Synthetic Approach to Skeletally Diverse Nitrogen Heterocycles from Dicyano-2-methylenebut-3-enoates

Xiang Zhang,^{a,b,c} Qing-Fei Huang,^{a,c} Wen-Lin Zou,^b Qing-Zhu Li,^b Xin Feng,^b Zhi-Qiang Jia,^b Yue Liu,^b Jun-Long Li^{*a,b} and Qi-Wei Wang^{*a,c}

- ^{a.} Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China. E-mail: wqw@cioc.ac.cn.
- ^{b.} Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China. E-mail: lijunlong709@hotmail.com

^{c.} University of Chinese Academy of Sciences, Beijing 100049, China.

supplementary information

Table of Contents

1.	General Information	2
2.	Further Optimization Studies	3
3.	General Procedure for the Preparation of Vinylaziridine 3	4
4.	General Procedure for the Preparation of 2-Pyrrolines 4	
5.	Synthetic Transformation of Vinylaziridine 3 and 2-Pyrrolines 4	
6.	General Procedure for the Preparation of 2-Aminopyridine 10	
8.	Crystal Data and Structure Refinement for the Representative Products 3a, 4a and 10a	
9.	References and Notes	
10.	NMR Spectra	

1. General Information

General Procedures

- All reactions were performed in oven-dried or flame-dried reaction vessels, modified Schlenk flasks, or round-bottom flasks. The flasks were fitted with Teflon screw caps and reactions were conducted under an atmosphere of argon if needed. Gas-tight syringes with stainless steel needles were used to transfer air- and moisture-sensitive liquids. All moisture and/or air sensitive solid compounds were manipulated inside normal desiccators. Flash column chromatography was performed using silica gel (40–63 µm, 230–400 mesh).
- Analytical thin layer chromatography (TLC) was performed on silica gel 60 F₂₅₄ aluminum plates (Merck) containing a 254 nm fluorescent indicator. TLC plates were visualized by exposure to short wave ultraviolet light (254 nm) and I₂.
- Organic solutions were concentrated at 30-50 °C on rotary evaporators at ~10 torr followed by drying on vacuum pump at ~1 torr. Reaction temperatures are reported as the temperature of the bath surrounding the vessel unless otherwise stated.

Materials

• Commercial reagents and solvents were were purchased from Adamas-beta, Aldrich Chemical Co., Alfa Aesar, Macklin and Energy Chemical and used as received with the following exceptions: THF, Et₂O and toluene were purified by refluxing over Na-benzophenone under positive argon pressure followed by distillation.^[1] The allylidenemalononitriles **1**^[2], carbamate **2**^[3] and iminoiodinane **9a**^[4] were prepared according to literature procedure.

Instrumentation

- Proton nuclear magnetic resonance (¹H NMR) spectra were recorded with JEOL-600M. Proton chemical shifts are reported in parts per million (δ scale), and are referenced using residual protium in the NMR solvent (CDCl₃: δ 7.26 (CHCl₃)). Data are reported as follows: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br s = broad singlet), coupling constant(s) (Hz), integration].
- Carbon-13 nuclear magnetic resonance (¹³C NMR) spectra were recorded with JEOL 150 MHz spectrometers. Carbon chemical shifts are reported in parts per million (δ scale), and are referenced using the carbon resonances of the solvent (δ 77.0 (CHCl₃)). Data are reported as follows: chemical shift [multiplicity (if not singlet), assignment (C_q = fully substituted carbon)].
- High resolution mass spectra (HRMS) were recorded on a Waters SYNAPT G2 using an electrospray (ESI) ionization source.
- Melting points were recorded on WRX-X-4A melting point apparatus.

2. Further Optimization Studies

NC CN CO ₂ Et +	Ts−N≕IPh solvent rt, 5 h	EtO ₂ C CN +	NC CN Ts CO_2Et $3r$
Entry	Solvent	10a:3r ^b	Yield $(\%)^c$
1	MeCN	2:1	52
2	DCM	1.7:1	59
3	CHCl ₃	2:1	45
4	toluene	2:1	62
5	THF	3:1	36
6	H ₂ O	>20:1	91

Table S1. Solvent screening of the [5+1] cyclization ^{*a*}

^{*a*} Reactions were performed with 0.12 mmol of **1a** and 0.1 mmol of **10a**, in 1 mL solvent at room temperature for 5 hours. ^{*b*} Determined by ¹H NMR analysis of the crude reaction mixture. ^{*c*} Isolated yields of **10a**.

3. General Procedure for the Preparation of Vinylaziridine 3

3.1 General procedure for the synthesis of vinylaziridine 3

A glass tube was charged with diene **1** (0.12 mmol), carbamate **2** (0.10 mmol) and NaHCO₃ (10.1 mg, 0.12 mmol) in THF (1 mL). The mixture was stirred at room temperature for 8 hours. Then the mixture was concentrated and purified by column chromatography on silica gel (petroleum ether/dichloromethane = 3/1 to 1/1) to afford the corresponding vinylaziridine **3a**–**3r** in 75%–99% yields.

3.2 Procedure for the gram-scale synthesis of vinylaziridine 3a

A 50 mL flask was charged with diene **1a** (1.06 g, 4.20 mmol) carbamate **2a** (1.00 g, 3.50 mmol) and NaHCO₃ (0.35 g, 4.20 mmol) in THF (20 mL). The mixture was stirred at room temperature for 8 hours, and then the solvent was concentrated. The residue was added with water (20 mL) and extracted with ethyl acetate (20 mL \times 2). The organic layer was dried over Na₂SO₄, concentrated and purified by column chromatography on silica gel (petroleum ether/dichloromethane = 3/1 to 1/1) to afford the corresponding vinylaziridine **3a** (1.20 g) in 94% yield.

1-(tert-butyl) 2-ethyl 2-(2,2-dicyano-1-phenylvinyl)aziridine-1,2-dicarboxylate 3a

Prepared according to the general procedure to afford **3a** (36.3 mg, m. p. = 92 - 96 °C) in 99% yield as white solid.

NMR and HRMS data for the product **3a**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.74 (d, *J* = 7.8 Hz, 2H), 7.57 (t, *J* = 7.2 Hz, 1H), 7.50 (t, *J* = 7.2 Hz, 2H), 4.40 – 4.29 (m, 2H), 3.41 (d, *J* = 1.2 Hz, 1H), 2.65 (d, *J* = 1.2 Hz, 1H), 1.45 (s, 9H), 1.31 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 169.9, 165.0, 156.8, 132.82, 132.77, 129.2, 128.7, 112.4, 111.5, 87.9, 83.3, 63.8, 47.5, 41.3, 27.8, 14.0.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{20}H_{21}N_3O_4Na^+$: 390.1424, found: 390.1424.

Prepared according to the general procedure to afford **3b** (38.1 mg, m. p. = 90 - 93 °C) in 99% yield as pure yellow solid.

NMR and HRMS data for the product **3b**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.83 – 7.78 (m, 2H), 7.19 (t, J = 9.0 Hz, 2H), 4.41 – 4.29 (m, 2H), 3.42 (d, J = 1.8 Hz, 1H), 2.64 (d, J = 1.2 Hz, 1H), 1.45 (s, 9H), 1.32 (t, J = 7.8 Hz, 3H).

¹³**C NMR (150 MHz, CDCl₃)** δ (ppm): 168.6, 165.2 (d, $J_{C-F} = 255.6$ Hz), 164.9, 156.8, 131.9 (d, $J_{C-F} = 8.6$ Hz), 128.8 (d, $J_{C-F} = 2.9$ Hz), 116.2 (d, $J_{C-F} = 21.6$ Hz), 112.3, 111.4, 87.6, 83.4, 63.9, 47.4, 41.4, 27.8, 14.0.

¹⁹**F NMR (564 MHz, CDCl₃)** δ (ppm): -104.0.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{20}H_{20}FN_3O_4Na^+$: 408.1330, found: 408.1331.

<u>1-(tert-butyl)</u> 2-ethyl 2-(1-(4-chlorophenyl)-2,2-dicyanovinyl)aziridine-1,2-dicarboxylate <u>3c</u>

Prepared according to the general procedure to afford **3c** (31.4 mg, m. p. = 100 - 102 °C) in 78% yield as pure yellow solid.

NMR and HRMS data for the product **3c**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.72 (d, *J* = 9.0 Hz, 2H), 7.48 (d, *J* = 9.0 Hz, 2H), 4.40 – 4.30 (m, 2H), 3.42 (d, *J* = 1.8 Hz, 1H), 2.64 (d, *J* = 1.2 Hz, 1H), 1.45 (s, 9H), 1.32 (t, *J* = 7.8 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 168.6, 164.8, 156.8, 139.4, 131.1, 130.6, 129.2, 112.1, 111.3, 88.1, 83.5, 64.0, 47.3, 41.4, 27.8, 14.0.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{20}H_{20}^{35}ClN_3O_4Na^+$: 424.1035, found: 424.1036; calculated for $C_{20}H_{20}^{37}ClN_3O_4Na^+$: 426.1005, found: 426.1001.

Prepared according to the general procedure to afford **3d** (36.6 mg, m. p. = 94 - 96 °C) in 82% yield as pure yellow solid.

NMR and HRMS data for the product **3d**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.69 – 7.60 (m, 4H), 4.40 – 4.30 (m, 2H), 3.42 (d, J = 1.2 Hz, 1H), 2.64 (d, J = 1.2 Hz, 1H), 1.45 (s, 9H), 1.32 (t, J = 6.6 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 168.8, 164.8, 156.8, 132.2, 131.5, 130.7, 128.0, 112.1, 111.3, 88.1, 83.5, 64.0, 47.3, 41.5, 27.8, 14.1.

HRMS (ESI-TOF) m/z: $[\mathbf{M} + \mathbf{Na}]^+$ calculated for $C_{20}H_{20}^{-79}BrN_3O_4Na^+$: 468.0529, found: 468.0520; calculated for $C_{20}H_{20}^{-81}BrN_3O_4Na^+$: 470.0509, found: 470.0511.

<u>1-(tert-butyl)</u> <u>2-ethyl</u> <u>2-(1-(3-chlorophenyl)-2,2-dicyanovinyl)aziridine-1,2-dicarboxylate</u> <u>3e</u>

Prepared according to the general procedure to afford **3e** (39.8 mg, m. p. = 75 - 77 °C) in 99% yield as yellow solid.

NMR and HRMS data for the product **3e**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.73 – 7.70 (m, 1H), 7.58 (d, J = 7.2 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.44 (t, J = 8.4 Hz, 1H), 4.42 – 4.30 (m, 2H), 3.42 (d, J = 1.2 Hz, 1H), 2.65 (d, J = 1.8 Hz, 1H), 1.45 (s, 9H), 1.33 (t, J = 6.6 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 168.6, 164.7, 156.7, 134.9, 134.3, 132.6, 130.0, 129.0, 127.2, 111.8, 111.0, 89.3, 83.6, 64.0, 47.3, 41.2, 27.8, 14.0.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{20}H_{20}^{35}ClN_3O_4Na^+$: 424.1035, found: 424.1029; calculated for $C_{20}H_{20}^{37}ClN_3O_4Na^+$: 426.1005, found: 426.0998.

<u>1-(tert-butyl)</u> 2-ethyl 2-(1-(3-bromophenyl)-2,2-dicyanovinyl)aziridine-1,2-dicarboxylate <u>3f</u>

Prepared according to the general procedure to afford 3f (38.4 mg, m. p. = 110 - 113 °C) in

86% yield as pure pink solid.

NMR and HRMS data for the product **3f**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.89 – 7.82 (m, 1H), 7.69 (d, J = 9.0 Hz, 1H), 7.62 (d, J = 6.6 Hz, 1H), 7.38 (t, J = 8.4 Hz, 1H), 4.42 – 4.30 (m, 2H), 3.42 (d, J = 1.2 Hz, 1H), 2.64 (d, J = 1.8 Hz, 1H), 1.45 (s, 9H), 1.33 (t, J = 6.6 Hz, 3H).

¹³**C NMR (150 MHz, CDCl₃)** δ (ppm): 168.5, 164.7, 156.7, 135.5, 134.6, 131.7, 130.2, 127.7, 122.8, 111.7, 111.0, 89.3, 83.6, 64.0, 47.3, 41.2, 27.8, 14.0.

HRMS (ESI-TOF) m/z: $[\mathbf{M} + \mathbf{Na}]^+$ calculated for $C_{20}H_{20}^{-79}BrN_3O_4Na^+$: 468.0529, found: 468.0528; calculated for $C_{20}H_{20}^{-81}BrN_3O_4Na^+$: 470.0509, found: 470.0506.

1-(tert-butyl) 2-ethyl 2-(2,2-dicyano-1-(p-tolyl)vinyl)aziridine-1,2-dicarboxylate 3g

Prepared according to the general procedure to afford 3g (36.2 mg, m. p. = 89 – 94 °C) in 95% yield as yellow solid.

NMR and HRMS data for the product **3g**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.69 (d, *J* = 7.8 Hz, 2H), 7.31 (d, *J* = 7.8 Hz, 2H), 4.42 – 4.28 (m, 2H), 3.41 (s, 1H), 2.62 (s, 1H), 2.43 (s, 3H), 1.46 (s, 9H), 1.31 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 169.7, 165.1, 156.9, 144.1, 130.0, 129.5, 129.4, 112.8, 111.7, 86.5, 83.2, 63.8, 47.5, 41.3, 27.8, 21.7, 14.0.

HRMS (ESI-TOF) m/z: $[\mathbf{M} + \mathbf{Na}]^+$ calculated for $C_{21}H_{23}N_3O_4Na^+$: 404.1581, found: 404.1584.

<u>1-(tert-butyl)2-ethyl 2-(2,2-dicyano-1-(4-methoxyphenyl)vinyl)aziridine-1,2-dicarboxylate</u> <u>3h</u>

Prepared according to the general procedure to afford **3h** (31.4 mg, m. p. = 136 - 141 °C) in 79% yield as pure yellow solid.

NMR and HRMS data for the product **3h**:

¹**H** NMR (600 MHz, CDCl₃) δ (ppm): 7.85 (d, J = 6.6 Hz, 2H), 6.99 (d, J = 6.6 Hz, 2H), 4.40 – 4.30 (m, 2H), 3.88 (s, 3H), 3.41 (d, J = 1.2 Hz, 1H), 2.60 (d, J = 1.2 Hz, 1H), 1.47 (s, 9H), 1.31 (t, J = 7.2 Hz, 3H).

¹³**C NMR (150 MHz, CDCl₃)** δ (ppm): 168.7, 165.2, 163.6, 157.1, 131.9, 125.0, 114.3, 113.3, 112.1, 84.3, 83.3, 63.7, 55.6, 47.5, 41.5, 27.9, 14.0.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{21}H_{23}N_3O_5Na^+$: 420.1530, found: 420.1526.

1-(tert-butyl) 2-ethyl 2-(2,2-dicyano-1-(m-tolyl)vinyl)aziridine-1,2-dicarboxylate 3i

Prepared according to the general procedure to afford **3i** (31.2 mg, m. p. = 96 - 102 °C) in 82% yield as pure yellow solid.

NMR and HRMS data for the product **3i**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.60 – 7.50 (m, 2H), 7.44 – 7.34 (m, 2H), 4.41 – 4.30 (m, 2H), 3.41 (d, J = 2.4 Hz, 1H), 2.62 (d, J = 2.4 Hz, 1H), 2.42 (s, 3H), 1.45 (s, 9H), 1.32 (t, J = 6.6 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 170.2, 165.0, 156.9, 138,7, 133.6, 132.8, 129.5, 128.7, 126.4, 112.5, 111.6, 87.6, 83.2, 63.8, 47.5, 41.3, 27.8, 21.4, 14.0.

HRMS (ESI-TOF) m/z: $[\mathbf{M} + \mathbf{Na}]^+$ calculated for $C_{21}H_{23}N_3O_4Na^+$: 404.1581, found: 404.1579.

<u>1-(tert-butyl)2-ethyl 2-(2,2-dicyano-1-(3-methoxyphenyl)vinyl)aziridine-1,2-dicarboxylate</u> <u>3j</u>

Prepared according to the general procedure to afford **3j** (32.6 mg, m. p. = 63 - 68 °C) in 82% yield as yellow solid.

NMR and HRMS data for the product **3***j*:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.40 (t, J = 8.4 Hz, 1H), 7.32 (d, J = 7.8 Hz, 1H), 7.30 (s, 1H), 7.09 (d, J = 8.4 Hz, 1H), 4.40 – 4.29 (m, 2H), 3.85 (s, 3H), 3.41 (d, J = 1.2 Hz, 1H), 2.64 (d, J = 1.8 Hz, 1H), 1.45 (s, 9H), 1.32 (t, J = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 169.7, 165.0, 159.5, 156.9, 133.8, 129.8, 121.5, 119.0, 114.2, 112.4, 111.5, 87.8, 83.3, 63.8, 55.5, 47.4, 41.4, 27.8, 14.0.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{21}H_{23}N_3O_5Na^+$: 420.1530, found: 420.1532.

Prepared according to the general procedure to afford 3k (41.3 mg) in 99% yield as yellow semisolid.

NMR and HRMS data for the product **3k**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.32 (s, 1H), 7.94 (d, J = 8.4 Hz, 2H), 7.89 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 10.8 Hz, 1H), 7.63 (t, J = 6.6 Hz, 1H), 7.58 (t, J = 7.2 Hz, 1H), 4.44 – 4.32 (m, 2H), 3.46 (d, J = 1.2 Hz, 1H), 2.69 (d, J = 1.2 Hz, 1H), 1.46 (s, 9H), 1.33 (t, J = 7.8 Hz, 3H).

¹³**C NMR (150 MHz, CDCl₃)** δ (ppm): 169.9, 165.1, 157.0, 135.0, 132.3, 130.8, 130.2, 129.4, 129.0, 128.6, 127.8, 127.2, 124.9, 112.7, 111.7, 87.5, 83.3, 63.9, 47.6, 41.4, 27.9, 14.1.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{24}H_{23}N_3O_4Na^+$: 440.1581, found: 440.1586.

1-(tert-butyl) 2-ethyl 2-(2,2-dicyano-1-(furan-2-yl)vinyl)aziridine-1,2-dicarboxylate 31

Prepared according to the general procedure to afford **31** (35.0 mg) in 98% yield as yellow semisolid.

NMR and HRMS data for the product **3l**:

¹**H** NMR (600 MHz, CDCl₃) δ (ppm): 8.20 – 8.00 (m, 1H), 7.85 – 7.75 (m, 1H), 6.70 (d, J = 3.6 Hz, 1H), 4.42 – 4.19 (m, 2H), 3.31 (s, 1H), 2.65 (s, 1H), 1.52 (s, 9H), 1.26 (t, J = 7.2 Hz, 3H).

¹³**C NMR (150 MHz, CDCl₃)** δ (ppm): 164.9, 157.3, 150.8, 148.9, 148.4, 124.5, 114.5, 112.9, 112.6, 83.7, 81.9, 63.8, 45.0, 40.4, 27.9, 14.0.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{18}H_{19}N_3O_5Na^+$: 380.1217, found: 380.1215.

1-(tert-butyl) 2-ethyl 2-(2,2-dicyano-1-(thiophen-2-yl)vinyl)aziridine-1,2-dicarboxylate 3m

Prepared according to the general procedure to afford **3m** (34.7 mg, m. p. = 166 - 172 °C) in 93% yield as yellow semisolid.

NMR and HRMS data for the product **3m**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.52 – 8.32 (m, 1H), 7.81 (d, *J* = 4.8 Hz, 1H), 7.24 (t, *J* = 4.8 Hz, 1H), 4.35 – 4.20 (m, 2H), 3.37 (s, 1H), 2.68 (s, 1H), 1.50 (s, 9H), 1.24 (t, *J* = 6.6 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 164.9, 157.1, 151.0, 136.9, 135.6, 135.4, 128.8, 113.5, 112.2, 83.6, 81.3, 63.7, 47.4, 41.3, 27.8, 14.0.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{18}H_{19}N_3O_4SNa^+$: 306.0988, found: 396.0989.

1-(tert-butyl) 2-methyl 2-(2,2-dicyano-1-phenylvinyl)aziridine-1,2-dicarboxylate 3n

Prepared according to the general procedure to afford **3n** (34.2 mg, m. p. = 117 - 121 °C) in 97% yield as white solid.

NMR and HRMS data for the product **3n**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.74 (d, *J* = 7.2 Hz, 2H), 7.57 (t, *J* = 7.2 Hz, 1H), 7.50 (t, *J* = 8.4 Hz, 2H), 3.89 (s, 3H), 3.43 (d, *J* = 1.2 Hz, 1H), 2.66 (d, *J* = 1.2 Hz, 1H), 1.45 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 169.7, 165.6, 156.8, 132.9, 132.7, 129.2, 128.8, 112.3, 111.5, 88.0, 83.4, 54.2, 47.4, 41.4, 27.8.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{19}H_{19}N_3O_4Na^+$: 376.1268, found: 376.1262.

di-tert-butyl 2-(2,2-dicyano-1-phenylvinyl)aziridine-1,2-dicarboxylate 30

Prepared according to the general procedure to afford **30** (33.6 mg, m. p. = 112 - 115 °C) in 85% yield as white solid.

NMR and HRMS data for the product **30**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.73 (d, *J* = 7.2 Hz, 2H), 7.57 (t, *J* = 7.8 Hz, 1H), 7.50 (t, *J* = 7.2 Hz, 2H), 3.34 (d, *J* = 1.2 Hz, 1H), 2.59 (d, *J* = 1.2 Hz, 1H), 1.49 (s, 9H), 1.45 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 170.7, 163.6, 157.1, 133.1, 132.7, 129.1, 128.7, 112.5, 111.6, 87.4, 85.7, 83.1, 48.2, 41.1, 27.8, 27.7.

HRMS (ESI-TOF) m/z: $[\mathbf{M} + \mathbf{Na}]^+$ calculated for $C_{22}H_{25}N_3O_4Na^+$: 418.1737, found: 418.1740.

diethyl 2-(2,2-dicyano-1-phenylvinyl)aziridine-1,2-dicarboxylate 3p

Prepared according to the general procedure to afford 3p (27.1 mg) in 80% yield as pure yellow semisolid.

NMR and HRMS data for the product **3p**:

¹**H** NMR (600 MHz, CDCl₃) δ (ppm): 7.75 (d, J = 7.2 Hz, 2H), 7.58 (t, J = 7.2 Hz, 1H), 7.51 (t, J = 8.4 Hz, 2H), 4.41 – 4.28 (m, 2H), 4.26 – 4.12 (m, 2H), 3.44 (d, J = 1.2 Hz, 1H), 2.71 (d, J = 1.2 Hz, 1H), 1.31 (t, J = 6.6 Hz, 3H), 1.27 (t, J = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 169.5, 164.9, 158.4, 132.9, 132.7, 129.1, 128.8, 112.3, 111.5, 88.1, 64.0, 63.5, 47.4, 41.4, 14.2, 14.0.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{18}H_{17}N_3O_4Na^+$: 362.1111, found: 362.1110.

1-benzyl 2-ethyl 2-(2,2-dicyano-1-phenylvinyl)aziridine-1,2-dicarboxylate 3q

Prepared according to the general procedure to afford 3q (39.7 mg) in 99% yield as yellow semisolid.

NMR and HRMS data for the product **3q**:

¹**H** NMR (600 MHz, CDCl₃) δ (ppm): 7.70 (d, J = 7.2 Hz, 2H), 7.55 (t, J = 6.6 Hz, 1H), 7.44 (t, J = 7.8 Hz, 2H), 7.41 – 7.35 (m, 3H), 7.34 – 7.28 (m, 2H), 5.18 (d, J = 12.0 Hz, 1H), 5.10 (d, J = 12.6 Hz, 1H), 4.31 – 4.18 (m, 2H), 3.48 (d, J = 1.2 Hz, 1H), 2.74 (d, J = 1.2 Hz, 1H), 1.22 (t, J = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 169.4, 164.8, 158.3, 134.7, 132.8, 132.6, 129.1, 128.8, 128.64, 128.57, 128.4, 112.2, 111.4, 88.2, 69.1, 64.0, 47.5, 41.3, 13.9.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{23}H_{19}N_3O_4Na^+$: 424.1268, found: 424.1264.

ethyl 2-(2,2-dicyano-1-phenylvinyl)-1-tosylaziridine-2-carboxylate 3r

Prepared according to the general procedure to afford 3r (31.6 mg, m. p. = 138 - 143 °C) in 75% yield as white solid.

NMR and HRMS data for the product **3r**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.67 (d, *J* = 7.8 Hz, 2H), 7.58 (t, *J* = 7.8 Hz, 1H), 7.55 – 7.47 (m, 4H), 7.20 (d, *J* = 7.8 Hz, 2H), 4.51 – 4.39 (m, 2H), 3.97 (s, 1H), 2.74 (s, 1H), 2.38 (s, 3H), 1.39 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 170.1, 163.9, 144.9, 136.3, 133.0, 132.5, 129.6, 129.0, 128.9, 127.6, 111.9, 111.1, 88.4, 64.4, 52.2, 42.7, 21.6, 13.8.

HRMS (ESI-TOF) m/z: $[\mathbf{M} + \mathbf{Na}]^+$ calculated for $C_{22}H_{19}N_3O_4SNa^+$: 444.0988, found: 444.0988.

4. General Procedure for the Preparation of 2-Pyrrolines 4

4.1 General procedure for the pyrroline rearrangement

A glass tube was charged with vinylaziridine **3** (0.10 mmol) in toluene (1 mL). The mixture was stirred at 110 °C for 4 hours. Then the mixture was directly purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1 to 10/1) to afford the corresponding 2,3-dihydropyrroles **4a–4p** in 75%–95% yields.

4.2 Gram-scale synthesis of 2-pyrroline 4a from vinylaziridine 3a

A 50 mL flask was charged with vinylaziridine **3a** (1.20 g, 3.27 mmol) in the toluene (20 mL). The mixture was stirred at 110 °C for 4 hours. Then the mixture was concentrated and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1 to 10/1) to afford the corresponding 2,3-dihydropyrroles **4a** (1.03 g) in 86% yield.

4.3 One-pot synthesis of 2-pyrroline 4a from diene 1a

A glass tube was charged with diene **1a** (30.3 mg, 0.12 mmol), carbamate **2a** (28.7 mg, 0.10 mmol) and NaHCO₃ (10.1 mg, 0.12 mmol) in toluene (1 mL). The mixture was stirred at room temperature for 8 hours. Then the mixture was added with toluene (1 mL) and washed with brine (3 mL \times 2). The organic layer was dried over anhydrous Na₂SO₄ and refluxed at 110 °C for another 4 hours. Then the mixture was directly purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1 to 10/1) to afford the corresponding pyrroline **4a** (19.8 mg) in 54% overall yield.

Prepared according to the general procedure to afford **4a** (34.9 mg, m. p. = 142 - 144 °C) in 95% yield as white solid.

NMR and HRMS data for the product **4a**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.53 – 7.39 (m, 5H), 4.60 (s, 2H), 4.23 (q, *J* = 6.6 Hz, 2H), 1.50 (s, 9H), 1.14 (t, *J* = 6.6 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 160.6, 149.5, 136.3, 129.8, 129.0, 128.0, 127.8, 113.1, 84.3, 62.6, 56.9, 40.0, 28.0, 13.6.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{20}H_{21}N_3O_4Na^+$: 390.1424, found: 390.1424.

<u>1-(tert-butyl)2-ethyl4,4-dicyano-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrrole-1,2-dicarboxy</u> <u>late 4b</u>

Prepared according to the general procedure to afford **4b** (28.9 mg, m. p. = 115 - 119 °C) in 75% yield as pure yellow solid.

NMR and HRMS data for the product **4b**:

¹**H NMR** (**600 MHz**, **CDCl**₃) δ (ppm): 7.45 (d, J = 4.8 Hz, 1H), 7.44 (d, J = 5.4 Hz, 1H), 7.13 (t, J = 9.0 Hz, 2H), 4.59 (s, 2H), 4.22 (q, J = 6.6 Hz, 2H), 1.50 (s, 9H), 1.15 (t, J = 6.6 Hz, 3H). ¹³**C NMR** (**150 MHz**, **CDCl**₃) δ (ppm): 163.4 (d, $J_{C-F} = 248.6$ Hz), 160.4, 149.4, 136.8, 131.5, 130.2 (d, $J_{C-F} = 8.7$ Hz), 123.9 (d, $J_{C-F} = 2.9$ Hz), 116.3 (d, $J_{C-F} = 21.5$ Hz), 112.9, 84.4, 62.6, 56.7, 40.1, 27.9, 13.6.

¹⁹F NMR (564 MHz, CDCl₃) δ (ppm): -109.8.

HRMS (ESI-TOF) m/z: $[\mathbf{M} + \mathbf{Na}]^+$ calculated for $C_{20}H_{20}FN_3O_4Na^+$: 408.1330, found: 408.1327.

Prepared according to the general procedure to afford 4c (31.0 mg, m. p. = 123 - 128 °C) in 77% yield as pure yellow solid.

NMR and HRMS data for the product **4c**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.41 (d, *J* = 9.0 Hz, 2H), 7.39 (d, *J* = 9.0 Hz, 2H), 4.59 (s, 2H), 4.24 (q, *J* = 7.2 Hz, 2H), 1.50 (s, 9H), 1.18 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 160.3, 149.3, 136.9, 136.0, 130.1, 129.4, 129.2, 126.4, 112.9, 84.5, 62.7, 56.8, 39.9, 28.0, 13.7.

HRMS (ESI-TOF) m/z: $[\mathbf{M} + \mathbf{Na}]^+$ calculated for $C_{20}H_{20}^{35}ClN_3O_4Na^+$: 424.1035, found: 424.1031; calculated for $C_{20}H_{20}^{37}ClN_3O_4Na^+$: 426.1005, found: 426.1001.

<u>1-(tert-butyl)2-ethyl3-(4-bromophenyl)-4,4-dicyano-4,5-dihydro-1H-pyrrole-1,2-dicarbox</u> ylate 4d

Prepared according to the general procedure to afford **4d** (34.8 mg, m. p. = 128 - 131 °C) in 78% yield as pure yellow solid.

NMR and HRMS data for the product **4d**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.56 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 4.59 (s, 2H), 4.24 (q, *J* = 7.8 Hz, 2H), 1.50 (s, 9H), 1.18 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 160.3, 149.3, 137.0, 132.4, 129.4, 129.2, 126.9, 124.2, 112.9, 84.6, 62.8, 56.8, 39.8, 28.0, 13.7.

HRMS (ESI-TOF) m/z: $[\mathbf{M} + \mathbf{Na}]^+$ calculated for $C_{20}H_{20}^{-79}BrN_3O_4Na^+$: 468.0529, found: 468.0526; calculated for $C_{20}H_{20}^{-81}BrN_3O_4Na^+$: 470.0509, found: 470.0501.

Prepared according to the general procedure to afford **4e** (33.1 mg, m. p. = 118 - 121 °C) in 87% yield as white solid.

NMR and HRMS data for the product **4e**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.33 (d, *J* = 7.8 Hz, 2H), 7.22 (d, *J* = 7.2 Hz, 2H), 4.58 (s, 2H), 4.24 (q, *J* = 7.2 Hz, 2H), 2.37 (s, 3H), 1.49 (s, 9H), 1.17 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 160.7, 149.5, 140.0, 130.0, 129.7, 128.9, 127.6, 125.0, 113.2, 84.2, 62.5, 56.8, 40.0, 28.0, 21.4, 13.6.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{21}H_{23}N_3O_4Na^+$: 404.1581, found: 404.1582.

<u>1-(tert-butyl)2-ethyl4,4-dicyano-3-(4-methoxyphenyl)-4,5-dihydro-1H-pyrrole-1,2-dicarbo</u> xylate 4f

Prepared according to the general procedure to afford **4f** (36.9 mg, m. p. = 100 - 103 °C) in 93% yield as white solid.

NMR and HRMS data for the product **4f**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.38 (d, *J* = 7.8 Hz, 2H), 6.93 (d, *J* = 9.0 Hz, 2H), 4.57 (s, 2H), 4.23 (q, *J* = 7.8 Hz, 2H), 3.83 (s, 3H), 1.49 (s, 9H), 1.17 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 160.8, 160.6, 149.6, 135.3, 129.3, 120.0, 114.5, 113.2, 84.2, 62.5, 56.7, 55.3, 40.1, 28.0, 13.7.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{21}H_{23}N_3O_5Na^+$: 420.1530, found: 420.1533.

Prepared according to the general procedure to afford 4g (35.8 mg, m. p. = 118 - 122 °C) in 89% yield as pure yellow solid.

NMR and HRMS data for the product **4g**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.44 – 7.35 (m, 4H), 4.59 (s, 2H), 4.26 (q, *J* = 6.6 Hz, 2H), 1.50 (s, 9H), 1.19 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 160.2, 149.3, 137.4, 135.0, 130.4, 129.9, 129.8, 128.7, 128.0, 125.8, 112.9, 84.6, 62.8, 56.9, 39.7, 28.0, 13.6.

HRMS (ESI-TOF) m/z: $[\mathbf{M} + \mathbf{Na}]^+$ calculated for $C_{20}H_{20}^{35}$ ClN₃O₄Na⁺: 424.1035, found: 424.1041; calculated for $C_{20}H_{20}^{37}$ ClN₃O₄Na⁺: 426.1005, found: 426.1012.

<u>1-(tert-butyl)2-ethyl3-(3-bromophenyl)-4,4-dicyano-4,5-dihydro-1H-pyrrole-1,2-dicarbox</u> <u>ylate 4h</u>

Prepared according to the general procedure to afford **4h** (34.8 mg, m. p. = 120 - 122 °C) in 78% yield as pure yellow solid.

NMR and HRMS data for the product **4h**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.59 – 7.52 (m, 2H), 7.42 (d, *J* = 7.2 Hz, 1H), 7.32 (d, *J* = 8.4 Hz, 1H), 4.59 (s, 2H), 4.27 (q, *J* = 7.8 Hz, 2H), 1.50 (s, 9H), 1.20 (t, *J* = 6.6 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 160.2, 149.3, 137.4, 132.8, 130.8, 130.6, 130.0, 126.2, 123.0, 112.8, 84.6, 62.8, 56.9, 39.7, 27.9, 13.7.

HRMS (ESI-TOF) m/z: $[\mathbf{M} + \mathbf{Na}]^+$ calculated for $C_{20}H_{20}^{-79}BrN_3O_4Na^+$: 468.0529, found: 468.0529; calculated for $C_{20}H_{20}^{-81}BrN_3O_4Na^+$: 470.0509, found: 470.0507.

Prepared according to the general procedure to afford **4i** (32.0 mg, m. p. = 108 - 112 °C) in 84% yield as yellow solid.

NMR and HRMS data for the product **4i**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.30 (t, *J* = 7.8 Hz, 1H), 7.26 – 7.19 (m, 3H), 4.59 (s, 2H), 4.23 (q, *J* = 7.2 Hz, 2H), 2.37 (s, 3H), 1.50 (s, 9H), 1.15 (t, *J* = 6.6 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 160.6, 149.5, 138.8, 136.0, 130.6, 128.9, 128.2, 127.9, 124.8, 113.1, 84.2, 62.5, 56.9, 39.9, 27.9, 21.4, 13.6.

HRMS (ESI-TOF) m/z: $[\mathbf{M} + \mathbf{Na}]^+$ calculated for $C_{21}H_{23}N_3O_4Na^+$: 404.1581, found: 404.1584.

<u>1-(tert-butyl)2-ethyl4,4-dicyano-3-(3-methoxyphenyl)-4,5-dihydro-1H-pyrrole-1,2-dicarbo</u> xylate 4j

Prepared according to the general procedure to afford 4j (34.9 mg) in 88% yield as yellow semisolid.

NMR and HRMS data for the product **4j**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.33 (t, *J* = 7.8 Hz, 1H), 7.02 (d, *J* = 7.2 Hz, 1H), 6.99 – 6.92 (m, 2H), 4.59 (s, 2H), 4.24 (q, *J* = 6.6 Hz, 2H), 3.81 (s, 3H), 1.50 (s, 9H), 1.17 (t, *J* = 7.8 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 160.6, 159.8, 149.5, 136.4, 130.2, 129.2, 120.0, 115.5, 113.1, 84.3, 62.6, 56.9, 55.3, 39.9, 28.0, 13.6.

HRMS (ESI-TOF) m/z: $[\mathbf{M} + \mathbf{Na}]^+$ calculated for $C_{21}H_{23}N_3O_5Na^+$: 420.1530, found: 420.1530.

<u>1-(tert-butyl)2-ethyl4,4-dicyano-3-(naphthalen-2-yl)-4,5-dihydro-1H-pyrrole-1,2-dicarbox</u> ylate 4k

Prepared according to the general procedure to afford **4k** (34.2 mg) in 82% yield as yellow semisolid.

NMR and HRMS data for the product **4k**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.94 (s, 1H), 7.89 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 5.4 Hz, 1H), 7.85 (d, *J* = 4.8 Hz, 1H), 7.54 (t, *J* = 4.2 Hz, 2H), 7.51 (d, *J* = 9.0 Hz, 1H), 4.65 (s, 2H), 4.24 (q, *J* = 6.6 Hz, 2H), 1.52 (s, 9H), 1.12 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 160.7, 149.5, 136.5, 133.4, 133.0, 129.0, 128.3, 127.7, 127.6, 127.3, 127.0, 125.4, 124.4, 113.2, 84.4, 62.6, 57.0, 40.0, 28.0, 13.6.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{24}H_{23}N_3O_4Na^+$: 440.1581, found: 440.1581.

<u>1-(tert-butyl) 2-ethyl 4,4-dicyano-3-(furan-2-yl)-4,5-dihydro-1H-pyrrole-1,2-dicarboxylate</u> <u>41</u>

Prepared according to the general procedure to afford **4l** (32.5 mg) in 91% yield as yellow semisolid.

NMR and HRMS data for the product **4***l*:

¹**H NMR** (**600 MHz**, **CDCl**₃) δ (ppm): 7.47 (d, *J* = 1.8 Hz, 1H), 6.66 (d, *J* = 3.6 Hz, 1H), 6.50 (dd, *J* = 3.0, 1.8 Hz, 1H), 4.56 (s, 2H), 4.41 (q, *J* = 6.6 Hz, 2H), 1.50 (s, 9H), 1.38 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 160.3, 149.2, 143.8, 143.1, 133.1, 112.9, 112.0, 110.1, 84.5, 62.8, 56.5, 37.1, 28.0, 13.9.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{18}H_{19}N_3O_5Na^+$: 380.1217, found: 380.1218.

Prepared according to the general procedure to afford 4m (32.1 mg) in 86% yield as yellow semisolid.

NMR and HRMS data for the product **4m**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.39 (d, J = 4.8 Hz, 1H), 7.34 (d, J = 4.2 Hz, 1H), 7.11 – 7.07 (m, 1H), 4.57 (s, 2H), 4.36 (q, J = 6.6 Hz, 2H), 1.50 (s, 9H), 1.31 (t, J = 7.8 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 160.4, 149.2, 135.1, 128.9, 128.8, 127.9, 127.7, 127.6, 113.0, 84.5, 63.0, 56.4, 39.7, 28.0, 13.7.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{18}H_{19}N_3O_4SNa^+$: 396.0988, found: 396.0992.

<u>1-(tert-butyl)</u> 2-methyl 4,4-dicyano-3-phenyl-4,5-dihydro-1H-pyrrole-1,2-dicarboxylate <u>4n</u>

Prepared according to the general procedure to afford **4n** (32.8 mg, m. p. = 110 - 114 °C) in 93% yield as white solid.

NMR and HRMS data for the product **4n**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.49 – 7.38 (m, 5H), 4.60 (s, 2H), 3.79 (s, 3H), 1.50 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 161.2, 149.5, 135.8, 129.8, 129.2, 127.9, 127.4, 113.0, 84.4, 56.9, 53.2, 28.0.

HRMS (**ESI-TOF**) m/z: $[\mathbf{M} + \mathbf{Na}]^+$ calculated for $C_{19}H_{19}N_3O_4Na^+$: 376.1268, found: 376.1271.

di-tert-butyl 4,4-dicyano-3-phenyl-4,5-dihydro-1H-pyrrole-1,2-dicarboxylate 40

Prepared according to the general procedure to afford **4o** (35.6 mg, m. p. = 126 - 129 °C) in 90% yield as white solid.

NMR and HRMS data for the product **40**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.48 – 7.44 (m, 2H), 7.44 – 7.39 (m, 3H), 4.56 (s, 2H), 1.51 (s, 9H), 1.34 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 158.9, 149.5, 137.8, 129.6, 128.9, 128.4, 128.3, 113.2, 84.5, 83.9, 57.0, 40.3, 28.1, 27.6.

HRMS (ESI-TOF) m/z: $[\mathbf{M} + \mathbf{Na}]^+$ calculated for $C_{22}H_{25}N_3O_4Na^+$: 418.1737, found: 418.1740.

diethyl 4,4-dicyano-3-phenyl-4,5-dihydro-1H-pyrrole-1,2-dicarboxylate 4p

Prepared according to the general procedure to afford **4p** (27.8 mg) in 82% yield as pure yelllow semisolid.

NMR and HRMS data for the product **4p**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.49 – 7.39 (m, 5H), 4.65 (s, 2H), 4.27 (q, *J* = 7.2 Hz, 2H), 4.27 (q, *J* = 7.2 Hz, 2H), 4.26 (q, *J* = 7.2 Hz, 2H), 1.32 (t, *J* = 7.8 Hz, 3H), 1.19 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 160.5, 150.7, 135.9, 129.9, 129.2, 129.1, 127.7, 112.9, 63.7, 62.8, 56.7, 40.1, 14.3, 13.6.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{18}H_{17}N_3O_4Na^+$: 362.1111, found: 362.1113.

5. Synthetic Transformation of Vinylaziridine 3 and 2-Pyrrolines 4

5.1 Reduction of C-C doulbe bond on vinylaziridine 3a

A glass tube was charged with vinylaziridine **3a** (39.7 mg, 0.1 mmol) and Hantzsch ester (30.4 mg, 0.12 mmol) in EtOH (1 mL). The mixture was stirred at 80 $^{\circ}$ C for 8 hours and then cooled to room temperature. After that the mixture was concentrated and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1 to 10/1) to provide **5** (28.4 mg, 77% yield) as colorless oil, which was dried under vacuum and further analyzed by ¹H NMR, ¹³C NMR, HRMS, *etc.*

1-(tert-butyl) 2-ethyl 2-(2,2-dicyano-1-phenylethyl)aziridine-1,2-dicarboxylate 5

Purification of the crude product *via* column chromatography delivered **5** (28.4 mg) in 77% yield as colorless oil. The diastereomeric ratio was determined to be >19:1 by crude ¹H NMR analysis.

NMR and HRMS data for the product **5**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.41 – 7.37 (m, 3H), 7.36 – 7.32 (m, 2H), 4.59 (d, J = 8.4 Hz, 1H), 4.37 – 4.29 (m, 1H), 4.24 – 4.16 (m, 1H), 4.22 (d, J = 7.8 Hz, 1H), 2.79 (s, 1H), 2.06 (s, 1H), 1.47 (s, 9H), 1.31 (t, J = 6.6 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 167.5, 157.7, 132.8, 129.5, 129.3, 128.4, 111.9, 111.7, 83.1, 63.1, 45.4, 45.0, 37.4, 27.9, 26.3, 13.9.

HRMS (ESI-TOF) m/z: $[\mathbf{M} + \mathbf{Na}]^+$ calculated for $C_{20}H_{23}N_3O_4Na^+$: 392.1581, found: 392.1582.

5.2 Hydrolysis of vinylaziridine 3a

A glass tube was charged with vinylaziridine 3a (39.7 mg, 0.1 mmol), triethylamine (30.4

mg, 0.3 mmol) in *i*-PrOH/H₂O (2 mL, 3:1 (ν/ν)). The mixture was stirred at 60 °C for 12 hour. Then the mixture was added with water (5 mL) and extracted with ethyl acetate (5 mL × 2). The organic layer was dried over Na₂SO₄, concentrated and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1 to 5/1) to provide the product **6** (27.4 mg, 86% yield) as colorless oil, which was dried under vacuum and further analyzed by ¹H NMR, ¹³C NMR, HRMS, *etc*.

1-(tert-butyl) 2-ethyl 2-benzoylaziridine-1,2-dicarboxylate 6

Purification of the crude product *via* column chromatography delivered **6** (27.4 mg) in 86% yield as colorless oil.

NMR and HRMS data for the product 4:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.25 (d, *J* = 9.0 Hz, 2H), 7.60 (t, *J* = 9.0 Hz, 1H), 7.48 (t, *J* = 7.8 Hz, 2H), 4.31 – 4.22 (m, 1H), 4.19 – 4.11 (m, 1H), 2.95 (s, 1H), 2.71 (s, 1H), 1.53 (s, 9H), 1.12 (t, *J* = 6.6 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 190.8, 166.6, 158.0, 134.7, 133.8, 129.6, 128.4, 82.9, 62.8, 48.6, 36.5, 27.9, 13.9.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{17}H_{21}NO_5Na^+$: 342.1312, found: 342.1318.

5.3 Reduction of the enamine moiety on pyrroline 4a

A glass tube was charged with 2-pyrroline **4a** (36.7 mg, 0.1 mmol), BF₃ OEt₂ (71.0 mg, 0.5 mmol) and Et₃SiH (58.2 mg, 0.5 mmol) in DCM (1 mL). The mixture was stirred at room temperature for 4 hours. Then the mixture was added with water (5 mL) and extracted with ethyl acetate (5 mL \times 2). The organic layer was dried over Na₂SO₄, concentrated and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1 to 3/1) to provide the product **7** (17.2 mg, 64% yield) as colorless oil, which was dried under vacuum and further analyzed by ¹H NMR, ¹³C NMR, HRMS, *etc*.

ethyl 4,4-dicyano-3-phenylpyrrolidine-2-carboxylate 7

Purification of the crude product *via* column chromatography delivered **7** (17.2 mg) in 64% yield as colorless oil. The diastereomeric ratio was determined to be >19:1 by crude ¹H NMR analysis, and the relative configuration of the adjacent stereocenters was determined as *cis* by NOEDS analysis.

NMR and HRMS data for the product 7:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.42 – 7.36 (m, 3H), 7.33 – 7.28 (m, 2H), 4.47 (d, J = 8.4 Hz, 1H), 4.16 (d, J = 8.4 Hz, 1H), 4.00 (d, J = 12.6 Hz, 1H), 3.94 – 3.80 (m, 2H), 3.75 (d, J = 11.4 Hz, 1H), 3.04 (s, 1H), 0.82 (t, J = 6.6 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 169.7, 132.5, 129.5, 129.0, 128.8, 115.2, 113.1, 64.2, 61.7, 58.2, 57.3, 41.6, 13.5.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{15}H_{15}N_3O_2Na^+$: 292.1056, found: 292.1063.

5.4 Deprotection of pyrroline 4a

A glass tube was charged with 2-pyrroline **4a** (36.7 mg, 0.1 mmol) and CF₃CO₂H (57 mg, 0.50 mmol) in DCM (1 mL). The mixture was stirred at room temperature for 1 hour. Then the mixture was added with saturated NaHCO₃ (5 mL) and extracted with ethyl acetate (5 mL \times 2). The organic layer was dried over Na₂SO₄, concentrated and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1 to 3/1) to provide the product **8** (21.1 mg, 79% yield) as pure yellow oil, which was dried under vacuum and further analyzed by ¹H NMR, ¹³C NMR, HRMS, *etc*.

ethyl 3,3-dicyano-4-phenyl-3,4-dihydro-2H-pyrrole-5-carboxylate 8

Purification of the crude product *via* column chromatography delivered **8** (21.1 mg) in 79% yield as pure yellow oil.

NMR and HRMS data for the product **8**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.51 – 7.40 (m, 3H), 7.14 (d, J = 7.2 Hz, 2H), 5.08 (s, 1H), 5.01 (d, J = 18.0 Hz, 1H), 4.80 (d, J = 17.4 Hz, 1H), 4.33 – 4.20 (m, 2H), 1.25 (t, J = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 166.3, 159.7, 130.7, 130.2, 129.9, 127.9, 115.1, 111.9, 70.7, 65.2, 63.0, 39.8, 13.8.

HRMS (**ESI-TOF**) m/z: $[\mathbf{M} + \mathbf{Na}]^+$ calculated for $C_{15}H_{13}N_3O_2Na^+$: 290.0900, found: 290.0902.

6. General Procedure for the Preparation of 2-Aminopyridine 10

A glass tube was charged with alkene **1** (0.12 mmol) and iminoiodinane **9a** (37.3 mg, 0.10 mmol) in water (1 mL). The mixture was stirred at room temperature for 5 hours. Then the mixture was extracted with ethyl acetate (10 mL \times 2), and the organic layer was dried over Na₂SO₄, concentrated and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1 to 3/1) to afford the corresponding 2-aminopyridine **10a–10k** in 64%–92% yields.

ethyl 6-amino-5-cyano-4-phenylnicotinate 10a

Prepared according to the general procedure to afford **10a** (24.3 mg, m. p. = 158 - 163 °C) in 91% yield as yellow solid.

NMR and HRMS data for the product 10a:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.83 (s, 1H), 7.50 – 7.43 (m, 3H), 7.31 – 7.26 (m, 2H), 5.65 (s, 2H), 4.05 (q, J = 7.8 Hz, 2H), 0.98 (t, J = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 164.9, 160.8, 156.6, 155.3, 136.2, 129.2, 128.3, 127.6, 117.0, 115.4, 92.6, 61.0, 13.6.

HRMS (ESI-TOF) m/z: $[M + H]^+$ calculated for $C_{15}H_{13}N_3O_2Na^+$: 268.1081, found: 268.1079.

ethyl 6-amino-5-cyano-4-(4-fluorophenyl)nicotinate 10b

Prepared according to the general procedure to afford **10b** (20.8 mg, m. p. = 157 - 161 °C) in 73% yield as yellow solid.

NMR and HRMS data for the product **10b**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.84 (s, 1H), 7.31 – 7.26 (m, 2H), 7.17 (t, J = 9.0 Hz,

2H), 5.67 (s, 2H), 4.08 (q, *J* = 7.8 Hz, 2H), 1.05 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR (150 MHz, CDCl₃)** δ (ppm): 164.7, 163.2 (d, $J_{C-F} = 247.1$ Hz), 160.9, 155.6, 155.5, 132.1 (d, $J_{C-F} = 2.9$ Hz), 129.7 (d, $J_{C-F} = 8.6$ Hz), 116.8, 115.5 (d, $J_{C-F} = 21.6$ Hz), 115.3, 92.7, 61.1, 13.7.

¹⁹**F NMR (564 MHz, CDCl₃)** δ (ppm): -111.5.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{15}H_{12}FN_3O_2Na^+$: 308.0806, found: 308.0803.

ethyl 6-amino-4-(4-chlorophenyl)-5-cyanonicotinate 10c

Prepared according to the general procedure to afford **10c** (26.3 mg, m. p. = 172 - 177 °C) in 87% yield as yellow solid.

NMR and HRMS data for the product **10c**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.85 (s, 1H), 7.45 (d, J = 7.8 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 5.66 (s, 2H), 4.09 (q, J = 6.6 Hz, 2H), 1.06 (t, J = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 164.5, 160.8, 155.6, 155.5, 135.4, 134.6, 129.1, 128.6, 116.6, 115.2, 92.5, 61.1, 13.7.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{15}H_{12}^{35}ClN_3O_2Na^+$: 324.0510, found: 324.0517; calculated for $C_{15}H_{12}^{37}ClN_3O_2Na^+$: 326.0481, found: 326.0475.

ethyl 6-amino-4-(4-bromophenyl)-5-cyanonicotinate 10d

Prepared according to the general procedure to afford **10d** (26.0 mg, m. p. = 185 - 189 °C) in 75% yield as yellow solid.

NMR and HRMS data for the product **10d**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.85 (s, 1H), 7.61 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 5.64 (s, 2H), 4.09 (q, J = 7.8 Hz, 2H), 1.06 (t, J = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 164.5, 160.8, 155.6, 155.5, 135.0, 131.5, 129.2, 123.6, 116.4, 115.1, 92.3, 61.2, 13.7.

HRMS (ESI-TOF) m/z: $[\mathbf{M} + \mathbf{Na}]^+$ calculated for $C_{15}H_{12}^{-79}BrN_3O_2Na^+$: 368.0005, found: 368.0007; calculated for $C_{15}H_{12}^{-81}BrN_3O_2Na^+$: 369.9985, found: 369.9991.

ethyl 6-amino-5-cyano-4-(p-tolyl)nicotinate 10e

Prepared according to the general procedure to afford **10e** (25.9 mg, m. p. = 189 - 193 °C) in 92% yield as yellow solid.

NMR and HRMS data for the product **10e**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.80 (s, 1H), 7.27 (d, J = 9.0 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H), 5.60 (s, 2H), 4.08 (q, J = 7.8 Hz, 2H), 2.42 (s, 3H), 1.04 (t, J = 6.6 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 164.9, 160.8, 156.8, 155.1, 139.3, 133.1, 129.0, 127.6, 117.1, 115.6, 92.7, 61.0, 21.4, 13.7.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{16}H_{15}N_3O_2Na^+$: 304.1056, found: 304.1058.

ethyl 6-amino-5-cyano-4-(4-methoxyphenyl)nicotinate 10f

Prepared according to the general procedure to afford **10f** (25.5 mg, m. p. = 137 - 140 °C) in 86% yield as pure yellow solid.

NMR and HRMS data for the product **10f**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.78 (s, 1H), 7.24 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 9.0 Hz, 2H), 5.59 (s, 2H), 4.09 (q, *J* = 7.2 Hz, 2H), 3.86 (s, 3H), 1.06 (t, *J* = 7.8 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 165.1, 160.9, 160.4, 156.3, 155.1, 129.3, 128.1, 117.3, 115.7, 113.7, 92.6, 61.0, 55.3, 13.8.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{16}H_{15}N_3O_3Na^+$: 320.1006, found: 320.1011.

Prepared according to the general procedure to afford 10g (26.6 mg, m. p. = 165 - 167 °C) in 88% yield as yellow solid.

NMR and HRMS data for the product **10g**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.86 (s, 1H), 7.45 (d, J = 9.0 Hz, 1H), 7.41 (t, J = 7.8 Hz, 1H), 7.18 (d, J = 7.2 Hz, 1H), 5.76 (s, 2H), 4.08 (q, J = 6.6 Hz, 2H), 1.03 (t, J = 6.6 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 164.4, 160.9, 155.6, 155.0, 137.9, 134.2, 129.6, 129.2, 127.8, 125.8, 116.5, 115.0, 92.4, 61.1, 13.6.

HRMS (ESI-TOF) m/z: $[\mathbf{M} + \mathbf{Na}]^+$ calculated for $C_{15}H_{12}^{35}ClN_3O_2Na^+$: 324.0510, found: 324.0508; calculated for $C_{15}H_{12}^{37}ClN_3O_2Na^+$: 326.0481, found: 326.0480.

ethyl 6-amino-5-cyano-4-(m-tolyl)nicotinate 10h

Prepared according to the general procedure to afford **10h** (19.1 mg, m. p. = 137 - 142 °C) in 68% yield as yellow solid.

NMR and HRMS data for the product **10h**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.81 (s, 1H), 7.35 (t, J = 7.8 Hz, 1H), 7.28 (d, J = 4.8 Hz, 1H), 7.07 (d, J = 6.6 Hz, 2H), 5.60 (s, 2H), 4.06 (q, J = 6.6 Hz, 2H), 2.40 (s, 3H), 0.99 (t, J = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 165.0, 160.8, 156.8, 155.1, 137.9, 136.1, 129.9, 128.18, 128.16, 124.7, 117.1, 115.4, 92.6, 60.9, 21.4, 13.6.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{16}H_{15}N_3O_2Na^+$: 304.1056, found: 304.1053.

Prepared according to the general procedure to afford **10i** (23.1 mg, m. p. = 176 - 180 °C) in 73% yield as yellow solid.

NMR and HRMS data for the product 10i:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.87 (s, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.89 (t, J = 9.6 Hz, 2H), 7.79 (s, 1H), 7.62 – 7.48 (m, 2H), 7.36 (d, J = 6.6 Hz, 1H), 5.66 (s, 2H), 4.01 (q, J = 7.2 Hz, 2H), 0.87 (t, J = 6.6 Hz, 3H).

¹³**C NMR (150 MHz, CDCl₃)** δ (ppm): 164.9, 160.9, 156.6, 155.3, 133.6, 133.3, 132.7, 128.4, 127.94, 127.85, 127.1, 127.0, 126.6, 125.3, 117.1, 115.5, 92.8, 61.0, 13.6.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{19}H_{15}N_3O_2Na^+$: 340.1056, found: 340.1058.

ethyl 6-amino-5-cyano-4-(thiophen-2-yl)nicotinate 10j

Prepared according to the general procedure to afford **10j** (17.5 mg, m. p. = 138 - 142 °C) in 64% yield as yellow solid.

NMR and HRMS data for the product **10j**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.75 (s, 1H), 7.53 (d, J = 6.0 Hz, 1H), 7.20 (d, J = 3.0 Hz, 1H), 7.14 (dd, J = 4.8, 4.2 Hz, 1H), 5.62 (s, 2H), 4.13 (q, J = 7.8 Hz, 2H), 1.10 (t, J = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 164.9, 160.8, 154.9, 149.0, 135.4, 128.6, 128.2, 127.3, 118.1, 115.3, 93.1, 61.3, 13.7.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{13}H_{11}N_3O_2SNa^+$: 296.0464, found: 296.0460.

Prepared according to the general procedure to afford **10k** (22.5 mg, m. p. = 175 - 179 °C) in 89% yield as pure yellow solid.

NMR and HRMS data for the product **10k**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.83 (s, 1H), 7.50 – 7.46 (m, 3H), 7.30 – 7.26 (m, 2H), 5.64 (s, 2H), 3.63 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 165.1, 160.9, 156.9, 155.3, 135.9, 129.3, 128.3, 127.6, 116.5, 115.3, 92.8, 52.0.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{14}H_{11}N_3O_2Na^+$: 276.0743, found: 276.0745.

8. Crystal Data and Structure Refinement for the Representative Products 3a, 4a and 10a

Identification code	
Empirical formula	
Formula weight	
Temperature/K	
Crystal system	
Space group	
a/Å	
b/Å	
c/Å	
a/°	
β/°	
$\gamma/^{\circ}$	
Volume/Å ³	
Z	
$\rho_{calc}g/cm^3$	
μ/mm^{-1}	
F(000)	
Crystal size/mm ³	
Radiation	
2Θ range for data collection/°	
Index ranges	<i>-</i> 13 ≤
Reflections collected	
Independent reflections	3854
Data/restraints/parameters	
Goodness-of-fit on F ²	
Final R indexes [I>= 2σ (I)]	
Final R indexes [all data]	
Largest diff. peak/hole / e Å ⁻³	

4a $C_{20}H_{21}N_3O_4$ 367.40 295.91(10) monoclinic $P2_1/n$ 10.8238(4) 10.3557(3) 17.8199(7) 90 96.908(3) 90 1982.89(12) 4 1.231 0.715 776.0 $0.7 \times \! 0.6 \times \! 0.4$ $CuK\alpha$ ($\lambda = 1.54184$) 10 to 144.73 $h \le 13, -8 \le k \le 12, -21 \le l \le 17$ 10517 $[R_{int} = 0.0237, R_{sigma} = 0.0228]$ 3854/0/248 1.072 $R_1 = 0.0671, wR_2 = 0.1697$ $R_1 = 0.0737, wR_2 = 0.1800$ 0.30/-0.41

Identification code 10a $C_{30}H_{26}N_6O_4$ Empirical formula Formula weight 534.57 Temperature/K 296.9(6) Crystal system triclinic P-1 Space group a/Å 6.9944(3) b/Å 7.8586(4) c/Å 26.1858(11) α/° 85.696(4) β/° 89.837(4) $\gamma/^{\circ}$ 79.658(4) Volume/Å³ 1411.88(11) Ζ 2 $\rho_{calc}g/cm^3$ 1.257 μ/mm^{-1} 0.704 F(000) 560.0 Crystal size/mm³ $0.65 \times 0.5 \times 0.4$ Radiation $CuK\alpha$ ($\lambda = 1.54184$) 20 range for data collection/° 10.164 to 144.908 Index ranges $\textbf{-8} \leq h \leq \textbf{8}, \, \textbf{-9} \leq k \leq \textbf{8}, \, \textbf{-30} \leq \textbf{l} \leq \textbf{32}$ Reflections collected 15449 5505 [$R_{int} = 0.0409, R_{sigma} = 0.0344$] Independent reflections Data/restraints/parameters 5505/0/363 Goodness-of-fit on F^2 1.019 Final R indexes $[I \ge 2\sigma(I)]$ $R_1 = 0.0706, wR_2 = 0.1941$ $R_1 = 0.0788, wR_2 = 0.2078$ Final R indexes [all data] Largest diff. peak/hole / e $Å^{-3}$ 0.29/-0.38

9. References and Notes

- (a) E. Krell, *Handbook of Laboratory Distillation*, Elseriver Publishing Company, Amsterdam-London-New York, 1963; (b) M. J. Rosengart, *The Technique of Distillation and Rectification in the Laboratory*, VEB Verlag Technik, Berlin, 1954; (c) F. Stage, *Angew. Chem.* 1947, **19**, 175.
- [2] X. Jiang, D. Fu, X. Shi, S. Wang, and R. Wang, *Chem. Commun.* 2011, 47, 8289.
- [3] (a) I. G. Moln ár, E. Tanzer, C. Daniliuc, and R. Gilmour, *Chem. Eur. J.* 2014, 20, 794; (b) Masruri, A. C. Willis, and M. D. McLeod, *J. Org. Chem.* 2012, 77, 8480; (c) Ł. Albrecht, H. Jiang, G. Dickmeiss, B. Gschwend, S. G. Hansen and K. A. Jørgensen, *J. Am. Chem. Soc.* 2010, 132, 9188.
- [4] A. Yoshimura, K. R. Middleton, M. W. Luedtke, C. J. Zhu, and V. V. Zhdankin, J. Org. Chem. 2012, 77, 2087.

