Supporting Information

Iminyl Radical-Promoted Imino Sulfonylation, Imino Cyanogenation and Imino Thiocyanation of $\boldsymbol{\gamma}, \delta$-Unsaturated Oxime Esters: Synthesis of Versatile Functionalized Pyrrolines

Yuebo Wang, Jie Ding, Jinghui Zhao, Wan Sun, Chang Lian, Chen Chen* and Bolin Zhu*

Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.

E-mail: hxxycc@tjnu.edu.cn; hxxyzbl@tjnu.edu.cn..

Table of Contents

General Information: S02
Preparation of Starting Materials: S02
Characterization of Starting Materials: S06
General Procedures for the Synthesis of Imino-Functionalization Products: S09
Mechanistic Studies: S10
Derivatization: -S12
Characterization of Products: -S13
NMR Spectra: S30

General Information:

The ${ }^{1} \mathrm{H}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded with Bruker 400 MHz spectrometer instruments in CDCl_{3}. The chemical shifts (δ) of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were measured in ppm, referenced to residual ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals of nondeuterated $\mathrm{CDCl}_{3}(\delta=7.26$ and 77.00), as internal standards. All solvents were obtained from commercial sources and were purified according to standard procedures. Purification of products was accomplished by flash chromatography using silica gel (200~300 mesh). Thin layer chromatography (TLC) was performed on Merck silica gel GF254 plates and visualized by UV-light (254 nm). Melting points were obtained on a Yanaco-241 apparatus and are uncorrected. HRMS were recorded on VG ZAB-HS mass spectrometer with ESI resource.

Preparation of Starting Materials:

General Procedure 1:

To a stirred solution of propargyl alcohol (1.0 equiv) in anhydrous THF under N_{2}, was added CuI (0.2 equiv). The resulting suspension was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{R}^{1} \mathrm{MgBr}(2.5$ equiv) in anhydrous THF, which was freshly prepared from Mg and $\mathrm{R}^{1} \mathrm{Br}$, was added via cannula, at such a rate as to maintain the temperature below $10^{\circ} \mathrm{C}$. The reaction was allowed to warm slowly to room temperature overnight. The reaction was again cooled to $0^{\circ} \mathrm{C}$, and then was treated with $\mathrm{H}_{2} \mathrm{O}$ to give a light green suspension. Then it was treated with EtOAc. After treatment with 1 M hydrochloric acid, a green gelatinous precipitate was formed, which was thoroughly extracted with EtOAc. The combined organic layers were dried on $\mathrm{Na}_{2} \mathrm{SO} 4$. After removing the solvent, the residue was purified by column chromatography to give SI-1. (Angew. Chem., Int. Ed. 2015, 54, 3092.)

To a solution of the appropriate alcohol (1.0 equiv) in anhydrous $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ was added PBr_{3} (1.0 equiv). The solution was warmed to room temperature and stirred for

7 hours. The reaction was cooled to $0^{\circ} \mathrm{C}$ and water was added. The organic portion was isolated, washed with brine, dried and concentrated in vacuum to afford SI-2, which was used in the next step without further purification. (Angew. Chem., Int. Ed. 2015, 54, 3092.$)$

General Procedure 2:

To a stirred suspension of KOH (10.0 equiv) in toluene ($1 \mathrm{~mL} / \mathrm{mol}$) containing of acetophenone (1.0 equiv) and 18-crown-6 ($6 \mathrm{mg} / \mathrm{mmol}$) was added $\mathrm{CH}_{3} \mathrm{I}(0.5 \mathrm{~mL} / \mathrm{mol})$ dropwise. The mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, separation of the solid phase by filtration and evaporation of the toluene. The remainder was purified by column chromatography on silica gel to afford corresponding products SI-3. (Org. Lett. 2017, 19, 5940.)

To a solution of SI-3 (1.0 equiv) in anhydrous ${ }^{t} \mathrm{BuOH}(3.0 \mathrm{~mL} / \mathrm{mmol})$ was added $\mathrm{KO}^{t} \mathrm{Bu}$ (5.0 equiv) and the mixture was stirred at room temperature for 5 minutes. Then, SI-2 (1.5 equiv) was added via syringe and the mixture was heated at $90^{\circ} \mathrm{C}$ for 16 hours. The mixture was cooled to room temperature and $\mathrm{H}_{2} \mathrm{O}$ was added. The mixture was extracted with EtOAc. The organic extracts were combined, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by column chromatography to give SI-4. (Angew. Chem., Int. Ed. 2015, 54, 3092.)
$\mathrm{H}_{2} \mathrm{NOH}-\mathrm{HCl}$ (2.5 equiv) and NaOAc (2.5 equiv) were added to a solution of SI-4 (1.0 equiv) in $\mathrm{MeOH}(4.0 \mathrm{~mL} / \mathrm{mmol})$ in a round-bottomed flask which was fitted with a reflux condenser. The mixture was heated at $80^{\circ} \mathrm{C}$ until consumption of starting material was observed by TLC. After cooling to room temperature, the mixture was diluted with EtOAc, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum to give SI-5, which was used for the next step without further purification.
(Angew. Chem., Int. Ed. 2015, 54, 3092.)
To a solution of SI-5 (1.0 equiv) in anhydrous DCM ($4 \mathrm{~mL} / \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}$ (1.2 equiv) followed by $\mathrm{R}^{3} \mathrm{COCl}$ (1.2 equiv) dropwise via syringe. The mixture was then warmed to room temperature and stirred until the reaction was complete as observed by TLC. $\mathrm{MeOH}(1.0 \mathrm{~mL} / \mathrm{mmol})$ was then added and the mixture stirred for further 10 minutes. The mixture was diluted with DCM, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by column chromatograph to afford 1. (Angew. Chem., Int. Ed. 2015, 54, 3092.)

General Procedure 3:

To a 100 mL flame-dried round-bottomed flask equipped with a stirring bar was added diisopropylamine (2.5 equiv) and $n-\operatorname{BuLi}$ (2.5 equiv) in THF, and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . Then nitriles (1.0 equiv) was slowly added at $78{ }^{\circ} \mathrm{C}$. After stirring for 1 h , SI-2 (1.2 equiv) was added dropwise and the reaction mixture was allowed to warm up to room temperature while stirring overnight. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. Organic materials were then extracted three times with EtOAc. The organic phase was washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was evaporated to give a crude mixture, which was purified by flash column chromatography to afford SI-6. (ACS Catal. 2016, 6, 5571.)

To a 100 mL flame-dried round-bottomed flask equipped with a stirring bar was added SI-6 (1.0 equiv). It was solubilized in anhydrous THF (0.25 M). The solution was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{R}^{3} \mathrm{MgBr}$ (1.5 equiv) was slowly added to the reaction flask. Then, the mixture was stirred overnight in a sealed tube at $60^{\circ} \mathrm{C}$. After cooling down to $0^{\circ} \mathrm{C}$, reaction was quenched with 3 N HCl (aq.) and warmed up for 4 h to finish the hydrolysis. The crude mixture was then extracted with EtOAc, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by flash column
chromatography to give SI-7. (ACS Catal. 2016, 6, 5571.)
(Note: The remaining procedure follows the General Procedure 2, step 3 and step 4.)

General Procedure 4:

To a magnetically stirred aldehyde (1.0 equiv), was added isopropylmagnesium bromide (1.5 equiv), which was prepared from magnesium (1.5 equiv) and isopropyl bromide (1.5 equiv). The reaction mixture was stirred at RT for 36 h . Then, it was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the aqueous layer was extracted with EtOAc. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude secondary alcohol was purified by column chromatography on silica using petroleum ether/ethyl acetate as eluent.

A solution of secondary alcohol (1.0 equiv) in ${ }^{t} \mathrm{BuOMe}$ was stirred at $0^{\circ} \mathrm{C}$ while Jones reagent (4.0 equiv) was added dropwise. The resulting mixture was allowed to warm to room temperature and stirred overnight. The ${ }^{t} \mathrm{BuOMe}$ layer was then separated from the aqueous layer, which was extracted with EtOAc for 3 times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude ketone product SI- 3 was directly used in the next step without further purification.
(Note: The remaining procedure follows the General Procedure 2, step 2, step 3 and step 4.)

Characterization of Starting Materials (New Compounds):

2,2,4-trimethyl-1-(p-tolyl)pent-4-en-1-one O-benzoyl oxime (1b) was Synthesized by General Procedure 3, appearance: yellow oil; R_{f} : 0.3 (PE:EA, 20:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.55(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}$, $1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.94-4.91(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=$ $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 175.11,163.48,142.01,137.78,132.68,130.33,130.15,129.14,128.45$, 128.07, 126.46, 114.87, 46.68, 41.32, 26.16, 25.15, 21.10. ESI-MS: Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{2}:\left[\mathrm{M}+\mathrm{H}^{+}\right] 336.1958$, found 336.1959.

1-(4-chlorophenyl)-2,2,4-trimethylpent-4-en-1-one O-benzoyl oxime (1c) was Synthesized by General Procedure 2, appearance: yellow oil; $\mathrm{R}_{\mathrm{f}}: 0.6$ (PE:EA, 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}$, $2 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{dd}, J=11.0,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 2 \mathrm{H}), 4.99-$ $4.93(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 173.89,163.27,141.85,134.37,134.27,132.91,131.65$, $130.38,129.15,128.23,128.11,115.06,46.77,41.40,26.24,25.17$. ESI-MS: Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{ClNO}_{2}:\left[\mathrm{M}+\mathrm{H}^{+}\right] 356.1412$, found 356.1413 .

2,2,4-trimethyl-1-(m-tolyl)pent-4-en-1-one O-benzoyl oxime (1d) was Synthesized by General Procedure 2, appearance: yellow oil; $\mathrm{R}_{\mathrm{f}}: 0.5$ (PE:EA, 10:1). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.37(\mathrm{~m}$, $1 \mathrm{H}), 7.28(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 2 \mathrm{H}), 4.93-4.91(\mathrm{~m}$,
$1 \mathrm{H}), 4.82(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.92,163.33,141.94,137.33,133.06,132.64,130.26$, 129.06, 128.64, 128.01, 127.65, 126.92, 123.62, 114.90, 46.63, 41.19, 26.13, 25.11, 21.25. ESI-MS: Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{2}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$336.1958, found 336.1960.

1-(3-methoxyphenyl)-2,2,4-trimethylpent-4-en-1-one
Obenzoyl oxime (1e) was Synthesized by General Procedure 3, appearance: yellow oil; $\mathrm{R}_{\mathrm{f}}: 0.2$ (PE:EA, 20:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.46 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{dd}, J=8.3$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 2.39(\mathrm{~s}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.83$, 163.64, 159.11, 142.22, 134.60, 132.89, 129.37, 129.11, 129.04, 128.27, 119.26, $115.09,113.59,112.47,55.31,46.90,41.48,26.36,25.36$. ESI-MS: Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$352.1907, found 352.1911.

1-(3,4-dimethoxyphenyl)-2,2,4-trimethylpent-4-en-1-one Obenzoyl oxime (1f) was Synthesized by General Procedure 4, appearance: while soild; M.p.: 85-88 ${ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}: 0.8$ (PE:EA, 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.57$ (m, 2H), $7.45-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-$ $6.67(\mathrm{~m}, 2 \mathrm{H}), 4.95-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}$, $2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.63,163.54,148.59$, $148.23,142.11,132.77,129.13,128.85,128.16,125.43,119.20,114.74,110.35$, 110.09, 55.78, 55.66, 46.82, 41.51, 26.32, 25.16. ESI-MS: Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$382.2013, found 382.2014.

2,2-dimethyl-4-methylene-1-phenyloctan-1-one O-benzoyl oxime (1d) was Synthesized by General Procedures 1 and 2, appearance: yellow oil; R_{f} : 0.5 (PE:EA, 20:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52$ (dd, $J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.45 $-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.92(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 2 \mathrm{H}), 2.05-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H}), 1.28$ $-1.24(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.28$, $163.54,146.12,133.38,132.83,129.27,129.00,128.20,127.92,126.66,113.46$, 44.92, 41.53, $38.17,30.29,26.19,22.39,13.96$. ESI-MS: Calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{2}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$364.2271, found 364.2272.

2,2-dimethyl-4-(phenoxymethyl)-1-phenylpent-4-en-1-one Obenzoyl oxime (1f) was Synthesized by General Procedure 2, appearance: yellow oil; $\mathrm{R}_{\mathrm{f}}: 0.6$ (PE:EA, $\left.5: 1\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52$ (dd, $J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.43-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.23$ (ddd, $J=7.3,6.8,4.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.94-$ $6.86(\mathrm{~m}, 3 \mathrm{H}), 5.42(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 2 \mathrm{H}), 1.34(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.61,163.48,158.43,141.21,133.07,132.86$, 129.29, 129.23, 128.79, 128.27, 128.17, 127.96, 126.59, 120.66, 116.78, 114.67, 71.68, 42.19, 41.30, 26.52. ESI-MS: Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{3}:\left[\mathrm{M}+\mathrm{H}^{+}\right] 414.2064$, found 414.2066.

(1-(2-methylallyl)cyclohexyl)(phenyl)methanone O-benzoyl oxime (1g) was Synthesized by General Procedure 2, appearance: yellow oil; $\mathrm{R}_{\mathrm{f}}: 0.4$ (PE:EA, 20:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.46-7.38(\mathrm{~m}$, 4H), $7.28-7.22$ (m, 4H), 4.97 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95$ (s, 1H), 2.38 (s, 2H), $2.05-$ $1.98(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.43,163.60,141.90,133.27,132.82,129.31,129.09,128.25$, $128.22,127.91,126.82,114.92,45.14,34.25,31.91,29.35,25.95,25.47,22.68,22.46$. ESI-MS: Calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{2}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right] 362.2115$, found 362.2116 .

General Procedures for the Synthesis of IminoFunctionalization Products:

General Procedure for Iminosulfonylation:

In a 38 mL sealed tube, the mixture of γ, δ-unsaturated oxime $\mathbf{1}(0.2 \mathrm{mmol})$, sodium sulfinate $2(0.4 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(36.3 \mathrm{mg}, 0.2 \mathrm{mmol})$ were dissolved in anhydrous $\mathrm{MeCN}(2.0 \mathrm{~mL})$. Then, the reaction mixture was thoroughly degassed by vacuum purge-and-refill with N_{2}. The reaction mixture was heated to $90^{\circ} \mathrm{C}$ for 2 h . When the reaction was finished, the mixture was cooled to room temperature and the solvents were removed under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum Ether) to give the iminosulfonylation products 3 .

General Procedure for Iminocyanogenation:

In a 38 mL sealed tube, the mixture of γ, δ-unsaturated oxime $1(0.2 \mathrm{mmol}), \mathrm{CuCN}$ $(44.8 \mathrm{mg}, 0.5 \mathrm{mmol})$ were dissolved in anhydrous $\mathrm{MeCN}(2.0 \mathrm{~mL})$. Then, the reaction mixture was thoroughly degassed by vacuum purge-and-refill with N_{2}. The reaction mixture was heated to $90^{\circ} \mathrm{C}$ for 2.5 h . When the reaction was finished, the mixture was cooled to room temperature and the solvents were removed under reduced pressure. The residue was purified by column chromatography on silica gel ($\mathrm{EtOAc} /$ Petroleum Ether) to give the iminocyanogenation products 4.

General Procedure for Iminothiocyanation:
In a 38 mL sealed tube, the mixture of γ, δ-unsaturated oxime $\mathbf{1}(0.2 \mathrm{mmol})$, CuSCN ($60.8 \mathrm{mg}, 0.5 \mathrm{mmol}$) were dissolved in anhydrous $\mathrm{MeCN}(2.0 \mathrm{~mL})$. Then, the reaction mixture was thoroughly degassed by vacuum purge-and-refill with N_{2}. The reaction mixture was heated to $90^{\circ} \mathrm{C}$ for 2.5 h . When the reaction was finished, the mixture was cooled to room temperature and the solvents were removed under
reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum Ether) to give the iminothiocyanation products 5.

Mechanistic studies:

a)

In a 38 mL sealed tube, the mixture of $\mathbf{1 a}(64.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(71.2 \mathrm{mg}$, $0.4 \mathrm{mmol})$ were dissolved in anhydrous $\mathrm{MeCN}(2.0 \mathrm{~mL})$. Then, the reaction mixture was thoroughly degassed by vacuum purge-and-refill with N_{2}. The reaction mixture was heated to $90^{\circ} \mathrm{C}$ for 2 h . Thin-layer chromatography (TLC) analysis indicated that no reaction.
b)

In a 38 mL sealed tube, the mixture of $\mathbf{1 a}(64.2 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{2 a}(71.2 \mathrm{mg}, 0.4$ $\mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(36.3 \mathrm{mg}, 0.2 \mathrm{mmol})$ and TEMPO ($125.0 \mathrm{mg}, 0.8 \mathrm{mmol}$) were dissolved in anhydrous $\mathrm{MeCN}(2.0 \mathrm{~mL})$. Then, the reaction mixture was thoroughly degassed by vacuum purge-and-refill with N_{2}. The reaction mixture was heated to 90 ${ }^{\circ} \mathrm{C}$ for 2.0 h . Thin-layer chromatography (TLC) analysis indicated that 3aa was not detected and radical trapping product 6 was obtained in 65% yield. (46.3 mg , yellow oil)

In a 38 mL sealed tube, the mixture of $\mathbf{1 a}(64.2 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{CuCN}(44.8 \mathrm{mg}$, $0.5 \mathrm{mmol})$, TEMPO ($125.0 \mathrm{mg}, 0.8 \mathrm{mmol}$) were dissolved in anhydrous MeCN (2.0 $\mathrm{mL})$. Then, the reaction mixture was thoroughly degassed by vacuum purge-and-refill with N_{2}. The reaction mixture was heated to $90{ }^{\circ} \mathrm{C}$ for 2.5 h . Thin-layer chromatography (TLC) analysis indicated that $\mathbf{4 a}$ was not detected and radical
trapping product $\mathbf{6}$ was obtained in 75% yield. (53.4 mg , yellow oil)

6: appearance: yellow oil; $\mathrm{R}_{\mathrm{f}}: 0.5$ (PE:EA, $5: 1$). ${ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{dd}, J=5.1,1.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.92(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.44(\mathrm{~s}, 6 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 178.01, 135.37, 128.97, 128.07, 128.01, 82.70, $72.54,60.08,51.93,48.98,39.78,33.28,33.12,29.61,27.95,26.70,20.64,20.35$, 17.07. ESI-MS: Calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}:\left[\mathrm{M}+\mathrm{H}^{+}\right] 357.2900$, found 357.2905 .
c)

In a 38 mL sealed tube, the mixture of $\mathbf{1 a}(64.2 \mathrm{mg}, 0.2 \mathrm{mmol})$, $\mathbf{2 a}(71.2 \mathrm{mg}, 0.4$ $\mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(36.3 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 1,1-diphenylethylene ($72.1 \mathrm{mg}, 0.4 \mathrm{mmol}$) were dissolved in anhydrous $\mathrm{MeCN}(2.0 \mathrm{~mL})$. Then, the reaction mixture was thoroughly degassed by vacuum purge-and-refill with N_{2}. The reaction mixture was heated to $90{ }^{\circ} \mathrm{C}$ for 2 h . 3aa was obtained in 20% isolated yield and the sulfonyl radical coupling product could be detected by ESI-HRMS.

Derivatization:

The mixture of $\mathbf{4 a}(45.2 \mathrm{mg}, 0.2 \mathrm{mmol})$, solid $\mathrm{KOH}(140.3 \mathrm{mg}, 2.5 \mathrm{mmol})$ and ${ }^{t} \mathrm{BuOH}(1 \mathrm{~mL})$ was stirred at $80{ }^{\circ} \mathrm{C}$ overnight. The reaction was cooled to room temperature and extracted with EtOAc. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure. The residue was purified by column chromatography with pure EA to give the product $7(36.6 \mathrm{mg}, 75 \%)$ as a yellow oil. (Reference: Org. Lett. 2017, 19, 3255.)

The mixture of $\mathbf{4 a}(45.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and concentrated $\mathrm{HCl}(1 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ for 24 h . The reaction was quenched by $\mathrm{NaOH}(2 \mathrm{M})$ and aqueous layer was washed with EtOAc, then the aqueous layer was acidified by $\mathrm{HCl}(2 \mathrm{M})$, and extracted with EtOAc. Collected organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and solvent was evaporated under reduced pressure. The residue was purified by column chromatography with petroleum ether/EA (2:1) to give the product $\mathbf{8}(40.7 \mathrm{mg}$, 83\%) as a slight yellow oil. (Reference: Org. Lett. 2017, 19, 3255.)

To a 50 mL round-bottom flask equipped with a magnetic stirring bar were added $5 \mathbf{5}$ ($64.5 \mathrm{mg}, 0.25 \mathrm{mmol}$), N -hydroxybenzimidoyl chloride ($59 \mathrm{mg}, 0.38 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}$ ($51 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$. The mixture was stirred at RT for 5 h . The solvent was removed in vacuo, and the crude product was purified by column chromatography using Petroleum Ether/EA (30:1) to give the product 9 (75.4 mg , 80\%) as a white solid. (Reference: ACS Catal. 2017, 7, 8441)

To a 38 mL oven-dried Sealed tube was charged with $\mathbf{5 a}$ ($51.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), ZnCl_{2} ($27.3 \mathrm{mg}, 0.2 \mathrm{mmol}$), and $\mathrm{NaN}_{3}(19.5 \mathrm{mg}, 0.3 \mathrm{mmol}) .{ }^{i} \mathrm{PrOH}(1 \mathrm{~mL})$ was then injected into the tube by syringe. The resulting mixture was then heated to $55^{\circ} \mathrm{C}$ and stirred
vigorously for 3 h . Upon completion of the reaction, the mixture was diluted with EtOAc. The solvent was then removed under reduced pressure. The crude product was isolated by column chromatography with pure EA to give the product $\mathbf{1 0}$ (47.0 $\mathrm{mg}, 78 \%$) as a white solid. (Reference: Asian J. Org. Chem. 2017, 6, 682)

Characterization of Catalytic Products:

3aa: yield: 72%, 51.1 mg ; appearance: yellow oil; R_{f} : 0.2 (PE:EA, 4:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.60-7.53$ (m, 2H), $7.41-7.29(\mathrm{~m}, 5 \mathrm{H}), 3.60(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}$, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H})$, $1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.48,144.30,138.82,134.24,129.78$, $129.59,128.11,128.06,127.77,70.67,66.53,52.14,51.02,28.98,28.32,21.57,21.54$. ESI-MS: Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$356.1679, found 356.1677.

3ba: yield: 88%, 65.0 mg ; appearance: yellow solid; M.p.:117-121 ${ }^{\circ}$ C. $\mathrm{R}_{\mathrm{f}}: 0.4$ (PE:EA, 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79$ (d, $J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.49$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.13$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.60(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}$, $3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.02$, 144.21, 139.72, 138.70, 131.12, 129.71, $128.75,128.02,127.70,70.37,66.50,51.89,51.16,28.99,28.87,28.36,21.51,21.24$. ESI-MS: Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right] 370.1835$, found 370.1834.

3ca: yield: $50 \%, 38.9 \mathrm{mg}$; appearance: yellow solid; M.p.:130-135 ${ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}: 0.5$ (PE:EA, 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78$ (d, $J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.56(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.34(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~d}, J=13.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.13$, $144.30,138.73,135.80,132.52,129.75,129.50,128.33,127.72,70.69,66.32,51.95$, 51.00, 29.03, 28.95, 28.19, 21.55. ESI-MS: Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClNO}_{2} \mathrm{~S}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 390.1289, found 390.1288 .

3da: yield: $45 \%, 33.2 \mathrm{mg}$; appearance: yellow oil; R_{f} : 0.5 (PE:EA, 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.35(\mathrm{~m}$, $2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=11.1,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{~d}, J=14.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.33$ (d, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (d, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (s, 3H), 2.34 (s, 3H), $2.00(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.60,144.22,138.74,137.77,134.12,130.33,129.71,128.76$, $127.88,127.70,124.87,70.53,66.47,52.09,50.93,28.97,28.90,28.32,21.53,21.36$. ESI-MS: Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$370.1835, found 370.1836.

3ea: yield: $57 \%, 43.9 \mathrm{mg}$; appearance: yellow oil; R_{f} : 0.1 (PE:EA, 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=8.0,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{dd}, J=8.1,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J$ $=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H})$, $1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.25,159.28,144.29,138.71,135.52$, 129.74, 129.06, 127.70, 120.35, 115.20, 113.73, 70.60, 66.46, 55.21, 52.12, 50.96, 28.95, 28.90, 28.32, 21.53. ESI-MS: Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$386.1784, found 386.1788.

3fa: yield: $85 \%, 70.6 \mathrm{mg}$; appearance: yellow oil; R_{f} : 0.4 (PE:EA, 1:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{dd}, \mathrm{J}=$ $5.0,3.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.16(\mathrm{dd}, \mathrm{J}=8.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$,
$3.78(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.94,150.44,148.51,144.08,138.68,129.58$, 127.57, 126.52, 120.97, 111.63, 110.11, 70.03, 66.46, 55.77, 55.73, 51.63, 51.41, 29.12, 28.85, 28.49, 21.38. ESI-MS: Calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~S}:\left[\mathrm{M}+\mathrm{H}^{+}\right] 416.1890$, found 416.1891.

3ga: yield: 73\%, 57.7 mg ; appearance: yellow oil; $\mathrm{R}_{\mathrm{f}}: 0.3$ (PE:EA, 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 2 \mathrm{H})$, $7.32(\mathrm{dd}, J=11.9,7.8 \mathrm{~Hz}, 5 \mathrm{H}), 3.60(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.63(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 6 \mathrm{H}), 1.58$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.35(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $179.48,144.27,138.81,135.26,129.74,128.98,128.03,127.93,127.71,71.42,66.64$, 58.25, 44.26, 35.43, 35.25, 29.70, 25.31, 23.08, 22.87, 21.53. ESI-MS: Calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{~S}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$396.1992, found 396.1998.

3ha: yield: $71 \%, 57.5 \mathrm{mg}$; appearance: brown oil; $\mathrm{R}_{\mathrm{f}}: 0.3$ (PE:EA, 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.78(\mathrm{~m}, 5 \mathrm{H}), 7.71$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~d}, J=14.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.42(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~d}, J=$ $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $144.30,138.74,133.82,132.73,129.78,128.65,127.93,127.78,127.76,127.58$, $126.95,126.30,125.64,70.67,66.43,52.16,51.20,29.22,29.05,28.52,21.54$. ESIMS: Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$406.1835, found 406.1836.

3ia: yield: 75\%, 51.2 mg ; appearance: yellow solid; M.p.:132$138^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}: 0.3$ (PE:EA, $\left.3: 1\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$),
7.59 (dd, $J=8.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.31$ (m, 5H), $4.43-4.33$ (m, 1H), 3.87 (dd, $J=$ $14.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=14.0,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{dd}, J=13.0,6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=13.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.90,144.59,137.12,133.92,129.81,128.16,128.07,127.84$, 62.65, 62.19, 51.09, 48.27, 27.16, 25.68, 21.57. ESI-MS: Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right] 342.1522$, found 342.1521 .

3ja: yield: $22 \%, 14.4 \mathrm{mg}$; appearance: yellow oil; $\mathrm{R}_{\mathrm{f}}: 0.5$ (PE:EA, 2:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72$ (d, $\left.J=7.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.38(\mathrm{dd}, J=18.7,7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.49(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.01$ $-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.89,144.17,138.39$, $133.88,130.68,129.64,128.25,127.84,127.82,74.55,65.31,35.63,33.08,27.89$, 21.52. ESI-MS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$328.1366, found 328.1368.

3ab: yield: 73%, 49.8 mg ; appearance: yellow oil; $\mathrm{R}_{\mathrm{f}}: 0.5$ (PE:EA, 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.56(\mathrm{~m}$, $3 \mathrm{H}), 7.51(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 3 \mathrm{H}), 3.62(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}$, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H})$, $1.43(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.43,141.63,134.11$, 133.29, 129.57, 129.11, 128.06, 128.00, 127.65, 70.59, 66.41, 52.07, 51.06, 29.59, 28.91, 28.26. ESI-MS: Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$342.1522, found 342.1523 .

OMe 3ac: yield: $63 \%, 46.9 \mathrm{mg}$; appearance: yellow oil; R_{f} : 0.2 (PE:EA, 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{dd}, \mathrm{J}=8.1$, $1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~d}, \mathrm{~J}=$ $14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~d}, \mathrm{~J}=13.6$
$\mathrm{Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $178.32,163.41,134.13,133.20,129.86,129.53,128.04,127.98,114.25,70.55,66.62$, 55.58, 55.54, 52.01, 50.89, 28.89, 28.25. ESI-MS: Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 372.1628 , found 372.1627 .

3ad: yield: $66 \%, 47.4 \mathrm{mg}$; appearance: yellow oil; R_{f} : 0.3 (PE:EA, 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94$ - 7.89 (m, 2H), 7.56 (dd, $J=8.1$, $1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.44(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}$, $3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.90,165.44(\mathrm{~d}, J=$ 255.8 Hz), $137.52(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 133.72,130.57(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 129.68,127.98(\mathrm{~d}, J$ $=12.6 \mathrm{~Hz}), 116.38,116.15,70.51,66.21,51.95,50.78,28.96,28.85,28.08 .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-104.06. ESI-MS: Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{FNO}_{2} \mathrm{~S}:\left[\mathrm{M}+\mathrm{H}^{+}\right] 360.1428$, found 360.1429 .

3ae: yield: $36 \%, 27.6 \mathrm{mg}$; appearance: yellow oil; $\mathrm{R}_{\mathrm{f}}: 0.2$ (PE:EA, 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01$ (q, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}$), $7.54-7.50(\mathrm{~m}$, $2 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 3 \mathrm{H}), 3.60(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}$, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$, $1.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.61, 178.51, 145.25, 140.47, 133.89, 129.74, 128.85, 128.22, 128.09, 128.04, 70.52, 66.31, 52.05, 51.22, 29.18, 28.99, 28.27, 26.83. ESI-MS: Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$384.1628, found 384.1630.

COOEt 3af: yield: $52 \%, 43.0 \mathrm{mg}$; appearance: yellow oil; R_{f} : 0.3 (PE:EA, 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15$ (d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.97 (d, J =
$8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 3 \mathrm{H}), 4.43(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.39(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}$, $\mathrm{J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~d}, \mathrm{~J}=5.3$ $\mathrm{Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 178.47, 164.97, 145.19, 134.80, 133.88, $130.23,129.69,128.08,128.02,127.82,70.52,66.34,61.65,52.04,51.21,29.63$, 29.08, 28.26, 14.19. ESI-MS: Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$414.1734, found 414.1736.

3ag: yield: $57 \%, 40.5 \mathrm{mg}$; appearance: yellow oil; $\mathrm{R}_{\mathrm{f}}: 0.3$ (PE:EA, 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ (s, 2H), $7.60-7.55$ (m, 2H), $7.41-$ 7.32 (m, 5H), 3.61 (d, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=13.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.37,141.51,139.36,134.16,134.06,129.56$, $128.99,128.07,128.01,124.75,70.61,66.36,52.09,50.99,29.01,28.96,28.24,21.20$. ESI-MS: Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right] 356.1679$, found 356.1680.

3ah: yield: $64 \%, 47.5 \mathrm{mg}$; appearance: yellow oil; R_{f} : 0.3 (PE:EA, 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58$ (dd, $J=8.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.49 (dd, $J=6.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.11$ (m, 1H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J$ $=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 178.47, 159.96, 142.81, 134.16, 130.24, 129.59, 128.11, $128.02,119.91,119.81,112.12,70.64,66.34,55.60,52.13,50.98,29.01,28.95,28.28$. ESI-MS: Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right] 372.1628$, found 372.1629.

3ai: yield: $36 \%, 27.8 \mathrm{mg}$; appearance: yellow oil; R_{f} : 0.2 (PE:EA, 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.38-8.39(\mathrm{~m}$, $1 \mathrm{H}), 8.22-8.17$ (m, 1H), 7.66 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (dd, $J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38$
(t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=$ $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.45$ (s, 3H), $1.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 178.56, 148.17, 143.69, 133.60, $133.51,130.33,129.87,128.11,127.93,127.58,123.41,70.42,66.40,51.98,51.36$, 29.37, 28.99, 28.23. ESI-MS: Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$387.1373, found 387.1374.

3aj: yield: $47 \%, 33.4 \mathrm{mg}$; appearance: yellow oil; R_{f} : 0.4 (PE:EA, 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ (s, 2H), $7.60-7.55$ (m, 2H), $7.41-$ 7.33 (m, 5H), 3.61 (d, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=13.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.51,141.51,139.42,134.18,134.11,129.61$, 129.03, 128.12, 128.04, 124.79, 70.65, 66.36, 52.14, 50.98, 29.04, 28.99, 28.27, 21.25. ESI-MS: Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$356.1679, found 356.1680.

3ak: yield: $42 \%, 32.9 \mathrm{mg}$; appearance: yellow oil; $\mathrm{R}_{\mathrm{f}}: 0.3$ (PE:EA, 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.48(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.88(\mathrm{~m}$, $4 \mathrm{H}), 7.67-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.21(\mathrm{~m}$, $2 \mathrm{H}), 3.71$ (d, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.04(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.72,138.50,135.15,133.96,132.16,129.58,129.45,129.41$, 129.37, 129.04, 128.04, 127.99, 127.88, 127.51, 122.60, 70.69, 66.28, 52.06, 51.03, 29.09, 28.98, 28.23. ESI-MS: Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$392.1679, found 392.1673.

3al: yield: $60 \%, 45.7 \mathrm{mg}$; appearance: brown oil; $\mathrm{R}_{\mathrm{f}}: 0.2$ (PE:EA, 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J$
$=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.51(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}$, $3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 178.79, 140.86, 139.15, 134.01, 133.12, 129.75, 128.19, 128.06, 127.09, 70.66, 68.03, 52.14, 51.03, 29.67, 29.03, 28.31. ESI-MS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ClNO}_{2} \mathrm{~S}_{2}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$382.0697, found 382.0699.

3am: yield: 45\%, 25.1 mg ; appearance: yellow oil; R_{f} : 0.3 (PE:EA, 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.32(\mathrm{~m}$, $3 \mathrm{H}), 3.40(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~d}, J=$ $13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 179.24,134.11,129.65,128.24,127.86,69.93,64.95$, 51.88, 51.13, 44.08, 29.41, 28.98, 27.98. ESI-MS: Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 280.1366, found 280.1367 .

4a: yield: $75 \%, 33.9 \mathrm{mg}$; appearance: yellow oil; R_{f} : 0.1 (PE:EA, 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{dd}, \mathrm{J}=7.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 2.74(\mathrm{~d}, \mathrm{~J}=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, \mathrm{~J}=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.00(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 180.04,133.99,129.75,128.23,128.03,117.99,70.00,52.30,51.30,32.01$, 28.92, 28.56, 28.20. ESI-MS: Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$227.1543, found 227.1544.

4b: yield: 70\%, 29.7 mg ; appearance: brown oil; R_{f} : 0.1 (PE:EA, 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{dd}, \mathrm{J}=8.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.39(\mathrm{~m}$, $3 H), 4.39-4.24(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{dd}, \mathrm{J}=16.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, \mathrm{J}=16.7,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.24(\mathrm{dd}, \mathrm{J}=12.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{dd}, \mathrm{J}=12.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 182.09,133.84,129.98,128.28,127.93,117.75,63.62$, 51.44, 46.87, 26.99, 25.97, 24.56. ESI-MS: Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$213.1386, found 213.1387.

4c: yield: $46 \%, 27.1 \mathrm{mg}$; appearance: yellow oil; R_{f} : 0.2 (PE:EA, 15:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66$ (dd, $J=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38 (d, $J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 2.72$ (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.87(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.68(\mathrm{~m}, 6 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.27-$ $1.01(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.57,134.56,129.43,128.18,128.08$, 118.64, 76.11, 51.96, 46.82, 46.27, 29.66, 28.98, 28.64, 28.27, 28.04, 27.65, 26.46, 26.35. ESI-MS: Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$295.2169, found 295.2172 .

4d: yield: $65 \%, 34.9 \mathrm{mg}$; appearance: yellow oil; $\mathrm{R}_{\mathrm{f}}: 0.2$ (PE:EA, 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 3 \mathrm{H}), 2.67$ (s, 2H), 2.05 (d, $J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.43$ $(\mathrm{s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.25(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.89,134.33,129.58,128.21,128.04,118.22,73.09,52.12,48.84$, 40.94, 30.42, 28.62, 28.58, 26.57, 22.99, 13.92. ESI-MS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 269.2012, found 269.2015 .

4e: yield: $39 \%, 22.5 \mathrm{mg}$; appearance: yellow oil; R_{f} : 0.2 (PE:EA, 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81$ (dd, $J=7.7,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.49 (d, $J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J$ $=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 180.82, 145.73, 134.11, 129.96, 128.60, 128.32, 128.23, 127.37, 125.52, 117.71, 74.23, 52.47, 52.08, 34.11, 27.44, 27.26. ESI-MS: Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$289.1699, found 289.1700 .

4f: yield: $60 \%, 38.2 \mathrm{mg}$; appearance: yellow oil; R_{f} : 0.1 (PE:EA, 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{dd}, \mathrm{J}=9.2,6.1 \mathrm{~Hz}$, $3 \mathrm{H}), 7.20(\mathrm{dd}, \mathrm{J}=8.4,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-6.80(\mathrm{~m}, 3 \mathrm{H}), 4.03(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (d, J = 9.0 Hz, 1H), 2.84 (d, J = 16.6 Hz, 1H), 2.79 (d, J = $16.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.25(\mathrm{~d}, \mathrm{~J}=$ $13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.64,158.40,133.91,129.87,129.48,128.21,128.11,121.33$, 117.61, 114.52, 73.26, 73.11, 52.43, 47.16, 28.77, 28.44, 28.11. ESI-MS: Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$319.1805, found 319.1811.

4g: yield: $72 \%, 34.6 \mathrm{mg}$; appearance: yellow oil; R_{f} : 0.1 (PE:EA, 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~d}$, $\mathrm{J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}^{\text {NMR }}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.27,139.91,131.20,128.94,128.08,118.08,69.79$, 52.21, 51.63, 32.16, 29.05, 28.65, 28.40, 21.30. ESI-MS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 241.1699 , found 241.1700 .

4h: yield: $62 \%, 31.8 \mathrm{mg}$; appearance: yellow oil; R_{f} : 0.2 (PE:EA, 4:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-7.70(\mathrm{~m}, 2 \mathrm{H}), 6.89$ (d, $J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~d}, J=13.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.97$ (d, $J=13.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.48 ($\mathrm{s}, 3 \mathrm{H}$), 1.47 ($\mathrm{s}, 3 \mathrm{H}$), 1.41 ($\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 178.40,160.96,129.80,126.30,118.10,113.62,69.51,55.29$, 51.97, 51.88, 32.18, 29.15, 28.65, 28.50. ESI-MS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 257.1648, found 257.1650.

4i: yield: 75%, 39.0 mg ; appearance: yellow oil; $\mathrm{R}_{\mathrm{f}}: 0.2$ (PE:EA, 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 2 \mathrm{H})$, 2.68 (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.99$ (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 178.42,135.99,132.46,129.49,128.50,117.91,70.05,52.25,51.44,32.08,28.92$, 28.58, 28.20. ESI-MS: Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ClN}_{2}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$261.1153, found 261.1152.

4 j : yield: $83 \%, 47.5 \mathrm{mg}$; appearance: light green oil; R_{f} : 0.2 (PE:EA, 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J$ $=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 2 \mathrm{H})$, $2.12(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.45,150.68,148.77,126.50,121.06,118.14$, 111.64, 110.27, 69.51, 55.95, 55.91, 51.99, 32.18, 29.29, 28.64. ESI-MS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$287.1754, found 287.1753.

4k: yield: $67 \%, 37.0 \mathrm{mg}$; appearance: brown oil; $\mathrm{R}_{\mathrm{f}}: 0.2$ (PE:EA, 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.90-7.83(\mathrm{~m}, 4 \mathrm{H}), 7.52-$ 7.50 (m, 2H), 2.72 (s, 2H), 2.18 (d, $J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.55$ $(\mathrm{s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.30,133.82$, $132.74,131.43,128.61,127.92,127.83,127.58,126.92,126.32,125.57,118.03$, 70.01, 52.40, 51.65, 32.13, 29.15, 28.64, 28.47. ESI-MS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 277.1699, found 277.1701.

41: yield: 75\%, 39.9 mg ; appearance: green oil; R_{f} : 0.2 (PE:EA,

5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.48$ (m, 2H), 7.38 (dt, $J=2.7,2.2 \mathrm{~Hz}, 3 \mathrm{H}$), $2.68(\mathrm{~s}, 2 \mathrm{H}), 2.09(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.54(\mathrm{~m}, 8 \mathrm{H})$, $1.48(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.31(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 180.74,135.19$, $129.11,128.09,128.02,118.12,70.79,58.38,44.95,35.42,35.11,32.39,29.34,25.23$, 23.07, 22.97. ESI-MS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$267.1856, found 267.1857.

5a: yield: $80 \%, 41.3 \mathrm{mg}$; appearance: yellow oil; $\mathrm{R}_{\mathrm{f}}: 0.2$ (PE:EA, 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70$ (dd, $J=7.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.42 7.36 (m, 3H), 3.43 (d, $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ (d, $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J=13.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.94(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 179.88,133.97,129.84,128.28,128.06,113.49,71.74,52.38$, 50.61, 46.97, 29.64, 29.11, 28.01. ESI-MS: Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$259.1263, found 259.1264.

5b: yield: $65 \%, 31.7 \mathrm{mg}$; appearance: green oil; R_{f} : 0.2 (PE:EA, 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ (dd, $J=7.9,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.44 - 7.36 (m, $3 \mathrm{H}), 4.39(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J=12.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{dd}$, $J=12.7,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 181.77, 133.86, 129.99, 128.28, 127.92, 112.82, 67.14, 51.39, 46.63, 39.85, 26.99, 25.94. ESI-MS: Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$245.1107, found 245.1108.

5c: yield: $75 \%, 48.9 \mathrm{mg}$; appearance: light yellow oil; $\mathrm{R}_{\mathrm{f}}: 0.4$ (PE:EA, 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67$ (dd, $J=7.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.43-$ $7.35(\mathrm{~m}, 3 \mathrm{H}), 3.60(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=14.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.60(\mathrm{~m}, 7 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$, 1.33 - $1.14(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 179.64, 134.19, 129.69, 128.26, $128.12,113.90,77.46,52.05,45.66,45.57,45.22,28.54,28.40,27.98,27.58,26.42$, 26.38, 26.35. ESI-MS: Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{~S}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$327.1889, found 327.1888 .

5d: yield: 54\%, 32.4 mg ; appearance: yellow oil; $\mathrm{R}_{\mathrm{f}}: 0.3$ (PE:EA, 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 3.46(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 2 \mathrm{H}), 1.80(\mathrm{dd}, J=$ 12.3, $3.3 \mathrm{~Hz}, 1 \mathrm{H}$), $1.71(\mathrm{dd}, J=12.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.37-$ $1.29(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.76,134.06$, 129.70, 128.21, 128.06, 113.59, 74.63, 52.12, 48.16, 45.61, 40.04, 28.79, 28.32, 26.54, 23.01, 13.88. ESI-MS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$301.1733, found 301.1733.

5e: yield: 35%, 22.4 mg ; appearance: yellow oil; $\mathrm{R}_{\mathrm{f}}: 0.3$ (PE:EA, 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.42$ (m, $5 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H})$, $1.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 180.86, 145.31, 133.84, 130.13, 128.61, 128.36, 128.31, 127.47, 125.89, 113.54, 76.05, 52.11, 52.06, 48.38, 27.41, 27.35. ESIMS: Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right] 321.1420$, found 321.1421.

5f: yield: 73%, 51.1 mg ; appearance: yellow oil; R_{f} : 0.2 (PE:EA, 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.40(\mathrm{~m}$, 3H), $7.33-7.29$ (m, 2H), $7.02-6.92$ (m, 3H), 4.25 (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ (d, $J=$ $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.14(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.61,158.37,133.66,130.14,129.54,128.33,128.24,121.38,114.51,113.31$, 74.91, 72.48, 52.41, 47.12, 43.21, 29.07, 28.37. ESI-MS: Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OS}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$351.1526, found 351.1527 .

5g: yield: $67 \%, 36.5 \mathrm{mg}$; appearance: green oil; $\mathrm{R}_{\mathrm{f}}: 0.3$ (PE:EA, 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.19 (d, $J=8.0$ Hz, 2H), 3.43 (d, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.19 (d, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (s, 3H), 2.14 (d, J $=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 179.46, 140.08, 130.99, 128.98, 128.12, 113.57, 71.47, 52.25, 50.87, 47.12, 29.22, 28.15, 28.01, 21.30. ESI-MS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$273.1420, found 273.1419.

5h: yield: $55 \%, 31.7 \mathrm{mg}$; appearance: yellow oil; $\mathrm{R}_{\mathrm{f}}: 0.2$ (PE:EA, 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77-7.72(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.82$ (s, 3H), 3.43 (d, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.17$ (d, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~d}, J=$ $13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 178.53,161.02,129.86,126.12,113.64,71.17,55.28$, 52.02, 51.12, 47.19, 29.33, 28.23, 28.00. ESI-MS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 289.1369, found 289.1370.

5i: yield: $68 \%, 39.7 \mathrm{mg}$; appearance: yellow oil; R_{f} : 0.2 (PE:EA, 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.43(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.94(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.48,136.16,132.28,129.57,128.57,113.37,71.83,52.28,50.80$, 46.87, 29.11, 28.00. ESI-MS: Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{~S}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$293.0874, found 293.0875.

$\mathbf{5 j}$: yield: $81 \%, 51.5 \mathrm{mg}$; appearance: green oil; $\mathrm{R}_{\mathrm{f}}: 0.2$ (PE:EA, 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=$
$8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~d}, J=12.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=13.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 178.47, $150.82,148.92,126.42,121.03,113.56,111.96,110.24,71.23,56.01,55.91,52.00$, 51.36, 47.12, 29.54, 28.36, 28.02. ESI-MS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 319.1475 , found 319.1477.

5k: yield: $50 \%, 32.4 \mathrm{mg}$; appearance: brown oil; R_{f} : 0.3 (PE:EA, 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.90-7.83(\mathrm{~m}, 4 \mathrm{H}), 7.55-$ $7.50(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=13.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.51,133.95,132.81,131.30,128.71,128.03,128.00,127.64$, $127.05,126.38,125.63,113.55,71.79,52.51,51.02,47.10,29.39,28.33,28.07$. ESIMS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right] 309.1420$, found 309.1421.

51: yield: $80 \%, 47.7 \mathrm{mg}$; appearance: yellow oil; $\mathrm{R}_{\mathrm{f}}: 0.2$ (PE:EA, 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.51$ (m, 2H), 7.39 (dt, $J=5.7$, $2.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.45(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=13.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.03(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.55(\mathrm{~m}, 9 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.92,135.04,129.26,128.14,128.06,113.54,72.53$, 58.44, 47.08, 44.11, 35.28, 35.19, 28.83, 25.26, 23.09, 22.99. ESI-MS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{~S}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$299.1576, found 299.1577.

7: yield: $75 \%, 36.6 \mathrm{mg}$; appearance: yellow oil; R_{f} : 0.5 (pure EA). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69$ (dd, $\left.J=7.9,1.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.43$ - 7.37 (m, 3H), $5.58(\mathrm{~s}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.00$ (d, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.04,173.86,134.29,129.76,128.28,127.97,69.83$, 53.45, 51.07, 50.28, 28.84, 28.68, 28.00. ESI-MS: Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 245.1648, found 245.1649.

8: yield: $83 \%, 40.7 \mathrm{mg}$; appearance: slight yellow oil; R_{f} : 0.5 (PE:EA, 1:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.75(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}$, 2H), $7.49-7.38(\mathrm{~m}, 3 \mathrm{H}), 2.75(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~d}$, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.91,172.47,132.64,130.64,128.48,128.14,69.05$, 53.35, 51.30, 48.99, 28.80, 28.76, 27.67. ESI-MS: Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 246.1489, found 246.1487.

9: yield: $80 \%, 75.4 \mathrm{mg}$; appearance: white solid; M.p.:151-155 ${ }^{\circ} \mathrm{C}$. $\mathrm{R}_{\mathrm{f}}: 0.4$ (PE:EA, 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81$ (dd, $J=7.9,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.77 (dd, $J=7.6,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.70$ (dd, $J=8.0,1.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.43$ (dt, $J=7.2,3.8 \mathrm{~Hz}$, $7 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 7 \mathrm{H}), 3.62(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}$, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{t}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~d}, J=$ $13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.21$ $(\mathrm{s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 159.73, 159.31, $139.61,139.45,131.40,131.01,129.22,129.02,128.52,128.47,128.42,128.01$, $127.68,127.61,127.53,125.93,125.91,114.38,114.16,112.58,112.34,66.74,66.41$, 53.71, 52.00, 46.15, 45.32, 43.53, 43.46, 28.86, 28.63, 28.48, 26.01, 24.84, 24.53. ESI-MS: Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{OS}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$378.1635, found 378.1632.

10: yield: $78 \%, 47.0 \mathrm{mg}$; appearance: white solid; M.p.:201$206{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}: 0.9$ (pure EA). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64$ (dd, $J=8.0,1.5 \mathrm{~Hz}$, 2H), 7.52 - 7.43 (m, 3H), 7.00 (s, 1H), 3.29 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ (d, $J=15.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.13(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H})$, $1.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.05,154.27,132.69,130.87,128.89$, 127.85, 71.50, 52.37, 51.60, 45.36, 28.59, 28.37, 27.43. ESI-MS: Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{~S}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$302.1434, found 302.1438.

NMR Spectra:

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \text { f1 } & (\mathrm{ppm})\end{array}$
$\underbrace{\text { ®one }}$

3 ca

3da

$\begin{array}{lllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ f 1(\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

3ea

$\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

~
Ni min

$\left.\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1 \\ (\mathrm{ppm})\end{array}\right)$

$\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

3ha

3ha

3ia

3ia

3ja

3ja

$\begin{array}{llllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{l}110 \\ f 1(\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

[^0]
3ac

3 ac

3ad

(10)

3ae

$\begin{array}{lllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{l}110 \\ f 1(\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

3ag

3aj

3aj

$\begin{array}{lllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{l}110 \\ f 1(\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

3ak

3ak

3al

高荌宮

N	〒¢ ¢ ¢		※® ${ }_{\text {¢ }}$	¢
$\stackrel{1}{\circ}$	－		ら它す	สั่ ¢ึ่ํ

No

$4 a$

4a

$\begin{array}{ll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

4b

©

4b

4d

$\begin{aligned} & \circ \\ & \stackrel{\circ}{\infty} \\ & \stackrel{\sim}{\top} \end{aligned}$		$\begin{gathered} \underset{\sim}{\infty} \\ \underset{\sim}{\top} \end{gathered}$	Nべッ $\xrightarrow{+N}$		

4d

$4 e$

(

$4 f$

$\left.\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

N্-

4 g
$\left.\begin{array}{lllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1 & (\mathrm{ppm})\end{array}\right)$

$\begin{gathered} \text { y } \\ \stackrel{\infty}{\infty} \\ \underset{\sim}{1} \end{gathered}$		$\stackrel{\vdots}{\stackrel{\rightharpoonup}{\top}}$		Ni	

$4 i$

Nゥ

4j
$\begin{array}{lllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ f 1(\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

4k

$\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \underset{110}{110}(\mathrm{fpm}) & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

41

[^1]
へNNへNへNへN

5a

5b

5b

5c

5c

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ f 1 \\ (\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

$$
\begin{aligned}
& \text { が访 }
\end{aligned}
$$

5d

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$

19:Z8レー
N

$5 i$

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ f 1 \\ (\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

5j

$\stackrel{\infty}{\stackrel{\infty}{\sim}}$	๗ ๗్ గ io m			웅 웅둔	

5k

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

$\stackrel{\substack{0 \\ 0 \\ i}}{\substack{0}}$

$\left.\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1 & (\mathrm{ppm})\end{array}\right)$

| NNNNNNNNNNNNNNNNN゙N
| NNNNNNNNNNNNNNNNN゙N

$\begin{array}{lllllll}210 & 200 & 190 & 180 & 170 & 160 & 150\end{array}$
f1 (ppm)
9080
060
$50 \quad 40$ 20

$\left.\begin{array}{llllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1 & (\mathrm{ppm})\end{array}\right)$

[^0]: $\begin{array}{llllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} & \mathbf{1 0 0} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

[^1]: $\left.\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm})\end{array}\right)$

