A Sc(OTf)₃ catalyzed Mukaiyama-Mannich reaction of difluoroenoxysilanes with unactivated ketimines

Xiao-Si Hu,^{*a*} Pei-Gang Ding,^{*a*} Jin-Sheng Yu,^{**a*} and Jian Zhou^{**a,b*}

^a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062 China. Email: jsyu@chem.ecnu.edu.cn; jzhou@chem.ecnu.edu.cn.

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032, China.

	Contents	Page
General in	General information	
Part I	General procedure for the Mukaiyama-Mannich reaction	3-11
Part II	Transformations of products	12-14
Part III	X-ray crystal data of 6d	15-22
Part IV	¹ H, ¹³ C, ¹⁹ F NMR spectra	23-100

General information: Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields refer to pure isolated substances. The infrared (IR) spectra were obtained using a Bruker tensor 27 infrared spectrometer. ¹H, ¹³C, ¹⁹F NMR spectra were obtained using a Bruker DPX-500, 400 or 300 MHz spectrometer. Chemical shifts are reported in ppm from CDCl₃ with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, h = heptet, m = multiplet, br = broad.

All reactions were carried out in an atmosphere of N₂ except noted. Anhydrous CH₂Cl₂ and ClCH₂CH₂Cl were prepared by first distillation over P₂O₅ and then from CaH₂. Anhydrous Et₂O, THF and toluene were prepared by distillation over sodium-benzophenone ketyl prior to use. unactivated ketimines **1** and **4a-b**,¹ cyclic ketimines **4c-d**² were prepared following literature reports. The difluoroenoxysilanes **2** were prepared according to the literature reports.³

Entry	Chemical name	Abbreviation
1	Petroleum ether	PE
2	1,2-Dichloroethane	DCE
3	Hexafluoroisopropyl alcohol	HFIP

List of abbreviation:

¹ (a) J. L. García Ruano, J. Alemán, M. B. Cid and A. Parra, *Org. Lett.*, 2005, **7**, 179. (b) X. Huang, J. Huang, Y. Wen and X. Feng, *Adv. Synth. Catal.*, 2006, **348**, 2579.

² (a) H. Wang, T. Jiang and M.-H. Xu, J. Am. Chem. Soc., 2013, **135**, 971; (b) S. Zhang, L. Li, Y. Hu, Z. Zha, Z. Wang and T.-P. Loh, Org. Lett., 2015, **17**, 1050; (c) T. Kano, S. Song, Y. Kubota and K. Maruoka, Angew. Chem., Int. Ed., 2012, **51**, 1191.

³ (a) H. Amii, T. Kobayashi, Y. Hatamoto and K. Uneyama, *Chem. Commun.*, **1999**, 1323; (*b*) G. K. S. Prakash, J. Hu and G. A. Olah, *J. Fluorine Chem.*, 2001, **112**, 355.

Part I General procedure for the Mukaiyama-Mannich reaction.

1) Mukaiyama-Mannich reaction of unactivated acyclic ketimines 1

General procedure A: an oven-dried 25 mL Schlenk tube were charged with $Sc(OTf)_3$ (6.2 mg, 0.0125 mmol, 5.0 mol%) and ketimines **1** (0.25 mmol, 1.0 equiv), followed by the addition of anhydrous DCE (2.5 mL, 0.1 M) and difluoroenoxysilanes **2** (0.375 mmol, 1.5 equivs) under an atmosphere of N₂, successively. The resulting solution was stirred at room temperature. After full consumption of ketimines **1** by TLC analysis, the reaction mixture was directly subjected to flash column chromatography to afford products **3** using indicated eluent.

Column chromatography (PE/EtOAc = 10:1, v/v) afforded product **3a** in 89% $\downarrow \downarrow_{F}$ Ph yield as white solid, Mp: 121-123 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.73-7.71 (m, 2H), 7.65-7.63 (m, 2H), 7.56-7.52 (m, 1H), 7.50-7.47 (m, 2H), 7.36-7.32 (m, 2H), 7.26-7.23 (m, 5H), 6.45 (s, 1H), 2.41 (s, 3H), 1.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.14 (dd, *J* = 31.9, 28.7 Hz), 143.17, 139.73, 138.14 (d, *J* = 2.3 Hz), 134.41, 132.84, 129.88 (dd, *J* = 4.5, 2.7 Hz), 129.41, 128.38, 128.27, 128.24, 127.22, 126.98, 115.94 (t, *J* = 265.0 Hz), 65.35 (dd, *J* = 24.1, 23.2 Hz), 21.48, 18.67 (dd, *J* = 4.2, 3.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -105.35 (d, *J* = 275.2 Hz, 1F), -108.13 (d, *J* = 275.2 Hz, 1F); IR (ATR): 3305, 1696, 1598, 1421, 1323, 1152, 1136, 1094, 1051, 979, 903, 680, 703, 651, 551; HRMS (ESI): Exact mass calcd for C₂₃H₂₁F₂NNaO₃S [M+Na]⁺: 452.1102, Found: 452.1112.

Ts NH O F F F F C 3b Column chromatography (PE/EtOAc = 10:1, v/v) afforded product **3b** in 73% yield as white solid, Mp: 132-134 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.71-7.69 (m, 4H), 7.59-7.55 (m, 1H), 7.48-7.45 (m, 2H), 7.39-7.35 (m, 2H), 7.26-7.24 (m, 2H), 6.95-6.90 (m, 2H), 6.45 (s, 1H), 2.42 (s, 3H), 1.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 190.91 (dd, *J* = 31.8, 28.9 Hz), 162.47 (d, *J* = 247.0 Hz), 143.33, 139.63, 134.62, 133.86 (t, J = 2.7 Hz), 132.77, 129.93 (dd, J = 4.6, 2.9 Hz), 129.47, 129.35, 128.52, 126.98, 115.81 (t, J = 264.6 Hz), 115.07 (d, J = 21.3 Hz), 65.02 (t, J = 23.5 Hz), 21.48 (d, J = 2.0 Hz), 19.01; ¹⁹F NMR (376 MHz, CDCl₃): δ -105.70 (d, J = 277.5 Hz, 1F), -108.19 (d, J = 277.1 Hz, 1F), -113.99 (s, 1F); IR (ATR): 3261, 1686, 1512, 1446, 1319, 1237, 1134, 1076, 972, 912, 813, 731, 688; HRMS (ESI): Exact mass calcd for C₂₃H₂₀F₃NNaO₃S [M+Na]⁺: 470.1008, Found: 470.1011.

Column chromatography (PE/EtOAc = 6:1, v/v) afforded product **3**c in 77% \downarrow yield as white solid, Mp: 115-117 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.75- 3c 7.67 (m, 4H), 7.61-7.56 (m, 1H), 7.41-7.36 (m, 6H), 7.26-7.23 (m, 2H), 6.41 (s, 1H), 2.42 (s, 3H), 1.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 190.53 (dd, J = 31.6, 29.5 Hz), 143.40, 139.53, 137.31 (d, J = 2.1 Hz), 134.69, 132.67 (t, J = 2.6 Hz), 131.28, 129.98 (t, J = 3.4 Hz), 129.47, 129.17, 128.56, 127.00, 122.67, 115.75 (t, J = 265.4 Hz), 65.12 (t, J = 23.5 Hz), 21.48, 18.92 (t, J = 3.5 Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -105.50 (d, J = 280.3 Hz, 1F), -107.55 (d, J = 280.3 Hz, 1F); IR (ATR): 3252, 1685, 1594, 1432, 1319, 1154, 1084, 974, 911, 830, 715; HRMS (ESI): Exact mass calcd for C₂₃H₂₀BrF₂NNaO₃S [M+Na]⁺:530.0208, Found: 530.0214.

Ts NH O F F F Ph yield as white solid, Mp: 125-127 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.74-3d 7.68 (m, 4H), 7.61-7.57 (m, 1H), 7.43-7.37 (m, 4H), 7.26-7.20 (m, 4H), 6.43 (s, 1H), 2.42 (s, 3H), 1.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 190.49 (dd, *J* = 31.3, 29.3 Hz), 143.35, 139.47, 136.73 (d, *J* = 2.1 Hz), 134.65, 134.33, 132.62, 129.92 (t, *J* = 3.4 Hz), 129.43, 128.84, 128.51, 128.25, 126.93, 115.78 (t, *J* = 265.0 Hz), 64.97 (t, *J* = 23.6 Hz), 21.42 (d, *J* = 2.4 Hz), 18.90 (t, *J* = 3.2 Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -105.54 (d, *J* = 279.2 Hz, 1F), -107.56 (d, *J* = 279.5 Hz, 1F); IR (ATR): 3250, 1685, 1593, 1495, 1431, 1318, 1155, 1094, 973, 911, 812, 721, 680; HRMS (ESI): Exact mass calcd for C₂₃H₂₀ClF₂NNaO₃S [M+Na]⁺: 486.0713, Found: 486.0712.

Clumn chromatography (PE/EtOAc = 10:1, v/v) afforded product **3e** in 80% yield as white solid, Mp: 132-134 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.76- **3e** 7.74 (m, 2H), 7.69-7.67 (m, 2H), 7.60-7.57 (m, 1H), 7.42-7.37 (m, 4H), 7.26-7.19 (m, 4H), 6.40 (s, 1H), 2.42 (s, 3H), 1.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 190.37 (dd, J = 30.8, 29.4 Hz), 143.41, 140.10 (d, J = 2.0 Hz), 139.33, 134.71, 134.23, 132.59 (t, J = 2.8 Hz), 129.96 (t, J = 3.6 Hz), 129.49, 129.42, 128.54, 128.40, 127.76, 126.93, 125.61, 115.78 (t, J = 265.4 Hz), 65.02 (t, J = 23.5 Hz), 21.48, 19.03 (t, J = 3.1 Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -105.57 (d, J = 280.0 Hz, 1F), -107.46 (d, J = 279.7 Hz, 1F); IR (ATR): 3280, 1703, 1596, 1434, 1324, 1286, 1151, 1095, 979, 810, 742; HRMS (ESI): Exact mass calcd for C₂₃H₂₀ClF₂NNaO₃S [M+Na]⁺: 486.0713, Found: 486.0715.

^{Ts} NH O Column chromatography (PE/EtOAc = 10:1, v/v) afforded product **3f** in 30% yield as white solid, Mp: 131-133 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.76-7.74 (m, 2H), 7.69-7.67 (m, 2H), 7.59-7.55 (m, 1H), 7.42-7.36 (m, 4H), 7.25-7.16 (m, 4H), 6.40 (s, 1H), 2.41 (s, 3H), 1.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 190.44 (t, *J* = 30.1 Hz), 143.42, 140.13 (d, *J* = 2.1 Hz), 139.41, 134.70, 134.28, 132.67, 129.99 (t, *J* = 3.5 Hz), 129.51, 129.43, 128.56, 128.43, 127.81, 126.97, 125.64, 115.82 (t, *J* = 265.3 Hz), 65.08 (t, *J* = 23.6 Hz), 21.49, 19.07 (dd, *J* = 4.2, 3.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -105.65 (d, *J* = 279.7 Hz, 1F), -107.40 (d, *J* = 279.7 Hz, 1F); IR (ATR): 3281, 1703, 1596, 1434, 1325, 1151, 1095, 1059, 979, 909, 742; HRMS (ESI): Exact mass calcd for C₂₃H₂₀ClF₂NNaO₃S [M+Na]⁺: 486.0713, Found: 486.0715.

Column chromatography (PE/EtOAc = 10:1, v/v) afforded product **3g** in 88% yield as white solid, Mp: 141-143 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.72-7.69 (m, 2H), 7.66-7.63 (m, 2H), 7.55-7.50 (m, 1H), 7.37-7.30 (m, 4H), 7.24-7.21 (m, 2H), 7.05-7.02 (m, 2H), 6.45 (s, 1H), 2.39 (s, 3H), 2.26 (s, 3H), 1.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.14 (dd, *J* = 31.9, 28.9 Hz), 143.08, 139.77, 138.03, 135.12 (d, *J* = 2.4 Hz), 134.31, 132.90, 129.89 (dd, *J* = 4.6 Hz, 2.7 Hz), 129.35, 128.92, 128.33, 127.12, 126.96, 115.97 (t, *J* = 264.8 Hz), 65.14 (dd, *J* = 24.0, 23.2 Hz), 21.44, 20.82, 18.69 (dd, *J* = 4.4 Hz, 3.1 Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -105.35 (d, *J* = 274.7 Hz, 1F), -108.11 (d, *J* = 275.0 Hz , 1F); IR (ATR): 3270, 1691, 1596, 1447, 1320, 1273, 1152, 1094, 1047, 974, 725, 686; HRMS (ESI): Exact mass calcd for C₂₄H₂₃F₂NNaO₃S [M+Na]⁺: 466.1259, Found: 466.1264.

 $\begin{array}{c} \mbox{Ts} & \mbox{NH} & \mbox{O} \\ \mbox{MeO} & \mbox{Jh} & \mbox{I} \\ \mbox{Jh} & \mbox{I} \\ \mbox{MeO} & \mbox{Jh} & \mbox{I} \\ \mbox{Jh} & \mbox{I} \\ \mbox{Jh} & \mbox{I} \\ \mbox{Jh} & \mbox{I} \\ \mbox{Jh} \\ \mbo$

(dd, J = 31.8, 28.7 Hz), 159.33, 143.08, 139.76, 134.33, 132.95, 129.87 (dd, J = 4.6, 2.8 Hz), 129.72 (d, J = 2.2 Hz), 129.36, 128.67, 128.35, 126.95, 115.92 (t, J = 264.8 Hz), 113.49, 64.92 (dd, J = 24.0, 23.0 Hz), 55.15, 21.44, 18.79 (dd, J = 4.5, 3.3 Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -105.53 (d, J = 273.3 Hz, 1F), -108.63 (d, J = 273.5 Hz, 1F); IR (ATR): 3295, 1685, 1595, 1609, 1519, 1424, 1322, 1260, 1152, 1122, 977, 813, 713, 688; HRMS (ESI): Exact mass calcd for C₂₄H₂₃F₂NNaO₄S [M+Na]⁺: 482.1208, Found: 482.1213.

Ts NH O F Ph yield as white solid, Mp: 123-125 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.87 (s, 1H), 7.76-7.66 (m, 7H), 7.59-7.56 (m, 1H), 7.50-7.43 (m, 3H), 7.29-7.24 (m, 2H), 7.18-7.16 (m, 2H), 6.52 (s, 1H), 2.35 (s, 3H), 2.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 190.85 (dd, J = 31.7, 29.3 Hz), 143.17, 139.65, 135.25 (d, J = 2.1 Hz), 134.36, 132.87, 132.70, 132.63, 129.88 (t, J = 3.2 Hz), 129.36, 128.43, 128.35, 127.92, 127.24, 127.20, 127.03, 126.59, 126.14, 124.59, 116.19 (t, J = 265.2 Hz), 65.52 (t, J = 23.3 Hz), 21.39, 19.21 (t, J = 2.8 Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -105.09 (d, J = 277.8 Hz, 1F), -107.14 (d, J = 277.8 Hz, 1F); IR (ATR): 3263, 1686, 1593, 1420, 1314, 1125, 1092, 1043, 913, 811, 735; HRMS (ESI): Exact mass calcd for C₂₇H₂₃F₂NNaO₃S [M+Na]⁺: 502.1259, Found: 502.1267.

Ts NH O S F S F S Column chromatography (PE/EtOAc = 6:1, v/v) afforded product **3j** in 55% yield as white solid, Mp: 124-126 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.80-7.70 (m, 4H), 7.61-7.55 (m, 1H), 7.42-7.37 (m, 2H), 7.26-7.22 (m, 2H), 7.19-7.17 (m, 1H), 7.00-6.99 (m, 1H), 6.84-6.82 (m, 1H), 6.51 (s, 1H), 2.40 (s, 3H), 1.93(s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 190.69 (dd, J = 31.9, 29.1 Hz), 143.26, 142.82 (d, J = 2.8 Hz), 139.39, 134.52, 132.84 (t, J = 2.7 Hz), 129.88 (dd, J = 4.6, 2.9 Hz), 129.40, 128.48, 127.09, 126.93, 126.00, 115.19 (t, J = 265.8 Hz), 63.59 (t, J = 24.9 Hz), 21.45, 19.85 (t, J = 2.8 Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -105.80 (d, J = 278.3 Hz, 1F), -107.84 (d, J = 278.3 Hz, 1F); IR (ATR): 3273, 1696, 1596, 1425, 1325, 1278, 1154, 1123, 1092, 967, 899, 817, 687; HRMS (ESI): Exact mass calcd for C₂₁H₁₉F₂NNaO₃S₂ [M+Na]⁺: 458.0667, Found: 458.0669. Column chromatography (PE/EtOAc = 10:1, v/v) afforded product **3k** in 23% yield as white solid, Mp: 156-158 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.97-7.95 (m, 2H), 7.71-7.69 (m, 2H), 7.65-7.61 (m, 1H), 7.48-7.45 (m, 2H), 7.22-7.20 (m, 2H), 5.55 (s, 1H), 2.38 (s, 3H), 1.93-1.90 (m, 1H), 1.83-1.76 (m, 2H), 1.69-1.57 (m, 3H), 1.44 (s, 3H), 1.24-1.01 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 190.50 (dd, *J* = 32.9, 30.7 Hz), 142.88, 139.45, 134.40, 132.94 (d, *J* = 3.5 Hz), 130.15 (dd, *J* = 5.0, 2.8 Hz), 129.23, 128.58, 127.26, 117.26 (t, *J* = 266.3 Hz), 66.40 (t, *J* = 20.2 Hz), 45.16, 27.58 (d, *J* = 5.0 Hz), 27.43, 26.58, 26.40, 26.06, 21.46, 12.38; ¹⁹F NMR (376 MHz, CDCl₃): δ -100.27 (d, *J* = 293.3 Hz, 1F), -102.63 (d, *J* = 293.7 Hz, 1F); IR (ATR): 3232, 1691, 1596, 1446, 1318, 1152, 1106, 969, 902, 873, 810; HRMS (ESI): Exact mass calcd for C₂₃H₂₇F₂NNaO₃S [M+Na]⁺: 458.1572, Found: 458.1573.

Column chromatography (PE/EtOAc = 10:1, v/v) afforded product **3n** in 38% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.62-7.60 (m, 4H), 7.55-7.51 (m, 1H), 7.34-7.28 (m, 4H), 7.26-7.22 (m, 1H), 5.79 (s, 1H), 2.12 (s, 3H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 129.05 (dd, *J* = 32.1, 28.1 Hz),

138.92 (d, J = 2.2 Hz), 134.35, 133.28, 133.26, 129.87 (dd, J = 5.1, 2.6 Hz), 128.41, 128.37, 127.42, 116.20 (t, J = 264.8 Hz), 66.72 (dd, J = 24.1, 22.7 Hz), 60.68, 24.39, 19.19 (dd, J = 5.0, 2.4 Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -105.30 (d, J = 269.3 Hz, 1F), -108.99 (d, J = 269.6 Hz, 1F); IR (ATR):

3315, 2921,1693, 1428, 1314, 1124, 1040, 946, 915, 858, 817,719, 694; HRMS (ESI): Exact mass calcd for C₂₀H₂₃F₂NNaO₃S [M+Na]⁺: 418.1259, Found: 418.1263.

(dd, J = 31.7, 29.0 Hz), 145.75, 143.06, 139.83, 138.24 (d, J = 2.3 Hz), 130.34, 130.05 (dd, J = 4.8, 2.6 Hz), 129.34, 129.09, 128.16, 128.12, 127.24, 126.94, 116.01 (t, J = 265.2 Hz), 65.36 (t, J = 23.5 Hz), 21.66, 21.39, 18.70 (dd, J = 4.2, 3.1 Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -105.17 (d, J = 274.1 Hz), -107.93 (d, J = 274.1 Hz); IR (ATR): 3287, 1691, 1604, 1425, 1324, 1154, 981, 904, 780, 740; HRMS (ESI): Exact mass calcd for C₂₄H₂₃F₂NNaO₃S [M+Na]⁺: 466.1259, Found: 466.1259.

Ts NH O Ph f_{F} f_{F} Column chromatography (PE/EtOAc = 6:1, v/v) afforded product **3q** in 42% yield as white solid, Mp: 167-169 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.73-7.66 (m, 4H), 7.50-7.48 (m, 2H), 7.26-7.22 (m, 5H), 6.79 (d, *J* = 9.0 Hz, 2H), 6.56 (s, 1H), 3.84 (s, 3H), 2.41 (s, 3H), 1.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 189.04 (dd, *J* = 31.0, 28.6 Hz), 164.57, 143.08, 139.85, 138.39 (d, *J* = 2.5 Hz), 132.71 (dd, *J* = 5.4, 2.8 Hz), 129.39, 128.16, 128.13, 127.25, 126.96, 125.61, 116.15 (t, *J* = 265.0 Hz), 113.72, 65.39 (t, *J* = 23.6 Hz), 55.52 (d, *J* = 2.5 Hz), 21.47 (d, *J* = 1.8 Hz), 18.68 (t, *J* = 3.1 Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -104.96 (d, *J* = 274.1 Hz), -107.70 (d, *J* = 273.8 Hz); IR (ATR): 3297, 1684, 1596 1511, 1419, 1322, 1265 1153, 1132, 1047, 905, 817, 787, 697; HRMS (ESI): Exact mass calcd for C₂₄H₂₃F₂NNaO₄S [M+Na]⁺: 482.1208, Found: 482.1217.

^{Ts} NH O Ph F_{3r} Column chromatography (PE/EtOAc = 10:1, v/v) afforded product **3r** in 63% yield as white solid, Mp: 150-152 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.73-7.70 (m, 2H), 7.55-7.53 (m, 2H), 7.47-7.44 (m, 2H), 7.31-7.30 (m, 1H), 7.28-7.23 (m, 6H), 6.36 (s, 1H), 2.42 (s, 3H), 1.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 189.98 (dd, *J* = 31.9, 28.7 Hz), 143.23, 141.15, 139.67, 137.89 (d, *J* = 2.1 Hz), 131.26 (dd, *J* = 5.0, 2.8 Hz), 131.15 (d, *J* = 3.1 Hz), 129.43, 128.74, 128.37, 128.33, 127.22, 126.95, 116.03 (t, *J* = 264.8 Hz), 65.28 (dd, *J* = 24.1, 22.9 Hz), 21.46, 18.59 (dd, *J* = 3.9, 2.7 Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -105.50 (d, *J* = 273.5 Hz), -108.53 (d, *J* = 273.5 Hz); IR (ATR): 3286, 1698, 1587, 1426, 1324, 1155, 1092, 981, 902, 816, 704; HRMS (ESI): Exact mass calcd for C₂₃H₂₀ClF₂NNaO₃S [M+Na]⁺: 486.0713, Found: 486.0721.

2) Mukaiyama-Mannich reaction of cyclic ketimines 4

General procedure B: an oven-dried 25 mL Schlenk tube were charged with $Sc(OTf)_3$ (6.2 mg, 0.0125 mmol, 5.0 mol%) and cyclic ketimines **4** (0.25 mmol, 1.0 equiv), followed by the addition of anhydrous DCE (2.5 mL, 0.1 M) and difluoroenoxysilane **2a** (0.375 mmol, 1.5 equivs) under an atmosphere of N₂, successively. The resulting solution was stirred at room temperature. After full consumption of ketimines **4** by TLC analysis, the reaction mixture was directly subjected to flash column chromatography to afford products **5** using indicated eluent.

Column chromatography (PE/EtOAc = 10:1, v/v) afforded product **5a** in 80% yield as white solid, Mp: 119-121 °C; ¹H NMR (300 MHz, CDCl₃): δ 8.02-7.99 (m, 2H), 7.65-7.60 (m, 1H), 7.49-7.43 (m, 2H), 7.30-7.19 (m, 4H), 7.09-7.04 (m, 3H), 7.00-6.95 (m, 1H), 6.04 (s, 1H), 2.86-2.81 (m, 2H), 2.77-2.68 (m, 1H), 2.55-2.45 (m, 1H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 189.79 (t, *J* = 32.1 Hz), 145.94, 142.70, 138.55, 135.28, 134.63, 132.27, 130.23 (t, *J* = 3.5 Hz), 129.38, 128.90, 128.53, 127.50 (d, *J* = 4.3 Hz), 126.89, 125.85, 124.43, 116.76 (t, *J* = 262.6 Hz), 72.34 (dd, *J* = 27.2, 21.6 Hz), 35.15, 30.08, 21.36; ¹⁹F NMR (282 MHz, CDCl₃): δ -104.36 (d, *J* = 297.5 Hz, 1F), -106.85 (d, *J* = 297.8 Hz, 1F); IR (ATR): 3258, 1705, 1597, 1418, 1327, 1151, 1059, 874, 809, 769; HRMS (ESI): Exact mass calcd for C₂₄H₂₁F₂NNaO₃S [M+Na]⁺: 464.1102, Found: 464.1104.

Column chromatography (PE/EtOAc = 10:1, v/v) afforded product **5b** in 21% yield as white solid, Mp: 105-107 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.75-7.72 (m, 2H), 7.59-7.54 (m, 1H), 7.49-7.47 (m, 2H), 7.40-7.26 (m, 2H), 7.21-7.06 (m, 5H), 6.84-6.79 (m, 1H), 5.98 (s, 1H), 2.75-2.71 (m, 2H), 2.63-2.57 (m, 1H), 2.39 (s, 3H), 2.29-2.19 (m, 1H), 1.92-1.84 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 191.13 (t, *J* = 30.8 Hz), 142.91, 139.79, 139.56, 134.23, 133.55, 130.41, 130.01 (t, *J* = 3.8 Hz), 129.31, 129.17, 129.12, 128.46, 128.36, 127.08, 125.60, 117.37 (t, *J* = 263.9 Hz), 63.84 (t, *J* = 22.7 Hz), 31.29, 29.38, 21.47, 19.00; ¹⁹F NMR (282 MHz, CDCl₃): δ -101.82 (d, *J* = 279.7 Hz, 1F), -103.55 (d, *J* = 279.7 Hz, 1F); IR (ATR): 3246, 1705, 1597, 1435, 1332, 1287, 1168, 1071, 1031, 930, 814, 712; HRMS (ESI): Exact mass calcd for C₂₅H₂₃F₂NNaO₃S [M+Na]⁺: 478.1259, Found: 478.1255.

Column chromatography (PE/EtOAc = 6:1, v/v) afforded product **5c** in 60% yield as white solid;⁴ ¹H NMR (300 MHz, CDCl₃): δ 8.10-8.08 (m, 2H), 7.76-7.65 (m, 3H), 7.53-7.48 (m, 3H), 5.92 (s, 1H), 4.44-4.35 (m, 2H), 2.54 (s, 3H), 1.36 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 187.78 (t, *J*

= 32.0 Hz), 165.60 (dd, J = 7.3, 2.0 Hz), 144.82, 135.15, 133.91, 132.69, 131.17 (t, J = 3.2 Hz), 130.59 (d, J = 1.8 Hz), 130.36 (dd, J = 4.0, 2.2 Hz), 128.78, 127.08 (d, J = 5.3 Hz), 121.59, 115.40 (t, J = 268.0 Hz), 68.32 (t, J = 24.9 Hz), 64.27, 21.88, 13.83. ¹⁹F NMR (282 MHz, CDCl₃): δ -99.74 (dd, J = 297.5, 3.1 Hz, 1F), -106.00 (d, J = 297.5 Hz, 1F).

⁴ J.-S. Yu and J. Zhou, Org. Biomol. Chem., 2015, 13, 10968.

Column chromatography (PE/EtOAc = 6:1) afforded product **5d** in 100% yield as yellow solid;⁴ ¹H NMR (300 MHz, CDCl₃): δ 8.10-8.07 (m, 2H), 7.68-7.63 (m, 1H), 7.53-7.48 (m, 2H), 7.08-7.01 (m, 2H), 6.93-6.86 (m, 2H), 5.08 (s, 1H), 4.33-4.26 (q, *J* =7.2 Hz, 2H), 1.21 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz,

CDCl₃): δ 186.74 (dd, J = 30.7, 28.0 Hz), 164.89, 158.62 (t, J = 2.0 Hz), 139.91, 134.77, 131.47 (t, J = 3.2 Hz), 130.14 (dd, J = 4.1, 2.3 Hz), 128.69, 128.51, 125.53, 121.30, 116.77, 115.68, 115.08 (dd, J = 270.1, 265.8 Hz), 67.19 (t, J = 22.1 Hz), 63.67, 13.69; ¹⁹F NMR (282 MHz, CDCl₃): δ - 103.82 (d, J = 300.9 Hz, 1F), -106.13 (d, J = 301.2 Hz, 1F).

Part II. Transformations of products

Compound **3a** (85.9 mg, 0.2 mmol) placed in 25 mL round-bottom flask was treated with a 0.15 M solution of methanesulfonicacid (28.8 mg, 0.3 mmol) in TFA/thioanisole (9/1, v/v, 2 mL) at room temperature. After being stirred at the same temperature for 2 h, the reaction mixture was concentrated under reduced pressure. To thus obtained residue were added sat. aq. NaHCO₃, and extracted with CH₂Cl₂ (10 mL×3). The organic layer was combined, dried over Na₂SO₄, and concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 6/1, v/v) to give primary amine **6a** as colorless oil (51.8 mg, 94% yield).^{5 1}H NMR (400 MHz, CDCl₃): δ 7.74-7.72 (m, 2H), 7.52-7.48 (m, 3H), 7.34-7.21 (m, 5H), 2.15 (br, 2H), 1.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.09 (t, *J* = 30.7 Hz), 140.59, 133.84, 133.65, 129.88 (t, *J* = 3.9 Hz), 128.20, 128.12, 127.67, 126.83 (t, *J* = 1.8 Hz), 118.62 (dd, *J* = 262.7, 259.5 Hz), 59.76 (t, *J* = 22.5 Hz), 24.39 (t, *J* = 3.4 Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ - 106.05 (d, *J* = 272.7 Hz, 1F), -107.32 (d, *J* = 272.4 Hz, 1F); IR (ATR): 3314, 1693, 1597, 1447, 1313, 1124, 858, 759, 695; HRMS (ESI): Exact mass calcd for C₁₆H₁₆F₂NO [M+H]⁺: 276.1194, Found: 276.1191.

Compound **3a** (85.9 mg, 0.2 mmol) was dissolved in 2.5 mL anhydrous EtOH, followed by the addition of NaBH₄ (23.4 mg, 0.6 mmol, 3.0 equivs) in one portion at room temperature. The resulting mixture was stirred until the complete consumption of **3a** as indicated by TLC analysis (about 0.5 h). Then the reaction was quenched by saturated NH₄Cl (aq.), and extracted with CH₂Cl₂ (5.0 mL \times 3). The combined organic layer was washed with saturated brine (10 mL \times 2), and dried over anhydrous Na₂SO₄, concentrated under reduced pressure to furnish the residue, which was purified

⁵ S. Nakamura, M. Hayashi, Y. Hiramatsu, N. Shibata, Y. Funahashi and T. Toru, J. Am. Chem. Soc., 2009, 131, 18240.

by flash column chromatography (petroleum ether/ethyl acetate = 6/1, v/v) to afford β -amino alcohol **6b** as white solid (71.6 mg, 83% yield). ¹H NMR of crude mixture revealed that the dr value was 1.5:1; ¹H NMR (300 MHz, CDCl₃) for the major isomer: δ 7.57-7.54 (m, 2H), 7.42-7.40 (m, 2H), 7.34-7.30 (m, 5H), 7.26-7.17 (m, 5H), 6.20 (s, 1H), 4.94-4.84 (m, 1H), 2.57 (d, J = 5.2 Hz, 1H), 2.40 (s, 3H), 2.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): § 143.00, 139.51, 137.37, 136.10, 129.24, 128.95, 128.18, 128.09, 127.97, 127.90, 127.59, 126.92, 119.02 (dd, J = 263.4, 248.3 Hz), 74.06 (dd, J = 263.4, 74.05 (dd, J = 263.4, 74.05 (dd, J = 263.4, 35.0, 24.3 Hz), 65.72 (dd, J = 27.0, 21.7 Hz), 21.44, 21.22 (d, J = 1.7 Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -110.33 (dd, J = 260.3, 3.1Hz, 1F), -123.12 (dd, J = 260.3, 16.1 Hz, 1F); Mp: 145-147 °C, IR (ATR): 3503, 3231, 2962, 1599, 1453, 1317, 1259, 1158, 1016, 978, 791, 700; HRMS (ESI): Exact mass calcd for C₂₃H₂₃F₂NNaO₃S [M+Na]⁺: 454.1259, Found: 454.1262; ¹H NMR (400 MHz, CDCl₃) for the minor isomer: δ 7.77-7.74 (m, 4H), 7.55 (s, 1H), 7.46-7.42 (m, 2H), 7.40-7.36 (m, 1H), 7.31-7.23 (m, 6H), 4.50-4.43 (m, 1H), 3.25 (s, 1H), 2.40 (s, 3H), 1.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.90, 140.40, 135.90, 129.41, 129.00, 128.48, 128.16, 128.13, 128.02, 126.87 (d, *J* = 2.3 Hz), 126.82, 118.40 (dd, *J* = 266.8, 247.2 Hz), 74.12 (dd, *J* = 37.1, 23.4 Hz), 66.89 (dd, *J* = 27.5, 23.2 Hz), 21.48, 18.06 (d, J = 7.1 Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -110.69 (d, J = 258.9Hz, 1F), -126.77 (dd, J = 259.2, 19.2 Hz, 1F); Mp: 180-182 °C, IR (ATR): 3544, 3299, 1599, 1493, 1404, 1319, 1147, 1040, 873, 815, 703; HRMS (ESI): Exact mass calcd for C₂₃H₂₃F₂NNaO₃S [M+Na]⁺: 454.1259, Found: 454.1262.

Compound **3q** (91.9 mg, 0.2 mmol) was dissolved in CH₂Cl₂/HFIP (2/1, v/v, 3.0 mL), followed by the addition of *m*-chloroperoxybenzoic acid (*m*-CPBA) (203.4 mg, 1.0 mmol, 85% wt, 5.0 equivs) and phosphate buffer (0.2 mL, pH = 7.6) at room temperature.⁶ The resulting mixture was stirred until the complete consumption of **3q** as indicated by TLC analysis (about 18.0 h) before quenched by saturated Na₂S₂O₃ (aq.). The solution was extracted with CH₂Cl₂ (10 mL × 3). The combined organic layer was washed with saturated NaHCO₃ (aq.) and brine (10 mL × 2), sequentially. The

⁶ S. Kobayashi, H. Tanaka, H. Amii and K. Uneyama, *Tetrahedron*, 2003, 59, 1547.

solution was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to give the residue, which was purified by column chromatography (petroleum ether/ethyl acetate = 6/1, v/v) to afford β-amino ester **6c** as white solid (48.5 mg, 51% yield), Mp: 178-180 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.71-7.68 (m, 2H), 7.52-7.50 (m, 2H), 7.37-7.35 (m, 3H), 7.24-7.21 (m, 2H), 6.83-6.79 (m, 2H), 6.68-6.63 (m, 2H), 6.04 (s, 1H), 3.78 (s, 3H), 2.41 (s, 3H), 1.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.87 (t, *J* = 32.6 Hz), 157.94, 143.36, 142.60, 139.48, 137.05, 129.49, 128.70, 128.44, 127.26, 127.02, 121.41, 114.49, 114.44 (t, *J* = 262.8 Hz), 64.68 (t, *J* = 23.2 Hz), 55.56, 21.49, 18.36 (dd, *J* =5.2, 1.5 Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -112.73 (d, *J* = 248.2 Hz, 1F), -115.03 (d, *J* = 248.2 Hz, 1F); IR (ATR): 3268, 2921, 1780, 1597, 1505, 1428, 1293, 1113, 1017, 971, 805, 712; HRMS (ESI): Exact mass calcd for C₂₄H₂₃F₂NNaO₅S [M+Na]⁺: 498.1157, Found: 498.1161.

To a 25 mL oven-dried Schlenk tube were added trimethylsilylacetylene (147.0 μ L, 1.0 mmol, 5.0 equivs) and 2.0 mL anhydrous THF, followed by the addition of EtMgBr (1.0 M in THF, 1.0 mL, 1.0 mmol, 5.0 equivs) at room temperature. The resulting solution was stirred for 3 h at room temperature. The reaction mixture was cooled to 0 °C, and then **3a** (85.9 mg, 0.2 mmol, 1.0 equiv) was added at 0 °C in one portion. The resulting mixture was stirred at room temperature. After full consumption of **3a** as indicated by TLC analysis (about 1.0 h), the reaction solution was quenched by saturated NH₄Cl (aq.), and then extracted with CH₂Cl₂ (10 mL × 3). The combined organic layer was washed with saturated brine (10 mL × 2). The solution was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to give the crude **S1**, which was used directly in the next step without further purification.

To above crude **S1** were added MeOH (1 mL, 0.2 M) and K_2CO_3 (27.6 mg, 0.2 mmol, 1.0 equiv). After being stirred at room temperature until complete conversion of **S1**, the reaction mixture was concentrated under vacuum. Then saturated NH₄Cl (aq.) was added to the residue, which was extracted with diethyl ether (10 mL × 3). The combined organic phases are washed with water, brine and dried over Na₂SO₄. After filtration, the solvent was evaporated and ¹H NMR of the crude residue

revealed that dr value was 5.8:1. The combined residue was purified by column chromatography (petroleum ether:ethyl acetate = 6/1, v/v) to afford **6d** as white solid (62.0 mg, 68% yield), Mp: 120-122 °C; For the major isomer: ¹H NMR (300 MHz, CDCl₃): δ 7.88-7.86 (m, 2H), 7.60-7.57 (m, 2H), 7.46-7.36 (m, 5H), 7.27-7.16 (m, 1H), 7.06-7.00 (t, J = 7.8 Hz, 2H), 6.87-6.84 (m, 2H), 5.72 (s, 1H), 4.84 (d, J = 2.1 Hz, 1H), 2.64 (d, J = 4.5 Hz, 1H), 2.54 (s, 3H), 1.77 (d, J = 3.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 146.26 (d, J = 5.2 Hz), 144.76, 139.33 (d, J = 3.9 Hz), 136.24, 135.54, 129.55, 129.01, 128.92, 128.71, 128.29 (d, J = 2.9 Hz), 128.19, 127.77, 126.74 (d, J = 2.3 Hz), 121.62 (dd, J = 2.69.6, 256.7 Hz), 96.19, 80.06 (t, J = 22.2 Hz), 73.29 (dd, J = 26.1, 23.9 Hz), 21.66, 21.06 (d, J = 7.1 Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -110.63 (dd, J = 225.6, 3.1 Hz, 1F), -120.37 (d, J = 225.6 Hz, 1F); IR (ATR): 3490, 1650, 1447, 1339, 1238, 1167, 1140, 1077, 979, 907, 878, 794; HRMS (ESI): Exact mass calcd for C₂₅H₂₃F₂NNaO₃S [M+Na]⁺: 478.1259, Found: 478.1285.

Part III. X-ray crystal data of 6d⁷

Data intensity of **6d** was collected using a XtaLAB PRO MM003 (Cu radiation) at 293 K in a nitrogen stream. Data collection and reduction were done by using the XtaLAB software package. The structures were solved by direct methods and refined by full-matrix least-squares on F² with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for **6d**: $C_{25}H_{23}F_2NO_3S$, T = 293(2) K, triclinic, P-1, a = 8.0332(2) Å, b = 8.5272(2) Å, c = 16.9075(4) Å, a = 99.329(2)^{\circ}, β = 99.436(2)°, γ = 101.204(2)°. V = 1097.99(5) Å³. Z = 2, ρ_{calc} = 1.378 g/cm³. Reflections collected 23454; independent reflections 4381 [R_{int} = 0.0586, R_{sigma} = 0.0344], R₁ = 0.0419, wR₂ = 0.1080 (all data), GOF = 1.073, and 293 parameter.

⁷ Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC 1884551).

Identification code	exp_588
Empirical formula	$C_{25}H_{23}F_2NO_3S$
Formula weight	455.50
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	8.0332(2)
b/Å	8.5272(2)
c/Å	16.9075(4)
α/°	99.329(2)
β/°	99.436(2)
$\gamma/^{\circ}$	101.204(2)
Volume/Å ³	1097.99(5)
Z	2
$\rho_{calc}g/cm^3$	1.378
µ/mm ⁻¹	1.696
F(000)	476.0
Crystal size/mm ³	$0.48 \times 0.46 \times 0.42$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/	° 10.796 to 149.18
Index ranges	$\textbf{-9}\leqslanth\leqslant9,\textbf{-10}\leqslantk\leqslant10,\textbf{-21}\leqslantl\leqslant20$
Reflections collected	23454
Independent reflections	4381 [$R_{int} = 0.0586$, $R_{sigma} = 0.0344$]
Data/restraints/parameters	4381/0/293
Goodness-of-fit on F ²	1.073
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0391, wR_2 = 0.1060$
Final R indexes [all data]	$R_1 = 0.0419, wR_2 = 0.1080$
Largest diff. peak/hole / e Å-	³ 0.25/-0.39

Table 1. Crystal data and structure refinement for 6d.

Atom x		у	Z	U(eq)
S 1	4326.3(5)	2209.8(5)	6769.5(2)	42.55(13)
F1	1957.7(13)	3427.8(14)	9336.1(6)	56.6(3)
F2	1564.6(12)	889.0(12)	8779.9(6)	52.4(3)
01	-1098.7(14)	1449.0(15)	7960.8(9)	53.7(3)
02	3865.2(18)	657.8(16)	6232.6(8)	60.3(3)
03	6051.0(14)	2787.0(16)	7242.6(7)	52.1(3)
N1	3032.7(15)	2215.6(16)	7430.0(7)	37.9(3)
C1	6042(2)	2348(2)	9414.2(10)	50.4(4)
C2	7025(3)	1350(3)	9752.2(12)	66.4(6)
C3	6859(3)	-212(3)	9372.1(13)	66.0(6)
C4	5692(3)	-825(2)	8650.7(13)	60.7(5)
C5	4669(2)	127(2)	8312.8(11)	48.3(4)
C6	4841.9(18)	1735.2(19)	8688.1(9)	37.7(3)
C7	3665.0(18)	2777.0(18)	8340.0(9)	35.6(3)
C8	1899.9(19)	2412.5(19)	8618.4(9)	39.8(3)
C9	459.4(18)	2479.6(19)	7903.2(10)	40.3(3)
C10	1194.0(19)	1746.1(18)	7192.6(9)	39.4(3)
C11	4487(2)	4598.3(19)	8563.4(11)	45.9(4)
C12	244(2)	810(2)	6503.3(11)	54.9(4)
C13	222.3(19)	4212.8(19)	7887.3(11)	44.0(4)
C14	-484(2)	4977(2)	8499.8(13)	56.3(4)
C15	-803(3)	6504(3)	8486.3(16)	69.8(6)
C16	-423(3)	7303(2)	7866.2(17)	74.6(7)
C17	293(3)	6559(2)	7263.3(15)	67.1(6)
C18	598(2)	5011(2)	7266.6(12)	52.2(4)

Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters(Å2×103) for exp_588. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.

C19	3863(2)	3670(2)	6191.2(9)	44.0(4)
C20	2743(3)	3183(2)	5439.0(11)	56.4(4)
C21	2354(3)	4359(3)	5007.9(11)	63.2(5)
C22	3053(3)	5997(2)	5305.8(11)	55.0(4)
C23	4204(3)	6452(2)	6054.6(12)	59.3(5)
C24	4619(2)	5302(2)	6495.7(11)	53.7(4)
C25	2595(3)	7247(3)	4825.0(14)	74.4(6)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for exp_588. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Aton	n U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U12
S 1	46.4(2)	47.1(2)	39.7(2)	13.19(16)	9.93(15)	19.04(16)
F1	55.4(6)	73.7(7)	44.1(5)	7.1(5)	14.5(4)	22.8(5)
F2	44.7(5)	54.4(6)	67.0(6)	35.3(5)	12.2(4)	12.5(4)
01	33.6(6)	47.1(7)	85.1(9)	27.5(6)	11.9(6)	8.6(5)
O2	81.4(9)	51.5(8)	53.1(7)	7.2(6)	17.3(6)	27.0(6)
03	38.9(6)	71.7(8)	54.3(7)	24.8(6)	11.8(5)	21.0(5)
N1	35.7(6)	43.2(7)	35.1(6)	10.7(5)	2.7(5)	11.0(5)
C1	46.4(9)	65.1(11)	39.5(8)	8.1(7)	2.9(7)	18.8(8)
C2	54.0(11)	105.7(18)	45.7(10)	23.8(10)	-0.3(8)	34.4(11)
C3	69.4(12)	88.5(16)	63.0(12)	40.0(11)	19.1(10)	47.3(11)
C4	73.4(12)	52.4(11)	70.2(12)	27.5(9)	19.5(10)	30.5(9)
C5	52.3(9)	41.8(9)	51.6(9)	14.9(7)	3.1(7)	13.8(7)
C6	34.7(7)	43.5(8)	37.4(7)	13.4(6)	5.4(6)	11.9(6)
C7	35.5(7)	35.6(8)	35.7(7)	8.5(6)	3.5(5)	10.0(5)
C8	40.2(8)	40.4(8)	41.9(8)	13.8(6)	8.6(6)	11.6(6)
C9	32.5(7)	37.9(8)	52.0(9)	15.8(6)	5.5(6)	9.0(6)
C10	37.4(7)	34.9(8)	46.2(8)	14.5(6)	0.6(6)	10.1(6)
C11	44.3(8)	37.9(8)	53.3(9)	7.9(7)	6.4(7)	7.9(6)
C12	49.5(9)	53.6(11)	53.4(10)	8.1(8)	-3.9(7)	6.6(8)

C13	32.8(7)	38.8(8)	60.0(10)	13.2(7)	2.7(6)	9.8(6)
C14	44.5(9)	50.4(10)	75.4(12)	10.5(9)	12.4(8)	16.0(7)
C15	52.9(11)	49.2(11)	100.4(17)	-4.4(11)	4.8(10)	20.4(8)
C16	59.3(12)	36.6(10)	115.6(19)	8.7(11)	-15.3(12)	14.3(8)
C17	64.7(12)	45.0(11)	87.1(15)	25.4(10)	-7.9(10)	10.9(9)
C18	49.3(9)	44.4(9)	64.0(11)	19.2(8)	2.0(8)	13.6(7)
C19	48.6(8)	50.6(9)	37.5(8)	14.0(7)	10.7(6)	16.6(7)
C20	69.7(11)	54.6(11)	41.7(9)	12.2(8)	2.9(8)	11.5(9)
C21	73.5(12)	73.4(14)	42.6(9)	21.6(9)	-1.3(8)	19.1(10)
C22	64.2(11)	63.5(12)	48.7(9)	24.0(8)	17.7(8)	25.9(9)
C23	77.2(13)	50.8(11)	52.1(10)	18.6(8)	12.6(9)	13.7(9)
C24	62.6(11)	54.3(11)	42.9(9)	15.7(8)	4.8(7)	10.3(8)
C25	95.3(16)	81.1(16)	64.4(13)	37.1(11)	19.4(11)	40.6(13)

Table 4 Bond Lengths for exp_588.

Atom Atom Length/Å			Atom Atom Length/Å			
S 1	O2	1.4221(13)	C8	C9	1.547(2)	
S 1	O3	1.4302(12)	C9	C10	1.522(2)	
S 1	N1	1.6455(13)	C9	C13	1.530(2)	
S 1	C19	1.7611(16)	C10	C12	1.322(2)	
F1	C8	1.3599(18)	C13	C14	1.392(3)	
F2	C8	1.3557(18)	C13	C18	1.383(2)	
01	C9	1.4102(18)	C14	C15	1.378(3)	
N1	C7	1.5051(18)	C15	C16	1.383(4)	
N1	C10	1.4236(18)	C16	C17	1.377(3)	
C1	C2	1.394(3)	C17	C18	1.389(3)	
C1	C6	1.385(2)	C19	C20	1.381(2)	
C2	C3	1.353(3)	C19	C24	1.381(3)	
C3	C4	1.367(3)	C20	C21	1.385(3)	

C4	C5	1.385(2)	C21	C22	1.376(3)
C5	C6	1.384(2)	C22	C23	1.388(3)
C6	C7	1.5306(19)	C22	C25	1.506(3)
C7	C8	1.557(2)	C23	C24	1.383(3)
C7	C11	1.523(2)			

Table 5 Bond Angles for exp_588.

Atom Atom Angle/°					Atom Atom Atom Angle/°			
O2	S 1	O3	119.46(8)	C9	C8	C7	107.96(12)	
O2	S 1	N1	108.66(8)	01	C9	C8	108.54(12)	
O2	S 1	C19	107.91(8)	01	C9	C10	111.16(13)	
O3	S 1	N1	106.12(7)	01	C9	C13	110.78(12)	
O3	S 1	C19	108.44(8)	C10	C9	C8	98.91(11)	
N1	S 1	C19	105.42(7)	C10	C9	C13	113.99(13)	
C7	N1	S 1	123.59(9)	C13	C9	C8	112.84(13)	
C10	N1	S 1	123.13(10)	N1	C10	C9	107.28(12)	
C10	N1	C7	113.24(12)	C12	C10	N1	128.27(16)	
C6	C1	C2	120.13(18)	C12	C10	C9	124.42(15)	
C3	C2	C1	121.06(18)	C14	C13	C9	118.46(16)	
C2	C3	C4	119.34(17)	C18	C13	C9	122.57(16)	
C3	C4	C5	120.71(19)	C18	C13	C14	118.89(16)	
C6	C5	C4	120.62(17)	C15	C14	C13	120.4(2)	
C1	C6	C7	120.76(14)	C14	C15	C16	120.6(2)	
C5	C6	C1	118.10(15)	C17	C16	C15	119.20(19)	
C5	C6	C7	121.04(13)	C16	C17	C18	120.6(2)	
N1	C7	C6	111.62(12)	C13	C18	C17	120.3(2)	
N1	C7	C8	99.27(11)	C20	C19	S 1	120.04(14)	
N1	C7	C11	111.24(12)	C24	C19	S 1	119.64(12)	
C6	C7	C8	109.97(12)	C24	C19	C20	120.32(16)	

C11	C7	C6	113.25(12)	C19	C20	C21	118.97(18)
C11	C7	C8	110.65(12)	C22	C21	C20	121.96(17)
F1	C8	C7	110.78(12)	C21	C22	C23	117.95(17)
F1	C8	C9	114.71(12)	C21	C22	C25	120.71(18)
F2	C8	F1	105.09(12)	C23	C22	C25	121.33(19)
F2	C8	C7	110.44(12)	C24	C23	C22	121.20(18)
F2	C8	C9	107.79(12)	C19	C24	C23	119.56(16)

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for exp_588.

Atom	x	у	z	U(eq)
H1	-1912.06	1867.93	7829.87	81
H1A	6192.76	3426.62	9676.98	61
H2	7807.62	1765.51	10246.82	80
H3	7532.81	-861.79	9599.46	79
H4	5583.21	-1894.46	8383.89	73
H5	3859.06	-316.69	7829.28	58
H11A	5568.38	4800.41	8383.75	69
H11B	4689	4961.26	9145.99	69
H11C	3722.48	5181.11	8301.25	69
H12A	778.78	369.04	6100.61	66
H12B	-958.2	592.29	6421.16	66
H14	-742.79	4453.52	8920.89	68
H15	-1277.69	7002.44	8898.12	84
H16	-647.26	8329.86	7856.49	90
H17	573.89	7097.68	6850.28	81
H18	1056.35	4509.91	6849.37	63
H20	2258.32	2082.47	5225.32	68
H21	1596.97	4031.83	4502.1	76
H23	4705.68	7551.58	6263.65	71

H24	5400.94	5624.82	6994.11	64
H25A	2276.89	6760.77	4252.54	112
H25B	3576.49	8148.1	4917.58	112
H25C	1639.29	7629.79	4998.29	112

Part IV. ¹H, ¹³C, ¹⁹F NMR spectra

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

HXS-HF-34-300M-F

HXS-HF-91-300M-F

HXS-HF-138-300M-F

HXS-HF-143-300M-F

HXS-HF-75-300M-F

HXS-HG-33-300M-F

HXS-HG-73-300M-F

HXS-HF-133-300M-F

HXS-HF-108-H-400M-C

HXS-HF-108-H-300M-F

HXS-HG-66-300M-F

