Supporting information

Organic Photoredox Catalytic Decarboxylative Cross-Coupling of *gem*-Difluoroalkenes with Unactivated Carboxylic Acids

Hui Yang,^a Chao Tian,^a Dongsheng Qiu,^a Haitao Tian,^a Guanghui

An^{*a,b} and Guangming Li^{*a}

^aKey Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University; ^bCollege of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China Email: <u>chemagh@163.com</u>; <u>gmli_2000@163.com</u>

Table of Contents

1.	General procedures
2.	General procedure for synthesis of asymmetric <i>gem</i> -difluoroalkenes
3.	General procedure for synthesis of symmetric <i>gem</i> -difluoroalkenes
4.	Synthesis of donor-acceptor fluorophores5
5.	Optimization of conditions for decarboxylative monofluoroalkenylation5
6.	General procedures for synthesis of compounds
7.	Reaction light on/off experiments
8.	Procedure For EPR Studies
9.	Investigation of aliphatic difluoroalkenes9
10.	Characterization data of compounds9
11.	References:
12.	NMR spectra:

1. General procedures

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. The reaction product was isolated by column chromatography on a silica gel (236 - 400 mesh) column using petroleum ether (PE) with a boiling range from 60 to 90 °C and EtOAc. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on 400, 101, 376 MHz NMR spectrometers using CDCl₃ as solvent. In addition, ¹H, and ¹³C NMR spectra used tetramethylsilane as the internal standard and the ¹⁹F NMR spectra used trifluoroacetic acid as the internal standard. HRMS were made by means of ESI. EPR spectra were recorded on a Bruker EMXplus. Unless otherwise noted, all reagents were weighed and handled in air, and all reactions were performed under argon atmosphere. All the *gem*-difluoroalkenes were prepared with the Wittig reaction according to the literature.

2. General procedure for synthesis of asymmetric gem-difluoroalkenes

The preparation followed literature methods.¹ To a two-necked round-bottom flask equipped with a magnetic stir bar and charged with aldehyde (1 equiv), PPh₃ (1.2 equiv), and DMF (0.5 mol/L for aldehyde) was added a solution of sodium chlorodifluoroacetate (1.5 equiv) in DMF (2 mol/L) dropwisely at 100 \degree over 30 min (**caution**: During the course of the reaction, internal pressure increased due to vigorous liberation of CO₂ gas.). After the addition was completed, the reaction mixture was heated additionally at the same temperature for 30 min. After cooling to 0 \degree to the reaction mixture was added water and extracted with Et₂O. The combined organic extract was washed with water and brine, and then dried over Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica-gel column chromatography to give the corresponding *gem*-difluoroalkene.

3. General procedure for synthesis of symmetric gem-difluoroalkenes

The preparation followed literature methods.²

Step 1: Hydrazine monohydrate (80% purity, 18.2 mL, 300 mmol) was added to benzophenone (5.46 g, 30 mmol) in ethanol (60 mL). Then HOAc (0.5 mL) was added and the mixture was heated at reflux for 20 h. After cooling to room temperature, benzophenone hydrazone precipitated as white needle-shaped crystals. Filtration of the crude mixture gave pure benzophenone hydrazone (4.7 g, 80%) as a white solid.

Step 2: Benzophenone hydrazone (4.5 g, 23 mmol), anhydrous MgSO₄ (2 g), and 60 mL CH₂Cl₂ was cooled to 0 °C. To this rapidly stirring mixture was added activated MnO₂ (7.0 g, 80.5 mmol) in one portion. The reaction mixture was warmed to room temperature and kept stirring for 8 h, then the solid was filtered off and washed with CH₂Cl₂. After removal of the solvent under reduced pressure, the residue was purified by silica gel (pretreated with Et₃N and PE (Et₃N/PE = 1:10)) with PE/Et₃N = 20:1 as eluent to afford diphenyldiazomethane as a purple solid (3.8 g, 85% yield), which was kept at -20 °C.

Step 3:To an oven-dried 10 mL pressure tube equipped with a stir bar were added NaI (30 mg, 0.4 mmol), diphenyldiazomethane (**4a**) (97 mg, 0.5 mmol) and TMSCF₃ (170 μ L, 1.2 mmol) and THF (5 mL) under Ar. Then the tube was sealed and stirred at rt for 18 h until the color of the reaction mixture was changed from purple to light yellow. The reaction mixture was extracted with EtOAc/H₂O (50 mL/20 mL). The organic extract was washed with brine and dried over MgSO₄. After filtration, the filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography.

4. Synthesis of donor-acceptor fluorophores

2,4,5,6-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene(4CzIPN), 1,2,4,5-tetrakis(car-bazol-9-yl)-3,6-dicyanobenzene(4CzTPN), and 1,2,3,4-tetrakis(carbazol-9-yl)-5,6-dicyanobenzene (4CzPN) were synthesized using an adapted procedure.³

NaH (60% in oil, 0.60 g, 15 mmol) was added slowly to a stirred solution of carbazole (1.67 g, 10.0 mmol). in dry THF (40 mL) under a nitrogen atmosphere at room temperature. After 30 min, tetrafluoroisophthalonitrile (0.40 g, 2.00 mmol), tetrafluoroterephthalonitrile (0.40 g, 2.00 mmol), tetrafluorophthalonitrile (0.40 g, 2.00 mmol), was added. After stirred at room temperature for 12 h, 2 mL water was added to the reaction mixture to quench the excess NaH. The resulting mixture was then concentrated under reduced pressure and washed by water and EtOH to yield the crude product, which was purified by recrystalization from hexane/CH₂Cl₂ or acetone/CHCl₃ to give 1.51 g (96%, 4CzIPN), 1.53 g (97%, 4CzTPN), 1.48 g (94%, 4CzPN) corresponding products.

5. Optimization of conditions for decarboxylative monofluoroalkenylation

Table S1: Screening of photocatalyst ^a	

COOH +	F F	PC, DMF (2.0 ml) Ar, 25 °C, 36 W blue CFL	
1a	2a		3a
Entry	Pho	tocatalyst	Yield $(\%)^b$
1		PC1	22
2		PC2	81
3		PC3	0
4		PC4	0
5		PC5	0

S5

6	PC6	0
7	PC7	0
8	PC8	0
9	PC9	0
10	PC10	56
11	PC11	0
12	PC12	0
13 ^c	PC2	32
14^d	PC2	60

^{*a*}Reaction conditions: 1a (0.1 mmol, 1 equiv), 2a (4 equiv), catalyst (4 mol %), and Cs₂CO₃ (6 equiv) in DMF (2.0 mL) under Ar reaction 24 h. ^{*b*}All reaction yields are of isolated products. ^{*c*}Under LED. ^{*d*}Under sunlight for 72 hours.

Sheme S1. Photocatalysts.

Table S2: Screening of bases^a

СООН	+ FFF PC2 (4 mol%), DMF (2 Ar, 25 °C, 36 W blue C 2a	2.0 ml) FL 3a
Entry	Base	$\mathrm{Yield}\left(\%\right)^{b}$
1	Cs ₂ CO ₃	81
2	Na ₂ CO ₃	52
3	K_2CO_3	34
4	K ₃ PO ₄	20
5	(CH ₃) ₃ SiOK	25
6	Na ₂ HPO ₄	29
7	NaH ₂ PO ₄	30
8	K_2HPO_4	23
9	CH ₃ CH ₂ ONa	0
10	CsOAc	26
11^{c}	Cs_2CO_3	43

^{*a*}Reaction conditions: 1a (0.1 mmol, 1 equiv), 2a (4 equiv), catalyst (4 mol %), and base (6 equiv) in DMF (2.0 mL) under Ar reaction 24 h. ^{*b*}All reaction yields are of isolated products. ^{*c*}2 equiv base were employed.

Table S3: Screening of solvent^a

СООН +	F F	PC2 (4 mol%) Cs ₂ CO ₃ (6 equiv) Ar, 25 °C, 36 W blue CFL	
1a	2a		3a
Entry		Solvent	Yield $(\%)^b$
1		DMF	81
2		MeOH	0
3		DCE	12
4		MeCN	15
5		DMSO	80
6		PhCl	10

^{*a*}Reaction conditions: 1a (0.1 mmol, 1 equiv), 2a (4 equiv), catalyst (4 mol %), and base (6 equiv) in solvent (2.0 mL) under Ar reaction 24 h. ^{*b*}All reaction yields are of isolated products.

6. General procedures for synthesis of compounds

Carboxylic acids (1) (0.1 mmol), substituted *gem*-difluoroalkene (2) (0.4 mmol), 4CzIPN (0.04 mmol, 3.2 mg), Cs_2CO_3 (0.6 mmol, 195.5 mg), DMF (2.0 mL) were added to a 10-mL Schlenk tube. The tube was filled with argon and then sealed, and irradiated with two 36 W blue CFLs (approximately 4 cm away from the light source). After the complete conversion of the substrates (monitored by TLC), the reaction mixture was concentrated, and the residue was purified by silica gel column chromatography to give the desired product.

7. Reaction light on/off experiments

Scheme S2. Reaction light on/off experiments

From the light on/off experiments, we found that the reaction needed continual irradiation of light, and thus it is a photocatalyzed rather than a photo-initiated reaction. Finding suggest that a radical chain pathway is unlikely.

8. Procedure For EPR Studies

Carboxylic acids (1h) (0.1 mmol), substituted *gem*-difluoroalkene (2a) (0.4 mmol), 4CzIPN (0.04 mmol, 3.2 mg), Cs_2CO_3 (0.6 mmol, 195.5 mg) and DMF (2.0 mL) were added to a 10-mL Schlenk tube. The tube was filled with argon and then sealed, and irradiated with two 36 W blue CFL for 2h or or under darkness. At 25 °C DMPO (TCI chemicals) (0.1 M) (0.5 equiv) was added and the reaction mixture was stirred for 5 min. A filtered sample was transferred to a capillary and directly measured. EPR spectra was recorded at room temperature on EPR spectrometer operated at 9.842807 GHz. Typical spectrometer parameters are shown as follows, scan range: 200 G; center field set: 3500.00 G; time constant: 0.01 ms; scan time: 30 s modulation amplitude: 1.0 G; modulation frequency: 100 kHz; microwave power: 2.0 mW.⁴

9. Investigation of aliphatic difluoroalkenes

Aliphatic difluoroalkene (2u) was synthesized according to corresponding references.⁵

2u:¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 (dd, *J* = 8.1, 6.7 Hz, 2H), 7.26 – 7.15 (m, 3H), 4.17 (dtd, *J* = 25.4, 7.8, 2.5 Hz, 1H), 2.70 (t, *J* = 7.6 Hz, 2H), 2.32 (qt, *J* = 7.5, 1.9 Hz, 2H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -12.96 (d, *J* = 47.6 Hz), -14.62 – -15.48 (m).

Reaction conditions for aliphatic difluoroalkene (2u) with 1a:

Carboxylic acids (**1a**) (0.1 mmol), substituted *gem*-difluoroalkene (**2u**) (0.4 mmol), 4CzIPN (0.04 mmol, 3.2 mg), Cs_2CO_3 (0.6 mmol, 195.5 mg) and DMF (2.0 mL) were added to a 10-mL Schlenk tube. The tube was filled with argon and then sealed, and irradiated with two 36 W blue CFLs (approximately 4 cm away from the light source). After 72 hours, no desired products have been obtained.

10. Characterization data of compounds

(2-cyclohexyl-2-fluoroethene-1,1-diyl)dibenzene (3a): Eluent: 100% petroleum ether (PE). Rf: 0.63; White solid (81%); m.p. 80.4–80.7 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.27 (m, 5H), 7.24 – 7.18 (m, 5H), 2.55 – 2.16 (m, 1H), 1.77 (d, *J* = 12.1 Hz, 4H), 1.72 – 1.55 (m, 3H), 1.29 – 1.03 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.89 (d, *J* = 245.7 Hz), 139.15 (d, *J* = 8.2 Hz), 137.88, 130.14 (d, *J* = 3.0 Hz), 129.66 (d, *J* = 5.1 Hz), 128.40, 127.88, 127.09, 126.64, 118.83 (d, *J* = 15.5 Hz), 39.22 (d, *J* = 25.4 Hz), 29.54, 25.81, 25.65. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -40.98 (d, *J* = 31.4 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₂₀H₂₂F⁺, 281.1700; found,281.1704.

2-(2-cyclohexyl-2-fluorovinyl)naphthalene (3b): Eluent: 100% PE. Rf: 0.75; Colorless oil (60%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (s, 1H), 7.79 (td, *J* = 8.9, 8.4, 4.4 Hz, 4H), 7.68 – 7.57 (m, 1H), 7.53 – 7.38 (m, 3H), 7.31 (dd, *J* = 8.5, 1.8 Hz, 0.5H), 6.24 (d, *J* = 22.1 Hz, 0.5H), 5.60 (d, *J* = 40.6 Hz, 1H), 2.85 – 2.63 (m, 0.5H), 2.41 – 2.21 (m, 1H), 2.01 (d, *J* = 10.7 Hz, 2H), 1.93 – 1.58 (m, 7H), 1.47 – 1.24 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.52 (d, *J* = 268.6 Hz), 133.55, 132.19, 131.63, 127.93, 127.80, 127.50, 127.04 (d, *J* = 7.7 Hz), 126.73 (d, *J* = 7.4 Hz), 125.98, 125.58, 103.71 (d, *J* = 8.7 Hz), 41.68 (d, *J* = 24.5 Hz), 30.11 (d, *J* = 2.4 Hz), 29.54 (d, *J* = 32.7 Hz), 25.96 (d, *J* = 5.7 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -28.52 (dd, *J* = 40.6, 15.7 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₈H₂₀F⁺, 255.1544; found, 255.1547.

2-(2-fluoro-3,3-dimethylbut-1-en-1-yl)naphthalene (**3c**): Eluent: 100% PE. Rf: 0.65; Colorless oil (75%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (s, 1H), 7.85 – 7.73 (m, 4H), 7.70 – 7.62 (m, 1H), 7.51 – 7.38 (m, 2H), 6.39 (d, J = 26.7 Hz, 0.2H), 5.70 (d, J = 40.7 Hz, 1H), 1.28 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 164.78 (d, J = 252.5 Hz), 133.56, 132.20, 131.65, 127.94, 127.79, 127.50, 127.21 (d, J = 7.8 Hz), 126.82 (d, J = 7.8 Hz), 125.98, 125.61, 102.43 (d, J = 9.5 Hz), 35.60 (d, J = 23.9 Hz), 27.52 (d, J = 2.9 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -32.84 (d, J = 40.8 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₆H₁₈F⁺, 229.1387; found, 229.1384.

(*3R*,*5R*)-1-((*Z*)-1-fluoro-2-(naphthalen-2-yl)vinyl)adama-ntine (3d): Eluent: 100% PE. Rf: 0.65; white solid (65%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (s, 0.6H), 7.87 – 7.74 (m, 3.6H), 7.69 – 7.63 (m, 1H), 7.53 – 7.39 (m, 2.6H), 7.35 – 7.31 (m, 0.5H), 6.37 (d, *J* = 27.5 Hz, 0.6H), 5.59 (d, *J* = 41.4 Hz, 1H), 2.09 (s, 2H), 1.96 – 1.84 (m, 6H), 1.77 (d, *J* = 3.2 Hz, 7H), 1.58 (d, *J* = 15.6 Hz, 7H). ¹³C NMR (101 MHz, Chloroform-d) δ 163.86 (d, *J* = 262.3 Hz), 161.04 (d, *J* = 252.5 Hz), 133.57, 132.87, 132.18 (d, *J* = 1.9 Hz), 131.78 (d, *J* = 2.0 Hz), 128.47 (d, *J* = 2.3 Hz), 127.93, 127.77, 127.64, 127.49, 127.23, 127.11, 126.89 (d, *J* = 7.8 Hz), 126.09, 125.95, 125.73, 125.55, 106.45 (d, *J* = 34.2 Hz), 102.44 (d, *J* = 9.5 Hz), 39.89 (d, *J* = 3.8 Hz), 39.33, 37.46, 37.23, 36.68, 36.51, 27.97 (d, *J* = 10.3 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -31.43 (d, *J* = 27.5 Hz), -37.47 (d, *J* = 41.4 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₂₂H₂₄F⁺, 307.1857; found, 307.1860.

2-(1-fluoro-2,2-diphenylvinyl)tetrahydrofuran (3e): Eluent: PE/ethyl acetate (EA) (9:1). Rf: 0.65; White solid (90%); m.p. 91–92 ℃; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.27 (m, 7H), 7.26 – 7.21 (m, 3H), 4.54 (dt, *J* = 29.5, 7.0 Hz, 1H), 3.98 (q, *J* = 7.0 Hz, 1H), 3.82 (td, *J*

= 7.6, 5.0 Hz, 1H), 2.26 – 1.98 (m, 3H), 1.95 – 1.83 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.84 (d, *J* = 265.6 Hz), 137.85 (d, *J* = 7.3 Hz), 137.07, 130.46 (d, *J* = 3.0 Hz), 129.77 (d, *J* = 4.8 Hz), 128.34, 127.96, 127.59, 127.33, 123.20 (d, *J* = 14.1 Hz), 74.92 (d, *J* = 26.3 Hz), 69.23, 28.86 (d, *J* = 2.0 Hz), 26.84. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -50.33 (d, *J* = 29.4 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₈H₁₈FO⁺, 269.1336; found,269.1339.

2-(1-fluoro-2,2-bis(4-fluorophenyl)vinyl)tetrahydrofuran (3f): Eluent: PE/EA (15:1). Rf: 0.42; White solid (98%); m.p. 67.9–68.3 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 (dtd, *J* = 14.1, 5.8, 2.9 Hz, 4H), 7.12 – 6.94 (m, 4H), 4.51 (dq, *J* = 29.4, 6.7 Hz, 1H), 3.99 (q, *J* = 6.9 Hz, 1H), 3.83 (td, *J* = 7.6, 5.4 Hz, 1H), 2.22 – 1.99 (m, 3H), 1.91 (ddddt, *J* = 13.0, 9.2, 5.7, 3.6, 1.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.39 (d, *J* = 247.6 Hz),161.94 (d, *J* = 247.6 Hz), 155.97 (d, *J* = 266.2 Hz), 133.56 (dd, *J* = 7.4, 3.4 Hz), 132.85 (d, *J* = 3.2 Hz), 132.08 (dd, *J* = 8.1, 3.1 Hz), 131.45 (dd, *J* = 8.1, 5.0 Hz), 130.40 (d, *J* = 2.9 Hz), 129.70 (d, *J* = 4.8 Hz), 128.23 (d, *J* = 41.0 Hz), 121.38 (d, *J* = 14.8 Hz), 115.96 – 114.63 (m), 74.83 (dd, *J* = 26.1, 5.3 Hz), 69.23, 28.75 (d, *J* = 2.3 Hz), 26.83. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -37.95 (dtd, *J* = 65.4, 8.7, 4.3 Hz), -49.61 (d, *J* = 29.1 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₈H₁₆F₃O⁺, 305.1148; found, 305.1143.

2-(2,2-bis(4-chlorophenyl)-1-fluorovinyl)tetrahydrofuran (3g): Eluent: PE/EA (15:1). Rf: 0.5; White solid (99%); m.p. 90.0–91.1 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 8.6 Hz, 2H), 7.21 – 7.15 (m, 4H), 4.49 (dt, *J* = 29.5, 7.0 Hz, 1H),

3.97 (q, J = 6.9 Hz, 1H), 3.81 (td, J = 7.6, 5.4 Hz, 1H), 2.28 – 1.98 (m, 3H), 1.97 – 1.81 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.48 (d, J = 267.8 Hz), 135.83 (d, J = 7.3 Hz), 135.08, 133.99, 133.42 (d, J = 1.1 Hz), 131.78 (d, J = 3.1 Hz), 131.07 (d, J = 5.1 Hz), 128.75, 128.29, 121.27 (d, J = 14.7 Hz), 74.78 (d, J = 26.2 Hz), 69.28, 28.78 (d, J = 2.3 Hz), 26.85. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -47.86 (d, J = 29.3 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₈H₁₆Cl₂FO⁺, 337.0557; found, 337.0560.

(Z)-2-(1-fluoro-2-phenylvinyl)tetrahydrofuran (3h): Eluent: PE/EA (15:1). Rf: 0.6; Yellow oil (90%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 (d, *J* = 7.0 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.29 – 7.19 (m, 1H), 5.78 (d, *J* = 39.4 Hz, 1H), 4.53 (ddd, *J* = 13.5, 7.5, 5.4 Hz, 1H), 4.20 – 3.97 (m, 1H), 3.95 – 3.77 (m, 1H), 2.34 – 1.80 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.34 (d, *J* = 269.2 Hz), 133.07 (d, *J* = 2.7 Hz), 128.66 (d, *J* = 7.3 Hz), 128.43, 127.19 (d, *J* = 2.4 Hz), 106.04 (d, *J* = 6.4 Hz), 69.00, 29.54, 25.79. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.80 (dd, *J* = 39.4, 14.3 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₂H₁₄FO⁺, 193.1023; found, 193.1027.

(*Z*)-2-(1-fluoro-2-(4-methoxyphenyl)vinyl)tetrahydrofuran (3i): Eluent: PE/EA (15:1). Rf: 0.23; Colorless oil (40%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 (d, *J* = 8.9 Hz, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 5.71 (d, *J* = 39.6 Hz, 1H), 4.50 (ddd, *J* = 15.2, 7.3, 5.5 Hz, 1H), 4.01 (dt, *J* = 8.3, 6.4 Hz, 1H), 3.92 – 3.85 (m, 1H), 3.82 (s, 3H), 2.38 – 1.87 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.68 (d, *J* = 2.7 Hz), 157.86 (d, *J* = 266.5 Hz), 129.94 (d, *J* = 7.2 Hz), 125.77 (d, *J* = 2.5 Hz), 113.87, 105.76 (d, *J* = 7.0 Hz), 77.23 (d, *J* = 31.2 Hz), 68.94, 55.24, 29.43, 25.86. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -44.93 (dd, *J* = 39.5, 15.5 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₃H₁₆FO₂⁺, 223.1129; found, 223.1132.

(*Z*)-2-(1-fluoro-2-(3-methoxyphenyl)vinyl)tetrahydrofuran (3j): Eluent: PE/EA (15:1). Rf: 0.25; Yellow oil (76%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.24 (t, *J* = 8.4 Hz, 1H), 7.12 – 7.04 (m, 2H), 6.85 – 6.77 (m, 1H), 5.76 (d, *J* = 39.1 Hz, 1H), 4.52 (ddd, *J* = 13.5, 7.5, 5.4 Hz, 1H), 4.15 – 3.98 (m, 1H), 3.91 (d, *J* = 7.5 Hz, 1H), 3.81 (s, 3H), 2.42 – 1.83 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.58, 159.53 (d, *J* = 269.4 Hz), 134.32 (d, *J* = 2.6 Hz), 129.35, 121.32 (d, *J* = 6.7 Hz), 113.89 (d, *J* = 7.9 Hz), 113.17 (d, *J* = 2.1 Hz), 105.97 (d, *J* = 6.2 Hz), 69.01, 55.19, 29.56, 25.79. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -40.92 (dd, *J* = 38.9, 14.0 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₃H₁₆FO₂⁺, 223.1129; found,223.1131.

(*Z*)-2-(1-fluoro-2-(2-methoxyphenyl)vinyl)tetrahydrofuran (3k): Eluent: PE/EA (15:1). Rf: 0.24; Yellow oil (89%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.22 (ddd, *J* = 8.3, 7.4, 1.7 Hz, 1H), 7.02 – 6.80 (m, 2H), 6.20 (d, *J* = 40.3 Hz, 1H), 4.54 (ddd, *J* = 16.2, 7.3, 5.7 Hz, 1H), 4.03 (dt, *J* = 8.3, 6.5 Hz, 1H), 3.89 (dddd, *J* = 8.0, 6.7, 5.6, 1.0 Hz, 1H), 3.84 (s, 3H), 2.39 – 1.81 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.46, 157.53 (d, *J* = 263.7 Hz), 129.93 (d, *J* = 12.3 Hz), 128.39 (d, *J* = 1.8 Hz), 121.82 (d, *J* = 3.0 Hz), 120.57, 110.46, 100.03 (d, *J* = 5.3 Hz), 77.69, 68.96, 55.52, 29.43, 25.92. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -44.08 (dd, *J* = 40.2, 16.4 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₃H₁₆FO₂⁺, 223.1129; found,223.1133.

(*E*)-2-(2-(4-(benzyloxy)phenyl)-1-fluorovinyl)tetrahydrofuran (3la): Eluent: PE/EA (15:1). Rf: 0.37; Colorless oil (30%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 – 7.30 (m, 5H), 7.19 (d, J = 8.7 Hz, 2H), 6.95 (d, J = 8.7 Hz, 2H), 6.32 (d, J = 20.2 Hz, 1H), 5.07 (s, 2H), 4.76 (dt, J = 30.2, 6.7 Hz, 1H), 4.00 (dt, J = 8.8, 6.4 Hz, 1H), 3.85 (td, J = 7.6, 5.0 Hz, 1H), 2.32 – 1.98 (m, 3H), 1.94 (p, J = 8.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.47 (d, J = 257.4 Hz), 158.08, 136.88, 130.07 (d, J = 2.6 Hz), 128.62, 128.02, 127.45, 125.85, 114.89, 110.80 (d, J = 26.9 Hz), 73.50 (d, J = 26.5 Hz), 70.06, 69.10, 28.28 (d, J = 2.7 Hz), 26.75. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -45.50 (dd, J = 30.2, 20.1 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₉H₂₀FO₂⁺, 299.1442; found, 299.1446.

(Z)-2-(2-(4-(benzyloxy)phenyl)-1-fluorovinyl)tetrahydrofuran (3lb): Eluent: PE/EA (15:1). Rf: 0.13; White solid (68%); m.p. 62.6–62.8 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.49 – 7.29 (m, 7H), 6.95 (d, J = 8.7 Hz, 2H), 5.72 (d, J = 39.5 Hz, 1H), 5.08 (s, 2H), 4.51 (ddd, J = 15.1, 7.3, 5.5 Hz, 1H), 4.02 (dt, J = 8.3, 6.4 Hz, 1H), 3.89 (q, J = 7.1 Hz, 1H), 2.32 – 1.85 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.98 (d, J = 266.6 Hz), 157.91 (d, J = 2.8 Hz), 136.96, 129.97 (d, J = 7.3 Hz), 128.60, 127.98, 127.47, 126.05 (d, J = 2.5 Hz), 114.85, 105.74 (d, J = 6.9 Hz), 69.99, 68.95, 29.45, 25.86. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -44.67 (dd, J = 39.5, 15.5 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₉H₂₀FO₂⁺, 299.1442; found,299.1445.

(*E*)-2-(1-fluoro-2-(p-tolyl)vinyl)tetrahydrofuran (3ma): Eluent: PE/EA (15:1). Rf: 0.52; Light yello w oil (22%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.15 (s, 4H), 6.34 (d, *J* = 20.1 Hz, 1H), 4.77 (dt, *J* = 30.3, 6.7 Hz, 1H), 4.00 (q, *J* = 6.9 Hz, 1H), 3.85 (td, *J* = 7.5, 4.9 Hz, 1H), 2.35 (s, 3H), 2.19 – 1.97 (m, 3H), 1.94 (d, *J* = 6.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.82 (d, *J* = 258.3 Hz), 137.03, 130.20 (d, *J* = 12.5 Hz), 129.15, 128.77 (d, *J* = 2.7 Hz), 111.12 (d, *J* = 26.4 Hz), 73.48 (d, *J* = 26.5 Hz), 69.12, 28.34 (d, *J* = 2.7 Hz), 26.74, 21.14. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -44.90 (dd, *J* = 30.3, 20.2 Hz). HRMS

ESI (*m*/*z*): [M+H]⁺ calcd for C₁₃H₁₆FO⁺, 207.1180; found, 207.1183

(*Z*)-2-(1-fluoro-2-(p-tolyl) vinyl)tetrahydrofuran (3mb): Eluent: PE/EA (15:1). Rf: 0.35; Light yellow oil (76%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 (d, *J* = 7.8 Hz, 2H), 7.14 (d, *J* = 7.8 Hz, 2H), 5.75 (d, *J* = 39.5 Hz, 1H), 4.51 (dt, *J* = 14.0, 6.4 Hz, 1H), 4.02 (q, *J* = 7.0 Hz, 1H), 3.89 (q, *J* = 7.1 Hz, 1H), 2.35 (s, 3H), 2.05 (dddd, *J* = 35.9, 29.2, 14.4, 6.6 Hz, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.70 (d, *J* = 267.9 Hz), 137.00 (d, *J* = 2.4 Hz), 130.20 (d, *J* = 2.7 Hz), 129.14, 128.58 (d, *J* = 7.2 Hz), 106.06 (d, *J* = 6.7 Hz), 68.97, 29.48, 25.83, 21.23. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -42.99 (dd, *J* = 39.5, 15.1 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₃H₁₆FO⁺, 207.1180; found,207.1184

(*Z*)-2-(2-(4-chlorophenyl)-1-fluorovinyl)tetrahydrofuran (3n): Eluent: PE/EA (15:1). Rf: 0.2; Light yellow solid (54%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (d, *J* = 8.6 Hz, 2H), 7.32 – 7.24 (m, 2H), 5.74 (d, *J* = 38.9 Hz, 1H), 4.51 (ddd, *J* = 13.3, 7.6, 5.3 Hz, 1H), 4.02 (dt, *J* = 8.6, 6.4 Hz, 1H), 3.96 – 3.80 (m, 1H), 2.36 – 1.79 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.86 (d, *J* = 269.9 Hz), 132.79 (d, *J* = 3.0 Hz), 131.54 (d, *J* = 2.6 Hz), 129.87 (d, *J* = 7.4 Hz), 128.60, 104.94 (d, *J* = 6.4 Hz), 69.05, 29.56, 25.77. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -40.64 (dd, *J* = 38.8, 13.7 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₂H₁₃ClFO⁺, 277.0633; found,277.0636.

(Z)-2-(2-(4-bromophenyl)-1-fluorovinyl)tetrahydrofuran (30): Eluent: PE/EA (15:1). Rf:

0.4; Light yellow solid (50%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 (d, *J* = 8.7 Hz, 2H), 7.36 (d, *J* = 8.6 Hz, 2H), 5.73 (d, *J* = 38.9 Hz, 1H), 4.51 (ddd, *J* = 13.3, 7.5, 5.3 Hz, 1H), 4.02 (dd, *J* = 8.1, 6.5 Hz, 1H), 3.99 – 3.82 (m, 1H), 2.33 – 1.84 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.01 (d, *J* = 270.3 Hz), 131.98 (d, *J* = 2.2 Hz), 131.57, 130.18 (d, *J* = 7.5 Hz), 120.96 (d, *J* = 3.5 Hz), 104.98 (d, *J* = 6.3 Hz), 69.06, 29.55, 25.77. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -40.21 (dd, *J* = 38.8, 13.6 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₂H₁₃BrFO⁺, 271.0128; found,271.0125.

(*Z*)-2-(1-fluoro-2-(4-iodophenyl)vinyl)tetrahydrofuran (3p): Eluent: PE/EA (15:1). Rf: 0.33; Light yellow oil (45%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 (d, *J* = 8.5 Hz, 2H), 7.23 (d, *J* = 8.4 Hz, 2H), 5.71 (d, *J* = 38.9 Hz, 1H), 4.50 (ddd, *J* = 13.2, 7.6, 5.3 Hz, 1H), 4.01 (dt, *J* = 8.7, 6.4 Hz, 1H), 3.94 – 3.82 (m, 1H), 2.28 – 1.76 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.22 (d, *J* = 270.4 Hz), 137.88, 137.55, 132.56 (d, *J* = 2.6 Hz), 130.38 (d, *J* = 7.4 Hz), 105.06 (d, *J* = 6.3 Hz), 69.05, 29.56, 25.76. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -39.70 (dd, *J* = 38.9, 13.5 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₂H₁₃FIO⁺, 318.9990; found,318.9992.

(*E*)-2-(2-([1,1'-biphenyl]-4-yl)-1-fluorovinyl)tetrahydrofuran (3qa): Eluent: PE/EA (20:1). Rf: 0.4; Yellow oil (16%); ¹H NMR (400 MHz, Chloroform-d) δ 7.64 – 7.55 (m, 4H), 7.51 – 7.41 (m, 2H), 7.35 (d, *J* = 7.9 Hz, 3H), 6.41 (d, *J* = 20.0 Hz, 1H), 4.83 (dt, *J* = 30.1, 6.7 Hz, 1H), 4.02 (q, *J* = 6.9 Hz, 1H), 3.88 (td, *J* = 7.7, 5.1 Hz, 1H), 2.11 (tq, *J* = 15.0, 7.2 Hz, 3H), 2.01 – 1.87 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.90 (d, *J* = 256.8 Hz), 140.58, 140.11, 132.19 (d, *J* = 12.9 Hz), 129.31 (d, *J* = 2.6 Hz), 128.82, 127.41, 127.16, 127.00, 110.94 (d, *J* = 26.9 Hz), 73.53 (d, *J* = 26.3 Hz), 69.20, 28.37 (d, *J* = 2.7 Hz), 26.78. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -43.34 (dd, *J* = 30.1, 20.0 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₈H₁₈FO⁺, 269.1336; found,269.1333.

(*Z*)-2-(2-([1,1'-biphenyl]-4-yl)-1-fluorovinyl)tetrahydrofuran (3qb): Eluent: PE/EA (20:1). Rf: 0.32; White solid (80%); m.p. 82.9-83.5 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.73 – 7.57 (m, 6H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.36 (t, *J* = 7.4 Hz, 1H), 5.84 (d, *J* = 39.4 Hz, 1H), 4.56 (ddd, *J* = 13.5, 7.4, 5.5 Hz, 1H), 4.05 (q, *J* = 6.9, 6.5 Hz, 1H), 3.92 (q, *J* = 7.1 Hz, 1H), 2.43 – 1.90 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.58 (d, *J* = 269.3 Hz), 140.71, 139.88 (d, *J* = 2.3 Hz), 132.15 (d, *J* = 2.6 Hz), 129.09 (d, *J* = 7.3 Hz), 128.80, 127.32, 127.11, 126.97, 105.71 (d, *J* = 6.5 Hz), 77.09 (d, *J* = 31.9 Hz), 69.04, 29.59, 25.82. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.15 (dd, *J* = 39.4, 14.2 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₈H₁₈FO⁺, 269.1336; found, 269.1339.

(*E*)-2-(1-fluoro-2-(naphthalen-2-yl)vinyl)tetrahydrofuran (3ra): Eluent: PE/EA (15:1). Rf: 0.5; White solid (38%); m.p. 62.6–62.9 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.77 (m, 3H), 7.73 (s, 1H), 7.53 – 7.43 (m, 2H), 7.38 (dd, *J* = 8.5, 1.8 Hz, 1H), 6.52 (d, *J* = 20.0 Hz, 1H), 4.85 (dt, *J* = 30.2, 6.9 Hz, 1H), 4.08 – 3.98 (m, 1H), 3.94 – 3.83 (m, 1H), 2.21 – 2.02 (m, 3H), 1.98 – 1.90 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.51 (d, *J* = 260.0 Hz), 133.30, 132.43, 130.66 (d, *J* = 12.4 Hz), 128.06, 127.90, 127.67 (d, *J* = 3.0 Hz), 127.63, 126.98 (d, *J* = 2.2 Hz), 126.33, 126.06, 111.31 (d, *J* = 26.9 Hz), 73.55 (d, *J* = 26.5 Hz), 69.21, 28.44 (d, *J* = 2.6 Hz), 26.76. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -43.33 (dd, *J* = 30.2, 19.9 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₆H₁₆FO⁺, 243.1180; found,243.1182.

(*Z*)-2-(1-fluoro-2-(naphthalen-2-yl)vinyl)tetrahydrofuran (3rb): Eluent: PE/EA (15:1). Rf: 0.32; White solid (50%); m.p. 72.5–73 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (s, 1H), 7.87 – 7.76 (m, 3H), 7.67 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.51 – 7.40 (m, 2H), 5.94 (d, *J* = 39.3 Hz, 1H), 4.62 – 4.52 (m, 1H), 4.05 (q, *J* = 7.4, 6.6 Hz, 1H), 3.92 (q, *J* = 7.1 Hz, 1H), 2.25 – 1.93 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.68 (d, *J* = 269.6 Hz), 133.45, 132.49 (d, *J* = 1.8 Hz), 130.64 (d, *J* = 3.2 Hz), 128.05, 127.95, 127.72 (d, *J* = 7.2 Hz), 127.55, 126.64 (d, *J* = 7.4 Hz), 126.11, 125.94, 106.19 (d, *J* = 6.4 Hz), 69.06, 29.60, 25.84. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.24 (dd, *J* = 39.3, 14.3 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₆H₁₆FO⁺, 243.1180; found,243.1183.

(*E*)-2-(1-fluoro-2-(naphthalen-1-yl)vinyl)tetrahydrofuran (3sa): Eluent: PE/EA (15:1). Rf: 0.4; Light yellow oil (21%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 – 7.94 (m, 1H), 7.90 – 7.78 (m, 2H), 7.62 – 7.39 (m, 4H), 6.77 (d, *J* = 19.1 Hz, 1H), 4.62 (dt, *J* = 29.8, 7.0 Hz, 1H), 3.99 (q, *J* = 7.0 Hz, 1H), 3.82 (td, *J* = 7.6, 5.1 Hz, 1H), 2.39 – 1.94 (m, 3H), 1.88 (dt, *J* = 10.4, 7.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.96 (d, *J* = 274.1 Hz), 133.46, 132.15 (d, *J* = 2.7 Hz), 130.11 (d, *J* = 1.8 Hz), 128.39, 128.14, 127.27 (d, *J* = 1.9 Hz), 126.29, 126.08, 125.41, 124.87, 108.66 (d, *J* = 25.7 Hz), 73.47 (d, *J* = 26.2 Hz), 69.21, 28.60 (d, *J* = 1.8 Hz), 26.74. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -43.08 (dd, *J* = 29.8, 19.2 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₆H₁₆FO⁺, 243.1180; found,243.1181.

(*Z*)-2-(1-fluoro-2-(naphthalen-1-yl)vinyl)tetrahydrofuran (3sb): Eluent: PE/EA (15:1). Rf: 0.3; Light yellow oil (68%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (d, *J* = 8.0 Hz, 1H), 7.86 (d, *J* = 7.2 Hz, 3H), 7.79 (d, *J* = 7.8 Hz, 3H), 6.47 (d, *J* = 37.0 Hz, 1H), 4.68 (ddd, *J* = 13.0, 7.5, 5.5 Hz, 1H), 4.10 (q, *J* = 7.0, 6.5 Hz, 1H), 3.96 (q, *J* = 7.1 Hz, 1H), 2.76 – 1.81 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.02 (d, *J* = 267.8 Hz), 133.64, 131.36, 129.09, 128.59, 127.76, 127.30 (d, *J* = 8.3 Hz), 126.06, 125.67, 125.47, 124.05, 102.66 (d, *J* = 7.9 Hz), 69.10, 29.71, 25.82. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -42.63 (dd, *J* = 36.9, 13.1 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₆H₁₆FO⁺, 243.1180; found,243.1184.

2-((1*E*,3*E*)-1-fluoro-3-methyl-4-phenylbuta-1,3-dien-1-yl)tetrahy-drofuran (3ta): Eluent: PE/EA (15:1). Rf: 0.39; Yellow oil (22%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 (t, *J* = 7.4 Hz, 4H), 7.27 – 7.17 (m, 1H), 6.34 (s, 1H), 5.82 (d, *J* = 41.2 Hz, 1H), 4.39 (dt, *J* = 16.0, 6.3 Hz, 1H), 3.88 (dq, *J* = 39.1, 7.1 Hz, 2H), 2.17 (dd, *J* = 3.7, 1.5 Hz, 3H), 2.11 – 1.80 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.19 (d, *J* = 260.3 Hz), 137.78, 131.00 (d, *J* = 3.2 Hz), 129.92 (d, *J* = 3.4 Hz), 129.08, 128.12, 126.58, 105.05 (d, *J* = 6.5 Hz), 68.91, 29.42, 25.85, 23.72, 23.65. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -40.61 (ddd, *J* = 41.3, 16.0, 3.9 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₅H₁₈FO⁺, 233.1336; found,233.1339.

2-((1Z,3*E***)-1-fluoro-3-methyl-4-phenylbuta-1,3-dien-1-yl)tet-rahydrofuran (3tb)**: Eluent: PE/EA (15:1). Rf: 0.2; Yellow oil (21%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.26 (m, 4H), 7.22 (t, *J* = 7.4 Hz, 1H), 6.52 (s, 1H), 5.52 (d, *J* = 39.4 Hz, 1H), 4.43 (dt, *J* = 15.2, 6.4 Hz, 1H), 3.99 (q, *J* = 6.9 Hz, 1H), 3.87 (q, *J* = 7.0 Hz, 1H), 2.15 (d, *J* = 1.6 Hz, 3H), 2.12 – 1.91 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.07 (d, *J* = 268.5 Hz), 137.62, 132.02 (d, *J* = 4.2 Hz), 130.69 (d, *J* = 5.3 Hz), 129.15, 128.08, 126.54, 110.79 (d, *J* = 5.9 Hz), 68.93, 29.49, 25.88, 17.06, 16.99. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -43.34 (dd, J = 39.3, 15.4 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₅H₁₈FO⁺, 233.1336; found,233.1338.

(5-ethyl-2-fluoronon-1-ene-1,1-diyl)dibenzene (4a): Eluent: 100% PE. Rf: 0.48; Yellow oil (41%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.27 (m, 7H), 7.26 – 7.16 (m, 3H), 2.41 – 2.11 (m, 2H), 1.57 (dd, J = 10.5, 5.3 Hz, 2H), 1.31 – 1.09 (m, 9H), 0.83 (dt, J = 26.5, 6.9 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.33 (d, J = 239.5 Hz), 139.17 (d, J = 8.3 Hz), 137.75, 130.24 (d, J = 3.2 Hz), 129.54 (d, J = 5.1 Hz), 128.32, 127.90, 127.13, 126.68, 120.12 (d, J = 1.9 Hz), 38.41, 32.44, 30.10, 28.73, 27.88 (d, J = 27.1 Hz), 25.61, 23.05, 14.09, 10.74. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -29.70 (t, J = 23.4 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₂₃H₃₀F⁺, 325.2326; found, 325.2329.

(2-fluoro-5-methyldec-1-ene-1,1-diyl)dibenzene (4b): Eluent: 100% PE. Rf: 0.65; Yellow oil (38%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 – 7.25 (m, 7H), 7.20 (d, *J* = 6.6 Hz, 3H), 2.38 – 2.21 (m, 2H), 1.63 (ddd, *J* = 9.5, 7.6, 6.0 Hz, 1H), 1.42 (td, *J* = 9.9, 9.5, 5.7 Hz, 2H), 1.32 – 1.18 (m, 8H), 1.05 (d, *J* = 8.2 Hz, 1H), 0.88 (t, *J* = 7.1 Hz, 3H), 0.79 (d, *J* = 6.2 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.17 (d, *J* = 271.0 Hz), 139.17 (d, *J* = 8.3 Hz), 137.77, 130.26 (d, *J* = 2.9 Hz), 129.57 (d, *J* = 5.1 Hz), 128.33, 127.91, 127.13, 126.69, 109.98 (d, *J* = 3.6 Hz), 41.95, 36.55, 33.85, 32.24 (d, *J* = 17.6 Hz), 28.18 (d, *J* = 27.1 Hz), 26.55, 22.68, 19.41, 14 .11. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -29.78 (t, *J* = 23.0 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₂₃H₃₀F⁺, 325.2326; found,325.2330.

(4-cyclopentyl-2-fluorobut-1-ene-1,1-diyl)dibenzene (4c): Eluent: 100% PE. Rf: 0.56; Yellow oil (30%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (d, *J* = 7.5 Hz, 1H), 7.40 – 7.33 (m, 2H), 7.29 (d, J = 3.1 Hz, 3H), 7.20 (d, J = 6.4 Hz, 4H), 2.32 (dt, J = 23.2, 7.7 Hz, 2H), 1.70 – 1.44 (m, 8H), 1.27 (s, 1H), 1.02 (dq, J = 15.3, 7.3 Hz, 2 H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.21 (d, J = 261.0 Hz), 139.49 (d, J = 4.5 Hz), 137.76, 130.26 (d, J = 2.9Hz), 129.55 (d, J = 5.1 Hz), 128.45, 127.90, 127.11, 126.68, 120.92 (d, J = 9.4 Hz), 39.63, 33.19, 32.47, 29.83 (d, J = 27.1 Hz), 25.13.¹⁹F NMR (376 MHz, Chloroform-*d*) δ -29.60 (t, J = 23.2 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₂₁H₂₄F⁺, 295.1857; found,295.1857.

(2-fluoropent-1-ene-1,1,5-triyl)tribenzene (4d): Eluent: 100% PE. Rf: 0.56; Light yellow oil (42%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.27 (m, 7H), 7.27 – 7.07 (m, 8H), 2.63 (t, *J* = 7.8 Hz, 2H), 2.37 (dt, *J* = 22.7, 7.5 Hz, 2H), 1.94 (p, *J* = 7.6 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.91 (d, *J* = 261.0 Hz), 141.71, 138.98 (d, *J* = 8.2 Hz), 137.64, 130.24 (d, *J* = 3.1 Hz), 129.57 (d, *J* = 5.0 Hz), 128.37, 128.36, 128.31, 127.93, 127.15, 126.80, 125.84, 120.69 (d, *J* = 15.1 Hz), 35.16, 30.00 (d, *J* = 27.4 Hz), 28.43. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -30.09 (t, *J* = 22.7 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₂₃H₂₂F⁺, 317.1700; found,317.1703.

(2-cyclobutyl-2-fluoroethene-1,1-diyl)dibenzene (4e): Eluent: 100% PE. Rf: 0.78; Yellow oil (60%); 1H NMR (400 MHz, Chloroform-*d*) δ 7.41 – 7.27 (m, 6H), 7.28 – 7.17 (m, 2H), 7.18 – 7.12 (m, 2H), 3.29 (dp, *J* = 31.2, 8.8 Hz, 1H), 2.39 (pd, *J* = 9.4, 2.6 Hz, 2H), 2.02 (tdd, *J* = 11.3, 7.1, 2.9 Hz, 2H), 1.83 (dtd, *J* = 20.7, 9.1, 8.3, 4.0 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.41 (d, *J* = 259.2 Hz), 139.04 (d, *J* = 7.9 Hz), 137.82, 130.37 (d, *J* = 3.0 Hz), 129.76 (d, *J* = 4.9 Hz), 128.25, 127.89, 127.15, 126.75, 119.39 (d, *J* = 16.7 Hz), 35.42 (d, *J* = 30.9 Hz), 25.78, 18.00. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.04 (d, *J* = 31.2 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₈H₁₈F⁺, 253.1387; found,253.1390.

(2-cyclopentyl-2-fluoroethene-1,1-diyl)dibenzene (4f): Eluent: 100% PE. Rf: 0.78; Light yellow oil (50%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 – 7.27 (m, 5H), 7.21 (t, *J* = 7.0 Hz, 5H), 2.80 (dp, *J* = 33.7, 8.3 Hz, 1H), 1.97 – 1.67 (m, 6H), 1.53 (d, *J* = 3.6 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.58 (d, *J* = 258.8 Hz), 139.34 (d, *J* = 8.3 Hz), 137.94, 130.38 (d, *J* = 3.0 Hz), 129.67 (d, *J* = 5.0 Hz), 128.32, 127.87, 127.05, 126.63, 113.61 (d, *J* = 2.9 Hz), 41.96, 39.91 (d, *J* = 26.8 Hz), 30.31, 26.33. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -43.79 (d, *J* = 33.8 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₉H₂₀F⁺, 267.1544; found, 267.1545.

2-(1-fluoro-2,2-diphenylvinyl)tetrahydro-2H-pyran (4g): Eluent: PE/EA (9:1). Rf: 0.63; White solid (61%); m.p. 66.5–66.6 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 (d, *J* = 6.8 Hz, 3H), 7.29 (d, *J* = 6.5 Hz, 4H), 7.29 – 7.19 (m, 3H), 4.11 – 3.92 (m, 2H), 3.38 (t, *J* = 11.3 Hz, 1H), 2.03 – 1.84 (m, 2H), 1.66 (ddt, *J* = 17.3, 13.0, 6.1 Hz, 2H), 1.54 – 1.39 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.65 (d, *J* = 232.8 Hz), 138.04 (d, *J* = 7.1 Hz), 137.02, 130.19 (d, *J* = 3.0 Hz), 129.82 (d, *J* = 4.9 Hz), 128.30, 127.94, 127.61, 127.32, 123.08 (d, *J* = 14.3 Hz), 74.70 (d, *J* = 26.0 Hz), 68.52, 27.84, 25.42, 22.99. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -46.51 (d, *J* = 26.0 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₉H₂₀FO⁺, 283.1493; found,283.1496.

Ph F Ph

(**2-fluoro-3,3-dimethylbut-1-ene-1,1-diyl**)**dibenzene** (**4h**): Eluent: 100% PE. Rf: 0.63; Colorless oil (52%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.27 (m, 6H), 7.25 – 7.15 (m, 4H), 1.08 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.55 (d, *J* = 258.8 Hz), 139.40 (d, *J* = 2.3 Hz), 139.00, 130.76 (d, *J* = 3.1 Hz), 129.31 (d, *J* = 4.4 Hz), 128.95, 127.88 (d, *J* = 3.7 Hz), 127.15, 126.51, 119.61 (d, *J* = 21.2 Hz), 36.78 (d, *J* = 26.1 Hz), 29.20 (d, *J* = 4.3 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -27.98. HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₈H₂₀F⁺, 255.1544; found,255.1546.

(3*r*,5*r*,7*r*)-1-(1-fluoro-2,2-diphenylvinyl)adamantane (4i): Eluent: PE/EA (20:1). Rf: 0.73; White solid (51%); m.p. 108.4–109.4 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 (d, J = 7.6 Hz, 3H), 7.24 (dd, J = 7.2, 2.9 Hz, 6H), 7.20 – 7.12 (m, 1H), 1.89 (s, 3H), 1.74 (d, J = 3.0 Hz, 6H), 1.67 – 1.56 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.41 (d, J = 254.5 Hz), 138.52 (d, J = 28.5 Hz), 135.31, 130.86 (d, J = 3.1 Hz), 129.28 (d, J = 4.3 Hz), 127.84, 127.74, 127.06, 126.43, 115.51 (d, J = 56.1 Hz), 40.10 (d, J = 4.0 Hz), 36.52, 28.15. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -34.07. HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₂₄H₂₆F⁺, 333.2013; found,333.2016.

methyl4-(1-fluoro-2,2-diphenylvinyl)bicyclo[2.2.2]octane-1-carbox-ylate (4j): Eluent: PE/EA (15:1). Rf: 0.45; White solid (39%); m.p. 99.7–102.1 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.22 (m, 7H), 7.22 – 7.13 (m, 3H), 3.61 (s, 3H), 1.76 – 1.51 (m, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.06, δ 160.17 (d, J = 267.9 Hz), 139.27 (d, J = 1.9 Hz), 138.41, 130.82 (d, J = 3.0 Hz), 129.24 (d, J = 4.5 Hz), 127.95, 127.89, 127.28, 126.62, 120.76 (d, J = 21.7 Hz), 51.65, 38.13, 36.99 (d, J = 25.3 Hz), 28.74 (d, J = 3.9 Hz), 27.94. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -28.82. HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₂₄H₂₆FO₂⁺, 365.1911; found,365.1914.

(2-fluoro-2-(1-phenylcyclopropyl)ethene-1,1-diyl)dibenzene (4k): Eluent: PE/EA (20:1). Rf: 0.69; White solid (44%); m.p. 74.6–75 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.26 (m, 8H), 7.27 – 7.18 (m, 5H), 7.14 – 7.07 (m, 2H), 1.10 (s, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.19 (d, J = 254.4 Hz), 152.88, 149.37 (d, J = 38.38), 143.04 (d, J = 3.4 Hz), 137.92, 130.15 (d, J = 2.9 Hz), 129.98 (d, J = 4.4 Hz), 128.47, 127.93 (d, J = 2.7 Hz), 127.28, 127.15, 125.95, 125.75, 112.84 (d, J = 4.0 Hz), 26.15 (d, J = 45.0 Hz), 19.36 (d, J = 5.1 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -19.30. HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₂₃H₂₀F⁺, 315.1544; found, 315.1547.

benzyl (2-fluoro-3,3-diphenylallyl)carbamate (4l): Eluent: PE/EA (9:1). Rf: 0.39; White solid (40%); m.p. 66.1–66.6 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.26 (m, 12H), 7.27 – 7.19 (m, 3H), 5.12 (s, 2H), 5.00 (s, 1H), 4.09 (dd, J = 19.1, 5.9 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ, 156.01, 152.67 (d, J = 261.9 Hz), 138.83, 137.40 (d, J = 6.9 Hz), 136.44 (d, J = 25.5 Hz), 130.12 (d, J = 3.0 Hz), 129.58 (d, J = 5.0 Hz), 128.60, 128.55, 128.17 (d, J = 6.3 Hz), 128.05, 127.89, 127.50, 123.16 (d, J = 13.1 Hz), 119.02, 67.04, 40.51 (d, J = 27.3 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -38.01 (t, J = 19.1 Hz). HRMS ESI (*m/z*): [M+H]⁺ calcd for C₂₃H₂₁FNO₂⁺, 362.1551; found,362.1553.

N-(**3-fluoro-1,4,4-triphenylbut-3-en-2-yl)acetamide** (**4m**): Eluent: PE/EA (5:1). Rf: 0.2; Yellow oil (38%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.27 (s, 5H), 7.26 – 7.08 (m, 8H),

6.72 (d, J = 6.0 Hz, 2H), 5.81 (d, J = 8.7 Hz, 1H), 4.97 (dtd, J = 28.6, 9.1, 6.3 Hz, 1H), 3.04 – 2.89 (m, 2H), 1.99 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.67, 153.90 (d, J = 246.3 Hz), 136.72 (t, J = 3.7 Hz), 136.60, 133.64, 129.91 (d, J = 2.9 Hz), 129.54, 129.29 (d, J = 4.8 Hz), 128.43, 128.19, 127.98, 127.53, 127.32, 126.81, 111.96 (d, J = 209.2 Hz), 50.39 (d, J = 24.9 Hz), 39.20, 23.36. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -49.44 (d, J = 28.6 Hz). HRMS ESI (m/z): [M+H]⁺ calcd for C₂₄H₂₃FNO⁺, 360.1758; found, 360.1762.

tert-butyl(*R*)-2-(1-fluoro-2,2-diphenylvinyl)pyrrolidine-1-carboxyla-te (4n): Eluent: PE/EA (15:1). Rf: 0.3; White solid (89%); m.p. 125–126 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 (dd, *J* = 21.5, 7.1 Hz, 6H), 7.23 (d, *J* = 13.4 Hz, 4H), 4.42 (d, *J* = 26.0 Hz, 1H), 3.51 (d, *J* = 24.9 Hz, 2H), 2.51 – 1.91 (m, 3H), 1.77 (dt, *J* = 13.2, 7.1 Hz, 1H), 1.43 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.62 (d, *J* = 265.2 Hz), 154.13, 137.83, 137.44, 130.57 (d, *J* = 2.9 Hz), 129.63 (d, *J* = 5.0 Hz), 128.28, 128.00, 127.49, 127.09, 119.90 (d, *J* = 10.5 Hz), 79.74, 55.49 (d, *J* = 24.5 Hz), 47.30, 33.16, 28.63, 23.71. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -46.07 (d, *J* = 25.8 Hz), -46.75 (d, *J* = 26.1 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₂₃H₂₇FNO₂⁺, 368.2020; found,368.2024.

2-fluoro-1,3,3-triphenylprop-2-en-1-one (4o): Eluent: PE/EA (9:1). Rf: 0.67; Colorless oil (31%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 – 7.78 (m, 3H), 7.63 – 7.57 (m, 1H), 7.49 (t, *J* = 7.5 Hz, 3H), 7.44 – 7.32 (m, 5H), 7.24 – 7.17 (m, 2H), 7.17 – 7.11 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 189.07 (d, *J* = 31.1 Hz), 149.85 (d, *J* = 268.8 Hz), 136.44 (d, *J* = 5.3 Hz), 136.08 (d, *J* = 8.5 Hz), 133.29, 130.94 (d, *J* = 11.7 Hz), 130.46 (d, *J* = 3.1 Hz), 130.31 (d, *J* = 5.0 Hz), 129.49 (d, *J* = 2.7 Hz), 128.86, 128.52, 128.34 (d, *J* = 1.4 Hz), 128.27,

128.24, 119.79 (d, J = 7.1 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -35.15. HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₂₁H₁₆FO⁺, 303.1180; found, 303.1184.

(6-(2,5-dimethylphenoxy)-2-fluoro-3,3-dimethylhex-1-ene-1,1-diyl)dibenzene (4p): Eluent: PE/EA (15:1). Rf: 0.63; Light yellow oil (47%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 (d, J = 7.1 Hz, 5H), 7.28 – 7.14 (m, 5H), 7.03 (d, J = 7.4 Hz, 1H), 6.76 – 6.57 (m, 2H), 3.94 (t, J = 6.3 Hz, 2H), 2.27 (d, J = 46.4 Hz, 6H), 2.01 – 1.86 (m, 2H), 1.74 – 1.63 (m, 2H), 1.02 (d, J = 1.5 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.00 (d, J = 253.9 Hz), 157.03, 139.36, 138.72 (d, J = 8.6 Hz), 136.46, 130.66 (d, J = 3.1 Hz), 130.32, 129.21 (d, J = 4.3 Hz), 127.93 (d, J = 3.5 Hz), 127.21, 126.61, 123.67, 121.40 (d, J = 21.4 Hz), 120.70, 116.00, 112.10, 68.15, 39.95 (d, J = 25.1 Hz), 38.38 (d, J = 3.0 Hz), 27.55 (d, J = 4.7 Hz), 25.36, 21.42, 15.79. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -28.02. HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₂₈H₃₂FO⁺, 403.2432; found,403.2435.

ethyl(*S*)-2-(((*S*)-1-((2*S*,3a*S*,6a*S*)-2-(1-fluoro-2,2-diphenylvinyl)hexahydrocyclopenta[*b*]py rrol-1(2*H*)-yl)-1-oxopropan-2-yl)amino)-4-phenylbutanoate (4q): Eluent: PE/EA (9:1). Rf: 0.2; Colorless oil (61%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.25 (m, 6H), 7.24 – 7.06 (m, 9H), 4.92 – 4.55 (m, 1H), 4.40 (dtd, *J* = 30.3, 7.9, 3.7 Hz, 1H), 4.29 – 4.01 (m, 1H), 3.92 – 3.52 (m, 1H), 3.41 – 2.87 (m, 2H), 2.80 – 2.39 (m, 2H), 2.34 – 1.40 (m, 12H), 1.35 – 1.02 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.69, 174.37, 174.33, 173.99, 157.56 (d, *J* = 55.1 Hz), 154.92 (d, *J* = 54.0 Hz), 141.47, 141.19, 138.05 (d, *J* = 7.5 Hz), 137.30, 137.06 (d, *J* = 7.3 Hz), 136.28, 130.52 (d, *J* = 3.2 Hz), 130.35 (d, *J* = 2.8 Hz), 129.67 (d, *J* = 2.8 Hz), 129.63 (d, J = 2.7 Hz), 129.00, 128.59, 128.54, 128.50, 128.45, 128.26, 128.14, 128.04, 127.98, 127.74, 127.54, 127.15, 126.02 (d, J = 5.3 Hz), 120.53 (d, J = 13.7 Hz), 120.36 (d, J = 12.8 Hz), 65.38, 64.06, 60.86, 60.59, 59.98, 59.46, 58.23 (d, J = 24.5 Hz), 57.66 (d, J = 24.6 Hz), 53.50, 52.88, 43.47, 41.19, 38.40, 36.34, 35.55, 35.06, 34.93, 32.74, 32.45, 32.08, 31.15, 31.00, 24.59, 23.86, 19.56, 19.44, 14.42, 14.34. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -120.81 - -121.12 (m), -121.37 (d, J = 30.1 Hz), -122.93 (d, J = 26.9 Hz), -126.42 (d, J = 25.8 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₃₆H₄₂FN₂O₃⁺, 569.3174; found,569.3177.

(3a*S*,4*R*,6*R*,6a*R*)-4-(1-fluoro-2,2-diphenylvinyl)-6-methoxy-2,2-di-methyltetrahydrofuro[3,4-d][1,3]dioxole (4r): Eluent: PE/EA (9:1). Rf: 0.6; Light yellow solid (49%); m.p. 78.3–78.7 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 – 7.23 (m, 10H), 5.07 – 4.98 (m, 2H), 4.81 (dd, J = 34.1, 1.9 Hz, 1H), 4.67 (d, J = 5.8 Hz, 1H), 3.40 (s, 3H), 1.40 (s, 3H), 1.31 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 153.57 (d, J = 269.9 Hz), 137.36 (d, J = 6.6 Hz), 136.77, 130.70 (d, J = 3.1 Hz), 129.97 (d, J = 4.8 Hz), 128.46, 128.06 (d, J = 9.6 Hz), 127.76, 125.67 (d, J = 13.5 Hz), 112.77, 109.33, 86.26, 83.13 (d, J = 25.1 Hz), 81.50 (d, J = 4.3 Hz), 55.14, 26.68, 25.13. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -120.26 (d, J = 34.1 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₂₂H₂₄FO₄⁺, 371.1653; found,371.1654.

(**1***S*,**4***aR*,**10***aS*)-**1**-(**1**-fluoro-**2**,**2**-diphenylvinyl)-**7**-isopropyl-**1**,**4***a*-dimethyl-**1**,**2**,**3**,**4**,**4***a*,**9**,**10**,**1 0***a*-octahydrophenanthren-e (4s): Eluent: PE/EA (9:1). Rf: 0.45; Light yellow oil (37%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (d, *J* = 7.8 Hz, 1H), 7.53 (dt, *J* = 8.1, 1.5 Hz, 1H), 7.44 (q, *J* = 7.2 Hz, 2H), 7.37 (ddd, *J* = 8.3, 7.1, 1.2 Hz, 1H), 7.26 – 7.13 (m, 4H), 7.02 – 6.89

(m, 4H), 3.02 - 2.93 (m, 2H), 2.84 (p, J = 6.9 Hz, 1H), 2.33 - 2.19 (m, 2H), 2.00 (dd, J = 12.4, 5.0 Hz, 1H), 1.93 - 1.79 (m, 1H), 1.68 (dt, J = 26.1, 13.2 Hz, 3H), 1.44 (d, J = 5.7 Hz, 1H), 1.28 - 1.20 (m, 7H), 1.16 (s, 3H), 0.78 (d, J = 2.1 Hz, 3H).¹³C NMR (101 MHz, Chloroform-d) δ 146.58 (d, J = 199.9 Hz), 140.16 (d, J = 4.0 Hz), 139.39 (d, J = 8.5 Hz), 139.05 (d, J = 3.8 Hz), 134.77, 130.42 (d, J = 3.0 Hz), 130.10 (d, J = 4.4 Hz), 129.23 (d, J = 4.0 Hz), 128.86 (d, J = 3.3 Hz), 128.38, 128.06 (d, J = 5.0 Hz), 127.90, 126.90 (d, J = 6.5 Hz), 126.49, 126.29, 124.05 (d, J = 3.1 Hz), 123.86, 121.28, 120.19, 110.91 (d, J = 1.3 Hz), 45.44 (d, J = 21.3 Hz), 43.84 (d, J = 4.3 Hz), 37.94, 37.30, 36.72, 33.45, 30.10, 29.72 (d, J = 2.9 Hz), 25.39, 23.99, 21.06, 19.33 (d, J = 5.1 Hz), 18.52. ¹⁹F NMR (376 MHz, Chloroform-d) δ -15.22, -29.53. HRMS ESI (m/z): [M+H]⁺ calcd for C₃₃H₃₈F⁺, 453.2952; found,453.2955.

(2*S*,4a*S*,6a*S*,6b*R*,10*S*,12a*S*,12b*R*,14b*R*)-2-(1-fluoro-2,2-diphenylvinyl)-10-hydroxy-2,4a,6 a,6b,9,9,12a-heptamethyl-1,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,14b-octadecahydro picen-13(2*H*)-one (4t): Eluent: PE/EA (9:1). Rf: 0.22; Colorless oil (66%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.24 (m, 3H), 7.27 – 7.13 (m, 7H), 5.50 (s, 1H), 3.25 (dd, J =10.4, 5.9 Hz, 1H), 2.79 (dt, J = 13.5, 3.6 Hz, 1H), 2.26 (s, 1H), 1.98 (ddd, J = 27.3, 13.6, 5.1 Hz, 3H), 1.82 – 1.56 (m, 7H), 1.50 – 1.34 (m, 4H), 1.34 – 1.28 (m, 1H), 1.19 – 1.07 (m, 14H), 1.02 (s, 3H), 1.00 – 0.87 (m, 2H), 0.81 (s, 6H), 0.69 (d, J = 10.7 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.14, 169.43, 162.34 (d, J = 258.1 Hz), 139.43 (d, J = 2.6 Hz), 138.64 (d, J = 8.4 Hz), 130.55 (d, J = 3.1 Hz), 129.26 (d, J = 4.3 Hz), 128.32, 128.14, 127.91, 127.18, 126.64, 120.31 (d, J = 22.0 Hz), 78.74, 61.74, 60.41, 54.91, 46.41, 45.39, 43.20, 40.80, 40.56, 40.22 (d, J = 4.4 Hz), 39.15, 37.06, 35.47, 32.72, 32.02, 29.97 (d, J = 5.0 Hz), 28.41, 28.11, 27.32, 26.36 (d, J = 12.5 Hz), 23.41, 20.73 (d, J = 2.9 Hz), 18.65, 17.49, 16.37, 15.60, 14.22. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -30.61. HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₄₃H₅₆FO₂⁺, 623.4259; found,623.4261.

2,2,6,6-tetramethyl-1-((**tetrahydrofuran-2-yl**)**oxy**)**piperidine** (5): Colorless oil (13%); ¹H NMR (400 MHz, Chloroform-*d*) δ 5.36 (dd, J = 5.4, 1.9 Hz, 1H), 3.98 – 3.78 (m, 2H), 2.07 – 1.88 (m, 3H), 1.85 – 1.73 (m, 1H), 1.49 (d, J = 4.0 Hz, 4H), 1.37 – 1.17 (m, 5H), 1.15 – 0.97 (m, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 109.66, 66.64, 60.21, 58.67, 40.17, 39.76, 33.91, 33.37, 31.24, 23.91, 20.49, 20.08, 17.27. HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₃H₂₆NO₂⁺, 228.1958; found, 228.1961.

(2-fluorohexa-1,5-diene-1,1-diyl)dibenzene (7): Colorless oil (10%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 – 7.26 (m, 5H), 7.20 (td, J = 5.5, 4.8, 2.0 Hz, 5H), 5.78 (ddd, J = 16.8, 10.4, 5.3 Hz, 1H), 5.15 – 4.90 (m, 2H), 2.52 – 2.30 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.27 (d, J = 255.1 Hz), 141.11, 137.60, 137.02, 130.27 (d, J = 3.1 Hz), 129.54 (d, J = 5.0 Hz), 128.93, 128.41 (d, J = 7.3 Hz), 127.91, 127.19, 126.80, 126.05, 115.23 (d, J = 51.7 Hz), 30.49 (d, J = 66.6 Hz), 29.79 (d, J = 19.8 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -30.74 (t, J = 21.6 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd for C₁₈H₁₈F⁺, 253.1387; found, 253.1389.

(4,4-difluorobut-3-en-1-yl)benzene (2u): Colorless oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 (dd, J = 8.1, 6.7 Hz, 2H), 7.26 – 7.15 (m, 3H), 4.17 (dtd, J = 25.4, 7.8, 2.5 Hz, 1H), 2.70 (t, J = 7.6 Hz, 2H), 2.32 (qt, J = 7.5, 1.9 Hz, 2H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -12.96 (d, J = 47.6 Hz), -14.62 – -15.48 (m).

11. References:

- 1. S. A. Fuqua, W. G. Duncan and R. M. Silverstein, J. Org. Chem., 1965, 30, 1027.
- 2. M. Hu, C. Ni, L. Li, Y. Han and J. Hu, J. Am. Chem. Soc., 2015, 137, 14496.
- 3. J. Luo and J. Zhang, ACS Catal., 2016, 6, 873.
- 4. F. Fumagalli, S. Warratz, S. Zhang, T. Rogge, C. Zhu, A. C. Steckl and L. Ackermann, *Chem. Eur. J.*, 2018, **24**, 3984.
- 5. J. Hu, X. Han, Y. Yuan and Z. Shi, Angew. Chem. Int. Ed., 2017, 56, 13342.

12. NMR spectra:

¹H NMR spectrum of **3a**

¹³C NMR spectrum of **3a**

¹⁹F NMR spectrum of **3a**

¹³C NMR spectrum of **3b**

¹⁹F NMR spectrum of **3b**

¹H NMR spectrum of **3c**

¹³C NMR spectrum of **3c**

¹³C NMR spectrum of **3d**

¹⁹F NMR spectrum of **3d**

¹H NMR spectrum of **3e**

¹³C NMR spectrum of **3e**

¹⁹F NMR spectrum of **3e**

¹⁹F NMR spectrum of **3f**

¹H NMR spectrum of **3g**

¹³C NMR spectrum of **3g**

¹⁹F NMR spectrum of **3h**

¹³C NMR spectrum of **3i**

¹⁹F NMR spectrum of **3**j

¹³C NMR spectrum of **3k**

¹³C NMR spectrum of **3la**

¹⁹F NMR spectrum of **3la**

¹³C NMR spectrum of **3lb**

¹³C NMR spectrum of **3ma**

¹⁹F NMR spectrum of **3ma**

¹H NMR spectrum of **3mb**

¹⁹F NMR spectrum of **3n**


```
<sup>13</sup>C NMR spectrum of 30
```


¹⁹F NMR spectrum of **3p**


```
<sup>13</sup>C NMR spectrum of 3qa
```


¹⁹F NMR spectrum of **3qa**

¹H NMR spectrum of **3qb**

¹⁹F NMR spectrum of **3qb**

¹³C NMR spectrum of **3ra**

¹³C NMR spectrum of **3rb**

¹⁹F NMR spectrum of **3rb**

¹³C NMR spectrum of **3sa**

¹⁹F NMR spectrum of **3sb**

¹³C NMR spectrum of **3ta**

¹⁹F NMR spectrum of **3ta**

¹³C NMR spectrum of **3tb**

¹⁹F NMR spectrum of **3tb**

¹H NMR spectrum of 4a

¹³C NMR spectrum of 4a

¹³C NMR spectrum of **4b**

¹⁹F NMR spectrum of **4b**

¹H NMR spectrum of **4c**

¹³C NMR spectrum of **4c**

¹⁹F NMR spectrum of **4c**

¹³C NMR spectrum of 4d

¹⁹F NMR spectrum of 4d

¹H NMR spectrum of **4e**

¹³C NMR spectrum of **4e**

¹⁹F NMR spectrum of 4e

 13 C NMR spectrum of **4f**

 19 F NMR spectrum of **4f**

¹H NMR spectrum of **4g**

¹³C NMR spectrum of **4g**

 13 C NMR spectrum of **4h**

¹⁹F NMR spectrum of **4h**

¹H NMR spectrum of 4i

¹³C NMR spectrum of **4**j

¹⁹F NMR spectrum of **4j**

¹H NMR spectrum of **4**k

¹³C NMR spectrum of **4k**

¹⁹F NMR spectrum of **4**l

¹H NMR spectrum of **4m**

^{13}C NMR spectrum of 4n

¹⁹F NMR spectrum of **4n**

¹H NMR spectrum of **40**

¹³C NMR spectrum of **40**

¹³C NMR spectrum of **4p**

¹⁹F NMR spectrum of **4p**

13 C NMR spectrum of 4q

 13 C NMR spectrum of **4r**

 19 F NMR spectrum of 4r

¹³C NMR spectrum of 4s

¹⁹F NMR spectrum of **4s**

¹³C NMR spectrum of **4**t

¹⁹F NMR spectrum of 4t

¹H NMR spectrum of **7**

¹³C NMR spectrum of **7**

¹⁹F NMR spectrum of **2u**

