Supporting Information

Employing Thiocyanate Salts as Nitrogen Source via C≡N Bond Cleavage: Divergent Synthesis of α-Ketoamides and 2-

Acyloxazoles

Can Wang,^{+a} Xiao Geng,^{+a} Peng Zhao,^a Zhou You,^a Yan-Dong Wu ^{*,a} and An-Xin Wu^{*,a}

^aKey Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
⁺ These authors contributed equally to this work.

E-mail: chwuyd@mail.ccnu.edu.cn, chwuax@mail.ccnu.edu.cn

Tab	page	
1.	General	S2
2.	Experimental procedures and characterizations of substrates	S2
3.	Optimization of the Reaction Conditions	S3-S4
4.	Mechanistic studies	
5.	Characterization data for target compound	
6.	Reference	S15
7.	Crystallographic data and molecular structure of 3q and 4i	S15-S18
8.	Copies of ¹ H and ¹³ C NMR spectra	S19-S53
9.	The products of 3m , 3n , 3t were detected by GC-MS	

1. General

All substrates and reagents were commercially available and used without further purification. TLC analysis was performed using pre-coated glass plates. Column chromatography was performed using silica gel (200–300 mesh). IR spectra were recorded on a Perkin-Elmer PE-983 infrared spectrometer as KBr pellets with absorption in cm⁻¹. ¹H spectra were recorded in CDCl₃ or DMSO-*d*₆ on 400/600 MHz NMR spectrometers and resonances (δ) are given in parts per million relative to tetramethylsilane. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C spectra were recorded in CDCl₃ or DMSO-d6 on 100/150 MHz NMR spectrometers and resonances (δ) are given in ppm. HRMS were obtained on a Bruker 7-tesla FT-ICR MS equipped with an electrospray source. Melting points were determined using XT-4 apparatus and not corrected.

2. Experimental procedures and characterizations of substrates

2.1. General procedure for the synthesis of 3 (3a as an example)

General procedure: A sealed tube was charged with acetophenone (**1a**) (60 mg, 0.5 mmol), potassium thiocyanate (**2**) (48.6 mg, 0.5 mmol), iodine (203 mg, 0.8 mmol) at room temperature, and DMSO (2 mL) was added. The resulting mixture was stirred at 120 °C for 2 h. After the reaction completed, the mixture was quenched with saturation Na₂S₂O₃ solution (50 mL), extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1) to yield the desired product **3a** as a yellow solid.

2.2. General procedure for the synthesis of 4 (4a as an example)

General procedure: A sealed tube was charged with acetophenone (**1a**) (60 mg, 0.5 mmol), potassium thiocyanate (**2**) (48.6 mg, 0.5 mmol), iodine (203 mg, 0.8 mmol) and oxone (922.1 mg, 1.5 mmol) at room temperature, and DMSO (2 mL) was added. The resulting mixture was stirred at 140 °C for 2 h. After the reaction completed, the mixture was quenched with saturation $Na_2S_2O_3$ solution (50 mL), extracted with EtOAc (3 × 50 mL). The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1) to yield the desired product **4a** as a yellow solid.

3. Optimization of the Reaction Conditions Table S1. Optimization of the Standard Conditions ^a

O ↓	. K	condition	s O U NHa	+ ↓	0
Ph	<u> </u>		Ph T	Ph `	∏Ph
1a		2	3a		4a
entry	I ₂ (eq.)	temp (°C)	Additive (1.0 eq.)	3a ^b (%)	4a ^b (%)
1	1.6	100	-	60	<10
2	1.6	110	-	65	12
3	1.6	120	-	73	trace
4	1.6	130	-	71	trace
5	0.8	120	-	32	trace
6	1.2	120	-	68	trace
7	2.0	120	-	38	33
8	1.6	120	TFA	72	trace
9	1.6	120	HCl	36	0
10	1.6	120	Cu(OAc) ₂ ·H ₂ O	55	trace
11	1.6	120	FeCl ₃	23	0
12	1.6	120	TBHP	45	trace
13	1.6	120	H_2O_2	39	trace
14	1.6	120	oxone	22	40
15	1.6	120	PIDA	trace	trace
16	1.6	130	oxone	15	44
17	1.6	140	oxone	trace	37
18	1.6	150	oxone	trace	21
19 ^c	1.6	140	oxone	trace	48
20 ^d	1.6	140	oxone	trace	61
21 ^e	1.6	140	oxone	0	50

^{a)} Reaction conditions: **1a** (0.5 mmol), **2** (0.5 mmol), additive (x mmol), I_2 were heated in 2 mL of DMSO within 2 h. ^{b)} Isolated yields. ^{c)} oxone (1.0 mmol). ^{d)} oxone (1.5 mmol). ^{e)} oxone (2.0 mmol).

^{a)}Reaction conditions: **1a** (0.5 mmol), **2** (0.5 mmol), I_2 (0.8 mmol) were heated in 2 mL of DMSO within 2 h. ^{b)} Isolated yields.

Table S3. Optimization of the Reaction Conditions 4a^a

^{a)}Reaction conditions: **1a** (0.5 mmol), **2** (0.5 mmol), oxone (1.5 mmol) and I_2 (0.8 mmol) were heated in 2 mL of DMSO within 2 h. ^{b)}Isolated yields.

4. Mechanistic studies

Acetophenone (1a) (60 mg, 0.5 mmol), potassium thiocyanate (2) (48.6 mg, 0.5 mmol), iodine (203 mg, 0.8 mmol) in dry DMSO (2 mL) was added H_2O^{18} (50 mg, 2.5 mmol) at room temperature. The resulting mixture was stirred under argon at 120 °C for 2 h.

5. Characterization data for target compound

3a

2-oxo-2-phenylacetamide (3a)^[1]

Yield 73%; 108.88 mg; ¹H NMR (600 MHz, CDCl₃) δ 8.27 (d, *J* = 7.8 Hz, 2H), 7.62 (t, *J* = 7.2 Hz, 1H), 7.48 (t, *J* = 7.8 Hz, 2H), 7.14 (s, 1H), 6.70 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 187.6, 164.4, 134.5, 132.9, 131.0, 128.5. The spectroscopic data match a literature report.

 NH_2 [] O

3b 2-oxo-2-(p-tolyl)acetamide (3b)^[1]

Yield 72%; 117.48 mg; ¹H NMR (600 MHz, CDCl₃) δ 8.23 (d, J = 7.8 Hz, 2H), 7.34 - 7.23 (m, 2H), 7.04 (s, 1H), 6.28 (s, 1H), 2.43 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 186.8, 164.3, 145.8, 131.3, 130.4, 129.3, 21.9. The spectroscopic data match a literature report.

2-(4-methoxyphenyl)-2-oxoacetamide (3c)^[1]

Yield 60%; 107.50 mg; ¹H NMR (600 MHz, DMSO- d_6) δ 8.28 (s, 1H), 7.97 (d, J = 8.4 Hz, 2H), 7.94 (s, 1H), 7.10 (d, J = 7.8 Hz, 2H), 3.86 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ 189.4, 167.6, 164.2, 132.3, 125.6, 114.4, 55.8. The spectroscopic data match a literature report.

3d

2-(4-ethoxyphenyl)-2-oxoacetamide (3d)^[1]

Yield 65%; 125.58 mg; ¹H NMR (600 MHz, DMSO- d_6) δ 8.27 (s, 1H), 7.96 (d, J = 9.0 Hz, 2H), 7.93 (s, 1H), 7.08 (d, J = 9.0 Hz, 2H), 4.16 - 4.10 (m, 2H), 1.35 (t, J = 7.2 Hz, 4H); ¹³C NMR (150 MHz, DMSO- d_6) δ 189.3, 167.6, 163.5, 132.3, 125.5, 114.7, 63.8, 14.5. The spectroscopic data match a literature report.

2-(3-methoxyphenyl)-2-oxoacetamide (3e)^[1]

Yield 78%; 139.75 mg; ¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, J = 7.2 Hz, 1H), 7.67 (s, 1H), 7.31 (t, J = 8.4 Hz, 1H), 7.13 - 7.07 (m, 1H), 7.03 (s, 1H), 6.64 (s, 1H), 3.77 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 187.3, 164.4, 159.4, 134.0, 129.6, 124.0, 121.4, 114.4, 55.4. The spectroscopic data match a literature report.

3f 2-oxo-2-(o-tolyl)acetamide (3f)

Yield 75%; 122.38 mg; ¹H NMR (600 MHz, DMSO- d_6) δ 8.10 (s, 1H), 7.75 (s, 1H), 7.49 (d, J = 7.2 Hz, 1H), 7.32 (t, J = 6.6 Hz, 1H), 7.16 (t, J = 8.4 Hz, 2H), 2.28 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ 193.6, 167.6, 139.5, 133.0, 132.3, 131.9, 131.8, 126.0, 20.8; HRMS (ESI) m/z calcd for C₉H₁₀NO₂⁺ (M+H)⁺ 164.07060, found 164.07008.

3g

2-(2-methoxyphenyl)-2-oxoacetamide (3g)^[1]

Yield 40%; 71.67 mg; ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.03 (s, 1H), 7.67–7.58 (m, 3H), 7.17 (d, *J* = 8.4 Hz, 1H), 7.08 (t, *J* = 7.8 Hz, 1H), 3.80 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 191.8, 167.9, 159.5, 135.2, 130.3, 124.1, 120.8, 112.8, 56.1. The spectroscopic data match a literature report.

3h

2-(4-fluorophenyl)-2-oxoacetamide (3h)^[1]

Yield 54%; 90.26 mg; ¹H NMR (600 MHz, DMSO- d_6) δ 8.38 (s, 1H), 8.14–8.02 (m, 3H), 7.39 (t, J = 7.8 Hz, 2H); ¹³C NMR (150 MHz, DMSO- d_6) δ 189.1, 166.8, 165.8 (d, $J_{C-F} = 252.0$ Hz), 133.0 (d, $J_{C-F} = 9.3$ Hz), 129.6, 116.2 (d, $J_{C-F} = 22.5$ Hz). The spectroscopic data match a literature report.

3i

2-(4-chlorophenyl)-2-oxoacetamide (3i)^[1]

Yield 78%; 143.20 mg; ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.36 (s, 1H), 8.05 (s, 1H), 8.01 (t, *J* = 2.4 Hz, 1H), 8.00 (t, *J* = 1.8 Hz, 1H), 7.65 (t, *J* = 2.4 Hz, 1H), 7.63 (t, *J* = 1.8 Hz, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 189.4, 166.5, 139.5, 131.61, 131.55, 129.2. The spectroscopic data match a literature report.

3j

2-(4-bromophenyl)-2-oxoacetamide (3j)^[1]

Yield 80%; 182.42 mg; ¹H NMR (600 MHz, DMSO- d_6) δ 8.36 (s, 1H), 8.05 (s, 1H), 7.93 (d, J = 8.4 Hz, 2H), 7.77 (d, J = 8.4 Hz, 2H); ¹³C NMR (150 MHz, DMSO- d_6) δ 189.6, 166.5, 132.1, 131.9, 131.7, 128.9. The spectroscopic data match a literature report.

2-(3,4-dichlorophenyl)-2-oxoacetamide (3k)^[1]

Yield 60%; 130.82 mg; ¹H NMR (600 MHz, DMSO- d_6) δ 8.37 (s, 1H), 8.15 (d, J = 1.8 Hz, 1H), 8.09 (s, 1H), 7.98 - 7.92 (m, 1H), 7.77 (d, J = 8.4 Hz, 1H); ¹³C NMR (150 MHz, DMSO- d_6) δ 187.6, 165.4, 137.4, 133.1, 131.9, 131.4, 131.3, 129.9. The spectroscopic data match a literature report.

2-(3-nitrophenyl)-2-oxoacetamide (3l)^[2]

Yield 45%; 87.36 mg; ¹H NMR (600 MHz, DMSO- d_6) δ 8.75 (s, 1H), 8.52 (d, J = 7.8 Hz, 1H), 8.45 (d, J = 9.6 Hz, 1H), 8.41 (d, J = 6.6 Hz, 1H), 8.18 (s, 1H), 7.86 (t, J = 7.8 Hz, 1H); ¹³C NMR (150 MHz, DMSO- d_6) δ 188.0, 165.4, 147.9, 135.9, 134.2, 130.8, 128.6, 124.4. The spectroscopic data match a literature report.

3m

2-(4-cyanophenyl)-2-oxoacetamide (3m)

Yield 51%; 88.82 mg; ¹H NMR (600 MHz, DMSO- d_6) δ 8.43 (s, 1H), 8.15 (s, 1H), 8.12 (d, J = 7.8 Hz, 2H), 8.05 (d, J = 8.4 Hz, 2H); ¹³C NMR (150 MHz, DMSO- d_6) δ

189.3, 165.8, 136.2, 132.9, 130.3, 118.1, 116.1. This product could't be detected by HRMS (ESI), so we used GC-MS (EI) to detect it (see below).

2-(4-(methylsulfonyl)phenyl)-2-oxoacetamide (3n)

Yield 42%; 95.44 mg; ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.44 (d, *J* = 7.2 Hz, 1H), 8.21 (d, *J* = 7.8 Hz, 2H), 8.16 (s, 1H), 8.13 (d, *J* = 7.8 Hz, 2H), 3.31 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 189.5, 166.0, 145.1, 136.7, 130.7, 127.6, 43.2. This product could't be detected by HRMS (ESI), so we used GC-MS (EI) to detect it (see below).

Methyl 4-(2-amino-2-oxoacetyl)benzoate (30)

Yield 40%; 82.87 mg; ¹H NMR (600 MHz, DMSO- d_6) δ 8.42 (s, 1H), 8.14 - 8.07 (m, 4H), 8.05 (s, 1H), 3.89 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ 190.1, 166.5, 165.5, 136.2, 134.2, 130.1, 129.7, 52.7; HRMS (ESI) m/z calcd for C₁₀H₁₀NO₄⁺ (M+H)⁺ 208.06043, found 208.06111.

3р

2-(benzofuran-2-yl)-2-oxoacetamide (3p)

Yield 43%; 81.34 mg; ¹H NMR (600 MHz, DMSO- d_6) δ 8.38 (s, 1H), 8.28 (s, 1H), 8.07 (s, 1H), 7.88 (d, J = 7.8 Hz, 1H), 7.71 (d, J = 8.4 Hz, 1H), 7.56 (t, J = 7.2 Hz, 1H), 7.36 (t, J = 7.2 Hz, 1H); ¹³C NMR (150 MHz, DMSO- d_6) δ 178.0, 163.6, 155.5, 149.2, 129.6, 126.8, 124.5, 124.3, 120.6, 112.3; HRMS (ESI) m/z calcd for C₁₀H₈NO₃⁺ (M+H)⁺ 190.04987, found 190.04965.

3q 2-oxo-2-(thiophen-3-yl)acetamide (3q)

Yield 85%; 131.89 mg; ¹H NMR (600 MHz, CDCl₃) δ 9.07 (s, 1H), 7.77 (d, J = 5.4 Hz, 1H), 7.36 - 7.30(m, 1H), 7.19 (s, 1H), 6.16 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 179.7, 163.4, 139.6, 136.7, 128.5, 125.9; HRMS (ESI) m/z calcd for C₆H₆NO₂S⁺ (M+H)⁺ 156.01138, found 156.01146.

3r

2-oxo-2-(thiophen-2-yl)acetamide (3r)^[1]

Yield 83%; 128.79 mg; ¹H NMR (600 MHz, CDCl₃) δ 8.39 (s, 1H), 7.83 (s, 1H), 7.36 (s, 1H), 7.19 (s, 1H), 6.74 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 178.1, 163.3, 138.6, 138.2, 136.6, 128.3. The spectroscopic data match a literature report.

3s

2-(2,5-dimethylthiophen-3-yl)-2-oxoacetamide (3s)

Yield 76%; 139.25 mg; ¹H NMR (600 MHz, DMSO- d_6) δ 8.18 (s, 1H), 7.84 (s, 1H), 7.16 (s, 1H), 2.62 (s, 3H), 2.38 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ 185.7, 167.5, 150.0, 135.4, 131.8, 127.4, 15.4, 14.5; HRMS (ESI) m/z calcd for C₈H₁₀NO₂S⁺ (M+H)⁺ 184.04268, found 184.04228.

3t

2-(5-bromothiophen-2-yl)-2-oxoacetamide (3t)

Yield 74%; 173.21 mg; ¹H NMR (600 MHz, DMSO- d_6) δ 8.40 (s, 1H), 8.12 (s, 1H), 7.90 (d, J = 4.2 Hz, 1H), 7.41 (d, J = 3.6 Hz, 1H); ¹³C NMR (150 MHz, DMSO- d_6) δ 178.2, 163.3, 137.3, 137.0, 131.7, 126.5. This product could't be detected by HRMS (ESI), so we used GC-MS (EI) to detect it (see below).

4a

phenyl(5-phenyloxazol-2-yl)methanone(4a)^[3]

Yield 61%; 152.05 mg; ¹H NMR (600 MHz, CDCl₃) δ 8.48 (d, J = 7.2 Hz, 2H), 7.83 (d, J = 7.2 Hz, 2H), 7.65 (t, J = 7.2 Hz, 1H), 7.62 (s, 1H), 7.54 (t, J = 7.2 Hz, 2H), 7.48 (t, J = 7.2 Hz, 2H), 7.43 (d, J = 7.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 178.7, 156.9, 154.1, 135.3, 133.7, 130.7, 130.0, 129.1, 128.4, 126.6, 125.4, 123.9. The spectroscopic data match a literature report.

4b

(5-phenyloxazol-2-yl)(p-tolyl)methanone(4b)^[3]

Yield 51%; 141.43 mg; ¹H NMR (600 MHz, CDCl₃) δ 8.39 (d, J = 7.8 Hz, 2H), 7.72 (d, J = 7.8 Hz, 2H), 7.55 (s, 1H), 7.33 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 7.8 Hz, 2H), 2.45 (s, 3H), 2.41 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.3, 156.8, 154.2, 144.7, 140.2, 132.8, 130.8, 129.7, 129.2, 125.3, 123.9, 123.2, 21.8, 21.5. The spectroscopic data match a literature report.

(4-methoxyphenyl)(5-(4-methoxyphenyl)oxazol-2-yl)methanone(4c)^[3]

Yield 57%; 176.31 mg; ¹H NMR (600 MHz, CDCl₃) δ 8.53 (d, *J* = 7.8 Hz, 2H), 7.76 (d, *J* = 7.8 Hz, 2H), 7.47 (s, 1H), 7.03-6.95 (m, 4H), 3.90 (s, 3H), 3.86 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 176.2, 164.0, 160.7, 156.4, 153.5, 133.1, 127.8, 127.0, 123.4, 119.1, 115.0, 114.1, 55.8, 55.5. The spectroscopic data match a literature report.

(3-methoxyphenyl)(5-(3-methoxyphenyl)oxazol-2-yl)methanone(4d)^[4]

Yield 49%; 151.57 mg; ¹H NMR (600 MHz, CDCl₃) δ 8.14 (d, J = 7.2 Hz, 1H), 7.96 (s, 1H), 7.60 (s, 1H), 7.45 (t, J = 7.8 Hz, 1H), 7.42-7.36 (m, 2H), 7.34 (s, 1H), 7.20 (d, J = 7.8 Hz, 1H), 6.97 (d, J = 7.8 Hz, 1H), 3.90 (s, 3H), 3.88 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.3, 160.0, 159.5, 156.9, 154.0, 136.4, 130.2, 129.4, 127.8, 124.2, 123.6, 120.5, 117.8, 115.9, 114.6, 110.4, 55.4. The spectroscopic data match a literature report.

4e

(2-methoxyphenyl)(5-(2-methoxyphenyl)oxazol-2-yl)methanone(4e)^[3]

Yield 55%; 170.13 mg; ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, J = 7.8 Hz, 1H), 7.76 (s, 1H), 7.68 (d, J = 7.2 Hz, 1H), 7.53 (t, J = 7.2 Hz, 1H), 7.38 (t, J = 7.2 Hz, 1H), 7.08 (t, J = 7.2 Hz, 2H), 7.05-7.00 (m, 2H), 3.99 (s, 3H), 3.82 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 181.1, 158.5, 156.7, 156.4, 150.6, 133.4, 130.60, 130.55, 128.2, 127.1, 126.7, 121.0, 120.3, 115.9, 111.8, 110.9, 55.8, 55.5. The spectroscopic data match a literature report.

4f

(2,4-dimethoxyphenyl)(5-(2,4-dimethoxyphenyl)oxazol-2-yl)methanone(4f)^[3] Yield 60%; 221.62 mg; ¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, J = 9.0 Hz, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.58 (s, 1H), 6.58-6.53 (m, 2H), 6.50 (s, 2H), 3.91 (s, 3H), 3.84 (s, 3H), 3.82 (s, 3H), 3.78 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 179.2, 164.2, 161.7, 160.8, 157.7, 156.5, 150.5, 133.3, 128.0, 126.1, 119.5, 109.2, 105.1, 104.4, 98.8, 98.3, 55.7, 55.42, 55.37. The spectroscopic data match a literature report.

4g

(3-ethoxyphenyl)(5-(4-ethoxyphenyl)oxazol-2-yl)methanone(4g)^[3]

Yield 53%; 178.81 mg; ¹H NMR (600 MHz, CDCl₃) δ 8.52 (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 8.4 Hz, 2H), 7.46 (s, 1H), 7.01-6.94 (m, 4H), 4.16-4.11 (m, 2H), 4.10-4.05 (m, 2H), 1.48–1.41 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 176.9, 163.5, 160.2, 156.7, 154.0, 133.2, 128.1, 126.9, 122.2, 119.2, 114.9, 114.1, 63.8, 63.6, 14.7, 14.6. The spectroscopic data match a literature report.

4h

benzo[d][1,3]dioxol-5-yl(5-(benzo[d][1,3]dioxol-5-yl)oxazol-2-yl)methanone(4h)^[3]

Yield 52%; 175.39 mg; ¹H NMR (600 MHz, CDCl₃) δ 8.28 (d, J = 7.8 Hz, 1H), 7.95 (s, 1H), 7.45 (s, 1H), 7.35 (d, J = 8.4 Hz, 1H), 7.26 (s, 1H), 6.94 (d, J = 8.4 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 6.09 (s, 2H), 6.04 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 176.4, 156.6, 153.9, 152.5, 149.1, 148.3, 147.9, 129.7, 128.0, 122.7, 120.7, 120.0, 110.2, 109.0, 108.0, 105.6, 102.0, 101.6. The spectroscopic data match a literature report.

(4-fluorophenyl)(5-(4-fluorophenyl)oxazol-2-yl)methanone(4i)^[3]

Yield 34%; 96.64 mg; ¹H NMR (600 MHz, CDCl₃) δ 8.62–8.50 (m, 2H), 7.84-7.75 (m, 2H), 7.54 (s, 1H), 7.23–7.12 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 176.7, 166.2 (d, $J_{C-F} = 255.0$ Hz), 163.5 (d, $J_{C-F} = 250.5$ Hz), 156.7, 153.4, 133.6 (d, $J_{C-F} = 9.0$ Hz), 131.4, 127.4 (d, $J_{C-F} = 7.5$ Hz), 123.5, 122.8, 116.4 (d, $J_{C-F} = 21.0$ Hz), 115.7 (d, $J_{C-F} = 21.0$ Hz). The spectroscopic data match a literature report.

(5-chlorophenyl)(5-(4-chlorophenyl)oxazol-2-yl)methanone(4j)^[3]

Yield 42%; 143.17 mg; ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, *J* = 8.4 Hz, 2H), 7.76 (d, *J* = 8.4 Hz, 2H), 7.60 (s, 1H), 7.51 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 177.1, 156.8, 153.3, 140.6, 136.1, 133.4, 132.2, 129.5, 128.8, 126.6, 125.0, 124.2. The spectroscopic data match a literature report.

4k

naphthalen-2-yl(5-(naphthalen-2-yl)oxazol-2-yl)methanone(4k)^[3]

Yield 51%; 178.18 mg; ¹H NMR (600 MHz, DMSO- d_6) δ 9.18 (s, 1H), 8.43 (s, 1H), 8.31 (d, J = 8.4 Hz, 1H), 8.25 (s, 1H), 8.16 (d, J = 7.8 Hz, 1H), 8.09-8.00 (m, 5H), 7.98 (d, J = 8.4 Hz, 1H), 7.96-7.93 (m, 1H), 7.72–7.68 (m, 1H), 7.66–7.62 (m, 1H), 7.60-7.56 (m, 2H); ¹³C NMR (150 MHz, DMSO- d_6) δ 177.7, 156.8, 153.5, 135.3, 133.3, 133.2, 132.8, 132.3, 131.8, 130.0, 129.3, 129.1, 128.6, 128.2, 127.9, 127.8, 127.4, 127.2, 125.6, 125.3, 124.4, 123.7, 122.4. The spectroscopic data match a literature report.

naphthalen-1-yl(5-(naphthalen-1-yl)oxazol-2-yl)methanone(4l)^[3]

Yield 45%; 157.22 mg; ¹H NMR (600 MHz, CDCl₃) δ 8.57 (d, *J* = 8.4 Hz, 1H), 8.39 (d, *J* = 8.4 Hz, 1H), 8.36 (d, *J* = 7.2 Hz, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.97-7.91 (m, 4H), 7.73 (s, 1H), 7.66-7.60 (m, 3H), 7.59-7.55 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 181.3, 158.2, 154.0, 133.78, 133.76, 133.6, 132.5, 131.3, 131.0, 130.9, 129.9, 128.9, 128.7, 128.6, 128.1, 127.7, 127.6, 127.5, 126.6, 126.5, 125.2, 124.5, 124.2, 123.8. The spectroscopic data match a literature report.

benzofuran-2-yl(5-(benzofuran-2-yl)oxazol-2-yl)methanone(4m)^[3]

Yield 41%; 135.02 mg; ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.92 (s, 1H), 8.65 (s, 1H), 7.93 (d, *J* = 7.8 Hz, 1H), 7.70 (d, *J* = 8.4 Hz, 1H), 7.67 (d, *J* = 7.2 Hz, 1H), 7.57 (t, *J* = 7.2 Hz, 2H), 7.41 (s, 1H), 7.38 (t, *J* = 7.2 Hz, 1H), 7.33 (t, *J* = 7.2 Hz, 1H), 7.26 (t, *J* = 7.2 Hz, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 166.2, 156.5, 155.7, 154.3, 149.5, 147.2, 139.3, 133.8, 129.5, 127.9, 126.8, 125.2, 124.4, 124.3, 123.4, 121.5, 120.3, 112.2, 111.1, 104.6. The spectroscopic data match a literature report.

4n

thiophen-3-yl(5-(thiophen-3-yl)oxazol-2-yl)methanone(4n)

Yield 62%; 162.02 mg; ¹H NMR (600 MHz, DMSO- d_6) δ 9.08 (d, J = 1.8 Hz, 1H), 8.12 (d, J = 1.8 Hz, 1H), 7.92 (s, 1H), 7.83 (d, J = 4.8 Hz, 1H), 7.78-7.75 (m, 1H), 7.72-7.69 (m, 1H), 7.60 (d, J = 4.2 Hz, 1H); ¹³C NMR (150 MHz, DMSO- d_6) δ 171.3, 156.0, 150.4, 138.4, 137.9, 137.8, 128.7, 128.0, 127.6, 125.2, 124.6, 124.5; HRMS (ESI) m/z calcd for C₁₂H₈NO₂S₂⁺ (M+H)⁺ 261.99910, found 261.99902.

6. Reference

[1] S. Liu, Q. Gao, X. Wu, J. Zhang, K. Ding and A. Wu, *Org. Biomol. Chem.*, **2015**, *13*, 2239-2242.

[2] A. Nagaki, Y. Takahashi and J.-I. Yoshida, Angew. Chem. Int. Ed., 2016, 55, 5327-5331.

[3] W.-J. Xue, W. Zhang, K.-L. Zheng, Y. Dai, Y.-Q. Guo, H.-Z. Li, F.-F. Gao and A.-X. Wu, *Asian J. Org. Chem.*, **2013**, *2*, 638-641.

[4] N. Pogaku, P. R. Krishna and Y. L. Prapurna, *Synth. Commun.*, **2018**, *48*, 1986-1993.

7. Crystallographic data and molecular structure of 3q and 4i

3q

Figure S1. X-ray crystal structure of **3**q

Crystal Data for Compound 3q: CCDC 1899222 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic.

Bond precision:	C-C = 0.003	38 A Wavelength=0.71073			0.71073
Cell:	a=6.1602(12	:)	b=7.593	3(16)	C=14.282(3)
Temperature:	alpha=90 293 K		beta=90		gamma=90
	Calculated			Reported	
Volume	668.1(2)			668.0(2)	
Space group	P 21 21 21			P 21 21 21	
Hall group	P 2ac 2ab			P 2ac 2ab	
Moiety formula	C6 H5 N O2 S			?	
Sum formula	C6 H5 N O2 S		8	C6 H5 N O2	S
Mr	155.17			155.17	
Dx,g cm-3	1.543			1.543	
Z	4			4	
Mu (mm-1)	0.412			0.412	
F000	320.0			320.0	
F000'	320.64				
h,k,lmax	9,11,21			9,11,20	
Nref	2352[1381]			2193	
Tmin,Tmax	0.952,0.960				
Tmin'	0.952				
Correction method= Not given					
Data completeness= 1.59/0.93 Theta(max)= 32.125					
R(reflections) = 0.0459(2038) WR2(reflections) = 0.1505(2193)				0.1505(2193)	
S = 1.118	Np	ar= 92			

4i

Figure S2. X-ray crystal structure of 4i

Crystal Data for Compound **4i**: CCDC 1891920 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic.

Bond precision:	C-C = 0.0034 A	Waveleng	gth=0.71073	
Cell:	a=7.5984(15)	b=11.344(2)	c=14.767(3)	
	alpha=91.674(3)	beta=98.949(3)	gamma=90.820(3)	
Temperature:	293 K			
	Calculated	Report	ed	
Volume	1256.6(4)	1256.6	(4)	
Space group	P -1	P -1		
Hall group	-P 1	-P 1		
Moiety formula	C16 H9 F2 N O2	C16 H9	F2 N O2	
Sum formula	C16 H9 F2 N O2	C16 H9	F2 N 02	
Mr	285.24	285.24		
Dx,g cm-3	1.508	1.508		
Z	4	4		
Mu (mm-1)	0.120	0.120		
F000	584.0	584.0		
F000′	584.37			
h,k,lmax	8,12,16	8,12,1	5	
Nref	3640	3599		
Tmin,Tmax	0.983,0.988	0.657,	0.745	
Tmin'	0.982			
Correction method= # Reported T Limits: Tmin=0.657 Tmax=0.745 AbsCorr = MULTI-SCAN				
Data completeness= 0.989 Theta(max) = 23.314				
R(reflections) = 0.0456(2848) WR2(reflections) = 0.1743(3599)				
S = 1.091 Npar= 380				

8. Copies of 1H and 13C NMR spectra

290 270 250 230 210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -20

9. The products of 3m, 3n, 3t were detected by GC-MS

