Supporting Information

Orthogonally Arranged Tripyrrin-BODIPY Conjugates with an "Edge to Plane" Mode

Chun-Liang Hou,‡^a Yuhang Yao,‡^b Da Wang,^a Jing Zhang^{*a} and Jun-Long Zhang^{*b} FAX: (86)10-62767034

Email: <u>zhangj271@ucas.ac.cn</u>

<u>zhangjunlong@pku.edu.cn</u>

^aCenter of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

^bBeijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.

‡These authors contributed equally to this work.

Outline

1.	Supporting Tables and Figures	3
	Table S1. Crystal data and structure refinement.	3
	Table S2. Calculated absorption peak at S_0 optimized structures by TDDFT	4
	Figure S1-S8. ¹ H-NMR spectra	5
	Figure S9-S12. ¹³ C-NMR spectra	9
	Figure S13-S17. ¹⁹ F-NMR spectra	11
	Figure S18-S22. HR-MS	14
	Figure S23-S27. FT-IR spectra	16
	Figure S28-S31. Single crystal structures.	18
	Figure S32-S34. Crystal packing patterns	20
	Figure S35-S38. Emission spectra	21
	Figure S39-S42. Lifetime measurements	23
	Figure S43-S46. Absolute quantum yields	25
	Figure S47-S51. Temperature-dependent emission spectra	26
	Figure S52. Emission spectra of 3-5 in solid state	29
	Figure S53-S59. Cyclic voltammetry.	29
	Figure S60-S66. Differential pulse voltammetry.	33
	Figure S67-S69. Center-to-center separation distance, the radius of the electron	donor
	and acceptor determined by DFT optimization of the geometry	35
2.	Cartesian coordinates of DFT optimized structures in PDB format	37
3.	Reference	43

1. Supporting Tables and Figures.

Complex	1 (CCDC:	2 (CCDC:	4 (CCDC:	5 (CCDC:
Complex	1889398)	1889399)	1889400)	1896685)
Molocular formula	$C_{34}H_{12}CI_3F_{10}N_3$	$C_{41}H_{16}BF_{12}N_5$	$C_{46}H_{23}BCI_3F_{12}$	$C_{63}H_{36}BF_{12}N_5$
	O ₃	O ₂	$I_2N_5O_2$	O4
Formula wt. (g mol ⁻¹)	806.82	849.40	1276.65	1165.78
Temperature (K)	180 K	180 K	180 K	180 K
Radiation (λ, Å)	0.71073	0.71073	0.71073	0.71073
Crystal system	orthorhombic	orthorhombic	monoclinic	monoclinic
Space group	Pna2 1	Pna 21	P21/n	C2/c
<i>a</i> (Å)	7.7138(7)	9.9933 (3)	12.2174(3)	19.3974(5)
b (Å)	25.522(2)	18.8319 (7)	25.6864(7)	26.0855(6)
<i>c</i> (Å)	16.1814(16)	21.7044 (7)	15.7955(6)	28.6167(6)
α (°)	90	90	90	90
β (°)	90	90	109.134(3)	101.742(2)
γ (°)	90	90	90	90
Volume (Å ³)	3185.6(5)	4084.6 (2)	4683.1(3)	14176.8(6)
Z	4	4	4	4
$ ho_{calcd}$ (g cm ⁻³)	1.682	1.381	1.811	1.092
μ (mm ⁻¹)	0.390	0.124	1.608	0.090
F(000)	1608.0	1704.0	2480	4752
Crystal size (mm ³)	0 4×0 15×0 12	0 2×0 12×0 07	0.08×0.05×0.	0.45×0.2×0.1
••••••••••••••••••••••••••••••••••••••		0.2/0112/0101	02	8
Theta range	3.8650 to	1.877 to	1.843 to	2.123 to
mota rango	24.7000°	27.480°	27.483°	27.485°
Reflections collected	18667	27817	34840	91201
Independent	5992 [R(int) =	8602 [R(int) =	10731 [R(int)	16259 [R(int)
reflections	0.1006]	0.0452]	= 0.0400]	= 0.0449]
Completeness	99.40%	99.40%	99.55%	100.01%
Goodness-of-fit on F ²	1.044	1.056	1.027	1.072
Final R indices	R1 ^a = 0.0846	R1 ^a = 0.0621	R1 ^a = 0.0519	R1a = 0.0671
[R > 2σ (I)]	<i>w</i> R ₂ ^b = 0.2100	wR ₂ ^b = 0.1483	<i>w</i> R ₂ ^b = 0.1113	wR2b= 0.1688
	R1ª=0.1174	R1ª=0.0835	R1ª=0.0964	R1a=0.0932
R indices (all data)	<i>w</i> R ₂ ^b =0.2278	wR ₂ ^b =0.1587	<i>w</i> R ₂ ^b =0.1252	wR2b=0.1823
Largest diff. peak	0.882 and -	0.352 and -	1.573 and -	0.375 and -
and hole (e Å ⁻³)	0.519	2.09	0.633	0.300

 Table S1. Crystal data and structure refinement.

、		UV	
	Exp.	Comp. (<i>f</i>)	Contribution ^a
1	317, 497, 532	479 (0.4664)	H -> L (96.8%)
2	318, 512	479 (0.4167)	H -> L (95.5%)
3	318, 512	521 (0.3606)	H-1 -> L (97.9%)
4	317, 392, 544	519 (0.3703)	H-1 -> L (96.9%)
5	262, 315, 420, 501, 535, 595	597 (0.5345)	H -> L+1 (95.2%)

Table S2. Calculated absorption peak at S_0 optimized structures by TDDFT.

^a H and L indicate HOMO and LUMO respectively.

Figure S1. ¹H-NMR spectrum of 1.

Figure S2. ¹H-NMR spectrum of 2.

Figure S3. ¹H-NMR spectrum of BODIPY-3.

Figure S4. ¹H-NMR spectrum of 3.

Figure S5. ¹H-NMR spectrum of BODIPY-4.

Figure S6. ¹H-NMR spectrum of 4.

Figure S7. ¹H-NMR spectrum of BODIPY-5.

Figure S8. ¹H-NMR spectrum of 5.

Figure S9. ¹³C-NMR spectrum of 1.

110 100 90 f1 (ppm) 160 150 140 180 170 -10

Figure S10. ¹³C-NMR spectrum of 3.

Figure S11. ¹³C-NMR spectrum of 4.

Figure S12. ¹³C-NMR spectrum of 5.

Figure S14. ¹⁹F-NMR spectrum of 2.

Figure S15. ¹⁹F-NMR spectrum of 3.

Figure S16. ¹⁹F-NMR spectrum of 4.

Figure S17. ¹⁹F-NMR spectrum of 5.

Figure S19. HR-MS (MALDI-TOF) of 2.

Figure S20. HR-MS (MALDI-TOF) of 3.

Figure S18. HR-MS (MALDI-TOF) of 1.

 Meas.m/z
 #
 Ion Formula
 Score
 m/z
 err [ppm]
 Mean err [ppm]
 mSigma
 rdb
 e⁻ Conf
 N-Rule

 1156.974824
 1
 C45H22BF12I2N502
 100.00
 1156.975891
 1.6
 0.6
 n.a.
 31.5
 odd
 ok

Figure S21. HR-MS (MALDI-TOF) of 4.

 Meas.m/z
 #
 Ion Formula
 Score
 m/z
 err [ppm]
 Mean err [ppm]
 mSigma
 rdb
 e⁻ Conf
 N-Rule

 1165.269599
 1
 C63H36BF12N5O4
 100.00
 1165.266325
 -1.9
 -3.6
 123.2
 43.5
 odd
 ok

Figure S22. HR-MS (MALDI-TOF) of 5.

Figure S23. FT-IR spectrum of 1.

Figure S24. FT-IR spectrum of 2.

Figure S26. FT-IR spectrum of 4.

Figure S27. FT-IR spectrum of 5.

Figure S28. Single crystal structure of **1**. The thermal ellipsoids are scaled to the 50% probability level and solvent molecules are omitted for clarity.

Figure S29. Single crystal structure of **2**. The thermal ellipsoids are scaled to the 50% probability level and solvent molecules are omitted for clarity.

Figure S30. Single crystal structure of **4**. The thermal ellipsoids are scaled to the 50% probability level and solvent molecules are omitted for clarity.

Figure S31. Single crystal structure of **5**. The thermal ellipsoids are scaled to the 50% probability level and solvent molecules are omitted for clarity.

Figure S32. Crystal packing pattern of 2.

Figure S33. Crystal packing pattern of 4.

Figure S34. Crystal packing pattern of 5.

Figure S35. Emission spectra of 2 excited at 530 nm in CH_2CI_2 .

Figure S36. Emission spectra of **3** in air and degassed conditions excited at 500 nm in CH_2Cl_2 .

Figure S37. Emission spectra of **4** in air and degassed conditions excited at 500 nm in CH_2Cl_2 .

Figure S38. Emission spectra of 5 in air and degassed conditions excited at 500 nm in CH_2CI_2 .

Figure S39. Lifetime measurement of 1 in CH_2Cl_2 .

Figure S40. Lifetime measurement of $\mathbf{3}$ in CH₂Cl₂.

Figure S41. Lifetime measurement of 4 in CH_2CI_2 .

Figure S42. Lifetime measurement of 5 in CH_2Cl_2 .

Figure S43. Absolute quantum yield of 1 in CH_2Cl_2 .

Figure S44. Absolute quantum yield of 3 in CH₂Cl₂.

Figure S45. Absolute quantum yield of 4 in CH₂Cl₂.

Figure S46. Absolute quantum yield of 5 in CH₂Cl₂.

Figure S47. Temperature-dependent emission spectra of **3** in dimethyltetrahydrofuran collected from 78 to 300 K, excited at 500 nm.

Figure S48. Temperature-dependent emission spectra of **4** in dimethyltetrahydrofuran collected from 78 to 300 K, excited at 500 nm.

Figure S49. Temperature-dependent emission spectra of **5** in dimethyltetrahydrofuran collected from 78 to 300 K, excited at 500 nm.

Figure S50. Temperature-dependent emission spectra of the tripyrrins in dimethyltetrahydrofuran collected from 78 to 300 K, excited at 495 nm.

Figure S51. Temperature-dependent emission spectra of the BODIPY in dimethyltetrahydrofuran collected from 78 to 300 K, excited at 495 nm.

Figure S53. Cyclic voltammetry of BODIPY-3 in CH₂Cl₂.

Figure S54. Cyclic voltammetry of 3 in CH₂Cl₂.

Figure S55. Cyclic voltammetry of BODIPY-4 in CH_2Cl_2 .

Figure S56. Cyclic voltammetry of 4 in CH₂Cl₂.

Figure S57. Cyclic voltammetry of BODIPY-5 in CH₂Cl₂.

Figure S58. Cyclic voltammetry of $\mathbf{5}$ in CH_2CI_2 .

Figure S59. Cyclic voltammetry of tripyrrins in CH_2CI_2 .

Figure S60. Differential pulse voltammetry of BODIPY-3 in CH₂Cl₂.

Figure S61. Differential pulse voltammetry of 3 in CH₂Cl₂.

Figure S62. Differential pulse voltammetry of BODIPY-4 in CH₂Cl₂.

Figure S63. Differential pulse voltammetry of 4 in CH_2Cl_2 .

Figure S64. Differential pulse voltammetry of BODIPY-5 in CH₂Cl₂.

Figure S65. Differential pulse voltammetry of 5 in CH₂Cl₂.

Figure S66. Differential pulse voltammetry of tripyrrins in CH₂Cl₂.

Figure S67. Center-to-center separation distance, the radius of the electron donor and acceptor determined by density functional theory (DFT) optimization of the geometry of **3**. Hydrogen atoms, meso-substituted moieties and solvent molecules are omitted for clarity.

Figure S68. Center-to-center separation distance, the radius of the electron donor and acceptor determined by density functional theory (DFT) optimization of the geometry of **4**. Hydrogen atoms, meso-substituted moieties and solvent molecules are omitted for clarity.

Figure S69. Center-to-center separation distance, the radius of the electron donor and acceptor determined by density functional theory (DFT) optimization of the geometry of **5**. Hydrogen atoms, meso-substituted moieties and solvent molecules are omitted for clarity.

2. Cartesian coordinates of DFT optimized structures in PDB format.

TITLE	Compoun	d-1	C 0 4 C				
HETATM	1 File creat	ed by GaussView	6.0.16 2 542	4 607	-0 390		
HETATM	2 F	õ	3.213	-1.525	2.292		
HETATM	3 F	0	4.156	-0.962	-2.317		
HETATM	4 F 5 F	0	6 5 5 3	-2.870	-2.155		
HETATM	6 F	õ	5.121	-3.435	2.443		
HETATM	7 N	0	2.137	2.286	-0.259		
		0	2.942	3.319	-0.295		
HETATM	10 C	0	1.153	4.008	-0.400		
HETATM	11 C	0	2.995	1.187	-0.160		
HETATM	12 C	0	0.486	4.925	0.800		
HETATM	13 C 14 H	0	4.338	3.700	-0.224		
HETATM	15 C	0	4.390	1.637	-0.135		
HETATM	16 H	0	5.261	1.002	-0.052		
HETATM	17 C 18 C	0	3.624	-1.180	-0.098		
HETATM	19 C	Õ	1.213	-0.606	-0.112		
HETATM	20 C	0	0.849	-1.969	-0.111		
HETATM	21 H 22 C	0	3.899	-1.839	1.186		
HETATM	23 Č	Ō	4.374	-1.553	-1.135		
HETATM	24 C	0	4.878	-2.826	1.278		
HETATIM	25 C 26 C	0	5.611	-2.550	0.145		
HETATM	27 0	0	-2.942	4.313	-0.370		
	28 F	0	-3.019	-1.854	2.233		
HETATM	30 F	0	-5.522	-3.524	-2.310		
HETATM	31 F	õ	-5.965	-4.809	0.056		
HETATM	32 F	0	-4.708	-3.965	2.325		
HETATIM	33 N 34 C	0	-2.284	2.049	-0.261		
HETATM	35 C	Ō	-0.912	4.597	-1.607		
HETATM	36 C	0	-1.579	4.618	-0.387		
HETATM	37 C 38 C	0	-0.912	4.854	0.820		
HETATM	39 C	Ő	-4.570	2.497	-0.272		
HETATM	40 H	0	-5.461	3.109	-0.297		
HETATM	41 C 42 H	0	-5.244	0.417	-0.148		
HETATM	43 C	0	-2.443	-0.392	-0.141		
	44 C	0	-3.376	-1.565	-0.091		
HETATM	45 C 46 C	0	-0.534	-2.044	-0.123		
HETATM	47 H	0	-1.131	-2.943	-0.133		
HETATM	48 C	0	-3.623	-2.247	1.105		
HETATM	49 C 50 C	0	-4.488	-2.025	1.166		
HETATM	51 C	Ō	-4.906	-3.110	-1.198		
HETATM	52 C	0	-5.132	-3.767	0.008		
HETATIM	55 N 54 H	0	-0.043	1.142	-0.128		
HETATM	55 H	0	1.024	5.034	1.736		
	56 H	0	-1.474	4.441	-2.521		
HETATM	58 C	0	-1.629	4.955	2.116		
HETATM	59 O	0	-1.066	5.153	3.176		
	60 H	0	-2.728	4.849	2.066		
REMARK	Compo	und- 2 Aated by Gauss	sView 6	016			
HETATM	1 0			0.125	-4.530	-1.843	
HETATM	ŽĚ	Q	-3	3.846	-1.350	2.504	
	3 F	0	-5	285	-1.614	-2.002	
HETATM	4 F 5 F	U N	- /	3.433	-1.671	1,496	
HETATM	δF	ŏ	-ĕ	5.419	-1.476	3.327	
HETATM	7 N	Ő	-	1.149	-2.694	-1.079	
HFTATM		0		1.251	-2.930	-1.351 -3.237	
HETATM	10 Č	ŏ		1.166	-3.618	-2.033	
HETATM	11 C	õ	-2	2.465	-2.592	-0.615	
HETATM	13 C	U N	-3	2.033 2.177	-3.372	-0.978	
HETATM	1 <u>4</u> H	ŏ	-	2.253	-5.853	-1.242	
HETATM	15 C	0	-3	3.102	-3.911	-0.617	

 $O_{F_{F_{F_{F_{F}}}}}$

HETATM HETATM	111122222222222223333333333334444444444		$\begin{array}{c} -4.157\\ -3.057\\ -4.483\\ -2.477\\ -3.157\\ -4.814\\ -5.537\\ -6.135\\ -6.866\\ -7.164\\ 3.630\\ 0.164\\ -0.216\\ -0.481\\ -0.427\\ -0.103\\ 1.6611\\ 2.928\\ 1.362\\ 1.028\\ 3.822\\ 1.879\\ 1.029\\ 3.220\\ 1.012\\ 3.628\\ 7.356\\ 5.681\\ 7.320\\ 8.140\\ 3.241\\ 5.218\\ 4.034\\ 6.052\\ 5.962\\ \end{array}$	$\begin{array}{c} -4,126\\ -1,126\\ -1,481\\ -0.081\\ 1,142\\ -1.695\\ 1,081\\ -1.579\\ -1.579\\ -1.579\\ -1.579\\ -1.579\\ -1.508\\ -1.645\\ -1.645\\ -1.645\\ -1.645\\ -1.645\\ -1.659\\ -1.532\\ -1.6324\\ -2.291\\ -2.312\\ -2.312\\ -2.312\\ -2.312\\ -2.291\\ -2.2864\\ -2.291\\ -3.563\\ -3.965\\ -3.965\\ -3.965\\ -3.965\\ -3.9965\\ -1.1545\\ -1.1545\\ -1.653\\ -3.9965\\ -1.1545\\ -1.653\\ -3.9965\\ -1.1545\\ -1.653\\ -2.2991\\ -2.623\\ -1.799\\ -2.623\\ -1.799\\ -2.623\\ -1.799\\ -2.623\\ -1.799\\ -2.623\\ -1.799\\ -1.653\\ -2.991\\ -1.653\\ -1.799\\ -2.687\\$	$\begin{array}{c} -0.302 \\ -0.225 \\ -0.222 \\ 0.158 \\ 0.476 \\ 1.583 \\ -0.687 \\ 2.021 \\ -0.273 \\ 1.087 \\ -2.262 \\ 1.981 \\ -2.652 \\ -2.107 \\ 0.476 \\ 1.087 \\ -2.262 \\ 1.981 \\ -2.652 \\ -2.107 \\ 0.476 \\ 2.517 \\ -1.453 \\ -2.055 \\ -1.325 \\ -1.325 \\ -1.325 \\ -1.325 \\ -1.325 \\ -1.325 \\ -1.325 \\ -1.325 \\ -1.325 \\ -1.325 \\ -2.055 \\ -0.915 $	
TITLE REMARK HETATM	Com 1 File 1 2 3 4 5 6 7 8 90 101 12 3 4 5 6 7 8 90 10 12 12 12 12 12 12 12 12 12 12 12 12 12	pound-3 created by Gaus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	sView 6.0.16 0.548 -4.209 -5.329 -7.830 -8.537 -6.716 -1.129 -0.690 1.094 1.360 -2.444 2.356 -1.653 -1.480 -2.764 -3.705 -3.296 -4.687 -3.024 -3.964 -4.994	-4.294 -1.708 -2.797 -3.444 -3.225 -2.355 -2.749 -3.971 -2.414 -3.189 -2.916 -2.855 -5.014 -2.855 -5.014 -2.855 -5.014 -2.855 -5.014 -2.855 -2.764 -1.877 -2.234 0.554 0.394	-1.508 2.543 -1.930 -1.141 1.486 3.323 -0.886 -1.063 -2.901 -1.776 -0.441 -0.869 -0.745 -0.820 -0.349 -0.021 -0.151 0.283 -0.216 0.059 0.329	

ᡜᠾ᠐ᡁ᠐^ᠴ᠐ᡁ᠐ᡁ᠐ᠲ_{ᠳᡎ}ᡎᡎᢄ᠐ᡁ᠐᠐᠋ᠮ᠐ᠮ᠐ᡁ᠐ᠴ᠐ᡁ᠐ᠴ᠙᠘</sub>᠐ᠴ᠘ᡁ᠐ᠴ᠐ᠴ᠐ᠴ᠐ᠴ᠐ᠴ᠐ᠴ᠐ᠴᢄᠴᡁ᠘

᠐_{ᢆᡰ᠆᠆}᠆᠆᠆ᡔ᠐᠐᠐᠐᠐᠘᠘᠘᠐

HEIAIM HETATM	222222223333333333333344444444444455555555	000000000000000000000000000000000000000	$\begin{array}{c} -5.082\\ -5.643\\ -6.937\\ -7.300\\ 3.068\\ -1.414\\ -2.745\\ -2.0904\\ 1.581\\ -2.745\\ -2.0904\\ 1.581\\ -2.745\\ -2.0904\\ 1.729\\ 2.617\\ -2.0319\\ 4.152\\ -2.0904\\ 1.729\\ -1.445\\ -2.745\\ -2.0904\\ 1.729\\ -2.617\\ -2.0319\\ -1.453\\ -2.0163\\ -2.163\\$	$\begin{array}{c} -2.132\\ -2.681\\ -2.460\\ -3.018\\ -2.905\\ 0.543\\ -2.905\\ 3.657\\ -4.952\\ -7.849\\ -1.159\\ -1.1879\\ -1.487\\ -0.7394\\ -1.1879\\ -1.6868\\ -3.3662\\ -2.3958\\ -1.1509\\ -1.1599\\ -2.3958\\ -2.556\\ -3.505\\ -2.724\\ -3.505\\ -2.724\\ -0.298\\ -0.321\\ -0.503\\ -0.513\\ -0.505\\ -2.244\\ -0.9386\\ -0.321\\ -0.513\\ -0.541\\ -0.9386\\ -0.524\\ -1.550\\ -0.445\\ -0.9386\\ -0.524\\ -1.550\\ -0.544\\ -0.9386\\ -0.524\\ -1.550\\ -0.544\\ -0.9386\\ -0.524\\ -1.550\\ -0.544\\ -0.9386\\ -0.544\\ -0.9386\\ -0.544\\ -0.998\\ -0.544\\ -0.998\\ -0.544\\ -0.998\\ -0.544\\ -0.998\\ -0.544\\ -0.998\\ -0.544\\ -0.998\\ -0.544\\ -0.998\\ -0.544\\ -0.998\\ -0.544\\ -0.998\\ -0.544\\ -0.998\\ -0.544\\ -0.998\\ -0.544\\ -0.998\\ -0.544\\ -0.998\\ -0.544\\ -0.998\\ -0.544\\ -0.804\\ -0.544\\ -0.998\\ -0.998\\ -$	$\begin{array}{c} 1.620\\ -0.633\\ 2.035\\ -0.241\\ 1.099\\ -2.047\\ 1.929\\ -2.743\\ -2.291\\ 0.264\\ 2.371\\ -1.347\\ -1.681\\ -3.018\\ -2.026\\ -1.068\\ -1.088\\ -1.684\\ -1.088\\ -2.388\\ -1.597\\ -3.350\\ -0.334\\ -2.388\\ -2.778\\ -2.886\\ -2.778\\ -3.556\\ -2.778\\ -3.556\\ -2.778\\ -3.656\\ -2.778\\ -3.656\\ -2.778\\ -3.656\\ -2.778\\ -3.656\\ -2.778\\ -3.656\\ -2.778\\ -3.656\\ -2.778\\ -3.656\\ -2.778\\ -3.656\\ -2.778\\ -3.656\\ -2.778\\ -3.656\\ -2.778\\ -3.656\\ -2.778\\ -3.656\\ -2.00\\ -0.00$	
TITLE REMARK HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM	Compor 1 File cru 2 F 3 F 5 F 7 8 9 C 10 C 11 12 13 14 C 15	und-4 eated by GaussViev 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	v 6.0.16 0.218 -4.963 -5.910 -8.398 -9.177 -7.453 -1.668 0.718 0.931 -3.002 1.770 -1.971 -1.685 -3.182	-4.266 -2.457 -2.948 -3.813 -4.002 -3.324 -2.885 -4.055 -2.479 -3.102 -3.160 -2.563 -5.170 -6.211 -4.601	-1.248 2.119 -2.487 -1.879 0.723 2.718 -0.955 -0.955 -0.972 -2.771 -1.548 -0.642 -0.588 -0.669 -0.630 -0.460	

^Οͱ_Ͱͱͱϩͺϲϲϲ

HETATM HE	1111122222222222222223333333333333344444444	-	$\begin{array}{c} -3.980 & -3.206 & -0.536 \\ -3.855 & -0.783 & -0.705 \\ -4.911 & 0.139 & -0.573 \\ -5.933 & -0.111 & -0.338 \\ -5.791 & -2.786 & 1.121 \\ -6.268 & -3.033 & -1.201 \\ -7.068 & -3.229 & 1.443 \\ -7.551 & -3.478 & -0.902 \\ -7.950 & -3.575 & 0.426 \\ 2.238 & 0.762 & -2.052 \\ -2.480 & 3.946 & 1.037 \\ -3.178 & 3.675 & -3.631 \\ -4.345 & 6.114 & -3.594 \\ -4.583 & 7.474 & -1.248 \\ -3.647 & 6.386 & 1.065 \\ -0.039 & 1.180 & -1.632 \\ 1.176 & 1.582 & -1.895 \\ 1.222 & -1.204 & -2.956 \\ 1.934 & -0.595 & -1.931 \\ -0.793 & 2.355 & -1.571 \\ 2.304 & -1.282 & -0.775 \\ 1.319 & 3.023 & -2.020 \\ 2.238 & 3.551 & -2.226 \\ 0.073 & 3.510 & -1.816 \\ -0.235 & 4.545 & -1.825 \\ -2.139 & 2.391 & -1.318 \\ -2.791 & 3.742 & -1.298 \\ -3.025 & 1.287 & -1.060 \\ -4.402 & 1.409 & -0.791 \\ -4.952 & 2.335 & -0.759 \\ -2.930 & 4.461 & -0.112 \\ -3.282 & 4.324 & -2.465 \\ -3.529 & 5.715 & -0.083 \\ -3.885 & 5.576 & -2.461 \\ -4.008 & 6.272 & -1.264 \\ -2.721 & -0.057 & -1.004 \\ -1.805 & -0.457 & -1.172 \\ 1.965 & -3.110 & 0.326 \\ 1.000 & -0.642 & -3.855 \\ 0.091 & -2.949 & -3.518 \\ 3.236 & -0.681 & 0.227 \\ 1.441 & -0.170 & 2.032 \\ 1.609 & 0.380 & 3.297 \\ 2.973 & 0.691 & 3.500 \\ 5.344 & -1.119 & -1.222 \\ 6.668 & -0.776 & -0.966 \\ 6.753 & -0.111 & 0.276 \\ 2.758 & -0.208 & 1.460 \\ 4.607 & -0.631 & -0.092 \\ 3.648 & 0.333 & 2.395 \\ 5.514 & -0.039 & 0.791 \\ 5.170 & 0.571 & 2.179 \\ 5.464 & 1.942 & 2.186 \\ 4.299 & 1.642 & 5.410 \\ 0.141 & -0.606 & 1.437 \\ -0.005 & -1.686 & 1.519 \\ -0.668 & -0.776 & 0.966 \\ 6.753 & -0.111 & 0.276 \\ 2.758 & -0.208 & 1.460 \\ 4.607 & -0.631 & -0.092 \\ 3.648 & 0.333 & 2.395 \\ 5.514 & -0.039 & 0.791 \\ 5.170 & 0.571 & 2.179 \\ 5.464 & 1.942 & 2.186 \\ 4.299 & 1.642 & 5.410 \\ 0.141 & -0.606 & 1.437 \\ -0.005 & -1.686 & 1.519 \\ -0.068 & -0.345 & 0.384 \\ 4.860 & -1.860 & -2.429 \\ 4.110 & -1.175 & -2.214 \\ 0.089 & 0.703 & 4.728 \\ \end{array}$	
HILE REMARK HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM	Compound 1 File creat 1 O 2 F 3 F 4 F 5 F 6 F 7 N 8 C 9 C	- 5 ed by GaussViev 0 0 0 0 0 0 0 0 0 0 0 0 0	w 6.0.16 0.601 -2.247 -3.797 -5.134 -1.767 -0.276 -5.234 -0.755 -4.906 -7.752 -1.711 -5.052 -8.976 -2.702 -2.822 -7.650 -2.726 -0.433 -1.333 -1.157 -2.986 -0.737 -2.133 -3.627 1.440 -0.001 -3.597	

 \pm_{0}

0 FFFFFZCC

HETATM 10 C C C C C C C C C C C C C C C C C C	000000000000000000000000000000000000000	1.344-1.293-3.093-2.691-1.485-3.0411.888-1.647-1.866-1.636-3.149-4.153-1.341-4.029-4.709-2.873-2.743-3.771-3.814-3.242-3.957-3.689-0.721-2.481-5.093-1.235-2.588-3.5560.525-1.766-4.6331.330-1.342-5.6771.122-1.523-5.754-1.745-1.465-5.801-1.234-3.793-7.052-2.239-2.747-2.6421.709-0.597-3.1463.0202.508-1.8615.865-1.055-3.0337.9540.195-4.2687.5902.601-4.3185.1173.7520.3232.137-0.5351.5592.418-0.0221.9500.988-2.7702.3500.663-1.476-0.4373.1370.0792.414-0.657-1.0221.9500.9881.393-1.8073.218-0.002-2.4644.3760.68160.1254.9081.393-1.8073.218-0.026-3.7155.2932.572-3.0586.7410.758-3.6896.5571.986-2.3981.151-1.351-1.4572.9663.135-1.4631.4050.338-2.6890.426
---	---	---

 \circ_{OOO}

ΟΤΟΤΤΟΟΟΟΤΟΤΟΤΟΤΟΙΟΙ	000000000000000000000000000000000000000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.472\\ 0.970\\ -1.781\\ -3.674\\ 0.194\\ 3.684\\ 2.647\\ 4.931\\ 2.842\\ 1.681\\ 5.131\\ 5.743\\ 4.087\\ 2.023\\ 6.089\\ 4.344\\ 3.543\\ -2.146\\ -3.070 \end{array}$		
97 98 999 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115	97 C 98 HC 100 H 101 H 102 CC 103 CC 106 H 107 C 108 HC 110 H 111 HO 111 HO 111 HO 111 HO 115 H	97 C 0 98 H 0 99 C 0 100 H 0 101 H 0 102 C 0 103 C 0 104 C 0 105 C 0 106 H 0 107 C 0 108 H 0 109 C 0 110 H 0 111 H 0 111 H 0 1114 O 0 1115 H 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	СТСТТССССТСТСТТОТОТ	ОООООООООООООООООООООООООООООООООООООО	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

3. Reference.

1. (a) Sheldrick, G. M. A short history of SHELX. *Acta. Crystallogr. A* **2008**, *64*, 112-22. (b) Sheldrick, G. M. Crystal structure refinement with SHELXL. *Acta Crystallogr. C* **2015**, *71*, 3-8.

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* **2009**, *42*, 339-341.

3. Spek, A. L. Structure validation in chemical crystallography. *Acta Crystallogr. D* **2009**, *65*, 148-155.

4. (a) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. *Phys. Rev. B* **1988**, *37*, 785. (b)

Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J.

Chem. Phys. 1993, 98, 5648-5652.

M. J. Frisch; G. W. Trucks; H. B. Schlegel; G. E. Scuseria; M. A. Robb; J. R. Cheeseman; G. Scalmani; V. Barone; B. Mennucci; G. A. Petersson; H. Nakatsuji; M. Caricato; X. Li; H. P. Hratchian; A. F. Izmaylov; J. Bloino; G. Zheng; J. L. Sonnenberg; M. Hada; M. Ehara; K. Toyota; R. Fukuda; J. Hasegawa; M. Ishida; T. Nakajima; Y. Honda; O. Kitao; H. Nakai; T. Vreven; J. A. Montgomery; Jr., J. E. P.; F. Ogliaro; M. Bearpark; J. J. Heyd; E. Brothers; K. N. Kudin; V. N. Staroverov; R. Kobayashi; J. Normand; K. Raghavachari; A. Rendell; J. C. Burant; S. S. Iyengar; J. Tomasi; M. Cossi; N. Rega; J. M. Millam; M. Klene; J. E. Knox; J. B. Cross; V. Bakken; C. Adamo; J. Jaramillo; R. Gomperts; R. E. Stratmann; O. Yazyev; A. J. Austin; R. Cammi; C. Pomelli; J. W. Ochterski; R. L. Martin; K. Morokuma; V. G. Zakrzewski; G. A. Voth; P. Salvador; J. J. Dannenberg; S. Dapprich; A. D. Daniels; Ö. Farkas; J. B. Foresman; J. V. Ortiz; J. Cioslowski; D. J. Fox, *Gaussian 09 (Revision E.01)*. Gaussian Inc.: Wallingford CT, 2009.

6. (a) Hariharan, P. C.; Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. *Theor. Chim. Acta* **1973**, *28*, 213-222. (b) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.;

Pople, J. A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis

set for second-row elements. J. Chem. Phys. 1982, 77, 3654-3665.