	Toluene Blue LEDs	N-Boc
1a	2a	N ₂ , r.t., 24 h	3a
Entry ^a	2-1a	2-2a	Yield ^b
1	0.2 mmol	0.2 mmol	93
2	0.24 mmol	0.2 mmol	80 %
3	0.3 mmol	0.2 mmol	86 %
4	0.36 mmol	0.2 mmol	87 %
5	0.2 mmol	0.24 mmol	88 %
6	0.2 mmol	0.3 mmol	40 %
7	0.2 mmol	0.36 mmol	90 %

^{*a*} Unless otherwise noted, all reactions were carried out using **1a**, **2a**, 2.0 mol% Acr⁺BF₄⁻ **I**, toluene (0.1 M) as solvent, 2.5 equiv of Cs_2CO_3 (0.5 mmol), under N₂ (freeze-pump-thaw cycles), room temperature and irradiation with blue LEDs for 24 h. ^{*b*} Isolated yield after silica gel chromatography.

4. General Procedure and Characterization of Products

4.1 General Procedure

Glyoxylic oxime 1 (0.2 mmol, 1.0 equiv), alkyl carboxylic acid 2 (0.2 mmol, 1.0 equiv), Cs_2CO_3 (0.5 mmol, 2.5 equiv), Acr^+BF_4 - I (0.002 mmol, 0.02 equiv) and solvent (2 mL) were added to a 10 mL transparent Schlenk tube charged with a magnetic stir bar. The resulting solution was degassed and backfilled with nitrogen via the freeze-pump-thaw procedure for three cycles. The reaction tube was then placed in an irradiation apparatus (at approximately 2 cm away from the light source) equipped with two 30 W blue light LED bulbs ($\lambda max = 450 \text{ nm}$) and stirred at room temperature until TLC showed consumption of starting material. Then reaction mixture was concentrated under reduced pressure and the crude residue was purified by flash chromatography to yield corresponding addition products **3**.

4.2 Gram-Scale Reaction

Glyoxylic oxime **1a** (698 mg, 3.4 mmol), *N*-Boc-*L*-proline **2a** (725 mg, 3.4 mmol), Cs₂CO₃ (2.70 g, 8.4 mmol), Acr⁺BF₄⁻ I (45 mg, 0.07 mmol) and solvent toluene (34 mL) were added to a 100 mL transparent Schlenk tube charged with a magnetic stir bar. The resulting solution was degassed and backfilled with nitrogen via the freeze-pump-thaw procedure for three cycles. The reaction tube was then placed in an irradiation apparatus (at approximately 2 cm away from the light source) equipped with two 30 W blue light LED bulbs (λ max= 450 nm) and stirred at room temperature until TLC showed consumption of starting material. Thenreaction mixture was concentrated under reduced pressure and the crude residue was purified by flash chromatography to yield transparent oil **3a** (1.20 g, 92 %).

4.3 Characterization of Products

Tert-butyl 2-(1-((benzyloxy)amino)-2-ethoxy-2-oxoethyl) pyrrolidine-1-carboxyl-ate (3a). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 15:1); Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) (1.0:1.0 mixture of diastereomers) δ 7.36 – 7.28 (m, 10H), 6.20 (s, 2H), 4.66 (t, *J* = 8.7 Hz, 4H), 4.27 – 4.15 (m, 4H), 4.07 – 3.90 (m, 4H), 3.51 – 3.21 (m, 3H), 3.16 (s, 1H), 1.89 – 1.68 (m, 8H), 1.46 (s, 9H), 1.45 (s, 9H), 1.276 (t, *J* = 7.2 Hz, 3H), 1.273 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (1.0:1.0 mixture of diastereomers, each diastereomer exists as 1.0:1.0 mixture of rotamers) δ 172.7, 172.4, 172.2, 154.6, 154.1, 137.9, 137.8, 128.6 (×2), 128.4, 128.2, 127.7, 126.9, 80.0, 79.5, 77.4, 76.1, 66.6, 66.0, 61.2, 61.1, 57.4, 57.1, 47.0, 46.6, 28.4, 27.8, 23.9, 23.3, 14.2 (×2); HRMS (ESI) calcd for C₂₀H₃₁N₂O₅ (M+H) 379.2155, found 379.2157.

Tert-butyl 2-(2-ethoxy-1-(((2-methylbenzyl)oxy) amino)-2-oxoethyl) pyrrolidine-1carboxylate (3b). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 15:1); Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) (1.5:1.0 mixture of diastereomers) δ 7.34 – 7.28 (m, 1H), 7.25 – 7.10 (m, 7H), 6.18 (s, 2H), 4.70 (s, 2H), 4.67 (s, 2H), 4.30 – 4.11 (m, 4H), 4.10 – 3.84 (m, 4H), 3.50 – 3.00 (m, 4H), 2.34 (s, 6H), 1.78 (d, *J* = 29.8 Hz, 8H), 1.46 (s, 18H), 1.27 (d, *J* = 5.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) (1.5:1.0 mixture of diastereomers, each diastereomer exists as 1:1 mixture of rotamers) δ 172.7, 172.4, 154.9, 154.6, 137.2, 135.5, 130.1, 129.9, 129.8, 128.0, 125.6, 80.0, 79.5, 74.3, 66.6, 66.1, 61.1 (×2), 57.1, 56.8, 46.9, 46.6, 29.7, 28.4, 27.8, 18.9, 14.2 (×2); HRMS (ESI) calcd for C₂₁H₃₃N₂O₅ (M+H) 393.2311, found 393.2312.

Tert-butyl-2-(1-((benzhydryloxy)amino)-2-ethoxy-2-oxoethyl)pyrrolidine-1-carboxylate (3c). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 10:1); Yellow oil; ¹H NMR (400 MHz, CDCl₃) (1.5:1.0 mixture of diastereomers) δ 7.30 (d, *J* = 18.4 Hz, 20H), 6.20 (t, *J* = 49.1 Hz, 2H), 5.70 (s, 1H), 5.68 – 5.59 (m, 1 H), 4.38 – 3.86 (m, 8H), 3.53 – 3.00 (m, 4H), 1.73 (br s, 8H), 1.43 (s, 12H), 1.36 (s, 6H), 1.28 (t, *J* = 6.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) (1.5:1.0 mixture of diastereomers, each diastereomer exists as 1.0:1.0 mixture of rotamers) δ 172.7, 171.2, 154.6, 154.1, 141.6, 141.4, 128.4, 128.2 (×2), 127.5, 127.4, 127.2, 127.1 86.7, 86.6, 79.9, 79.4, 66.2, 61.1, 60.4, 57.2, 56.5, 46.8, 46.2, 28.5, 28.4, 28.1, 27.8, 23.8, 23.0, 14.3, 14.2; HRMS (ESI) calcd for C₂₆H₃₅N₂O₅ (M+H) 455.2468, found 455.2467.

Tert-butyl 2-(2-ethoxy-1-((naphthalen-1-ylmethoxy)amino)-2-oxoethyl)pyrroledi-ne-1carboxylate (3d). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 10:1); Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) (1.3:1.0 mixture of diastereomers) δ 8.12 (d, J = 7.7 Hz, 2H), 7.82 (dd, J = 16.7, 7.9 Hz, 4H), 7.59 – 7.35 (m, 8H), 6.51 – 6.00 (m, 2H), 5.14 (d, J = 3.0 Hz, 2H), 5.11 (s, 2H), 4.31 – 4.10 (m, 4H), 3.97 (s, 4H), 3.53 – 2.99 (m, 4H), 1.92 – 1.64 (m, 8H), 1.44 (d, J = 7.9 Hz, 18H), 1.24 (t, J = 6.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) (1.3:1.0 mixture of diastereomers, each diastereomer exists as 1.0:1.0 mixture of rotamers) δ 172.4, 171.2, 154.7, 154.3, 133.7, 132.0, 128.7, 128.4, 127.7, 127.6, 126.1 (×2), 125.7, 125.2, 80.0, 79.5, 74.5, 74.2, 66.1, 65.5, 61.1, 60.4, 57.4, 56.8, 47.0, 46.6, 28.5, 27.8, 23.9, 23.3, 21.1, 14.2 (×2); HRMS (ESI) calcd for C₂₄H₃₃N₂O₅ (M+H) 429.2311, found 429.2315.

Tert-butyl 2-(2-ethoxy-1-((naphthalen-2-ylmethoxy)amino)-2-oxoethyl)pyrrolidi-ne-1carboxylate (3e). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 10:1); Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) (1.2:1.0 mixture of diastereomers) δ 7.95 – 7.67 (m, 8H), 7.46 (d, *J* = 4.4 Hz, 6H), 6.56 – 6.02 (m, 2H), 4.83 (s, 2H), 4.80 (s, 2H), 4.33 – 3.86 (m, 8H), 3.55 – 3.02 (m, 4H), 1.94 – 1.63 (m, 8H), 1.51 – 1.39 (m, 18H), 1.28 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) (1.2:1 mixture of diastereomers, each diastereomer exists as 1:1 mixture of rotamers) δ 172.8, 172.5, 154.6, 154.1, 135.4, 135.3, 133.2, 133.0, 128.0, 127.7, 126.7, 126.6, 126.5, 126.0, 125.9, 80.0, 79.5, 76.2, 76.0, 66.7, 65.9, 61.3, 61.2, 57.1, 56.9, 47.0, 46.7, 28.5, 28.3, 23.9, 23.3, 14.2; HRMS (ESI) calcd for C₂₄H₃₃N₂O₅ (M+H) 429.2311, found 429.2312.

Tert-butyl 2-(2-ethoxy-1-(methoxyamino)-2-oxoethyl)pyrrolidine-1-carboxylate (3f). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 15:1); Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) (1.1:1.0 mixture of diastereomers) δ 6.66 – 5.85 (m, 2H), 4.29 – 3.96 (m, 8H), 3.47 (s, 3H), 3.44 (s, 3H), 3.43 – 2.95 (m, 4H), 1.93 – 1.73 (m, 8H), 1.47 (s, 9H), 1.43 (s, 9H), 1.25 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) (1.1:1.0 mixture of diastereomers, each diastereomer exists as 1:1 mixture of rotamers) δ 172.7, 172.2, 154.7, 154.2, 80.0, 79.5, 65.8, 61.6, 61.2, 58.3, 57.0, 56.8, 47.1, 28.4 (×2), 27.4, 24.0, 18.4, 14.2 (×2); HRMS (ESI) calcd for C₁₄H₂₇N₂O₅ (M+H) 303.1842, found 303.1845.

Tert-butyl2-(1-((benzyloxy)amino)-2-(tert-butoxy)-2-oxoethyl)pyrrolidine-1-carboxylate(3g). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 15:1); Pale yellow oil;¹H NMR (400 MHz, CDCl₃) (2.5:1.0 mixture of diastereomers) δ 7.38 – 7.27 (m, 9H), 7.26 – 7.23(m, 1H), 6.51 – 5.89 (m, 2H), 4.75 – 4.66 (m, 2H), 4.66 – 4.55 (m, 2H), 4.34 – 3.86 (m, 4H), 3.52- 3.05 (m, 4H), 1.91 – 1.66 (m, 8H), 1.47 (s, 26H), 1.45 (s, 10H); ¹³C NMR (100 MHz, CDCl₃)

(2.5:1.0 mixture of diastereomers, each diastereomer exists as 1.0:1.0 mixture of rotamers) δ 172.1, 171.2, 154.6, 154.1, 138.0, 137.9, 128.6, 128.5, 128.4, 128.3, 128.2, 127.7, 127.6, 81.7, 79.8, 79.4, 75.9, 67.2, 66.2, 57.7, 56.7, 47.3, 46.9, 28.5, 28.1 (×2), 27.8, 27.3, 24.1, 23.6; HRMS (ESI) calcd for C₂₂H₃₅N₂O₅ (M+H) 407.2468, found 407.2469.

Tert-butyl 2-(2-(benzyloxy)-1-((benzyloxy)amino)-2-oxoethyl)pyrrolidine-1-carboxylate (3h). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 15:1); Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) (1.0:1.0 mixture of diastereomers) δ 7.44 – 7.22 (m, 20H), 6.50 – 5.89 (m, 2H), 5.30 – 5.07 (m, 4H), 4.76 – 4.66 (m, 2H), 4.65 – 4.60 (m, 2H), 4.25 – 3.87 (m, 4H), 3.53 – 2.96 (m, 4H), 1.84 – 1.62 (m, 8H), 1.44 (s, 9H), 1.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (1.0:1.0 mixture of diastereomers, each diastereomer exists as 1.0:1.0 mixture of rotamers) δ 172.6, 154.7, 154.3, 137.8, 135.8, 128.6, 128.5, 128.3, 127.7, 80.1, 79.6, 76.1, 67.0 (×2), 65.8, 57.3, 56.7, 47.0, 46.6, 28.5, 28.4, 28.0, 27.7, 23.9, 23.1; HRMS (ESI) calcd for C₂₅H₃₃N₂O₅ (M+H) 441.2311, found 441.2313.

Benzyl 2-(1-((benzyloxy)amino)-2-ethoxy-2-oxoethyl)pyrrolidine-1-carboxylate (3i). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 15:1); Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.19 (m, 10H), 6.14 (s, 1H), 5.24 – 4.95 (m, 2H), 4.82 – 4.42 (m, 2H), 4.30 – 3.72 (m, 4H), 3.57 – 3.05 (m, 2H), 1.98 – 1.61 (m, 4H), 1.26 – 1.18 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 155.3, 155.0, 136.9, 128.7 (×2), 128.5 (×2), 128.3, 128.0, 127.9, 127.8 (×2), 127.7, 76.1, 76.0, 67.1, 66.8, 65.8, 65.7, 61.3, 61.2, 58.2, 57.7, 46.8, 28.3, 27.7, 23.9, 23.2, 14.2 (×2); HRMS (ESI) calcd for C₂₃H₂₉N₂O₅ (M+H) 413.1998, found 413.1999.

Ethyl 2-(1-benzoylpyrrolidin-2-yl)-2-((benzyloxy)amino)acetate (3j). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 10:1); Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) (1.2:1.0 mixture of diastereomers) δ 7.55 – 7.28 (m, 20H), 6.64 – 6.19 (m, 2H), 4.72 (s, 2H), 4.68 (s, 2H), 4.66 – 4.49 (m, 2H), 4.36 – 4.05 (m, 6H), 3.48 – 3.26 (m, 4H), 2.06 – 1.60 (m,

8H), 1.288 (t, J = 14.2 Hz, 3H), 1.286 (t, J = 12.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (1.2:1.0 mixture of diastereomers, each diastereomer exists as 1.0:1.0 mixture of rotamers) δ 172.3, 172.1, 170.7, 170.3, 137.8, 136.8, 130.2, 130.1, 128.6, 128.5, 128.3 (×2), 127.8 (×2), 127.4, 76.1, 76.0, 65.3, 61.4, 56.8, 56.6, 50.7, 27.5, 27.4, 25.2, 25.0, 14.3; HRMS (ESI) calcd for C₂₂H₂₇N₂O₄ (M+H) 383.1893, found 383.1895.

Tert-butyl (4S)-4-(benzyloxy)-2-(1-((benzyloxy)amino)-2-ethoxy-2-oxoethyl)pyro-lidine-1carboxylate (3k). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 10:1); Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.25 (m, 10H), 6.45 – 5.90 (m, 1H), 4.75 – 4.59 (m, 2H), 4.55 – 4.36 (m, 2H), 4.36 – 4.06 (m, 4H), 4.00 – 3.00 (m, 3H), 2.13 – 1.89 (m, 2H), 1.60 – 1.40 (m, 9H), 1.26 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 172.1, 154.7, 154.4, 128.7, 128.6 (×2), 128.5, 128.3 (×2), 127.8 (×2), 127.6, 79.9, 76.7, 76.2, 71.0, 65.9, 65.4, 61.4, 61.3, 58.3, 56.8, 56.5, 52.4, 34.3, 33.7, 28.5, 28.4, 14.2; HRMS (ESI) calcd for C₂₇H₃₇N₂O₆ (M+H) 485.2573, found 485.2576.

Ethyl 2-((benzyloxy)amino)-2-(1-((tert-butoxycarbonyl)glycyl)pyrrolidin-2-yl)acetate (31). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 15:1); Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) (1.5:1.0 mixture of diastereomers) δ 7.42 – 7.25 (m, 10H), 6.35 – 6.10 (m, 2H), 5.47 (s, 2H), 4.74 – 4.64 (m, 2H), 4.64 – 4.54 (m, 2H), 4.46 – 4.09 (m, 6H), 4.04 – 3.66 (m, 6H), 3.44 – 3.08 (m, 4H), 1.98 – 1.70 (m, 8H), 1.44 (d, *J* = 7.7 Hz, 18H), 1.28 (dd, *J* = 14.2, 7.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) (1.5:1.0 mixture of diastereomers, each diastereomer exists as 1.0:1.0 mixture of rotamers) δ 172.2, 172.1, 167.8, 167.2, 155.8, 137.8 (×2), 128.7, 128.5, 128.2, 127.8 (×2), 79.6, 76.1, 76.0, 65.5, 61.3, 57.0, 45.9, 43.2 (×2), 28.4, 27.5, 26.7, 24.1, 24.0, 14.2 (×2); HRMS (ESI) calcd for C₂₂H₃₄N₃O₆ (M+H) 436.2369, found 436.2370.

Tert-butyl 2-(1-((benzyloxy)amino)-2-ethoxy-2-oxoethyl)piperidine-1-carboxylate (3m). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 15:1); Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.27 (m, 5H), 5.99 (s, 1H), 4.70 – 4.53 (m, 2H), 4.36 – 4.19 (m, 2H), 4.18 – 4.02 (m, 1H), 4.02 – 3.68 (m, 2H), 2.50 – 2.40 (m, 1H), 1.58 – 1.28 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 173.1, 155.0, 154.3, 138.0, 128.7 (×2), 128.3, 128.2, 127.8, 127.7, 79.7, 79.5, 76.3, 76.0, 63.8, 63.0, 61.1,50.4, 49.2, 39.7, 38.4, 28.4, 28.3, 26.4, 26.0, 25.1, 25.0, 19.2, 19.1, 14.3, 14.1; HRMS (ESI) calcd for C₂₁H₃₃N₂O₅ (M+H) 393.2311, found 393.2314.

Ethyl 2-((benzyloxy) amino)-3-((tert-butoxycarbonyl) amino)-5-(methylthio) pentanoate (3n). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 10:1); Yellow oil; ¹H NMR (400 MHz, CDCl₃) (1.0:1.0 mixture of diastereomers) δ 7.47 – 7.28 (m, 10H), 6.21 (s, 2H), 4.68 (d, *J* = 6.4 Hz, 4H), 4.60 (d, *J* = 9.6 Hz, 1H), 4.32 – 3.95 (m, 6H), 3.74 – 3.62 (m, 2H), 2.58 – 2.38 (m, 4H), 2.08 (t, *J* = 11.0 Hz, 6H), 1.82 – 1.68 (m, 4H), 1.44 (d, *J* = 5.5 Hz, 9H), 1.41 (s, 9H), 1.29 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) (1.0:1.0 mixture of diastereomers, each diastereomer exists as 1.0:1.0 mixture of rotamers) δ 171.9, 171.6, 155.4, 155.2, 137.5 (×2), 128.7, 128.6, 128.4 (×2), 128.0 (×2), 79.6, 79.5, 76.3, 76.1, 66.6, 66.1, 61.6, 61.5, 50.5, 49.6, 30.7, 30.6, 28.4, 28.3, 15.6, 15.5, 14.2, 14.1; HRMS (ESI) calcd for C₂₀H₃₃N₂O₅S (M+H) 413.2032, found 413.2035.

Ethyl 2-((benzyloxy)amino)-3-((tert-butoxycarbonyl)amino)-6-oxo-6-(tritylamin-o)hexaneate (30). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 10:1); White solid (melting point 146 – 147 °C); ¹H NMR (400 MHz, CDCl₃) (1.0:1.0 mixture of diastereomers) δ 7.33 – 7.21 (m, 40H), 6.25 – 6.01 (m, 2H), 5.5 – 4.81 (m, 2H), 4.73 – 4.60 (m, 4H), 4.23 – 3.57 (m, 8H), 2.26 (d, J = 7.1 Hz, 4H), 1.92 – 1.65 (m, 4H), 1.41 (s, 9H), 1.39 (s, 9H), 1.25 – 1.17 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) (1.0:1.0 mixture of diastereomers, each diastereomer exists as 1.0:1.0 mixture of rotamers) δ 171.7, 171.5, 171.4, 171.3, 156.1, 156.0, 144.8, 128.8 (×2), 128.7, 128.6, 128.4 (×2), 127.9, 126.9 (×2), 79.8, 79.6, 76.3, 76.1, 70.6, 70.5, 66.7, 66.5, 61.6, 58.3, 50.8, 49.7, 34.3, 34.0, 28.4, 28.3, 14.2, 14.1; HRMS (ESI) calcd for $C_{39}H_{46}N_3O_6$ (M+H) 652.3308, found 652.3311.

6-benzyl 1-ethyl 2-((benzyloxy)amino)-3-((tert-butoxycarbonyl) amino) hexanedioate (3p). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 15:1); Yellow solid (melting point 77 – 78 °C); ¹H NMR (400 MHz, CDCl₃) (1.0:1.0 mixture of diastereomers) δ 7.49 – 7.14 (m, 20H), 6.20 (s, 2H), 5.18 – 5.04 (m, 4H), 4.73 – 4.63 (m, 4H), 4.61 (d, *J* = 9.8 Hz, 1H), 4.31 – 4.13 (m, 4H), 4.06 – 3.89 (m, 2H), 3.76 – 3.57 (m, 2H), 2.43 – 2.32 (m, 4H), 1.94 – 1.67 (m, 4H), 1.42 (s, 9H), 1.39 (s, 9H), 1.27 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) (1.0:1.0 mixture of diastereomers, each diastereomer exists as 1.0:1.0 mixture of rotamers) δ 172.9, 172.8, 171.7, 171.5, 155.4, 155.3, 137.5, 135.9, 128.7, 128.6 (×3), 128.5, 128.4, 128.3, 128.0, 79.6, 79.5, 76.3, 76.1, 66.7, 66.4, 66.3, 61.6 (×2), 50.7, 49.8, 30.8, 28.4, 28.3, 27.8, 27.0, 14.2, 14.1; HRMS (ESI) calcd for C₂₇H₃₇N₂O₇ (M+H) 501.2523, found 501.2526.

Ethyl 2-((benzyloxy)amino)-3-((tert-butoxycarbonyl)amino)butanoate (3q). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 10:1); Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) (1.0:1.0 mixture of diastereomers) δ 7.41 – 7.29 (m, 10H), 6.18 (s, 2H), 4.92 (s, 1H), 4.70 – 4.66 (m, 4H), 4.32 – 4.14 (m, 4H), 4.03 (s, 2H), 3.73 – 3.65 (m, 1H), 3.59 – 3.57 (m, 1H), 1.44 (s, 9H), 1.42 (s, 9H), 1.31 – 1.26 (m, 6H), 1.15 (d, J = 6.8 Hz, 3H), 1.00 (d, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (1.0:1.0 mixture of diastereomers, each diastereomer exists as 1.0:1.0 mixture of rotamers) δ 172.0, 171.8, 155.0, 137.6, 137.5, 128.6, 128.4, 128.3, 127.9 (×2), 79.4, 76.2, 76.1, 67.4, 67.0, 61.4, 46.7, 46.1, 28.4, 28.3, 18.4, 17.0, 14.2 (×2); HRMS (ESI) calcd for C₁₈H₂₉N₂O₅ (M+H) 353.1998, found 353.1999.

Ethyl 2-((benzyloxy)amino)-3-((tert-butoxycarbonyl)amino)-5-methylhexanoate (3r). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 15:1); Pale yellow oil; ¹H NMR

(400 MHz, CDCl₃) (1.0:1.0 mixture of diastereomers) δ 7.38 – 7.28 (m, 10H), 6.17 (s, 2H), 4.70 – 4.65 (m, 4H), 4.50 – 4.38 (s, 1H), 4.31 – 4.13 (m, 4H), 4.13 – 3.95 (m, 2H), 1.67 – 1.53 (m, 2H), 1.67 – 1.53 (m, 2H), 1.44 (s, 9H), 1.40 (s, 9H), 1.38 – 1.31 (m, 2H), 1.30 – 1.24 (m, 8H), 0.93 – 0.88 (m, 6H), 0.88 – 0.84 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) (1.0:1.0 mixture of diastereomers, each diastereomer exists as 1.0:1.0 mixture of rotamers) δ 171.1 (×2), 154.4, 154.2, 136.7, 136.6, 127.6 (×2), 127.3, 126.8, 78.3, 78.2, 75.2, 74.9, 65.9, 65.4, 60.4, 60.2, 48.3, 47.6, 40.7, 39.7, 27.4, 27.3, 23.7, 23.6, 22.2, 21.9, 21.0, 20.6, 13.2, 13.1; HRMS (ESI) calcd for C₂₁H₃₅N₂O₅ (M+H) 395.2468, found 395.2470.

Ethyl (4S)-2-((benzyloxy)amino)-3-((tert-butoxycarbonyl)amino)-4-methylhe-xanoate (3s). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 15:1); Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) (1.2:1.0 mixture of diastereomers) δ 7.59 – 7.27 (m, 10H), 6.30 – 6.02 (m, 2H), 4.75 – 4.67 (m, 2H), 4.66 (s, 2H), 4.35 – 4.35 (m, 1H), 4.35 – 4.10 (m, 4H), 3.83 – 3.65 (m, 4H), 2.07 – 1.42 (m, 6H), 1.41 (s, 12H), 1.40 (s, 6H), 1.28 (t, *J* = 7.2 Hz, 6H), 0.97 – 0.79 (m, 11H), 0.74 (d, *J* = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (1.2:1.0 mixture of diastereomers, each diastereomer exists as 1.0:1.0 mixture of rotamers) δ 172.7, 172.6, 155.7, 155.5, 137.7 (×2), 128.6 (×2), 128.3 (×3), 127.9, 127.8, 79.3, 79.2, 76.2, 76.1, 65.7, 61.3, 61.2, 54.4, 52.9, 37.2, 36.6, 28.3, 26.6, 24.4, 15.9, 15.7, 14.2, 14.1, 11.4, 11.0; HRMS (ESI) calcd for C₂₁H₃₅N₂O₅ (M+H) 395.2468, found 395.2469.

Ethyl 2-((benzyloxy)amino)-3-((tert-butoxycarbonyl)amino)-4,4-dimethylpentan-oate (3t). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 20:1); Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) (2.0:1.0 mixture of diastereomers) δ 7.39 – 7.26 (m, 10H), 6.17 – 6.01 (m, 2H), 4.67 (s, 4H), 4.53 (d, *J* = 10.7 Hz, 1H), 4.26 – 4.16 (m, 4H), 3.87 – 3.60 (m, 4H), 1.42 (s, 6H), 1.39 (s, 12H), 1.29 (t, *J* = 7.0 Hz, 6H), 0.92 (s, 13H), 0.86 (s, 5H); ¹³C NMR (100 MHz, CDCl₃) (2.0:1.0 mixture of diastereomers, each diastereomer exists as 1.0:1.0 mixture of rotamers) δ 173.1, 173.0, 155.8, 155.5, 138.0, 137.8, 128.6, 128.4, 128.3, 128.2, 127.8 (×2), 79.3 (×2), 76.1, 76.0, 63.5, 62.8, 61.5, 58.6, 35.2, 35.1, 28.4, 28.3, 26.9, 26.6, 14.1; HRMS (ESI) calcd for C₂₁H₃₅N₂O₅ (M+H) 395.2468, found 395.2471.

Ethyl 2-((benzyloxy)amino)-3-((tert-butoxycarbonyl)(methyl)amino)propanoate (3u). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 15:1); Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 6.15 – 5.94 (m, 1H), 4.69 (s, 2H), 4.27 – 4.13 (m, 2H), 3.92 - 3.64 (m, 1H), 3.47 - 3.21 (m, 2H), 2.83 (s, 3H), 1.43 (s, 9H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 172.2, 155.8, 155.3, 137.7, 137.6, 128.5, 128.3, 127.8, 80.0, 79.7, 76.2, 63.2, 62.7, 61.3, 48.5, 48.2, 35.7, 35.4, 28.3, 14.2; HRMS (ESI) calcd for C₁₈H₂₉N₂O₅ (M+H) 353.1998, found 353.2000.

Ethyl 2-((benzyloxy)amino)-3-((tert-butoxycarbonyl)amino)-4-phenylbutanoate (3v). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 15:1); Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) (1.5:1.0 mixture of diastereomers) δ 7.56 – 7.05 (m, 20H), 6.23 (s, 2H), 4.90 (d, J = 8.9 Hz, 1H), 4.72 (s, 2H), 4.66 (s, 2H), 4.49 – 3.81 (m, 6H), 3.79 – 3.52 (m, 2H), 2.97 – 2.78 (m, 2H), 2.78 – 2.58 (m, 2H), 1.36 (s, 7H), 1.34 (s, 11H), 1.28 – 1.24 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) (1.5:1.0 mixture of diastereomers, each diastereomer exists as 1.0:1.0 mixture of rotamers) δ 172.0, 171.9, 155.0, 129.5, 129.4, 128.6 (×2), 128.5, 128.4 (×3), 128.0, 127.9, 126.6 (×2), 79.5, 79.4, 76.2, 76.1, 65.5, 61.5, 61.4, 52.4, 51.6, 38.8, 38.0, 28.3 (×2), 14.2, 14.1; HRMS (ESI) calcd for C₂₄H₃₃N₂O₅ (M+H) 429.2311, found 429.2312.

Ethyl 2-((benzyloxy)amino)-3,3-dimethylbutanoate (3w). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 15:1); Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.27 (m, 5H), 6.10 (d, *J* = 11.8 Hz, 1H), 4.65 (s, 2H), 4.27 – 4.16 (m, 2H), 3.30 (d, *J* = 11.8 Hz, 1H), 1.28 (t, *J* = 7.2 Hz, 3H), 0.92 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 174.0, 138.0, 128.7, 128.2, 127.7, 75.7, 72.0, 60.6, 33.1, 27.0, 14.4; HRMS (ESI) calcd for C₁₅H₂₄NO₃ (M+H) 266.1768, found 266.1770.

Ethyl 2-((benzyloxy)amino)-3-methoxybutanoate (3x). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 15:1); Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) (1.2:1.0 mixture of diastereomers) δ 7.37 – 7.28 (m, 10H), 6.29 – 6.12 (m, 2H), 4.71 (s, 2H), 4.70 (s, 2H), 4.33 – 4.14 (m, 4H), 3.71 – 3.48 (m, 4H), 3.28 (s, 3H), 3.26 (s, 3H), 1.29 (t, J = 7.1 Hz, 6H), 1.16 (t, J = 6.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) (1.2:1.0 mixture of diastereomers, each diastereomer exists as 1.0:1.0 mixture of rotamers) δ 172.0 (×2), 137.8, 137.7, 128.6, 128.5, 128.3 (×2), 127.8 (×2), 76.2 (×2), 75.8, 75.6, 68.3, 67.9, 61.0 (×2), 56.9 (×2), 16.3, 16.0, 14.3 (×2); HRMS (ESI) calcd for C₁₄H₂₂NO₄ (M+H) 268.1471, found 268.1472.

Tert-butyl2-(2-(1-((benzyloxy)amino)-2-ethoxy-2-oxoethyl)pyrrolidine-1-carbo-
yl)pyrrolidine-1-carboxylate (3y). Isolated by silica gel chromatography (petroleum ether/ethyl
acetate = 5:1); Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) (1.2:1.0 mixture of diastereomers) δ
7.39 – 7.29 (m, 10H), 6.39 (d, J = 8.6 Hz, 1H), 6.21 (s, 1H), 4.66 (d, J = 5.4 Hz, 2H), 4.62 (d, J =
4.7 Hz, 2H), 4.52 – 4.41 (m, 2H), 4.40 – 4.29 (m, 2H), 4.26 – 4.12 (m, 4H), 4.10 – 3.87 (m, 2H),
3.78 – 3.65 (m, 2H), 3.63 – 3.55 (m, 2H), 3.50 – 3.28 (m, 4H), 2.16 – 2.00 (m, 5H), 1.92 – 1.79 (m,
11H), 1.45 (s, 10H), 1.37 (s, 8H), 1.30 – 1.26 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) (1.2:1.0
mixture of diastereomers, each diastereomer exists as 1.0:1.0 mixture of rotamers) δ 172.4, 172.1,
171.9, 171.6, 154.5, 153.7, 138.0, 137.7, 128.6, 128.4 (×2), 128.3 (×2), 128.2 (×2), 127.8, 127.7,
79.4, 75.9, 75.8, 65.4, 61.2, 57.8, 56.7, 46.8, 46.6, 30.3, 29.5, 28.5, 28.4, 26.8, 24.5, 24.4, 24.1,
23.5, 14.2, 14.1; HRMS (ESI) calcd for C₂₅H₃₈N₃O₆ (M+H) 476.2682, found 475.2684.

Tert-butyl2-(2-(1-((benzhydryloxy)amino)-2-ethoxy-2-oxoethyl)pyrrolidine-1-
carbonyl)pyrrolidine-1-carboxylate (3z). Isolated by silica gel chromatography (petroleum
ether/ethyl acetate = 5:1); Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) (1.3:1.0 mixture of
diastereomers) δ 7.36 - 7.27 (m, 16H), 7.58 - 7.17 (m, 4H), 6.42 - 6.19 (m, 2H), 5.68 (d, J = 7.2
Hz, 1H), 5.64 (d, J = 6.5 Hz, 1H), 4.50 - 3.95 (m, 10H), 3.67 - 3.26 (m, 8H), 2.06 - 1.74 (m, 16H),
1.45 (s, 9H), 1.42 (s, 2H), 1.37 (d, J = 1.8 Hz, 7H), 1.30 (td, J = 7.2, 3.5 Hz, 6H); ¹³C NMR (100
MHz, CDCl₃) (1.3:1.0 mixture of diastereomers, each diastereomer exists as 1.0:1.0 mixture of

rotamers) δ 172.0, 171.5, 154.5, 141.5, 141.4, 141.3, 128.4, 128.3 (×3), 128.2 (×2), 128.1 (×2), 127.6 (×2), 127.5 (×3), 127.4, 127.1, 127.0 (×2), 86.6 (×2), 79.4, 65.7, 65.5, 61.3, 61.2, 57.7, 57.6, 56.6, 56.1, 46.8, 46.6, 30.3, 29.5, 28.5, 28.4, 27.2, 26.7, 24.4, 24.3, 24.1, 23.5, 14.3 (×2); HRMS (ESI) calcd for C₃₁H₄₂N₃O₆ (M+H) 552.2995, found 552.2996.

Ethyl 2-((benzhydryloxy)amino)-2-(1-((tert-butoxycarbonyl)glycyl)pyrrolidin-2-yl)acetate (3ab). Isolated by silica gel chromatography (petroleum ether/ethyl acetate = 5:1); Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) (1.6:1.0 mixture of diastereomers) δ 7.40 – 7.27 (m, 16H), 7.26 – 7.20 (m, 4H), 6.34 (d, *J* = 8.6 Hz, 1H), 6.21 (d, *J* = 8.6 Hz, 1H), 5.66 (d, *J* = 13.7 Hz, 1H), 5.59 (s, 1H), 5.49 – 5.37 (m, 2H), 4.39 – 4.12 (m, 6H), 3.96 – 3.55 (m, 6H), 3.37 – 3.05 (m, 4H), 1.92 – 1.64 (m, 8H), 1.44 (s, 18H), 1.29 (t, *J* = 6.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) (1.6:1.0 mixture of diastereomers, each diastereomer exists as 1.0:1.0 mixture of rotamers) δ 172.2, 172.1, 167.7, 167.1, 155.8, 141.5, 141.4, 141.3, 128.3 (×2), 128.2 (×2), 127.7, 127.5, 127.1, 127.0, 86.8, 86.7, 79.6, 65.6, 61.3, 57.3, 57.0, 45.8 (×2), 43.2, 28.4, 24.0, 18.4, 14.2; HRMS (ESI) calcd for C₂₈H₃₈N₃O₆ (M+H) 512.2682, found 512.2684.

5. NMR Spectra of Products

Tert-butyl 2-(1-((benzyloxy)amino)-2-ethoxy-2-oxoethyl) pyrrolidine-1-carboxylate (3a).

Tert-butyl 2-(2-ethoxy-1-(((2-methylbenzyl)oxy) amino)-2-oxoethyl) pyrrolidine-1-carboxylate (3b).

Tert-butyl-2-(1-((benzhydryloxy)amino)-2-ethoxy-2-oxoethyl)pyrrolidine-1carboxylate (3c)

Tert-butyl 2-(2-ethoxy-1-((naphthalen-1-ylmethoxy)amino)-2-oxoethyl)pyrroledine-1-carboxylate (3d).

Tert-butyl 2-(2-ethoxy-1-((naphthalen-2-ylmethoxy)amino)-2-oxoethyl)pyrrolidine-1-carboxylate (3e).

Tert-butyl 2-(2-ethoxy-1-(methoxyamino)-2-oxoethyl)pyrrolidine-1-carboxylate (3f).

Tert-butyl2-(1-((benzyloxy)amino)-2-(tert-butoxy)-2-oxoethyl)pyrrolidine-1-
carboxylate (3g).

Tert-butyl2-(2-(benzyloxy)-1-((benzyloxy)amino)-2-oxoethyl)pyrrolidine-1-
carboxylate (3h).

Benzyl 2-(1-((benzyloxy)amino)-2-ethoxy-2-oxoethyl)pyrrolidine-1-carboxylate (3i).

Ethyl 2-(1-benzoylpyrrolidin-2-yl)-2-((benzyloxy)amino)acetate (3j).

Tert-butyl (4S)-4-(benzyloxy)-2-(1-((benzyloxy)amino)-2-ethoxy-2-oxoethyl)pyrolidine-1-carboxylate (3k).

Ethyl 2-((benzyloxy)amino)-2-(1-((tert-butoxycarbonyl)glycyl)pyrrolidin-2-yl)acetate (3l).

carboxylate (3m).

Ethyl 2-((benzyloxy) amino)-3-((tert-butoxycarbonyl) amino)-5-(methylthio) pentanoate (3n).

Ethyl 2-((benzyloxy)amino)-3-((tert-butoxycarbonyl)amino)-6-oxo-6-(tritylamino)hexaneate (30).

hexanedioate (3p).

Ethyl 2-((benzyloxy)amino)-3-((tert-butoxycarbonyl)amino)butanoate (3q).

Ethyl 2-((benzyloxy)amino)-3-((tert-butoxycarbonyl)amino)-5-methylhexanoate (3r).

Ethyl (4S)-2-((benzyloxy)amino)-3-((tert-butoxycarbonyl)amino)-4-methylhexanoate (3s).

Ethyl 2-((benzyloxy)amino)-3-((tert-butoxycarbonyl)amino)-4,4-dimethylpentanoate (3t).

Ethyl 2-((benzyloxy)amino)-3-((tert-butoxycarbonyl)(methyl)amino)propanoate (3u).

Ethyl 2-((benzyloxy)amino)-3-((tert-butoxycarbonyl)amino)-4-phenylbutanoate (3v).

Ethyl 2-((benzyloxy)amino)-3,3-dimethylbutanoate (3w).

Ethyl 2-((benzyloxy)amino)-3-methoxybutanoate (3x).

Tert-butyl 2-(2-(1-((benzyloxy)amino)-2-ethoxy-2-oxoethyl)pyrrolidine-1-carbo-yl)pyrrolidine-1-carboxylate (3y).

Tert-butyl 2-(2-(1-((benzhydryloxy)amino)-2-ethoxy-2-oxoethyl)pyrrolidine-1-carbonyl)pyrrolidine-1-carboxylate (3z).

Ethyl 2-((benzhydryloxy)amino)-2-(1-((tert-butoxycarbonyl)glycyl)pyrrolidin-2-yl)acetate (3ab).

S45

6. Reference

- [1] W. P. Malachowski, M. Winters, J. B. DuHadaway, A. Lewis-Ballester, S. Badir, J.Wai, M.Rahman, E. Sheikh, J. M. LaLonde, S. Yeh, G. C.Prendergast and A. J. Muller, *Eur. J. Med. Chem.*, 2016, **108**, 564.
- [2] E. Godineau and Y. Landais, J. Am. Chem. Soc., 2007, 129, 12662.
- [3] E. J. Corey, S. Shibata and R. K. Bakshi, J. Org. Chem., 1988, 53, 2861.
- [4] Y. Sasano, S. Nagasawa, M. Yamazaki, M. Shibuya, J. Park and Y. Iwabuchi, Angew. Chem. Int. Ed., 2014, 53, 3236.
- [5] P. Dockerty, J. G. Edens, M. B. Tol, D. M. Angeles, A. Domenech, Y. Liu, A. K. H. Hirsch, J. Veening, D. Scheffers and M. D.Witte, *Org. Biomol. Chem.*, 2017, 15, 894.
- [6] T. Maji, S. Banerjee, A. Bose and T. K. Mandal, Polym. Chem., 2017, 8, 3164.
- [7] S. Sato, T. Kawada, H. Takikawa and K. Suzuki, Synlett., 2017, 28, 1719.
- [8] A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau and M. E. Thompson, J. Am. Chem. Soc., 2003, 125, 7377.
- [9] J. C. Tellis, D. N. Primer and G. A. Molander, Science, 2014, 345, 433.
- [10] J. D. Slinker, A. A. Gorodetsky, M. S. Lowry, J.-J. Wang, S. Parker, R. Rohl, S. Bernhard and G. G. Malliaras, J. Am. Chem. Soc., 2004, 126, 2763.
- [11] J. A. Broomhead, C. G. Young and P. Hood, *John Wiley & Sons*, Inc., 2007, 28, 338.
- [12] A. Joshi-Pangu, F. Lévesque, H. G. Roth, S. F. Oliver, L. Campeau, D. Nicewicz and D. A.DiRocco, J. Org. Chem., 2016, 81, 7244.