Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Supporting Information

Bistrifluoromethylated Organocuprate [Ph₄P]⁺[Cu(CF₃)₂]⁻: Synthesis, Characterization and Its Application for Trifluoromethylation of Activated Heteroaryl Bromides, Chlorides and iodides

He Liu, Qilong Shen*

Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, PRC shenql@sioc.ac.cn

Table of Contents

1. General information	S2
2. Optimization table	S3
3. General procedure for preparation of bis(trifluoromethyl)copper(I) complex 1	S6
4. General procedure for trifluoromethylation of heteroaryl bromides	S7
5. General procedure for trifluoromethylation of heteroaryl chlorides and iodides	S18
6. General procedure for the preparation of trifluoromethylated compounds 4-7	S25
7. References	S28
8. ¹ H NMR, ¹⁹ F NMR, ¹³ C NMR spectra of 2a-x , 3a-x , 4-7	S29
9. X-Ray diffraction data of bis(trifluoromethyl)copper(I) complex 1	S101

General information. All reactions were maintained under an argon atmosphere unless otherwise stated. All solvents were purified by standard methods. ¹H, ¹³C, ³¹P, ¹⁹F NMR spectra were acquired on spectrometer (400 MHz for ¹H; 101 or 126 MHz for ¹³C; 121 MHz for ³¹P; 375 MHz for ¹⁹F). ¹H NMR and ¹³C NMR chemical shifts were determined relative to internal standard TMS at δ 0.0 ppm and ¹⁹F NMR chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. All reactions were monitored by TLC or ¹⁹F NMR. Flash column chromatograph was carried out using 300-400 mesh silica gel at medium pressure.

Materials. All reagents were received from commercial sources. Solvents were freshly dried and degassed according to the purification handbook Purification of Laboratory Chemicals before using.

		1			/ -
entry	1 (eq.)	[Cu] (1.0 eq.)	solvent	temp. (°C)	yield (%)
1	1.2	-	DMF	80	18
2	1.2	-	DMF	100	62
3	1.2	Cul	DMF	100	93
4	1.2	Cul	PhCN	100	91
5	1.2	Cul	DMAc	100	90
6	1.2	Cul	DMSO	100	14
7	1.2	Cul	NMP	100	86
8	1.2	Cul	THF	100	55
9	1.2	CuCl	DMF	100	77
10	1.2	CuBr	DMF	100	88
11	1.2	CuBr ₂	DMF	100	79
12	1.2	Cu	DMF	100	56
13	1.2	Cul	DMF	120	93
14	1.2	Cul	DMF	110	92
15	1.2	Cul	DMF	90	88
16	1.5	Cul	DMF	80	81
17	2.0	Cul	DMF	100	93
18	1.0	Cul	DMF	100	93
19	1.2	Cul	DMF	100	86
20	1.2	Cul (0.8 eq.)	DMF	100	89
21	1.2	Cul (1.2 eq.)	DMF	100	85

Table S1. Optimization of the reaction conditions for the trifluoromethylation of aryl iodide^{a,b}

^aReaction conditions: 4-methyl-iodobenzene (0.050 mmol), complex **1**, [Cu] in 1.0 mL of solvent for 3 h; ^bYields were determined by ¹⁹F NMR analysis of the crude reaction mixture with fluorobenzene as an internal standard.

Ph		+ [PPh ₄] ⁺ [Cu(C	F ₃) ₂]Conc	d. Ph	`
	N Br	1		N 2a	CF ₃
entry	1 (eq.)	[Cu] (1.0 eq.)	solvent	temp. (^o C)	yield (%)
1	1.2	-	DMF	100	33
2	1.2	Cul	DMF	100	96
3	1.0	Cul	DMF	100	96
4	0.8	Cul	DMF	100	67
5	1.0	Cul	DMF	90	78
6	1.0	Cul	DMF	80	64
7	1.0	Cul	PhCN	100	70
8	1.0	Cul	DMAc	100	86
9	1.0	Cul	DMSO	100	17
10	1.0	CuCl	NMP	100	85
11	1.0	CuBr	DMF	100	66
12	1.0	Cu	DMF	100	75
13	1.0	Cul	DMF	100	38
14	1.0	Cul (0.8 eq.)	DMF	100	87
15	1.0	Cul (0.5 eq.)	DMF	100	84
^a Reaction conditions: 5-phenyl-2-bromopyridine (0.050 mmol), complex 1 , [Cu] (0.050 mmol) in 1.0 mL of solvent for 3 h; ^b Yields were determined by ¹⁹ F NMR					
analysis of the crude reaction mixture with fluorobenzene as an internal standard.					

Table S2. Optimization of the reaction conditions for the trifluoromethylation of heteroaryl bromide^{a,b}

	CO ₂ Et +	$[PPh_4]^+[Cu(CF_3)_2]$	Cc	ond.	∠CO₂Et `CF₃
		1		3b	
entry	[Cu] (1.0 eq.)	1 (eq.)	solvent	temp. (°C) yield (%)
1	-	-	DMF	100	n.d.
2	Cul	1.0	DMF	100	71
3	Cul	1.0	CH ₃ CN	100	22
4	Cul	1.0	DMAc	100	63
5	Cul	1.0	DMSO	100	n.d.
6	Cul	1.0	NMP	100	58
7	Cul	1.0	DMF	120	59
8	Cul	1.0	DMF	110	71
9	Cul	1.0	DMF	90	43
10	CuCl	1.0	DMF	100	58
11	CuBr	1.0	DMF	100	68
12	CuTc	1.0	DMF	100	40
13	Cu	1.0	DMF	100	8
14	Cul	1.2	DMF	100	80
15	Cul (0.8 eq.)	1.2	DMF	100	50
16	Cul (1.2 eq.)	1.2	DMF	100	74
^a Reactio	n conditions: ethyl	2-chloronicotinate	(0.050	mmol), complex	1 , [Cu] (0.050

Table S3. Optimization of the reaction conditions for the trifluoromethylation of heteroaryl chloride^{a,b}

mmol) in 1.0 mL of solvent for 3 h; ^bYields were determined by ¹⁹F NMR analysis of the crude reaction mixture with fluorobenzene as an internal standard.

General procedure for preparation of bis(trifluoromethyl)copper(I) complex 1

 $CuCl + KF + TMSCF_{3} \xrightarrow{THF} \left[K^{+}Cu(CF_{3})_{2}^{-} \right] \xrightarrow{Ph_{4}PCl} [Ph_{4}P]^{+}[Cu(CF_{3})_{2}]^{-}$

In an argon-filled glove box, CuCl (1.00 g, 10.0 mmol), KF (3.80 g, 65.0 mmol) and 30.0 mL THF were placed into an oven-dried 100 mL Schlenk tube equipped with a stirring bar. Then TMSCF₃ (5.00 g, 5.20 mL, 35.0 mmol) was slowly added into the solution, and the reaction system was stirred at 20 °C for 30 min. Then tetraphenylphosphonium chloride (3.74 g, 10.0 mmol) was added and the suspension was maintained for another 30 min. The suspension was filtered through a short plug of Celite to give a colorless solution, and then the solvent was evaporated. The residue was washed by methyl *tert*-butyl ether (50 mL×3) and dried under vaccum to give $[Ph_4P]^+[Cu(CF_3)_2]^-$ as a white solid (3.98 g, 74%).

Tetraphenylphosphonium bis(trifluoromethyl)copper(I) (1)

¹H NMR (400 MHz, CDCl₃) δ 7.92 (t, J = 7.6 Hz, 4 H), 7.76 (td, ²J = 8.0 Hz, ³J = 3.2 Hz, 8 H), 7.64 (d, J = 8.0 Hz, 4 H), 7.60 (d, J = 8.0 Hz, 4 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -31.4; ³¹P NMR (121 MHz, CDCl₃) δ 24.39 ppm. Anal. Calcd for C₂₅H₂₀PF₆Cu: C, 57.73; H, 3.73; Found: C, 57.35; H, 3.43.

General procedure for trifluoromethylation of heteroaryl bromides 2a-x

In an argon-filled glovebox, heteroaryl halide (0.50 mmol), complex **1** (0.50 mmol), CuI (0.50 mmol) and 5.0 mL DMF were added into a 25 mL oven-dried sealed tube with a stirring bar. Then the sealed tube was set into the pre-heated oil bath at 100 °C for 3 h. Fluorobenzene (72 mg, 0.75 mmol) was added as an internal standard to determine the yield by ¹⁹F NMR spectroscopy. 10 mL of water was added and the mixture was extracted with dichloromethane (50 mL \times 3). The combined organic phase was dryed over anhydrous MgSO₄, filtered and concentrated under vaccum. The residue was further purified by flash chromatography to give the corresponding trifluoromethylated heteroarene.

5-Phenyl-2-trifluoremethylpyridine^[1] (2a)

White solid (56 mg, 51%); ¹⁹F NMR yield: 96%. Eluent: petroleum ether. ¹H NMR (400 MHz, CDCl₃) δ 8.93 (s, 1 H), 8.03 (d, J = 8.4 Hz, 1 H), 7.75 (d, J = 8.0 Hz, 1 H), 7.59 (d, J = 8.0 Hz, 2 H), 7.52 (d, J = 7.6 Hz, 1 H), 7.49 – 7.46 (m, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ 148.5, 146.8 (q, J = 35.4 Hz), 139.5, 136.3, 135.3, 129.3, 129.0, 127.3, 121.7 (q, J = 275.7 Hz), 121.4 (q, J = 3.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -67.7 ppm. LRMS (EI, m/z): 223 [M⁺]; HRMS (EI, m/z) [M⁺] calcd. for C₁₂H₈NF₃, 223.0609; Found: 223.0602. IR (thin film): v_{max} = 3038, 1338, 1174, 1132, 1088 cm⁻¹. **5-Nitro-2-(trifluoromethyl)pyridine**^[2] (2b)

Light-yellow solid (37 mg, 38%); ¹⁹F NMR yield: 99%. Eluent: ethyl acetate : petroleum ether = 1:10. ¹H NMR (400 MHz, CDCl₃) δ 9.52 (s, 1 H), 8.68 (d, *J* = 8.0 Hz, 1 H), 7.93 (d, *J* = 8.8 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 152.7 (q, *J* = 36.4

Hz), 145.5, 141.2 (br), 132.9, 121.2 (q, J = 3.3 Hz), 120.5 (q, J = 275.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -68.1 ppm. LRMS (EI, m/z): 192 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₆H₃N₂O₂F₃, 192.0147; Found: 192.0146. IR (thin film): $v_{max} = 3062$, 1610, 1534, 1329, 1174 cm⁻¹.

Methyl 6-(trifluoromethyl)pyridine-3-carboxylate^[3] (2c)

White solid (39 mg, 39%); ¹⁹F NMR yield: 96%. Eluent: dichloromethane : petroleum ether = 1:5. ¹H NMR (400 MHz, CDCl₃) δ 9.27 (s, 1 H), 8.46 (d, *J* = 8.0 Hz, 1 H), 7.76 (d, *J* = 8.0 Hz, 1 H), 3.97 (s, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 164.4, 151.2 (q, *J* = 35.3 Hz), 151.0, 138.7, 128.5, 121.1 (q, *J* = 276.7 Hz), 120.2, 52.8 ppm (q, *J* = 3.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -68.4 ppm. LRMS (EI, m/z): 205 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₈H₆O₂F₃, 205.0351. Found: 205.0350. IR (thin film): $v_{max} = 3070, 1724, 1438, 1288, 1118 \text{ cm}^{-1}$.

6-Trifluoromethyl-2,2'-bipyridine^[4] (2d)

White solid (45 mg, 40%); ¹⁹F NMR yield: 93%. Eluent: dichloromethane : petroleum ether = 1:3. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (ddd, ³*J* = 4.8 Hz, ⁴*J* = 1.6 Hz, ⁵*J* = 0.4 Hz, 1 H), 8.63 (d, *J* = 8.0 Hz, 1 H), 8.52 (dt, ²*J* = 7.6 Hz, ³*J* = 1.2 Hz, 1 H), 7.99 (t, *J* = 7.6 Hz, 1 H), 7.85 (td, ²*J* = 7.8 Hz, ³*J* = 1.6 Hz, 1 H), 7.68 (dd, ²*J* = 8.0 Hz, ³*J* = 0.4 Hz, 1 H), 7.35 (ddd, ²*J* = 8.4 Hz, ³*J* = 4.8 Hz, ⁴*J* = 0.8 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 156.6, 154.7, 147.7 (q, *J* = 35.4 Hz), 138.2, 137.1, 125.7, 124.4, 123.5, 123.0 (q, *J* = 275.7 Hz), 121.6, 120.1 (q, *J* = 3.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -68.1 ppm. LRMS (EI, m/z): 224 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₁₁H₇N₂F₃, 224.0561; Found: 224.0560. IR (thin film): v_{max} = 1998, 1587, 1349, 1193, 1117 cm⁻¹.

tert-Butyl 4-[4-(trifluoromethyl)-2-pyridyl]piperazine-1-carboxylate (2e)

White solid (70 mg, 42%); ¹⁹F NMR yield: 81%. Eluent: ethyl acetate : petroleum ether = 1:5. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 5.2 Hz, 1 H), 6.78 (d, J = 6.0 Hz, 2 H), 3.58-3.60 (m, 4 H), 3.54-3.55 (m, 4 H); ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 154.7, 149.2, 139.8 (q, J = 33.3 Hz), 123.1 (q, J = 274.7 Hz), 108.5 (q, J = 3.0 Hz), 102.5 (q, J = 4.0 Hz), 80.1, 44.8, 43.2, 28.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -65.6 ppm. LRMS (EI, m/z): 331 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₁₅H₂₀N₃O₂F₃, 331.1508; Found: 331.1507. IR (thin film): v_{max} = 2984, 1686, 1325, 1164, 980 cm⁻¹. m.p. 94.4 ~ 95.2 °C.

Ethyl 3-(trifluoromethyl)pyridine-2-carboxylate (2f)

Yellow liquid (55 mg, 50%); ¹⁹F NMR yield: 74%. Eluent: ethyl acetate : petroleum ether = 1:5. ¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, *J* = 4.0 Hz, 1 H), 8.07 (d, *J* = 8.0 Hz, 1 H), 7.55 (dd, ²*J* = 8.0 Hz, ³*J* = 4.0 Hz, 1 H), 4.47 (q, *J* = 7.2 Hz, 2 H), 1.41 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 151.1, 148.2, 133.9 (q, *J* = 5.1 Hz), 123.9 (q, *J* = 34.4 Hz), 123.8, 121.7 (q, *J* = 274.7 Hz), 61.7, 12.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -60.3 ppm. LRMS (EI, m/z): 219 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₉H₈NO₂F₃, 219.0507; Found: 219.0502. IR (thin film): v_{max} = 2988, 1744, 1322, 1303, 1145 cm⁻¹.

Methyl 2-methoxy-5-(trifluoromethyl)pyridine-4-carboxylate (2g)

White solid (89 mg, 76%); ¹⁹F NMR yield: 98%. Eluent: ethyl acetate : petroleum ether = 1:5. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1 H), 7.04 (s, 1 H), 3.99 (s, 3 H), 3.93 (s, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 165.4, 164.2, 145.6 (q, *J* = 6.1 Hz), 139.8, 122.3 (q, *J* = 273.7 Hz), 115.9 (q, *J* = 31.3 Hz), 110.8, 53.4, 52.2; ¹⁹F NMR

(376 MHz, CDCl₃) δ -58.9 ppm. LRMS (EI, m/z): 235 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₉H₈NO₃F₃, 235.0456; Found: 235.0458. IR (thin film): $v_{max} = 2963$, 1261, 1101, 1019, 801 cm⁻¹. m.p. 46.7 ~ 49.9 °C.

3-Methoxy-6-(trifluoromethyl)pyridazine (2h)

White solid (46 mg, 52%); ¹⁹F NMR yield: 94%. Eluent: ethyl acetate : petroleum ether = 1:10. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.8 Hz, 1 H), 7.10 (d, J = 8.8 Hz, 1 H), 4.20 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 166.3, 147.5 (q, J = 35.3 Hz), 126.4 (q, J = 2.52 Hz), 121.5 (q, J = 274.7 Hz), 117.9, 55.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -66.5 ppm. LRMS (EI, m/z): 178 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₆H₅N₂OF₃, 178.0354; Found: 178.0355; IR (thin film): v_{max} = 3073, 1599, 1484, 1368, 1127 cm⁻¹. m.p. 77.9 ~ 79.9 °C.

4-[4-Trifluoromethyl)pyrimidin-2-yl]morpholine (2i)

White solid (76 mg, 65%); ¹⁹F NMR yield: 96%. Eluent: ethyl acetate : petroleum ether = 1:3. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 4.8 Hz, 1 H), 6.77 (d, *J* = 4.8 Hz, 1 H), 3.84 (t, *J* = 4.8 Hz, 4 H), 3.75 (t, *J* = 4.8 Hz, 4 H); ¹³C NMR (126 MHz, CDCl₃) δ 161.1, 159.7, 155.8 (q, *J* = 35.3 Hz), 120.1 (q, *J* = 275.9 Hz), 104.5 (q, *J* = 2.52 Hz), 66.3, 43.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -70.9 ppm. LRMS (EI, m/z): 233 [M+]; HRMS (EI, m/z) [M+] Calcd. for C₉H₁₀ON₃F₃, 233.0776; Found: 233.0781; IR (thin film): v_{max} = 2995, 1590, 1570, 1493, 1333, 1131 cm⁻¹. m.p. 38.3 ~ 39.4 °C.

2,4-Bis(benzyloxy)-5-trifluoromethylpyrimidine (2j)

White solid (70 mg, 39%); ¹⁹F NMR yield: 79%. Eluent: dichloromethane : petroleum ether = 1:10. ¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1 H), 7.45 (d, *J* = 8.0 Hz, 2 H), 7.33-7.39 (m, 8 H), 5.52 (s, 2 H), 5.45 (s, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ 167.9, 166.5, 157.6 (q, *J* = 4.0 Hz), 135.9, 135.4, 128.7, 128.7, 128.5, 128.4, 128.3, 127.6, 123.0 (q, *J* = 271.7 Hz), 106.4 (q, *J* = 34.3 Hz), 70.1, 69.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5 ppm. LRMS (EI, m/z): 361.1 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₁₉H₁₆O₂N₂F₃, 361.1158; Found: 361.1157. IR (thin film): *v*_{max} = 3064, 1608, 1436, 1288, 1131 cm⁻¹. m.p. 75.2 ~ 77.1 °C.

2-Trifluoromethylquinoline^[1] (2k)

White solid (55 mg, 56%); ¹⁹F NMR yield: 100%. Eluent: dichloromethane : petroleum ether = 1:7. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 8.4 Hz, 1 H), 8.22 (d, J = 8.4 Hz, 1 H), 7.90 (d, J = 8.4 Hz, 1 H), 7.82 (t, J = 7.6 Hz, 1 H), 7.73 (d, J = 8.4 Hz, 1 H), 7.67 (t, J = 7.6 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 148.0 (q, J = 35.4 Hz), 147.2, 138.1, 130.8, 130.2, 128.9, 128.6, 127.7, 121.6 (q, J = 275.7 Hz), 116.8 (q, J = 3.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -67.5 ppm. LRMS (EI, m/z): 197 [M⁺]; HRMS (EI, m/z) [M⁺] calcd. for C₁₀H₆NF₃, 197.0452; Found: 197.0450. IR (thin film): v_{max} = 3436, 1344, 1172, 1147, 1086 cm⁻¹.

7-Bromo-4-(trifluoromethyl)quinolone (2l)

White solid (72 mg, 52%); ¹⁹F NMR yield: 94%. Eluent: ethyl acetate : petroleum ether = 1:10. ¹H NMR (400 MHz, CDCl₃) δ 9.04 (s, 1 H), 8.40 (s, 1 H), 8.00 (d, J = 6.0 Hz, 1 H), 7.77 (d, J = 9.2 Hz, 1 H), 7.70 (d, J = 3.6 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 150.6, 149.6, 134.6 (q, J = 32.3 Hz), 132.8, 131.9, 125.4 (q, J = 2.0 Hz), 124.6, 123.1 (q, J = 275.7 Hz), 121.8, 118.2 (q, J = 5.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -66.2 ppm. LRMS (EI, m/z): 275 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for

C₁₀H₅NBrF₃, 274.9557; Found: 274.9560. IR (thin film): $v_{max} = 3055$, 1606, 1500, 1325, 1120 cm⁻¹. m.p. 61.4 ~ 62.7 °C.

Ethyl 4-chloro-2-(trifluoromethyl)quinoline-3-carboxylate (2m)

White solid (47 mg, 31%); ¹⁹F NMR yield: 49%. Eluent: ethyl acetate : petroleum ether = 1:20. ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 8.4 Hz, 1 H), 8.23 (d, *J* = 8.4 Hz, 1 H), 7.91 (t, *J* = 7.6 Hz, 1 H), 7.81 (t, *J* = 8.0 Hz, 1 H), 4.51 (q, *J* = 6.4 Hz, 2 H), 1.43 (d, *J* = 8.4 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 163.9, 146.7, 143.7 (q, *J* = 35.5 Hz), 142.1, 132.3, 130.6, 130.5, 126.3, 124.8, 124.5, 120.7 (q, *J* = 276.7 Hz), 63.0, 13.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -65.1 ppm. LRMS (EI, m/z): 303 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₁₃H₉NO₂F₃Cl, 303.0274; Found: 303.0269. IR (thin film): v_{max} = 2989, 1736, 1194, 1140 cm⁻¹ m.p. 56.3 ~ 58.1 °C.

2-(Trifluoromethyl)quinoxaline^[5] (2n)

White solid (58 mg, 59%); ¹⁹F NMR yield: 93%. Eluent: dichloromethane : petroleum ether = 1:10. ¹H NMR (400 MHz, CDCl₃) δ 9.17 (s, 1 H), 8.20 (td, ²*J* = 6.4 Hz, ³*J* = 1.2 Hz, 2 H), 7.94 – 7.88 (m, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 142.8 (q, *J* = 35.3 Hz), 140.9, 140.8, 132.4, 131.6, 130.0, 129.5, 121.1 (q, *J* = 276.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -67.0 ppm. LRMS (EI, m/z): 198.0 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₉H₅N₂F₃, 198.0405; Found: 198.0399. IR (thin film): $\nu_{max} = 3014, 2$ 1174, 1150, 1130, 1084 cm⁻¹.

7-(Trifluoromethyl)pyrido[2,3-b]pyrazine (20)

White solid (39 mg, 40%); ¹⁹F NMR yield: 64%. Eluent: ethyl acetate : petroleum ether = 1:5. ¹H NMR (400 MHz, CDCl₃) δ 9.37 (s, 1 H), 9.18 (s, 1 H), 9.05 (s, 1 H), 8.76 (s, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 152.5, 150.0 (q, *J* = 2.2 Hz), 149.7,

136.9 (q, J = 3.0 Hz), 128.5, 128.2, 128.0 (q, J = 34.3 Hz), 123.4 (q, J = 274.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.1 ppm. LRMS (EI, m/z): 199 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₈H₄N₃F₃, 199.0357; Found: 199.0363. IR (thin film): $v_{max} = 3016, 1339, 1192, 1180, 1137$ cm⁻¹. m.p. 142.8 ~ 143.5 °C.

2,4-Diphenyl-6-(trifluoromethyl)-1,3,5-triazine^[6] (2p)

White solid (94 mg, 62%); ¹⁹F NMR yield: 99%. Eluent: ethyl acetate : petroleum ether = 1:10. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, J = 7.6 Hz, 4 H), 7.64 (t, J = 4.8 Hz, 2 H), 3.84 (t, J = 7.2 Hz, 4 H); ¹³C NMR (101 MHz, CDCl₃) δ 173.2, 165.4 (q, J = 37.4 Hz), 134.6, 133.9, 129.6, 129.0, 119.2 (q, J = 277.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -72.5 ppm. LRMS (EI, m/z): 301 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₁₆H₁₀N₃F₃, 301.0827; Found: 301.0834. IR (thin film): v_{max} = 3067, 1556, 1526, 1421, 1378 cm⁻¹.

Ethyl 1-methyl-5-(trifluoromethyl)pyrazole-4-carboxylate^[7] (2q)

Light-yellow liquid (73 mg, 65%); ¹⁹F NMR yield: 100%. Eluent: ethyl acetate : petroleum ether = 1:5. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1 H), 4.28 (q, *J* = 7.2 Hz, 2 H), 4.03 (s, 3 H), 1.31 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 160.8, 141.2, 131.8 (q, *J* = 40.4 Hz), 119.5 (q, *J* = 272.7 Hz), 115.9 (q, *J* = 1.1 Hz), 60.9, 40.2 (q, ⁴*J* = 40.4 Hz), 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.2 ppm. LRMS (EI, m/z): 222 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₈H₉N₂O₂F₃, 222.0616; Found: 222.0612. IR (thin film): v_{max} = 2986, 1736, 1299, 1223, 1040 cm⁻¹. Ethyl 1-methyl-4-(trifluoromethyl)pyrazole-3-carboxylate (2r)

White solid (53 mg, 48%); ¹⁹F NMR yield: 63%. Eluent: ethyl acetate : petroleum ether = 1:5. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (s, 1 H), 4.40 (q, *J* = 7.2 Hz, 2 H), 3.97 (s, 3 H), 1.37 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 159.7, 139.9, 131.7 (q, *J* = 4.0 Hz), 121.0 (q, *J* = 267.6 Hz), 114.7 (q, *J* = 39.4 Hz), 61.1, 39.5, 13.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.4 ppm. LRMS (EI, m/z): 207 [[M-CH₃]⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₈H₉N₂O₂F₃, 222.0616; Found: 222.0622 . IR (thin film): $v_{max} = 3102, 1729, 1304, 1116, 1044 \text{ cm}^{-1}.\text{m.p. } 71.8 \sim 72.8 \text{ °C}.$

Ethyl 3-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylate (2s)

Light-yellow liquid (66 mg, 51%); ¹⁹F NMR yield: 89%. Eluent: ethyl acetate : petroleum ether = 1:3. ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, J = 5.6 Hz, 1 H), 7.81 (d, J = 7.2 Hz, 1 H), 7.44 (t, J = 6.4 Hz, 1 H), 7.08 (t, J = 5.6 Hz, 1 H), 4.50 (q, J = 5.6 Hz, 2 H), 1.45 (t, J = 5.6 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 160.7, 144.4, 136.7, 126.7, 124.8 (q, J = 5.1 Hz), 119.9 (q, J = 269.7 Hz), 118.4, 114.5, 113.9 (q, J = 42.4 Hz), 61.1, 13.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.1 ppm. LRMS (EI, m/z): 258 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₁₁H₉N₂O₂F₃, 258.0616; Found: 258.0621. IR (thin film): v_{max} = 2963, 1738, 1261, 1096, 1023 cm⁻¹.

Methyl 3-(trifluoromethyl)imidazo[1,5-a]pyridine-1-carboxylate (2t)

White solid (82 mg, 68%); ¹⁹F NMR yield: 96%. Eluent: dichloromethane : petroleum ether = 1:1. ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, *J* = 9.2 Hz, 1 H), 8.23 (d, *J* = 7.2 Hz, 1 H), 7.30 (dd, ²*J* = 9.2 Hz, ³*J* = 6.8 Hz, 1 H), 7.01 (t, *J* = 6.8 Hz, 1 H), 3.99 (s, 3

H); ¹³C NMR (101 MHz, CDCl₃) δ 163.0, 136.3, 126.7 (q, J = 42.4 Hz), 126.0, 123.0, 121.7, 120.2, 119.2 (q, J = 270.7 Hz), 116.4, 52.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1 ppm. LRMS (EI, m/z): 244 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₁₀H₇N₂O₂F₃, 244.0453; Found: 244.0460. IR (thin film): $v_{max} = 3077$, 1703, 1519, 1235, 1167, 1056 cm⁻¹. m.p. 106.1 ~ 107.8 °C.

2-Phenyl-5-(trifluoromethyl)-1,3,4-oxadiazole (2u)

White solid (41 mg, 38%); ¹⁹F NMR yield: 60%. Eluent: ethyl acetate : petroleum ether = 1:8. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 6.8 Hz, 2 H), 7.60-7.61 (m, 1 H), 7.55-7.57 (m, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 154.8 (q, *J* = 45.5 Hz), 133.1, 129.3, 127.5, 122.2, 116.3 (q, *J* = 272.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -65.1 ppm. LRMS (EI, m/z): 214 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₉H₅N₂OF₃, 214.0354; Found: 214.0356; IR (thin film): v_{max} = 3052, 1610, 1453, 1206, 1171 cm⁻¹. m.p. 45.7 ~ 47.2 °C.

2-(Trifluoromethyl)-1,3-benzothiazole^[8] (2v)

Stick oil (47 mg, 46%); ¹⁹F NMR yield: 85%. Eluent: dichloromethane : petroleum ether = 1:10. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 8.4 Hz, 1 H), 7.97 (d, J = 8.0 Hz, 1 H), 7.60 (td, ²J = 8.0 Hz, ³J = 1.2 Hz, 1 H), 7.55 (td, ²J = 8.0 Hz, ³J = 1.2 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 156.1 (q, J = 35.4 Hz), 152.2, 135.1, 127.6, 127.5, 125.1, 122.2, 120.0 (q, J = 274.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.7 ppm. LRMS (EI, m/z): 203 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₈H₄NF₃S, 203.0017; Found: 203.0014. IR (thin film): v_{max} = 2962, 2917, 1261, 1097, 800 cm⁻¹.

Ethyl 2-(trifluoromethyl)thiazole-4-carboxylate^[9] (2w)

White solid (51 mg, 45%); ¹⁹F NMR yield: 99%. Eluent: ethyl acetate : petroleum ether = 1:5. ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1 H), 4.44 (q, *J* = 8.0 Hz, 2 H),

1.40 (q, J = 8.0 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 156.4 (q, J = 42.4 Hz), 148.5, 129.8, 119.2 (q, J = 274.7 Hz), 62.1, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.1 ppm. LRMS (EI, m/z): 225 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₇H₆NSO₂F₃, 225.0071; Found: 225.0077. IR (thin film): $v_{max} = 3096$, 1725, 1501, 1242, 1040 cm⁻¹. **5-Phenyl-2-(trifluoromethyl)thiazole**^[9] (**2**x)

White solid (58 mg, 50%); ¹⁹F NMR yield: 99%. Eluent: ethyl acetate : petroleum ether = 1:1. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1 H), 7.57 (d, *J* = 4.8 Hz, 2 H), 7.44 (m, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 153.1 (q, *J* = 41.4 Hz), 143.7, 139.1, 129.7, 129.6, 129.4, 127.2, 119.7 (q, *J* = 273.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.1 ppm. LRMS (EI, m/z): 229 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₁₀H₆NSF₃, 229.0173; Found: 229.0168. IR (thin film): v_{max} = 2926, 1455, 1326, 1151, 1032 cm⁻¹.

Bistrifluoromethylation of of ethyl 2-bromo-4-chloroquinoline-3-carboxylate

During the study for the trifluoromethylation of ethyl 2-bromo-4-chloroquinoline-3carboxylate, trifluoromethylated product **2m** and *di*-trifluormethylated product **2y** were detected and isolated. This interesting result showed that the ethyl acetated group in the *ortho*-position of the chloride could facilitate the trifluoromethylation of heteroaryl chloride substrates. The compound **2y** was analyzed by ¹H NMR, ¹⁹F NMR, ¹³C NMR, LRMS, HRMS and IR.

Ethyl 2,4-di-(trifluoromethyl)quinoline-3-carboxylate (2y)

White solid (25 mg, 15%); ¹⁹F NMR yield: 21%. Eluent: dichloromethane : petroleum ether = 1:20. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 8.4 Hz, 1 H), 8.20 (d, *J* = 8.4 Hz, 1 H), 7.90 (t, *J* = 7.2 Hz, 1 H), 7.80 (t, *J* = 7.6 Hz, 1 H), 4.43 (q, *J* = 7.2 Hz, 2 H), 1.36 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 159.6, 142.2, 138.8 (q, *J* = 35.4 Hz), 128.5 (q, *J* = 32.3 Hz), 127.3, 126.4, 126.4, 120.0 (q, *J* = 3.0 Hz), 119.6, 118.6, 118.3 (q, *J* = 278.8 Hz), 116.0 (q, *J* = 277.8 Hz), 58.5, 8.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -56.0, -64.2 ppm. LRMS (EI, m/z): 337 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₁₄H₉NO₂F₆, 337.0537; Found: 337.0531; IR (thin film): *v*_{max} = 2988, 1748, 1269, 1183, 1142 cm⁻¹. m.p. 41.0 ~ 42.6 °C.

General procedure for trifluoromethylation of heteroaryl chlorides and iodides 3a-x

$$\begin{array}{c|c} \hline Het \\ X \\ X \\ X = Cl, l \end{array}^{+} [PPh_4]^{+}[Cu(CF_3)_2]^{-} \\ \hline DMF (5 mL) \\ 100 \ ^{\circ}C, 3 h \end{array}$$

In an argon-filled glovebox, heteroaryl halide (0.50 mmol), complex **1** (0.60 mmol), CuI (0.50 mmol) and 5.0 mL DMF were added into a 25 mL oven-dried sealed tube with a stirring bar. Then the sealed tube was set into the pre-heated oil bath at 100 °C for 3 h. Fluorobenzene (72 mg, 0.75 mmol) was added as an internal standard to determine the yield by ¹⁹F NMR spectroscopy. 10 mL of water was added and the mixture was extracted with dichloromethane (50 mL \times 3). The combined organic phase was dryed over anhydrous MgSO₄, filtered and concentrated under vaccum. The residue was further purified by flash chromatography to give the corresponding trifluoromethylated heteroarene.

2-Trifluoromethyl-3-nitro-pyridine^[10] (3a)

White solid (49 mg, 66%); ¹⁹F NMR yield: 100%. Eluent: ethyl acetate : petroleum ether = 1:10. ¹H NMR (400 MHz, CDCl₃) δ 8.92 (d, *J* = 4.0 Hz, 1 H), 8.23 (d, *J* = 8.0 Hz, 1 H), 7.75 (dd, ²*J* = 8.2 Hz, ³*J* = 4.8 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 156.5, 150.3, 145.1 (q, *J* = 36.4 Hz), 137.7, 132.0, 124.6 (q, *J* = 275.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -65.3 ppm. LRMS (EI, m/z): 192 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₆H₃N₂O₂F₃, 192.0147; Found: 192.0150. IR (thin film): *v*_{max} = 3088, 1534, 1363, 1313, 1054 cm⁻¹.

Ethyl 2-(trifluoromethyl)pyridine-3-carboxylate^[11] (3b)

Light-yellow liquid (54 mg, 50%); ¹⁹F NMR yield: 80%. Eluent: ethyl acetate : petroleum ether = 1:10. ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, J = 4.0 Hz, 1 H), 8.07 (d, J = 8.0 Hz, 1 H), 7.54 (dd, ²J = 8.0 Hz, ³J = 4.0 Hz, 1 H), 4.39 (q, J = 6.8 Hz , 2 H), 1.36 (t, J = 7.2 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 165.4, 150.6, 145.5 (q, J = 35.4 Hz), 138.2, 128.2, 126.0, 121.1 (q, J = 275.7 Hz), 62.55, 13.77; ¹⁹F NMR (376 MHz, CDCl₃) δ -64.4 ppm. LRMS (EI, m/z): 219 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₉H₈NO₂F₃, 219.0507; Found: 219.0500. IR (thin film): $v_{max} = 2988$, 1736, 1322, 1148, 1061 cm⁻¹.

1-[2-(Trifluoromethyl)-3-pyridyl]ethanone (3c)

Light-yellow liquid (55 mg, 58%); ¹⁹F NMR yield: 85%. Eluent: ethyl acetate : petroleum ether = 1:10. ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, *J* = 4.0 Hz, 1 H), 7.78 (d, *J* = 7.6 Hz, 1 H), 7.85 (dd, ²*J* = 7.2 Hz, ³*J* = 4.8 Hz, 1 H), 2.57 (s, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 199.89, 150.25, 143.6 (q, *J* = 35.4 Hz), 136.5, 135.5, 126.2, 121.3 (q, *J* = 275.7 Hz), 30.76; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4 ppm. LRMS (EI, m/z): 189 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₈H₆NOF₃, 189.0401; Found: 189.0399. IR (thin film): v_{max} = 3405, 1712, 1324, 1184, 1110 cm⁻¹.

Ethyl 4-trifluoromethylquinoline-3-carboxylate (3d)

Stick yellow oil (61 mg, 50%); ¹⁹F NMR yield: 65%. Eluent: ethyl acetate : petroleum ether = 1:8. ¹H NMR (400 MHz, CDCl₃) δ 8.97 (s, 1 H), 8.22 (d, *J* = 8.4 Hz, 2 H), 7.85 (t, *J* = 7.6 Hz, 1 H), 7.72 (t, *J* = 7.2 Hz, 1 H), 4.48 (q, *J* = 7.2 Hz, 2 H), 1.42 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 149.1, 147.7, 131.1, 131.0 (q, *J* = 32.3 Hz), 130.5, 129.1, 125.5 (q, *J* = 3.0 Hz), 124.8 (q, *J* = 4.0 Hz), 123.1 (q, *J* = 277.8 Hz), 122.3, 62.8, 13.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -56.4 ppm. LRMS (EI, m/z): 269 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₁₃H₁₀NO₂F₃, 269.0664; Found: 269.0662. IR (thin film): v_{max} = 2985, 1736, 1505, 1277, 1234 cm⁻¹.

3-Nitro-4-(trifluoromethyl)quinoline (3e)

White solid (68 mg, 56%); ¹⁹F NMR yield: 73%. Eluent: ethyl acetate : petroleum ether = 1:10. ¹H NMR (400 MHz, CDCl₃) δ 9.02 (s, 1 H), 8.25-8.28 (m, 2 H), 7.96 (t, J = 7.2 Hz, 1 H), 7.84 (t, J = 7.6 Hz, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 149.1, 142.8, 141.6 (br), 132.3, 130.8, 130.5, 125.5 (q, ⁵ $J_{FC} = 3.78$ Hz), 125.3 (q, J = 34.0 Hz), 121.8, 121.6 (q, J = 277.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -56.4 ppm. LRMS (EI, m/z): 242 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₁₀H₅N₂O₂F₃, 242.0303; Found: 242.0302. IR (thin film): $v_{max} = 2893$, 1538, 1366, 1213, 1123 cm⁻¹. m.p. 82.4 ~ 84.3 °C.

Ethyl 3-trifluoromethyquinoxaline-2-carboxylate (3f)

Light-yellow liquid (73 mg, 53%); ¹⁹F NMR yield: 100%. Eluent: ethyl acetate : petroleum ether = 1:20. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (m, 2 H), 7.95 (m, 2 H), 4.56 (q, *J* = 7.2 Hz , 2 H), 1.46 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 164.2, 143.6, 141.7, 140.5, 140.2 (q, *J* = 36.5 Hz), 133.2, 132.7, 129.8, 129.6, 120.6 (q, *J* = 275.9 Hz), 63.2, 13.9 ; ¹⁹F NMR (376 MHz, CDCl₃) δ -69.7 ppm. LRMS (EI, m/z): 270 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₁₂H₉N₂O₂F₃, 270.0616; Found: 270.0620. IR (thin film): v_{max} = 2921, 1745, 1538, 1150, 1123 cm⁻¹.

Ethyl 2-cyclopropyl-4-(trifluoromethyl)pyrimidine-5-carboxylate (3g)

Suspension (93 mg, 72%); ¹⁹F NMR yield: 90%. Eluent: ethyl acetate : petroleum ether = 1:5. ¹H NMR (400 MHz, CDCl₃) δ 9.00 (s, 1 H), 4.38 (q, *J* = 7.2 Hz, 2 H), 2.34-2.37 (m, 1 H), 1.35 (t, *J* = 7.2 Hz, 3 H), 1.22-1.24 (m, 2 H), 1.17-1.20 (m, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 162.6, 158.7, 152.1 (q, *J* = 37.4 Hz), 119.6, 119.1 (q, *J* = 277.8 Hz), 61.6, 17.8, 12.8, 11.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -70.5 ppm. LRMS (EI, m/z): 260 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₁₁H₁₁N₂O₂F₃, 260.0773; Found: 260.0768. IR (thin film): v_{max} = 2987, 1741, 1582, 1457, 1311, 1158 cm⁻¹. Ethyl 2-methyl-4-trifluoromethylpyrimidine-5-carboxylate (3h)

Light-yellow liquid (48 mg, 41%); ¹⁹F NMR yield: 88%. Eluent: ethyl acetate : petroleum ether = 1:10. ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1 H), 4.41 (q, *J* = 7.2 Hz , 2 H), 2.84 (s, 3 H), 1.37 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 170.8, 163.5, 159.7, 153.1 (q, *J* = 36.5 Hz), 121.4, 120.1 (q, *J* = 275.9 Hz), 62.8, 26.0, 13.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -66.4 ppm. LRMS (EI, m/z): 234 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₉H₉N₂O₂F₃, 234.0616; Found: 234.0618. IR (thin film): $v_{max} = 2988$, 1743, 1583, 1316, 1158 cm⁻¹.

tert-Butyl 4-[5-nitro-6-(trifluoromethyl)pyrimidin-4-yl]piperazine-1-carboxylate (3i)

Yellow solid (115 mg, 61%); ¹⁹F NMR yield: 82%. Eluent: ethyl acetate : petroleum ether = 1:2. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1 H), 3.63 (s, 4 H), 3.55 (s, 4 H), 1.45 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ 157.1, 154.3, 154.1, 147.5 (q, *J* = 36.4 Hz), 130.0, 119.6 (q, *J* = 278.8 Hz), 80.7, 46.0, 42.7 (br), 28.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -66.2 ppm. LRMS (EI, m/z): 377 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₁₄H₁₈N₅O₄F₃, 377.1311; Found: 377.1313. IR (thin film): *v*_{max} = 2999, 1686, 1587, 1538, 1177 cm⁻¹. m.p. 107.7 ~ 109.1 °C.

1-Methyl-4-nitro-5-(trifluoromethyl)pyrazole (3j)

Light-yellow liquid (42 mg, 43%); ¹⁹F NMR yield: 65%. Eluent: ethyl acetate : petroleum ether = 1:8. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1 H), 4.12 (s, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 138.1, 136.6, 129.6 (q, *J* = 41.4 Hz), 120.1 (q, *J* = 271.7 Hz), 43.3 (q, ⁴*J* = 3.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.6 ppm. LRMS (EI, m/z): 195 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₅H₄N₃O₂F₃, 195.0256; Found: 195.0259. IR (thin film): $v_{max} = 3136$, 1530, 1329, 1279, 1162 cm⁻¹.

4-(Trifluoromethyl)thieno[3,2-d]pyrimidine (3k)

White solid (42 mg, 41%); ¹⁹F NMR yield: 76%. Eluent: ethyl acetate : petroleum ether = 1:5. ¹H NMR (400 MHz, CDCl₃) δ 9.34 (s, 1 H), 8.18 (q, *J* = 5.6 Hz, 1 H), 7.68 (d, *J* = 5.6 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 163.9, 154.2, 149.9 (q, *J* = 37.4 Hz), 138.7 (q, *J* = 1.0 Hz), 126.2, 124.5, 120.8 (q, *J* = 276.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -68.0 ppm. LRMS (EI, m/z): 204 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₇H₃N₂SF₃, 203.9969; Found: 203.9972. IR (thin film): *v*_{max} = 3084, 1560, 1530, 1330, 1158 cm⁻¹. m.p. 72.7 ~ 74.2 °C.

6-Nitro-7-(trifluoromethyl)thieno[3,2-b]pyridine (3l)

Light-yellow solid (78 mg, 63%); ¹⁹F NMR yield: 94%. Eluent: ethyl acetate : petroleum ether = 1:6. ¹H NMR (400 MHz, CDCl₃) δ 9.12 (s, 1 H), 8.18 (d, *J* = 5.6 Hz, 1 H), 7.74 (d, *J* = 5.6 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 160.0, 143.1, 139.8, 138.1 (q, *J* = 3.03 Hz), 129.0, 125.9 (q, *J* = 36.4 Hz), 125.1, 121.5 (q, *J* = 277.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8 ppm. LRMS (EI, m/z): 248 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₈H₃N₂O₂F₃S, 247.9867; Found: 247.9868. IR (thin film): $v_{max} = 3114, 1526, 1504, 1264, 1151 \text{ cm}^{-1}$. m.p. 81.4 ~ 82.8 °C.

Ethyl 7-(trifluoromethyl)thieno[3,2-b]pyridine-6-carboxylate (3m)

Light-yellow liquid (88 mg, 64%); ¹⁹F NMR yield: 96%. Eluent: ethyl acetate : petroleum ether = 1:5. ¹H NMR (400 MHz, CDCl₃) δ 9.03 (s, 1 H), 8.00 (d, *J* = 5.6 Hz, 1 H), 7.66 (d, *J* = 5.6 Hz, 1 H), 4.46 (q, *J* = 7.2 Hz, 2 H), 1.41 (t, *J* = 7.2 Hz, 3 H);

¹³C NMR (101 MHz, CDCl₃) δ 165.5, 159.5, 148.1, 135.2 (q, J = 3.0 Hz), 131.0 (q, J = 35.4 Hz), 128.7, 125.0, 122.7 (q, J = 276.7 Hz), 121.6, 62.6, 13.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -58.8 ppm. LRMS (EI, m/z): 275 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₁₁H₈NO₂F₃S, 275.0228; Found: 275.0227. IR (thin film): $v_{max} = 2985$, 1735, 1301, 1270, 1176 cm⁻¹.

Ethyl 4-nitro-5-trifluoromethylthiophene-2-carboxylate (3n)

Light-yellow liquid (59 mg, 38%); ¹⁹F NMR yield: 67%. Eluent: ethyl acetate : petroleum ether = 1:20. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (s, 1 H), 4.41 (q, *J* = 7.2 Hz, 2 H), 1.39 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 159.4, 145.4 (q, *J* = 2.5 Hz), 134.8, 134.0 (q, *J* = 40.3 Hz), 129.4, 119.8 (q, *J* = 272.2 Hz), 63.0, 14.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -56.0 ppm. LRMS (EI, m/z): 269 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₈H₆NO₄F₃S, 268.9970; Found: 268.9965. IR (thin film): *v*_{max} = 3119, 1732, 1540, 1337, 1274 cm⁻¹.

1-Methyl-3-(trifluoromethyl)-1H-pyrazole^[12] (30)

Colorless liquid (44 mg, 59%); ¹⁹F NMR yield: 90%. Eluent: ethyl acetate : petroleum ether = 1:10. ¹H NMR (300 MHz, CDCl₃) δ 7.35 (s, 1 H), 6.44 (s, 1 H), 3.89 (s, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 142.2 (q, *J* = 38.4 Hz), 131.3, 121.3 (q, *J* = 269.7 Hz), 104.4 (q, *J* = 3.0 Hz), 39.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.0 ppm. LRMS (EI, m/z): 150[M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₅H₅N₂F₃, 150.0405; Found: 150.0402. IR (thin film): v_{max} = 3130, 1498, 1381, 1248, 1139 cm⁻¹.

2-Phenyl-5-(trifluoromethyl)thiazole (3p)

Yellow solid (65 mg, 57%); ¹⁹F NMR yield: 100%. Eluent: petroleum ether. ¹H NMR (300 MHz, CDCl₃) δ 9.18 (s, 1 H), 8.73 (s, 1 H), 8.22 (d, *J* = 7.6 Hz, 1 H), 8.15 (s, 1

H), 7.42 (s, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 168.4, 151.9, 147.8, 144.7 (q, J = 4.0 Hz), 133.9, 128.6, 127.1 (q, J = 38.4 Hz), 124.0, 121.8 (q, J = 270.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -58.4 ppm. LRMS (EI, m/z): 230 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₉H₅N₂F₃S, 230.0126; Found: 230.0118. IR (thin film): $v_{max} = 3087$, 1586, 1318, 1142, 1046 cm⁻¹. m.p. 47.6 ~ 49.3 °C.

tert-Butyl 3-(trifluoromethyl)indole-1-carboxylate^[12] (3q)

Yellow solid (47 mg, 33%); ¹⁹F NMR yield: 44%. Eluent: ethyl acetate : petroleum ether = 1:10. ¹H NMR (300 MHz, CDCl₃) δ 8.17 (d, J = 8.4 Hz, 1 H), 7.92 (s, 1 H), 7.68 (d, J = 7.6 Hz, 1 H), 7.40 (t, J = 7.6 Hz, 1 H), 7.32 (t, J = 7.6 Hz, 1 H), 1.68 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ 148.4, 134.8, 125.5 (q, J = 5.1 Hz), 125.1, 125.0, 123.2, 122.8 (q, J = 267.6 Hz), 119.2, 115.0, 111.2 (q, J = 37.4 Hz), 84.6, 27.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -59.3 ppm. LRMS (EI, m/z): 285 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₁₄H₁₄NO₂F₃, 285.0977; Found: 285.0967. IR (thin film): v_{max} = 2983, 1750, 1454, 1289, 1151 cm⁻¹.

1-[5-(Trifluoromethyl)-2-thienyl]ethanone (3r)

Brown liquid (80 mg, 82%); ¹⁹F NMR yield: 99%. Eluent: dichloromethane : petroleum ether = 1:10. ¹H NMR (300 MHz, CDCl₃) δ 7.60 (s, 1 H), 7.42 (s, 1 H), 2.57 (s, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 190.3, 147.2, 138.0 (q, *J* = 39.4 Hz), 131.0, 128.9 (q, *J* = 4.0 Hz), 121.8 (q, *J* = 271.7 Hz), 26.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -56.5 ppm. LRMS (EI, m/z): 194 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₇H₅F₃OS, 194.0013; Found: 194.0015. IR (thin film): v_{max} = 3107, 1677, 1543, 1296, 1267 cm⁻¹. General procedure for trifluoromethylation of drug intermediates and derivatives 4-7

$$\begin{array}{c} \overbrace{Het}^{} X + [PPh_4]^+ [Cu(CF_3)_2]^- & \underbrace{Cul (2.0 \text{ eq.})}_{DMF (5 \text{ mL})} & \overbrace{Het}^{} CF_3 \\ 100 \text{ °C, 3 h} & \\ X = Br. Cl \end{array}$$

In an argon-filled glovebox, heteroaryl halides (0.50 mmol), complex **1** (1.0 mmol), CuI (1.0 mmol) and 5.0 mL DMF were added into a 25 mL oven-dried sealed tube with a stirring bar. Then the sealed tube was set into the pre-heated oil bath at 100 °C for 3 h. Fluorobenzene (72 mg, 0.75 mmol) was added as an internal standard to determine the yield by ¹⁹F NMR spectroscopy. 10 mL of water was added and the mixture was extracted with dichloromethane (50 mL \times 3). The combined organic phase was dryed over anhydrous MgSO₄, filtered and concentrated under vaccum. The residue was further purified by flash chromatography to give the corresponding trifluoromethylated heteroarene.

tert-Butyl 3-(trifluoromethyl)-6,8-dihydro-5H-imidazo[1,5-a]pyrazine-7carboxylate (4)

White solid (98 mg, 68%); ¹⁹F NMR yield: 94%. Eluent: ethyl acetate: petroleum ether = 1:8. ¹H NMR (400 MHz, CDCl₃) δ 6.91 (s, 1 H), 4.67 (s, 2 H), 4.13 (t, *J* = 4.4 Hz, 2 H), 3.83 (t, *J* = 4.4 Hz, 2 H), 1.48 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 154.0, 134.4 (q, *J* = 40.3 Hz), 127.8, 123.8, 118.9 (q, *J* = 269.6 Hz), 81.4, 43.3, 41.0 (br), 40.2 (br), 28.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.1 ppm. LRMS (EI, m/z): 291 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₁₂H₁₆N₃O₂F₃, 291.1195; Found: 291.1200. IR (thin film): v_{max} = 3127, 2980, 1714, 1491, 1232, 1112 cm⁻¹. m.p. 124.2 ~ 125.7 °C. *tert*-Butyl 3-(trifluoromethyl)-6,8-dihydro-5H-[1,2,4]triazolo[4,3-a] pyrazine-7-carboxylate (5)

White solid (48 mg, 33%); ¹⁹F NMR yield: 52%. Eluent: ethyl acetate: petroleum ether = 1:3. ¹H NMR (400 MHz, CDCl₃) δ 4.86 (s, 2 H), 4.14 (t, *J* = 4.8 Hz, 2 H), 3.89 (t, *J* = 4.8 Hz, 2 H), 1.47 (s, 9 H) ; ¹³C NMR (126 MHz, CDCl₃) δ 153.4, 150.4, 143.6 (q, *J* = 37.8 Hz), 118.3 (q, *J* = 270.9 Hz), 82.0, 43.5, 41.2, 39.3, 28.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.9 ppm. LRMS (EI, m/z): 277 [[M-CH₃]⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₁₁H₁₅N₄O₂F₃, 292.1147; Found: 292.1154. IR (thin film): v_{max} = 3005, 1683, 1511, 1187, 1134 cm⁻¹. m.p. 101.9 ~ 103.4 °C.

7-But-2-ynyl-3-methyl-1-[(4-methylquinazolin-2-yl)methyl]-8-(trifluoromethyl)p urine-2,6-dione (6)

Light-yellow solid (99 mg, 45%); ¹⁹F NMR yield: 91%. Eluent: ethyl acetate: petroleum ether = 1:1. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 7.6 Hz, 1 H), 7.84 (d, *J* = 7.6 Hz, 1 H), 7.76 (m, 1 H), 7.52 (m, 1 H), 5.56 (s, 2 H), 5.28 (s, 2 H), 3.61 (s, 3 H), 2.88 (s, 3 H), 1.76 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 168.3, 159.8, 154.7, 151.0, 149.5, 146.6, 138.1 (q, *J* = 40.3 Hz), 133.0, 128.4, 126.5, 124.5, 122.8, 117.8 (q, *J* = 272.1 Hz), 108.4, 82.4, 70.9, 46.2, 36.4, 29.5, 21.4, 3.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.8 ppm. LRMS (EI, m/z): 442 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₂₁H₁₇O₂N₆F₃, 442.1365; Found: 442.1367. IR (thin film): v_{max} = 2993, 1712, 1664, 1147, 769 cm⁻¹. m.p. 238.1 ~ 240.0 °C.

1-Isobutyl-4-(trifluoromethyl)imidazo[4,5-c]quinolone (7)

White solid (84 mg, 57%); ¹⁹F NMR yield: 71%. Eluent: ethyl acetate: petroleum ether = 1:20. ¹H NMR (400 MHz, CDCl₃) δ 8.35-8.38 (m, 1 H), 8.12-8.15 (m, 1 H), 7.77 (s, 1 H), 7.72-7.77 (m, 2 H), 4.39 (q, *J* = 7.6 Hz, 2 H), 2.30-2.41 (m, 1 H), 1.06 (d, *J* = 6.8 Hz, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 142.4, 140.7 (q, *J* = 35.4 Hz), 134.3, 133.8, 131.3, 128.0, 127.5, 121.0 (q, *J* = 276.7 Hz), 119.4, 118.3, 54.7, 28.4, 19.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -65.6 ppm. LRMS (EI, m/z): 293 [M⁺]; HRMS (EI, m/z) [M⁺] Calcd. for C₁₅H₁₄N₃F₃, 293.1140; Found: 293.1143. IR (thin film): $v_{max} = 3100, 2962, 1340, 1137, 1079$ cm⁻¹. m.p. 112.3 ~ 114.2 °C.

References:

[1] Geri, J. B.; Wade Wolfe, M. M.; Szymczak, N. K. Angew. Chem. Int. Ed. 2018, 57, 1381

[2] Nagase, M.; Kuninobu, Y.; Magnuson S. R.; Kanai, M. J. Am. Chem. Soc. 2016, 138, 6103

[3] Wang, J.; Zhang, X; Wan, Z.; Ren, F. Org. Process Res. Dev. 2016, 20, 836

[4] Maidich, L.; Dettori, G.; Stoccoro, S.; Cinellu, M. A.; Rourke, J. P.; Zucca, A. Organometallics 2015, 34, 817

[5] Mormino, M. G.; Fier, P. S.; Hartwig, J. F. Org. Lett. 2014, 16, 1744

[6] Yarosh, A. A.; Poromarenko, V. A. Russ. Chem. Bull. 1986, 35, 837

[7] Foster, R. S.; Adams, H.; Jakobi, H.; Harrity, J. P. A. J. Org. Chem. 2013, 78, 4049

[8] René, O.; Souverneva, A.; Magnuson S. R.; Fauber B. P. *Tetrahedron Lett.* 2013, 54, 201

[9] Le, C.; Chen, T. Q.; Liang, T.; Zhang, P.; MacMillan, D. W. C. *Science* **2018**, *360*, 1010

[10] Clark, J. H.; Denness, J. E.; McClinton, M. A.; Wynd, A. J. J. Fluorine Chem.**1990**, *50*, 411

[11] Lishchynskyi, A.; Novikov, M. A.; Martin, E.; Escudero-Adan, E. C.; Novak, P.;Grushin, V. V. J. Org. Chem. 2013, 78, 11126

[12] Schlosser, M.; Volle, J.; Leroux, F.; Schenk, K. Eur. J. Org. Chem. 2002, 17, 2913

[13] Morstein, J.; Hou, H.; Cheng, C.; Hartwig, J. F. Angew. Chem. Int. Ed. 2016, 55, 8054

¹H NMR spectrum of tetraphenylphosphonium bis(trifluoromethyl)copper(I) (1)

¹⁹F NMR spectrum of tetraphenylphosphonium bis(trifluoromethyl)copper(I) (1)

³¹P NMR spectrum of tetraphenylphosphonium bis(trifluoromethyl)copper(I) (1)

¹H NMR spectrum of 5-phenyl-2-trifluoremethylpyridine (2a)

¹⁹F NMR spectrum of 5-phenyl-2-trifluoremethylpyridine (2a)

¹H NMR spectrum of 5-nitro-2-(trifluoromethyl)pyridine (2b)

¹H NMR spectrum of methyl 6-(trifluoromethyl)pyridine-3-carboxylate (2c)

¹³C NMR spectrum of methyl 6-(trifluoromethyl)pyridine-3-carboxylate (2c)

¹⁹F NMR spectrum of methyl 6-(trifluoromethyl)pyridine-3-carboxylate (2c)

¹³C NMR spectrum of 6-trifluoromethyl-2,2'-bipyridine (2d)

7 6 f1 (ppm) 5

2.00≁

1.00-≠

8

9

9.02-

1

0

-1

2

2.00

4

3

3.65

14

3.60

13

3.55

12

f1 (ppm)

3.50

11

3.45

10

¹³C NMR spectrum of *tert*-butyl 4-[4-(trifluoromethyl)-2-pyridyl]piperazine-1-carboxylate (2e)

¹⁹F NMR spectrum of *tert*-butyl 4-[4-(trifluoromethyl)-2-pyridyl]piperazine-1-carboxylate (2e)

¹H NMR spectrum of ethyl 3-(trifluoromethyl)pyridine-2-carboxylate (2f)

¹³C NMR spectrum of 3-methoxy-6-(trifluoromethyl)pyridazine (2h)

¹H NMR spectrum of 4-[4-trifluoromethyl)pyrimidin-2-yl]morpholine (2i)

¹³C NMR spectrum of 4-[4-trifluoromethyl)pyrimidin-2-yl]morpholine (2i)

¹⁹F NMR spectrum of 4-[4-trifluoromethyl)pyrimidin-2-yl]morpholine (2i)

¹H NMR spectrum of 2,4-bis(benzyloxy)-5-trifluoromethylpyrimidine (2j)

¹³C NMR spectrum of 2,4-bis(benzyloxy)-5-trifluoromethylpyrimidine (2j)

¹⁹F NMR spectrum of 2-trifluoromethylquinoline (2k)

¹H NMR spectrum of 7-bromo-4-(trifluoromethyl)quinolone (2l)

¹³C NMR spectrum of 7-bromo-4-(trifluoromethyl)quinolone (2l)

¹³C NMR spectrum of ethyl 4-chloro-2-(trifluoromethyl)quinoline-3-carboxylate (2m)

¹⁹F NMR spectrum of ethyl 4-chloro-2-(trifluoromethyl)quinoline-3-carboxylate (2m)

¹H NMR spectrum of 2-(trifluoromethyl)quinoxaline (2n)

f1 <mark>(pp</mark>m)

-1

-2

¹H NMR spectrum of 7-(trifluoromethyl)pyrido[2,3-b]pyrazine (20)

¹³C NMR spectrum of 7-(trifluoromethyl)pyrido[2,3-b]pyrazine (20)

¹H NMR spectrum of 2,4-diphenyl-6-(trifluoromethyl)-1,3,5-triazine (2p)

¹³C NMR spectrum of 2,4-diphenyl-6-(trifluoromethyl)-1,3,5-triazine (2p)

¹H NMR spectrum of ethyl 1-methyl-4-(trifluoromethyl)pyrazole-3-carboxylate (2r)

¹³C NMR spectrum of ethyl 1-methyl-4-(trifluoromethyl)pyrazole-3-carboxylate (2r)

¹³C NMR spectrum of ethyl 3-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylate (2s)

¹⁹F NMR spectrum of ethyl 3-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylate (2s)

¹H NMR spectrum of methyl 3-(trifluoromethyl)imidazo[1,5-a]pyridine-1-carboxylate (2t)

¹³C NMR spectrum of methyl 3-(trifluoromethyl)imidazo[1,5-a]pyridine-1-carboxylate (2t)

¹H NMR spectrum of 2-phenyl-5-(trifluoromethyl)-1,3,4-oxadiazole (2u)

¹⁹F NMR spectrum of 2-phenyl-5-(trifluoromethyl)-1,3,4-oxadiazole (2u)

¹³C NMR spectrum of 2-(trifluoromethyl)-1,3-benzothiazole (2v)

¹H NMR spectrum of ethyl 2-(trifluoromethyl)thiazole-4-carboxylate (2w)

¹⁹F NMR spectrum of ethyl 2-(trifluoromethyl)thiazole-4-carboxylate (2w)

-60 f1 (ppm)

¹H NMR spectrum of 5-phenyl-2-(trifluoromethyl)thiazole (2x)

¹³C NMR spectrum of 5-phenyl-2-(trifluoromethyl)thiazole (2x)

¹H NMR spectrum of ethyl 2,4-di-(trifluoromethyl)quinoline-3-carboxylate (2y)

¹³C NMR spectrum of ethyl 2,4-di-(trifluoromethyl)quinoline-3-carboxylate (2y)

¹⁹F NMR spectrum of ethyl 2,4-di-(trifluoromethyl)quinoline-3-carboxylate (2y)

¹H NMR spectrum of 2-trifluoromethyl-3-nitro-pyridine (3a)

¹³C NMR spectrum of 2-trifluoromethyl-3-nitro-pyridine (3a)

¹H NMR spectrum of ethyl 2-(trifluoromethyl)pyridine-3-carboxylate (3b)

¹³C NMR spectrum of ethyl 2-(trifluoromethyl)pyridine-3-carboxylate (3b)

¹⁹F NMR spectrum of ethyl 2-(trifluoromethyl)pyridine-3-carboxylate (3b)

---64.43

COOEt

N CF3

¹³C NMR spectrum of 1-[2-(trifluoromethyl)-3-pyridyl]ethanone (3c)

¹H NMR spectrum of ethyl 4-trifluoromethylquinoline-3-carboxylate (3d)

¹³C NMR spectrum of ethyl 4-trifluoromethylquinoline-3-carboxylate (3d)

¹⁹F NMR spectrum of ethyl 4-trifluoromethylquinoline-3-carboxylate (3d)

---61.68

COOEt

¹H NMR spectrum of 3-nitro-4-(trifluoromethyl)quinoline (3e)

¹³C NMR spectrum of 3-nitro-4-(trifluoromethyl)quinoline (3e)

¹H NMR spectrum of ethyl 3-trifluoromethyquinoxaline-2-carboxylate (3f)

¹³C NMR spectrum of ethyl 3-trifluoromethyquinoxaline-2-carboxylate (3f)

¹⁹F NMR spectrum of ethyl 3-trifluoromethyquinoxaline-2-carboxylate (3f)

¹H NMR spectrum of ethyl 2-cyclopropyl-4-(trifluoromethyl)pyrimidine-5-carboxylate (3g)

¹³C NMR spectrum of ethyl 2-cyclopropyl-4-(trifluoromethyl)pyrimidine-5-carboxylate (3g)

¹⁹F NMR spectrum of ethyl 2-methyl-4-trifluoromethylpyrimidine-5-carboxylate (3h)

¹³C NMR spectrum of *tert*-butyl 4-[5-nitro-6-(trifluoromethyl)pyrimidin-4-yl]piperazine-1-carboxylate (3i)

¹H NMR spectrum of 1-methyl-4-nitro-5-(trifluoromethyl)pyrazole (3j)

¹³C NMR spectrum of 1-methyl-4-nitro-5-(trifluoromethyl)pyrazole (3j)

¹⁹F NMR spectrum of 1-methyl-4-nitro-5-(trifluoromethyl)pyrazole (3j)

¹H NMR spectrum of 4-(trifluoromethyl)thieno[3,2-d]pyrimidine (3k)

¹³C NMR spectrum of 4-(trifluoromethyl)thieno[3,2-d]pyrimidine (3k)

¹H NMR spectrum of 6-nitro-7-(trifluoromethyl)thieno[3,2-b]pyridine (3l)

¹³C NMR spectrum of 6-nitro-7-(trifluoromethyl)thieno[3,2-b]pyridine (3l)

¹⁹F NMR spectrum of 6-nitro-7-(trifluoromethyl)thieno[3,2-b]pyridine (3l)

¹H NMR spectrum of ethyl 7-(trifluoromethyl)thieno[3,2-b]pyridine-6-carboxylate (3m)

¹³C NMR spectrum of

-80 f1 (ppm) -40 120 80 60 40 20 0 -120 -160 -200 -240 -280

S91

-100 f1 <mark>(ppm)</mark>

-140

-180

-220

-260

-300

-60

120

80 60 40 20 0 -20

¹³C NMR spectrum of *tert*-butyl 3-(trifluoromethyl)indole-1-carboxylate (3q)

¹⁹F NMR spectrum of 1-[5-(trifluoromethyl)-2-thienyl]ethanone (3r)

¹³C NMR spectrum of *tert*-butyl 3-(trifluoromethyl)-6,8-dihydro-5H-[1,2,4]triazolo[4,3-a]pyrazine-7-carboxylate (5)

¹⁹F NMR spectrum of *tert*-butyl 3-(trifluoromethyl)-6,8-dihydro-5H-[1,2,4]triazolo[4,3-a]pyrazine-7-carboxylate (5)

¹³C NMR spectrum of 7-but-2-ynyl-3-methyl-1-[(4-methylquinazolin-2-yl)methyl]-8-(trifluoromethyl)purine-2,6-dione (6)

¹³C NMR spectrum of 1-isobutyl-4-(trifluoromethyl)imidazo[4,5-c]quinolone (7)

¹⁹F NMR spectrum of 1-isobutyl-4-(trifluoromethyl)imidazo[4,5-c]quinolone (7)

Figure S1. X-ray structure of tetraphenylphosphonium bis(trifluoromethyl)copper(I) 1.

Identification code	d8v18488		
Empirical formula	C26 H20 Cu F6 P		
Formula weight	540.93		
Temperature	170.01 K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	Pbcn		
Unit cell dimensions	a = 15.5529(6) Å	a= 90°.	
	b = 7.3629(3) Å	b= 90°.	
	c = 19.8862(6) Å	g = 90°.	
Volume	2277.26(15) Å ³		
Ζ	4		
Density (calculated)	1.578 Mg/m ³		
Absorption coefficient	1.091 mm ⁻¹		
F(000)	1096		
Crystal size	0.15 x 0.1 x 0.08 mm ³		
Theta range for data collection	2.431 to 27.501°.		
Index ranges	-20<=h<=17, -9<=k<=9, -25<=l<=25		
Reflections collected	12640		
Independent reflections	2612 [R(int) = 0.0320]		
Completeness to theta = 25.242°	99.8 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7456 and 0.6394		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2612 / 0 / 156		
Goodness-of-fit on F ²	1.057		
Final R indices [I>2sigma(I)]	R1 = 0.0459, wR2 = 0.1394		
R indices (all data)	R1 = 0.0570, wR2 = 0.1500		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.959 and -0.799 e.Å ⁻³		

Table S4. Crystal data and structure refinement for 1 (d8v18488)

	Х	У	Z	U(eq)
Cu(1)	5000	5000	5000	33(1)
F(1)	3914(1)	2817(3)	5791(1)	47(1)
F(2)	3921(2)	1978(4)	4765(1)	85(1)
F(3)	3209(1)	4333(4)	5059(1)	63(1)
C(1)	4001(2)	3496(4)	5146(1)	37(1)
P(1)	5000	4662(1)	7500	21(1)
C(2)	4424(2)	6109(3)	6933(1)	22(1)
C(3)	4872(2)	7473(4)	6598(1)	29(1)
C(4)	4445(2)	8608(4)	6155(1)	33(1)
C(5)	3567(2)	8398(4)	6053(1)	34(1)
C(6)	3119(2)	7060(4)	6393(1)	33(1)
C(7)	3542(2)	5907(4)	6829(1)	29(1)
C(8)	4268(2)	3196(3)	7942(1)	23(1)
C(9)	3915(2)	1719(4)	7593(1)	30(1)
C(10)	3370(2)	540(4)	7927(2)	36(1)
C(11)	3171(2)	815(4)	8598(2)	38(1)
C(12)	3515(2)	2283(4)	8940(2)	38(1)
C(13)	4061(2)	3471(4)	8613(1)	31(1)

Table S5.Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters(Å²x10³) for 1 (d8v18488).U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Cu(1)-C(1)#1	1.930(3)
Cu(1)-C(1)	1.930(3)
F(1)-C(1)	1.382(3)
F(2)-C(1)	1.356(4)
F(3)-C(1)	1.388(4)
P(1)-C(2)#2	1.792(2)
P(1)-C(2)	1.792(2)
P(1)-C(8)#2	1.798(2)
P(1)-C(8)	1.798(2)
C(2)-C(3)	1.392(4)
C(2)-C(7)	1.394(3)
C(3)-H(3)	0.9500
C(3)-C(4)	1.385(4)
C(4)-H(4)	0.9500
C(4)-C(5)	1.390(4)
C(5)-H(5)	0.9500
C(5)-C(6)	1.382(4)
C(6)-H(6)	0.9500
C(6)-C(7)	1.381(4)
C(7)-H(7)	0.9500
C(8)-C(9)	1.403(3)
C(8)-C(13)	1.387(4)
C(9)-H(9)	0.9500
C(9)-C(10)	1.384(4)
С(10)-Н(10)	0.9500
C(10)-C(11)	1.384(4)
C(11)-H(11)	0.9500
C(11)-C(12)	1.385(4)
С(12)-Н(12)	0.9500
C(12)-C(13)	1.381(4)
C(13)-H(13)	0.9500
C(1)#1-Cu(1)-C(1)	180.0
F(1) = C(1) = Cu(1)	115 2(2)
$\Gamma(1) - C(1) - Cu(1)$ F(1) - C(1) - F(2)	113.2(2)
$\Gamma(1) - C(1) - \Gamma(3)$ $\Gamma(2) - C(1) - C_{2}(1)$	100.9(2)
F(2)-C(1)-Cu(1)	11/.6(2)

Table S6. Bond lengths [Å] and angles [°] for 1 (d8v18488).

F(2)-C(1)-F(1)	102.2(3)
F(2)-C(1)-F(3)	102.3(3)
F(3)-C(1)-Cu(1)	116.1(2)
C(2)#2-P(1)-C(2)	107.03(15)
C(2)#2-P(1)-C(8)#2	110.36(11)
C(2)-P(1)-C(8)	110.36(11)
C(2)-P(1)-C(8)#2	111.47(10)
C(2)#2-P(1)-C(8)	111.47(10)
C(8)#2-P(1)-C(8)	106.22(16)
C(3)-C(2)-P(1)	118.63(18)
C(3)-C(2)-C(7)	119.9(2)
C(7)-C(2)-P(1)	121.44(19)
C(2)-C(3)-H(3)	120.0
C(4)-C(3)-C(2)	120.0(2)
C(4)-C(3)-H(3)	120.0
C(3)-C(4)-H(4)	120.1
C(3)-C(4)-C(5)	119.8(3)
C(5)-C(4)-H(4)	120.1
C(4)-C(5)-H(5)	119.9
C(6)-C(5)-C(4)	120.2(2)
C(6)-C(5)-H(5)	119.9
C(5)-C(6)-H(6)	119.8
C(7)-C(6)-C(5)	120.3(2)
C(7)-C(6)-H(6)	119.8
C(2)-C(7)-H(7)	120.1
C(6)-C(7)-C(2)	119.7(2)
C(6)-C(7)-H(7)	120.1
C(9)-C(8)-P(1)	118.14(19)
C(13)-C(8)-P(1)	121.98(19)
C(13)-C(8)-C(9)	119.9(2)
C(8)-C(9)-H(9)	120.4
C(10)-C(9)-C(8)	119.2(3)
C(10)-C(9)-H(9)	120.4
C(9)-C(10)-H(10)	119.7
C(9)-C(10)-C(11)	120.6(3)
С(11)-С(10)-Н(10)	119.7
С(10)-С(11)-Н(11)	120.0
C(10)-C(11)-C(12)	120.0(3)

С(12)-С(11)-Н(11)	120.0
С(11)-С(12)-Н(12)	120.0
C(13)-C(12)-C(11)	120.1(3)
С(13)-С(12)-Н(12)	120.0
C(8)-C(13)-H(13)	119.9
C(12)-C(13)-C(8)	120.2(3)
C(12)-C(13)-H(13)	119.9

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 -x+1,y,-z+3/2

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cu(1)	32(1)	41(1)	28(1)	5(1)	1(1)	-11(1)
F(1)	52(1)	46(1)	43(1)	12(1)	11(1)	-11(1)
F(2)	86(2)	88(2)	81(2)	-54(2)	45(1)	-52(2)
F(3)	33(1)	81(2)	76(2)	26(1)	-6(1)	-9(1)
C(1)	39(2)	41(2)	31(1)	0(1)	5(1)	-10(1)
P(1)	19(1)	22(1)	21(1)	0	-1(1)	0
C(2)	22(1)	22(1)	24(1)	-3(1)	-4(1)	2(1)
C(3)	24(1)	30(1)	34(1)	2(1)	-1(1)	0(1)
C(4)	39(2)	28(1)	33(1)	4(1)	1(1)	4(1)
C(5)	40(2)	30(1)	31(1)	-2(1)	-9(1)	12(1)
C(6)	24(1)	34(1)	42(1)	-7(1)	-10(1)	8(1)
C(7)	24(1)	29(1)	34(1)	-2(1)	-1(1)	2(1)
C(8)	22(1)	22(1)	26(1)	1(1)	-2(1)	-1(1)
C(9)	30(1)	27(1)	33(1)	-3(1)	-3(1)	-2(1)
C(10)	28(1)	27(1)	52(2)	1(1)	-9(1)	-5(1)
C(11)	30(1)	33(1)	52(2)	14(1)	1(1)	-5(1)
C(12)	40(2)	43(2)	32(1)	7(1)	5(1)	-5(1)
C(13)	36(1)	30(1)	28(1)	0(1)	-1(1)	-4(1)

Table S7. Anisotropic displacement parameters (Ųx 10³) for 1 (d8v18488).

The anisotropic displacement factor exponent takes the form: -2p²[$h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	х	У	Z	U(eq)
H(3)	5471	7626	6675	35
H(4)	4752	9528	5921	40
H(5)	3273	9177	5750	40
H(6)	2517	6933	6326	40
H(7)	3234	4979	7057	35
H(9)	4049	1529	7132	36
H(10)	3130	-467	7694	43
H(11)	2797	-5	8824	46
H(12)	3376	2473	9399	46
H(13)	4295	4479	8848	37

Table S8. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for 1 (d8v18488).