Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Supporting Information

Catalyst- and additive-free annulation/aromatization leading to

benzothiazoles and naphthothiazoles

Zhenhua Xu, Huawen Huang,* Hongbiao Chen, and Guo-Jun Deng*

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China E-mail: hwhuang@xtu.edu.cn; gjdeng@xtu.edu.cn

Table of Contents

General information	S2
Optimization of reaction conditions	S 3
General procedure for the synthesis of fused thiazoles	S4
Characterization data of products	S5
Copies of ¹ H and ¹³ C NMR spectra of all products	S27

General information

All reactions were carried out under air atmosphere unless otherwise noted. Column chromatography was performed using aluminum oxide (neutral) (100-200 mesh). ¹H NMR and ¹³C NMR spectra were recorded on Bruker-AV (400 and 100 MHz, respectively) instrument internally referenced to tetramethylsilane (TMS) or chloroform signals. Mass spectra were measured on Agilent 5975 GC-MS instrument (EI). High-resolution mass spectra were recorded at the Institute of Chemistry, Chinese Academy of Sciences. The structures of known compounds were further corroborated by comparing their ¹H NMR, ¹³C NMR data and MS data with those of literature. Ketoxime acetates were prepared according previously reported method. All other reagents were obtained from commercial suppliers and used without further purification. The molecular weight of S₈ is determined to be 32 g/mol unless otherwise noted.

Optimization of reaction conditions

Table S1.^a

I	NOAc	O II			Ņ=
	+	Н _	S ₈		≺
			solvent, T °C, 12 h		
1a		2a			3a
entry	catalyst	base	solvent	T/°C	yield $(\%)^b$
1	CuI	Li ₂ CO ₃	DMSO	120	43
2	CuBr	Li ₂ CO ₃	DMSO	120	80
3	CuCl	Li ₂ CO ₃	DMSO	120	31
4	CuBr ₂	Li ₂ CO ₃	DMSO	120	25
5	CuCl ₂	Li ₂ CO ₃	DMSO	120	20
6	$Cu(OAc)_2$	Li ₂ CO ₃	DMSO	120	trace
7		Li ₂ CO ₃	DMSO	120	65
8		Na ₂ CO ₃	DMSO	120	47
9		K_2CO_3	DMSO	120	40
10		Cs_2CO_3	DMSO	120	25
11		Et ₃ N	DMSO	120	44
12		LiOH	DMSO	120	49
13		BzOH	DMSO	120	54
14			DMSO	120	85 (83) ^c
15			toluene	120	trace
16			CH ₃ CN	120	trace
17			DMF	120	34
18			1,4-dioxane	120	trace
19			DMSO	110	70
20			DMSO	130	82
21^d			DMSO	120	70
22^{e}			DMSO	120	trace

^{*a*} Reaction conditions: **1a** (0.3 mmol), **2a** (0.2 mmol), S₈ (0.6 mmol), catalyst (15 mol %), base (50 mol %), solvent (1.0 mL), air, 12 h. ^{*b*} Yields determined by GC analysis based on **2a** with dodecane as the internal standard. ^{*c*} Isolated yield. ^{*d*}N₂ atmosphere. ^{*e*}O₂ atmosphere.

General procedure for the synthesis of fused thiazoles

General procedure A: Oxime acetate 1 (0.3 mmol), aldehyde 2 (0.2 mmol), S_8 (19.2 mg, 0.6 mmol) and DMSO (1.0 mL) were added successfully to a 10 mL oven-dried reaction vessel. The sealed reaction vessel was stirred at 120 °C for 12 h. After cooling to room temperature, the reaction was diluted with ethyl acetate (10 mL) and water (10 mL). The organic layer was separated, and the aqueous layer was extracted with ethyl acetate (10 mL) for three times. The combined organic layer was brine and dried over magnesium sulfate and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate) to yield the desired product **3**,**4**.

Gram-scale experiment for the synthesis of **3j**: 3,4-dihydronaphthalen-1(2H)-one-O-acetyl oxime **1a** (1.53 g, 7.5 mmol), 4-bromobenzaldehyde **2j** (0.93 g, 5.0 mmol), S₈ (480 mg, 15 mmol) and DMSO (25 mL) were added successfully to a 100 mL ovendried reaction flask. The sealed reaction flask was stirred at 120 °C for 22 h. After cooling to room temperature, the reaction was diluted with ethyl acetate (100 mL) and water (100 mL). The organic layer was separated, and the aqueous layer was extracted with ethyl acetate (100 mL) for three times. The combined organic layer was brine and dried over magnesium sulfate and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (PE/EA: 50/1) to yield the desired product **3j** (1.39 g, 82%) as a light yellow solid.

Characterization data of products

2-Phenylnaphtho[1,2-d]thiazole (3a)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), benzaldehyde (**2a**, 21 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 100/1) yielded **3a** (43.3 mg, 83%) as a green solid. mp: 99–101 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.96 (d, *J* = 8.2 Hz, 1H), 8.21 (dt, *J* = 8.5, 2.3 Hz, 2H), 7.94 (dd, *J* = 15.9, 8.4 Hz, 2H), 7.81 (d, *J* = 8.7 Hz, 1H), 7.73–7.68 (m, 1H), 7.63–7.56 (m, 1H), 7.55–7.47 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 150.4, 134.0, 132.1, 131.7, 130.6, 129.0, 128.8, 128.1, 127.3, 126.9, 126.1, 125.9, 124.0, 119.0. HRMS (ESI) m/z calcd for C₁₇H₁₂NS⁺ (M+H)⁺ 262.0685, found 262.0689.

2-(2-Chlorophenyl)naphtho[1,2-d]thiazole (3b)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), 2-chlorobenzaldehyde (**2b**, 23 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 100/1) yielded **3b** (51.9 mg, 88%) as a brown solid. mp: 199–201 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.93 (d, *J* = 8.2 Hz, 1H), 8.48 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.95 (t, *J* = 8.9 Hz, 2H), 7.83 (d, *J* = 8.7 Hz, 1H), 7.73–7.66 (m, 1H), 7.63–7.57 (m, 1H), 7.55 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.47–7.37 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.7, 148.8, 132.9, 132.4, 132.3, 132.0, 131.7, 130.8, 130.7, 128.7, 128.1, 127.1, 127.0, 126.2, 126.2, 123.9, 118.7. HRMS (ESI) m/z calcd for C₁₇H₁₁CINS⁺ (M+H)⁺ 296.0295, found 296.0299.

2-(o-Tolyl)Naphtho[1,2-d]thiazole (3c)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), 2-methylbenzaldehyde (**2c**, 24 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 70/1) yielded **3c**

(44.0 mg, 80%) as a gray solid. mp: 88–90 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.88 (d, *J* = 8.2 Hz, 1H), 7.94 (dd, *J* = 12.0, 8.4 Hz, 2H), 7.86 (d, *J* = 7.3 Hz, 1H), 7.81 (d, *J* = 8.7 Hz, 1H), 7.71–7.64 (m, 1H), 7.61-7.55 (m, 1H), 7.40–7.29 (m, 3H), 2.78 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 167.1, 150.0, 137.3, 133.1, 132.0, 131.7, 130.5, 129.8, 128.8, 128.0, 126.9, 126.2, 126.1, 125.8, 124.0, 118.8, 21.8. HRMS (ESI) m/z calcd for C₁₈H₁₄NS⁺ (M+H)⁺ 276.0842, found 276.0845.

2-(3-Fluorophenyl)naphtho[1,2-d]thiazole (3d)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), 3-fluorobenzaldehyde (**2d**, 22 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 100/1) yielded **3d** (50.2 mg, 90%) as a dark blue solid. mp: 138–140 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.89 (d, *J* = 8.2 Hz, 1H), 7.97–7.84 (m, 4H), 7.79 (d, *J* = 8.8 Hz, 1H), 7.72–7.65 (m, 1H), 7.58 (td, *J* = 7.6, 7.0, 1.2 Hz, 1H), 7.44 (td, *J* = 8.0, 5.8 Hz, 1H), 7.20–7.12 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.3 (d, *J* = 3.1 Hz), 163.1 (d, *J* = 245.3 Hz), 150.3, 136.1(d, *J* = 8.0 Hz), 132.1, 131.8, 130.6 (d, *J* = 8.2 Hz), 128.8, 128.1, 127.1, 126.3 (d, *J* = 3.1 Hz), 124.0, 123.0, 123.0, 118.8, 117.4 (d, *J* = 21.3 Hz), 114.0 (d, *J* = 23.4 Hz). HRMS (ESI) m/z calcd for C₁₇H₁₁FNS⁺ (M+H)⁺ 280.0591, found 280.0591.

2-(3-Chlorophenyl)naphtho[1,2-d]thiazole (3e)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), 3-chlorobenzaldehyde (**2e**, 23 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 100/1) yielded **3e** (50.2 mg, 85%) as a dark blue solid. mp: 156–158 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.86 (d, J = 8.2 Hz, 1H), 8.17 (s, 1H), 7.95 (d, J = 7.2 Hz, 1H), 7.90 (d, J = 8.1 Hz, 1H), 7.83 (d, J = 8.7 Hz, 1H), 7.75 (d, J = 8.7 Hz, 1H), 7.67 (t, J = 7.3 Hz, 1H), 7.61–7.53 (m, 1H), 7.46–7.30 (m, 2H).¹³C NMR (100 MHz, CDCl₃) δ 165.1, 150.3, 135.5, 135.0, 132.0, 131.8, 130.3, 130.2, 128.7, 128.0, 127.1, 127.0, 127.0, 126.3, 126.2, 125.3, 124.0, 118.8. HRMS (ESI) m/z calcd for C₁₇H₁₁ClNS⁺ (M+H)⁺ 296.0295, found 296.0299.

2-(*m*-Tolyl)naphtho[1,2-*d*]thiazole (3f)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), 3-methylbenzaldehyde (**2f**, 24 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 100/1) yielded **3f** (37.4 mg, 68%) as a dark blue solid. mp: 121–123 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.94 (d, *J* = 8.2 Hz, 1H), 8.04 (s, 1H), 8.01–7.89 (m, 3H), 7.81 (d, *J* = 8.7 Hz, 1H), 7.73–7.65 (m, 1H), 7.63–7.55 (m, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.31 (d, *J* = 7.6 Hz, 1H), 2.49 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 167.3, 150.4, 138.8, 133.9, 132.1, 131.6, 131.4, 128.9, 128.8, 128.1, 127.8, 126.9, 126.1, 125.8, 124.6, 124.1, 119.0, 21.4. HRMS (ESI) m/z calcd for C₁₈H₁₄NS⁺ (M+H)⁺ 276.0842, found 276.0845.

2-(3-Methoxyphenyl)naphtho[1,2-d]thiazole (3g)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), 3-methoxybenzaldehyde (**2g**, 25 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 50/1) yielded **3g** (53.5 mg, 92%) as a brownish green solid. mp: 95–97 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.92 (d, J = 8.2 Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.88 (d, J = 8.7 Hz, 1H), 7.83–7.75 (m, 2H), 7.75–7.63 (m, 2H), 7.58 (ddd, J = 8.1, 7.0, 1.3 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 7.02 (ddd, J = 8.3, 2.6, 0.8 Hz, 1H), 3.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 160.1, 150.3, 135.2, 132.0, 131.7, 130.0, 128.8, 128.1, 126.9, 126.1, 125.9, 124.0, 120.0, 118.9, 116.7, 112.1, 55.5. HRMS (ESI) m/z calcd for C₁₈H₁₄NOS⁺ (M+H)⁺ 292.0791, found 292.0794.

2-(4-Fluorophenyl)naphtho[1,2-d]thiazole (3h)

The general procedure A was followed using 3,4-dihydronaphthalen-1(2H)-one O-acetyl oxime

(1a, 60.9 mg, 0.3 mmol), 4-fluorobenzaldehyde (2h, 22 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 100/1) yielded 3h (51.9 mg, 93%) as a white solid. mp: 105–107 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.89 (d, J = 8.1 Hz, 1H), 8.23–8.10 (m, 2H), 7.94 (d, J = 8.1 Hz, 1H), 7.89 (d, J = 8.7 Hz, 1H), 7.79 (d, J = 8.7 Hz, 1H), 7.72–7.65 (m, 1H), 7.62–7.56 (m, 1H), 7.23–7.15 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6 (d, J = 24.7 Hz), 163.0, 150.4, 132.1, 131.6, 130.3 (d, J = 3.3 Hz), 129.3 (d, J = 8.5 Hz), 128.7, 128.1, 127.0, 126.1 (d, J = 22.0 Hz), 124.0, 118.9, 116.2, 116.0. HRMS (ESI) m/z calcd for C₁₇H₁₁FNS⁺ (M+H)⁺ 280.0591, found 280.0591.

2-(4-Chlorophenyl)naphtho[1,2-d]thiazole (3i)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), 4-chlorobenzaldehyde (**2i**, 28.1 mg, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 100/1) yielded **3i** (47.8 mg, 81%) as a beige solid. mp: 156–158 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.87 (d, *J* = 8.2 Hz, 1H), 8.14–8.01 (m, 2H), 7.92 (d, *J* = 8.1 Hz, 1H), 7.85 (d, *J* = 8.7 Hz, 1H), 7.77 (d, *J* = 8.7 Hz, 1H), 7.71–7.63 (m, 1H), 7.61–7.52 (m, 1H), 7.49–7.36 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 150.4, 136.5, 132.4, 132.1, 131.7, 129.2, 128.7, 128.4, 128.1, 127.0, 126.2, 126.1, 123.9, 118.8. HRMS (ESI) m/z calcd for C₁₇H₁₁ClNS⁺ (M+H)⁺ 296.0295, found 296.0299.

2-(4-Bromophenyl)naphtho[1,2-d]thiazole (3j)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), 4-bromobenzaldehyde (**2j**, 37.0 mg, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 50/1) yielded **3j** (51.0 mg, 75%) as a light yellow white solid. mp: 159–161 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.86 (d, *J* = 8.2 Hz, 1H), 8.03–7.95 (m, 2H), 7.92 (d, *J* = 8.1 Hz, 1H), 7.84 (d, *J* = 8.7 Hz, 1H), 7.76 (d, *J* = 8.7 Hz, 1H), 7.71–7.64 (m, 1H), 7.62–7.53 (m, 3H).¹³C NMR (100 MHz, CDCl₃) δ 165.5, 150.4, 132.8, 132.1, 132.0, 131.7, 128.7, 128.6, 128.1, 127.0, 126.2, 126.1, 124.9, 123.9, 118.8. HRMS (ESI) m/z calcd for C₁₇H₁₁BrNS⁺ (M+H)⁺ 339.9790, found 339.9793.

2-(4-Nitrophenyl)naphtho[1,2-d]thiazole (3k)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), 4-nitrobenzaldehyde (**2k**, 30.2 mg, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 20/1) yielded **3k** (27.5 mg, 45%) as a dark green solid. mp: 211–213 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.89 (d, J = 8.2 Hz, 1H), 8.37–8.24 (m, 4H), 7.94 (dd, J = 17.6, 8.4 Hz, 2H), 7.85 (d, J = 8.8 Hz, 1H), 7.72 (t, J = 7.1 Hz, 1H), 7.65–7.59 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 150.7, 148.7, 139.4, 132.6, 132.2, 128.9, 128.2, 127.8, 127.4, 127.2, 126.6, 124.3, 123.9, 118.8. HRMS (ESI) m/z calcd for C₁₇H₁₁N₂O₂S⁺ (M+H)⁺ 307.0536, found 307.0537.

2-(p-Tolyl)naphtho[1,2-d]thiazole (3l)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), 4-methylbenzaldehyde (**2l**, 24 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc:100/1) yielded **3l** (47.9 mg, 87%) as a ink-blue solid. mp:106–108 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.92 (d, J = 8.2 Hz, 1H), 8.07 (d, J = 8.1 Hz, 2H), 7.93 (d, J = 8.1 Hz, 1H), 7.88 (d, J = 8.7 Hz, 1H), 7.77 (d, J = 8.7 Hz, 1H), 7.71–7.64 (m, 1H), 7.57 (td, J = 7.6, 7.0, 1.2 Hz, 1H), 7.30 (d, J = 7.9 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 150.3, 141.0, 132.0, 131.4, 131.3, 129.7, 128.7, 128.0, 127.2, 126.8, 126.0, 125.7, 124.0, 118.9, 21.5. HRMS (ESI) m/z calcd for C₁₈H₁₄NS⁺ (M+H)⁺ 276.0842, found 276.0845.

2-(4-(*tert*-Butyl)phenyl)naphtho[1,2-*d*]thiazole (3m)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), 4-(tert-butyl)benzaldehyde (**2m**, 34 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc:100/1) yielded **3m**

(43.1 mg, 68%) as a white solid. mp:110–112 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.93 (d, J = 8.2 Hz, 1H), 8.11 (d, J = 8.3 Hz, 2H), 7.93 (d, J = 8.1 Hz, 1H), 7.88 (d, J = 8.7 Hz, 1H), 7.77 (d, J = 8.7 Hz, 1H), 7.68 (t, J = 7.6 Hz, 1H), 7.60–7.54 (m, 1H), 7.52 (d, J = 8.4 Hz, 2H), 1.37 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 154.1, 150.4, 132.0, 131.5, 131.2, 128.7, 128.0, 127.1, 126.9, 126.0, 126.0, 125.7, 124.1, 119.0, 35.0, 31.2. HRMS (ESI) m/z calcd for C₂₁H₂₀NS⁺ (M+H)⁺ 318.1311, found 318.1316.

2-(4-(Trifluoromethyl)phenyl)naphtho[1,2-d]thiazole (3n)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), 4-(trifluoromethyl)benzaldehyde (**2n**, 28 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc:70/1) yielded **3n** (57.2 mg, 87%) as a white solid. mp:147–149 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.89 (d, J = 8.2 Hz, 1H), 8.26 (d, J = 8.1 Hz, 2H), 7.95 (d, J = 8.1 Hz, 1H), 7.89 (d, J = 8.8 Hz, 1H), 7.81 (d, J = 8.8 Hz, 1H), 7.71 (dd, J = 17.7, 8.1 Hz, 3H), 7.60 (t, J = 7.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 150.5, 137.1, 132.1, 132.1, 132.0 (q, J = 32.4 Hz), 128.8, 128.1, 127.4, 127.2, 126.6, 126.4, 126.0 (q, J = 3.8 Hz), 124.0, 123.8 (q, J = 270.6 Hz), 118.8. HRMS (ESI) m/z calcd for C₁₈H₁₁F₃NS⁺ (M+H)⁺ 330.0559, found 330.0562.

2-([1,1'-Biphenyl]-4-yl)naphtho[1,2-d]thiazole (30)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), [1,1'-biphenyl]-4-carbaldehyde (**2o**, 36.4 mg, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc:60/1) yielded **3o** (44.5 mg, 66%) as a light yellow solid. mp:183–185 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.94 (d, *J* = 8.2 Hz, 1H), 8.25 (d, *J* = 8.4 Hz, 2H), 7.94 (d, *J* = 8.1 Hz, 1H), 7.89 (d, *J* = 8.7 Hz, 1H), 7.79 (d, *J* = 8.7 Hz, 1H), 7.75–7.64 (m, 5H), 7.59 (td, *J* = 7.6, 7.0, 1.2 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.42–7.35 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 150.5, 143.3, 140.2, 132.9, 132.1, 131.7, 128.9, 128.7, 128.1, 127.9, 127.7, 127.6, 127.1, 126.9, 126.1, 125.9, 124.1, 118.9. HRMS (ESI) m/z calcd for C₂₃H₁₆NS⁺ (M+H)⁺ 338.0998, found 338.0997.

2-(4-Methoxyphenyl)naphtho[1,2-d]thiazole (3p)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), 4-methoxybenzaldehyde (**2p**, 25 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc:50/1) yielded **3p** (44.8 mg, 77%) as a gray solid. mp:128–130 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.91 (d, J = 8.2 Hz, 1H), 8.13 (d, J = 8.8 Hz, 2H), 7.94 (d, J = 8.1 Hz, 1H), 7.88 (d, J = 8.7 Hz, 1H), 7.77 (d, J = 8.7 Hz, 1H), 7.71–7.64 (m, 1H), 7.61–7.53 (m, 1H), 7.02 (d, J = 8.8 Hz, 2H), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 161.7, 150.3, 132.1, 131.2, 128.9, 128.6, 128.0, 126.8, 126.8, 126.0, 125.5, 124.0, 118.9, 114.4, 55.5. HRMS (ESI) m/z calcd for C₁₈H₁₄NOS⁺ (M+H)⁺ 292.0791, found 292.0794.

2-(3,4-Dimethylphenyl)naphtho[1,2-d]thiazole (3q)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), 3,4-dimethylbenzaldehyde (**2q**, 27 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 20/1) yielded **3q** (53.8 mg, 93%) as a gray solid. mp: 152–154 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.92 (d, J = 8.2 Hz, 1H), 7.97 (s, 1H), 7.92 (d, J = 8.1 Hz, 1H), 7.91–7.84 (m, 2H), 7.76 (d, J = 8.7 Hz, 1H), 7.71–7.63 (m, 1H), 7.60–7.53 (m, 1H), 7.27–7.21 (m, 1H), 2.37 (s, 3H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 150.4, 139.7, 137.3, 132.0, 131.6, 131.4, 130.2, 128.7, 128.3, 128.0, 126.8, 126.0, 125.6, 124.8, 124.1, 118.9, 19.8, 19.8. HRMS (ESI) m/z calcd for C₁₉H₁₆NS⁺ (M+H)⁺ 290.0998, found 290.1000.

2-(2,4-Dimethoxyphenyl)naphtho[1,2-d]thiazole (3r)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), 2,4-dimethoxybenzaldehyde (**2r**, 33.3 mg, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 10/1) yielded

3r (57.8 mg, 90%) as a dark green solid. mp: 145–147 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.94 (d, J = 8.2 Hz, 1H), 8.67 (d, J = 8.8 Hz, 1H), 7.90 (dd, J = 13.8, 8.4 Hz, 2H), 7.72 (d, J = 8.7 Hz, 1H), 7.69–7.63 (m, 1H), 7.60–7.48 (m, 1H), 6.67 (dd, J = 8.8, 2.4 Hz, 1H), 6.53 (d, J = 2.3 Hz, 1H), 3.99 (s, 3H), 3.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.5, 162.0, 158.2, 148.3, 131.9, 131.9, 130.5, 128.4, 128.0, 126. 5, 125.7, 124.7, 123.9, 118.9, 116.0, 106.0, 98.3, 55.6, 55.5. HRMS (ESI) m/z calcd for C₁₉H₁₆NO₂S⁺ (M+H)⁺ 322.0896, found 322.0897.

2-(3,4,5-Trimethoxyphenyl)naphtho[1,2-d]thiazole (3s)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), 3,4,5-trimethoxybenzaldehyde (**2s**, 39.3 mg, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 10/1) yielded **3s** (51.9 mg, 74%) as a ink-blue colour solid. mp: 183–185 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.93 (d, J = 8.2 Hz, 1H), 7.95 (d, J = 8.1 Hz, 1H), 7.89 (d, J = 8.7 Hz, 1H), 7.79 (d, J = 8.7 Hz, 1H), 7.69 (t, J = 7.2 Hz, 1H), 7.62–7.56 (m, 1H), 7.42 (s, 2H), 4.02 (s, 6H), 3.94 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 153.6, 150.3, 140.4, 132.1, 131.6, 129.4, 128.6, 128.1, 126.9, 126.1, 125.8, 124.0, 118.9, 104.6, 61.0, 56.3. HRMS (ESI) m/z calcd for C₂₀H₁₈NO₃S⁺ (M+H)⁺ 352.1002, found 352.1005.

2-(2,4-Dichlorophenyl)naphtho[1,2-d]thiazole (3t)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), 2,4-dichlorobenzaldehyde (**2t**, 35.0 mg, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 50/1) yielded **3t** (51.5 mg, 74%) as a light green solid. mp: 187–189 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.90 (d, J = 8.1 Hz, 1H), 8.48 (d, J = 8.5 Hz, 1H), 7.94 (dd, J = 14.4, 8.4 Hz, 2H), 7.83 (d, J = 8.7 Hz, 1H), 7.70 (t, J = 7.4 Hz, 1H), 7.60 (t, J = 7.4 Hz, 1H), 7.56 (s, 1H), 7.42 (d, J = 8.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 161.5, 148.7, 136.2, 133.0, 132.9, 132.4, 132.1, 131.0, 130.5, 128.7, 128.2, 127.6, 127.1, 126.5, 126.3, 123.9, 118.6. HRMS (ESI) m/z calcd for C₁₇H₁₀Cl₂NS⁺ (M+H)⁺ 329.9906, found 329.9909.

2-(Naphthalen-2-yl)naphtho[1,2-d]thiazole (3u)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), 2-naphthaldehyde (**2u**, 31.2 mg, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 50/1) yielded **3u** (56.0 mg, 90%) as a bright green solid. mp: 159–161 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.98 (d, *J* = 8.2 Hz, 1H), 8.63 (s, 1H), 8.32 (d, *J* = 8.5 Hz, 1H), 8.01–7.84 (m, 5H), 7.80 (d, *J* = 8.7 Hz, 1H), 7.71 (t, *J* = 7.6 Hz, 1H), 7.59 (t, *J* = 7.5 Hz, 1H), 7.54 (dd, *J* = 6.1, 3.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 150.4, 134.5, 133.3, 132.1, 131.7, 131.3, 128.8, 128.8, 128.8, 128.1, 127.9, 127.3, 127.1, 127.0, 126.8, 126.2, 126.0, 124.5, 124.1, 118.9. HRMS (ESI) m/z calcd for C₂₁H₁₄NS⁺ (M+H)⁺ 312.0842, found 312.0843.

2-(Thiophen-2-yl)naphtho[1,2-d]thiazole (3v)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), thiophene-2-carbaldehyde (**2v**, 19 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 50/1) yielded **3v** (43.8 mg, 82%) as a gray solid. mp: 105–107 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.86 (d, *J* = 8.2 Hz, 1H), 7.91 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 8.7 Hz, 1H), 7.76 (d, *J* = 8.7 Hz, 1H), 7.70–7.62 (m, 2H), 7.56 (ddd, *J* = 8.1, 7.0, 1.3 Hz, 1H), 7.47 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.12 (dd, *J* = 5.0, 3.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 160.4, 150.0, 137.8, 132.0, 131.2, 128.7, 128.4, 128.0, 128.0, 127.8, 126.9, 126.1, 125.9, 124.1, 118.7. HRMS (ESI) m/z calcd for C₁₅H₁₀NS₂⁺ (M+H)⁺ 268.0249, found 268.0252.

2-(Furan-2-yl)naphtho[1,2-d]thiazole (3w)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), furan-2-carbaldehyde (**2w**, 17 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 50/1) yielded **3w** (42.2 mg, 84%) as a dark green solid. mp: 106–108 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.88 (d, *J* = 8.2 Hz, 1H), 7.94 (d, *J* = 8.1 Hz, 1H), 7.88 (d, *J* = 8.7 Hz, 1H), 7.79 (d, *J* = 8.7 Hz, 1H), 7.70–7.64 (m, 1H), 7.62–7.54 (m, 2H), 7.28–7.23 (m, 1H), 6.61 (dd, *J* = 3.5, 1.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 156.7, 150.1, 149.1, 144.3, 132.1, 130.9, 128.5, 128.0, 126.9, 126.2, 126.0, 124.0, 118.8, 112.5, 110.8. HRMS (ESI) m/z calcd for C₁₅H₁₀NOS⁺ (M+H)⁺ 252.0478, found 252.0481.

2-(Pyridin-2-yl)naphtho[1,2-d]thiazole (3x)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), picolinaldehyde (**2x**, 19 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 50/1) yielded **3x** (33.5 mg, 64%) as a dark green solid. mp: 127–129 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.91 (d, J = 8.2 Hz, 1H), 8.68 (d, J = 7.9 Hz, 1H), 8.52 (d, J = 7.9 Hz, 1H), 7.96 (d, J = 8.8 Hz, 2H), 7.87 (td, J = 7.8, 1.7 Hz, 1H), 7.83 (d, J = 8.7 Hz, 1H), 7.73–7.67 (m, 1H), 7.62–7.56 (m, 1H), 7.41–7.33 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 151.7, 150.6, 149.5, 137.1, 133.2, 132.0, 128.9, 128.1, 127.0, 126.5, 126.2, 124.9, 123.7, 120.6, 119.3. HRMS (ESI) m/z calcd for C₁₆H₁₁N₂S⁺ (M+H)⁺ 263.0638, found 263.0641.

2-(Pyridin-4-yl)naphtho[1,2-d]thiazole (3y)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), isonicotinaldehyde (**2y**, 19 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 3/1) yielded **3y** (38.8 mg, 74%) as a dark green solid. mp: 151–153 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.91 (d, *J* = 8.2 Hz, 1H), 8.78 (d, *J* = 6.0 Hz, 2H), 8.08–8.00 (m, 2H), 8.00–7.90 (m, 2H), 7.86 (d, *J* = 8.8 Hz, 1H), 7.78–7.69 (m, 1H), 7.66–7.59 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 150.6, 150.4, 140.6, 132.2, 132.0, 128.7, 128.1, 127.3, 127.0, 126.5, 123.8, 120.8, 118.7. HRMS (ESI) m/z calcd for C₁₆H₁₁N₂S⁺ (M+H)⁺ 263.0636, found 263.0640.

2-(Quinolin-4-yl)naphtho[1,2-d]thiazole (3z)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), quinoline-4-carbaldehyde (**2y**, 31.5 mg, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 10/1) yielded **4a** (45.6 mg, 73%) as a dark green solid. mp: 140–142 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 9.42–9.18 (m, 1H), 9.03 (d, *J* = 4.5 Hz, 1H), 8.95 (d, *J* = 8.2 Hz, 1H), 8.25 (d, *J* = 8.3 Hz, 1H), 8.05–7.94 (m, 2H), 7.90 (d, *J* = 8.8 Hz, 1H), 7.88–7.79 (m, 2H), 7.74 (m, 2H), 7.68–7.61 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 150.7, 149.5, 148.9, 138.5, 132.4, 132.1, 130.1, 129.7, 128.9, 128.2, 128.2, 127.4, 127.2, 126.6, 126.4, 125.0, 124.0, 121.9, 118.6. HRMS (ESI) m/z calcd for C₂₀H₁₃N₂S⁺ (M+H)⁺ 313.0794, found 313.0797.

2-Cyclopropylnaphtho[1,2-d]thiazole (3aa)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), cyclopropanecarbaldehyde (**2z**, 15 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 100/1) yielded **4b** (33.8 mg, 75%) as an ink blue liquid.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.75 (d, J = 8.2 Hz, 1H), 7.90 (d, J = 8.1 Hz, 1H), 7.79 (d, J = 8.7 Hz, 1H), 7.72 (d, J = 8.7 Hz, 1H), 7.65–7.60 (m, 1H), 7.57–7.50 (m, 1H), 2.57–2.46 (m, 1H), 1.25 (d, J = 6.5 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 149.3, 131.9, 130.2, 128.2, 127.9, 126.6, 125.8, 124.9, 123.9, 118.8, 15.4, 11.8. HRMS (ESI) m/z calcd for C₁₄H₁₂NS⁺ (M+H)⁺ 226.0685, found 226.0686.

2-(*tert*-Butyl)naphtho[1,2-*d*]thiazole (3ab)

The general procedure **A** was followed using 3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1a**, 60.9 mg, 0.3 mmol), pivalaldehyde (**2aa**, 22 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatographyb on silica gel (*n*-hexane/EtOAc: 100/1) yielded **3aa** (28.9 mg, 60%) as an ink blue liquid.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.82 (d, J = 8.2 Hz, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.85 (d, J = 8.7 Hz, 1H), 7.73 (d, J = 8.7 Hz, 1H), 7.63 (t, J = 7.5 Hz, 1H), 7.53 (t, J = 7.4 Hz, 1H), 1.57 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 180.7, 149.2, 131.8, 131.2, 128.6, 127.9, 126.6, 125.7, 125.0,

124.0, 119.0, 38.4, 31.0. HRMS (ESI) m/z calcd for $C_{15}H_{16}NS^+$ (M+H)⁺ 242.0998, found 242.1000.

ÓMe

6-Methoxy-2-phenylnaphtho[1,2-d]thiazole (4a)

The general procedure **A** was followed using 5-methoxy-3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1b**, 69.9 mg, 0.3 mmol), benzaldehyde (**2a**, 21 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 20/1) yielded **4a** (52.4 mg, 90%) as a light green solid. mp: 107–109 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.50 (d, *J* = 8.3 Hz, 1H), 8.23 (d, *J* = 9.0 Hz, 1H), 8.17 (dd, *J* = 7.8, 1.7 Hz, 2H), 7.85 (d, *J* = 9.0 Hz, 1H), 7.58 (t, *J* = 8.0 Hz, 1H), 7.51–7.44 (m, 3H), 6.91 (d, *J* = 7.7 Hz, 1H), 4.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 155.6, 150.1, 133.9, 132.3, 130.5, 129.8, 128.9, 127.2, 127.1, 123.7, 119.8, 118.0, 116.2, 104.6, 55.5. HRMS (ESI) m/z calcd for C₁₈H₁₄NOS⁺ (M+H)⁺ 292.0791, found 292.0794.

MeO

7-Methoxy-2-phenylnaphtho[1,2-d]thiazole (4b)

The general procedure **A** was followed using 6-methoxy-3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1c**, 69.9 mg, 0.3 mmol), benzaldehyde (**2a**, 21 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 20/1) yielded **4b** (53.0 mg, 91%) as a yellow solid. mp: 158–160 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.80 (d, *J* = 9.0 Hz, 1H), 8.18–8.10 (m, 2H), 7.82 (d, *J* = 8.7 Hz, 1H), 7.66 (d, *J* = 8.7 Hz, 1H), 7.51–7.43 (m, 3H), 7.32 (dd, *J* = 9.0, 2.5 Hz, 1H), 7.23 (d, *J* = 2.4 Hz, 1H), 3.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 157.8, 150.5, 134.0, 133.4, 130.5, 129.5, 128.9, 127.2, 125.6, 125.0, 123.9, 119.5, 118.7, 106.9, 55.3. HRMS (ESI) m/z calcd for C₁₈H₁₄NOS⁺ (M+H)⁺ 292.0791, found 292.0794.

8-Methoxy-2-phenylnaphtho[1,2-d]thiazole (4c)

The general procedure **A** was followed using 7-methoxy-3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (1d, 69.9 mg, 0.3 mmol), benzaldehyde (2a, 21 μ L, 0.2 mmol), and S₈ (19.2 mg,

0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 20/1) yielded **4c** (54.1 mg, 93%) as a yellow solid. mp: $150-152 \degree$ C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.23 (d, *J* = 2.6 Hz, 1H), 8.19 (dd, *J* = 7.8, 1.6 Hz, 2H), 7.83 (d, *J* = 8.9 Hz, 1H), 7.76–7.69 (m, 2H), 7.53–7.47 (m, 3H), 7.25–7.19 (m, 1H), 4.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 158.6, 149.7, 133.9, 132.2, 130.5, 130.0, 129.7, 129.0, 127.3, 127.2, 125.7, 118.4, 116.4, 102.7, 55.6. HRMS (ESI) m/z calcd for C₁₈H₁₄NOS⁺ (M+H)⁺ 292.0791, found 292.0794.

8-Bromo-2-phenylnaphtho[1,2-d]thiazole (4d)

The general procedure **A** was followed using 7-bromo-3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1e**, 84.6 mg, 0.3 mmol), benzaldehyde (**2a**, 21 μ L, 0.2 mmol) and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 50/1) yielded **4d** (61.2 mg, 90%) as a light green solid. mp: 180–182 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 9.02 (s, 1H), 8.21–8.10 (m, 2H), 7.86 (d, J = 8.7 Hz, 1H), 7.75 (d, J = 8.7 Hz, 1H), 7.69 (d, J = 8.7 Hz, 1H), 7.65–7.57 (m, 1H), 7.50 (d, J = 5.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 149.4, 133.7, 132.5, 130.8, 130.4, 129.7, 129.6, 129.4, 129.0, 127.3, 126.5, 125.4, 121.1, 119.4. HRMS (ESI) m/z calcd for C₁₇H₁₁BrNS⁺ (M+H)⁺ 339.9790, found 339.9793.

5-Methyl-2-phenylnaphtho[1,2-*d*]thiazole (4e)

The general procedure **A** was followed using 4-methyl-3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1f**, 65.1 mg, 0.3 mmol), benzaldehyde (**2a**, 21 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 50/1) yielded **4e** (50.6 mg, 92%) as a dark green solid. mp: 139–141 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.95 (d, *J* = 7.5 Hz, 1H), 8.16 (dd, *J* = 7.9, 1.5 Hz, 2H), 8.04 (d, *J* = 8.3 Hz, 1H), 7.77–7.65 (m, 2H), 7.64–7.54 (m, 1H), 7.55 – 7.39 (m, 3H), 2.74 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 149.4, 134.0, 132.5, 131.4, 131.3, 130.3, 129.0, 128.6, 127.2, 126.6, 126.0, 124.5, 124.5, 119.0, 20.0. HRMS (ESI) m/z calcd for C₁₈H₁₄NS⁺ (M+H)⁺ 276.0842, found 276.0847.

5-(3,4-Dichlorophenyl)-2-phenylnaphtho[1,2-d]thiazole (4f)

The general procedure **A** was followed using 4-(3,4-dichlorophenyl)-3,4-dihydronaphthalen-1(2*H*)-one *O*-acetyl oxime (**1g**, 104.4 mg, 0.3 mmol), benzaldehyde (**2a**, 21 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 30/1) yielded **4f** (74.7 mg, 92%) as a yellow solid. mp: 165–167 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.98 (d, J = 8.1 Hz, 1H), 8.22–8.07 (m, 2H), 7.82 (d, J = 8.4 Hz, 1H), 7.73 (s, 1H), 7.67 (t, J = 7.5 Hz, 1H), 7.60 (d, J = 2.0 Hz, 1H), 7.56–7.45 (m, 5H), 7.31 (dd, J = 8.2, 2.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 150.5, 140.3, 135.6, 133.8, 132.5, 131.9, 131.8, 131.1, 130.7, 130.3, 130.1, 129.5, 129.0, 128.8, 127.3, 127.0, 126.5, 125.9, 124.6, 119.8. HRMS (ESI) m/z calcd for C₂₃H₁₄Cl₂NS⁺ (M+H)⁺ 406.0219, found 406.0220.

2-Phenylbenzofuro[4,5-d]thiazole (4g)

The general procedure **A** was followed using 6,7-dihydrobenzofuran-4(5*H*)-one *O*-acetyl oxime (**1h**, 57.9 mg, 0.3 mmol), benzaldehyde (**2a**, 21 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 50/1) yielded a mixture of **4g** (40.2 mg, 80%) as a yellow solid. mp: 98–100 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.20–8.12 (m, 2H), 7.82–7.75 (m, 2H), 7.61 (d, J = 8.8 Hz, 1H), 7.51 (d, J = 5.3 Hz, 3H), 7.43–7.37 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 154.5, 147.4, 145.1, 133.8, 130.8, 129.6, 129.0, 127.4, 121.9, 116.6, 109.9, 105.5. HRMS (ESI) m/z calcd for C₁₅H₁₀NOS⁺ (M+H)⁺ 252.0478, found 252.0481.

2-Phenylthieno[2',3':5,6]benzo[1,2-d]thiazole (4h)

The general procedure **A** was followed using 6,7-dihydrobenzo[*b*]thiophen-4(5*H*)-one *O*-acetyl oxime (**1i**, 62.7 mg, 0.3 mmol), benzaldehyde (**2a**, 21 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 20/1) yielded **4h** (47.0 mg,

88%) as a green solid. mp: 116–118 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.14 (dd, *J* = 7.2, 2.0 Hz, 2H), 8.07 (d, *J* = 5.4 Hz, 1H), 7.83 (d, *J* = 8.6 Hz, 1H), 7.79 (d, *J* = 8.6 Hz, 1H), 7.59 (d, *J* = 5.4 Hz, 1H), 7.51–7.45 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 149.2, 138.4, 134.3, 133.8, 131.1, 130.7, 129.0, 127.4, 127.0, 122.2, 119.6, 117.3. HRMS (ESI) m/z calcd for C₁₅H₁₀NS₂⁺ (M+H)⁺ 268.0249, found 268.0251.

2-(Furan-2-yl)benzofuro[4,5-d]thiazole (4i)

The general procedure **A** was followed using 6,7-dihydrobenzofuran-4(5*H*)-one *O*-acetyl oxime (**1h**, 57.9 mg, 0.3 mmol), furan-2-carbaldehyde (**2w**, 17 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 40/1) yielded **4i** (39.5 mg, 82%) as a dark green solid. mp: 111–113 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.77–7.69 (m, 2H), 7.65–7.51 (m, 2H), 7.41–7.35 (m, 1H), 7.21 (d, *J* = 3.4 Hz, 1H), 6.60 (dd, *J* = 3.3, 1.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 154.5, 148.9, 147.1, 145.1, 144.5, 128.8, 121.7, 116.5, 112.5, 111.2, 109.9, 105.5. HRMS (ESI) m/z calcd for C₁₃H₈NO₂S⁺ (M+H)⁺ 242.0270, found 242.0273.

2-(Thiophen-2-yl)benzofuro[4,5-d]thiazole (4j)

The general procedure **A** was followed using 6,7-dihydrobenzofuran-4(5*H*)-one *O*-acetyl oxime (**1h**, 57.9 mg, 0.3 mmol), thiophene-2-carbaldehyde (**2v**, 19 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 20/1) yielded **4j** (45.7 mg, 89%) as a yellow solid. mp: 129–131 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.78–7.72 (m, 1H), 7.72–7.63 (m, 2H), 7.55 (d, J = 8.7 Hz, 1H), 7.49 (d, J = 5.0 Hz, 1H), 7.35 (s, 1H), 7.12 (t, J = 4.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.2, 154.5, 146.9, 145.0, 137.5, 129.2, 129.0, 128.2, 128.0, 121.7, 116.4, 109.9, 105.6. HRMS (ESI) m/z calcd for C₁₃H₈NOS₂⁺ (M+H)⁺ 258.0042, found 258.0046.

2-(Furan-2-yl)thieno[2',3':5,6]benzo[1,2-d]thiazole (4k)

The general procedure **A** was followed using 6,7-dihydrobenzo[b]thiophen-4(5*H*)-one *O*-acetyl oxime (**1i**, 62.7 mg, 0.3 mmol), furan-2-carbaldehyde (**2w**, 17 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6

mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 20/1) yielded **4k** (41.1 mg, 80%) as a light green solid. mp: 161-163 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.06 (d, J = 5.4 Hz, 1H), 7.85 (d, J = 8.6 Hz, 1H), 7.79 (d, J = 8.6 Hz, 1H), 7.63–7.57 (m, 2H), 7.23 (d, J = 3.4 Hz, 1H), 6.62–6.57 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 148.9, 148.9, 144.5, 138.6, 134.1, 130.3, 127.1, 122.2, 119.7, 117.2, 112.5, 111.2. HRMS (ESI) m/z calcd for C₁₃H₈NOS₂⁺ (M+H)⁺ 258.0042, found 258.0046.

2-(Thiophen-2-yl)thieno[2',3':5,6]benzo[1,2-d]thiazole (4l)

The general procedure **A** was followed using 6,7-dihydrobenzo[b]thiophen-4(5*H*)-one *O*-acetyl oxime (**1i**, 62.7 mg, 0.3 mmol), thiophene-2-carbaldehyde (**2v**, 19 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 20/1) yielded a mixture of **4l** (50.8 mg, 93%) as a dark green solid. mp: 120–122 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.04 (d, *J* = 5.4 Hz, 1H), 7.84 (d, *J* = 8.6 Hz, 1H), 7.77 (d, *J* = 8.6 Hz, 1H), 7.68 (d, *J* = 3.5 Hz, 1H), 7.59 (d, *J* = 5.4 Hz, 1H), 7.49 (d, *J* = 5.0 Hz, 1H), 7.17–7.09 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 161.0, 148.7, 138.5, 137.5, 134.0, 130.7, 128.9, 128.1, 128.0, 127.0, 122.2, 119.6, 117.1. HRMS (ESI) m/z calcd for C₁₃H₈NS₃⁺ (M+H)⁺ 273.9813, found 273.9816.

2-(3,4,5-Trimethoxyphenyl)thieno[2',3':5,6]benzo[1,2-d]thiazole (4m)

The general procedure **A** was followed using 6,7-dihydrobenzo[*b*]thiophen-4(5*H*)-one *O*-acetyl oxime (**1i**, 62.7 mg, 0.3 mmol), 3,4,5-trimethoxybenzaldehyde (**2s**, 39.3 mg, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 10/1) yielded **4m** (63.5 mg, 89%) as a dark white solid. mp: 195–197 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.10 (d, J = 5.4 Hz, 1H), 7.87 (d, J = 8.6 Hz, 1H), 7.82 (d, J = 8.6 Hz, 1H), 7.62 (d, J = 5.4 Hz, 1H), 7.39 (s, 2H), 4.02 (s, 6H), 3.94 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167. 5, 153.5, 149.0, 140.4, 138.5, 134.2, 131.0, 129.2, 127.1, 122.2, 119.6, 117.2, 104.6, 61.0, 56.3. HRMS (ESI) m/z calcd for C₁₈H₁₆NO₃S₂⁺ (M+H)⁺ 358.0566, found 358.0568.

2-Phenyl-6*H*-thiazolo[5,4-*c*]carbazole (4n)

The general procedure **A** was followed using 2,3-dihydro-1*H*-carbazol-4(9*H*)-one *O*-acetyl oxime (**1j**, 72.6 mg, 0.3 mmol), benzaldehyde (**2a**, 21 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 10/1) yielded **4n** (36.6 mg, 61%) as a yellow solid. mp: 212–215 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.84 (d, *J* = 7.8 Hz, 1H), 8.32–8.18 (m, 3H), 7.86 (d, *J* = 8.5 Hz, 1H), 7.55–7.45 (m, 6H), 7.41–7.36 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 148.8, 138.8, 138.4, 134.2, 130.6, 129.0, 127.5, 126.9, 125.7, 123.3, 122.5, 120.1, 118.3, 116.6, 110.5, 109.6. HRMS (ESI) m/z calcd for C₁₉H₁₃N₂S⁺ (M+H)⁺ 301.0794, found 301.0797.

10-Phenylphenanthro[2',1':4,5]thieno[3,2-d]thiazole (40)

The general procedure **A** was followed using 2,3-dihydro-1*H*-carbazol-4(9*H*)-one *O*-acetyl oxime (**1j**, 72.6 mg, 0.3 mmol), thiophene-2-carbaldehyde (**2v**, 19 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 10/1) yielded **4o** (18.9 mg, 31%) as a dark green solid. mp: 223–225 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.78 (d, *J* = 7.8 Hz, 1H), 8.28 (s, 1H), 7.81 (d, *J* = 8.5 Hz, 1H), 7.73 (d, *J* = 3.6 Hz, 1H), 7.49 (dt, *J* = 13.9, 6.7 Hz, 4H), 7.38 (t, *J* = 7.0 Hz, 1H), 7.16 (t, *J* = 4.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.0, 148.4, 138.8, 138.4, 138.2, 128.8, 128.0, 127.9, 126.4, 125.7, 123.4, 122.4, 120.1, 118.1, 116.4, 110.4, 109.5. HRMS (ESI) m/z calcd for C₁₇H₁₁N₂S₂⁺ (M+H)⁺ 307.0358, found 307.0361.

6-Methyl-2-(thiophen-2-yl)-6H-thiazolo[5,4-c]carbazole (4p)

The general procedure **A** was followed using 9-methyl-2,3-dihydro-1*H*-carbazol-4(9*H*)-one *O*-acetyl oxime (**1k**, 76.8 mg, 0.3 mmol), thiophene-2-carbaldehyde (**2v**, 19 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 20/1) yielded **4p** (32.6 mg, 51%) as a yellow solid. mp: 184–186 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.78 (d, J = 7.7 Hz, 1H), 7.80 (d, J = 8.6 Hz, 1H), 7.69 (d, J = 3.4 Hz, 1H), 7.57–7.46 (m, 2H), 7.44–7.34 (m, 3H), 7.17–7.08 (m, 1H), 3.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.9, 148.4, 140.2, 139.9, 138.2, 128.8, 127.9, 127.8, 126.0, 125.4, 123.3, 121.7, 119.5, 117.8, 115.6, 108.3, 107.4, 29.5. HRMS (ESI) m/z calcd for C₁₈H₁₃N₂S₂⁺ (M+H)⁺ 321.0515, found 321.0517.

5-Methyl-2-phenylbenzo[*d*]thiazole (4q)

The general procedure **A** was followed using 3-methylcyclohex-2-enone *O*-acetyl oxime (**11**, 50.1 mg, 0.3 mmol), benzaldehyde (**2a**, 21 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 60/1) yielded **4q** (25.6 mg, 57%) as a dark green solid. mp: 145–147 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.09 (dd, J = 6.6, 2.9 Hz, 2H), 7.89 (s, 1H), 7.77 (d, J = 8.2 Hz, 1H), 7.51–7.47 (m, 3H), 7.22 (d, J = 8.0 Hz, 1H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 154.3, 136.5, 133.6, 131.9, 130.9, 129.0, 127.5, 126.9, 123.2, 121.1, 21.5.

2,4-Diphenylbenzo[d]thiazole (4r)

The general procedure **A** was followed using 4,5-dihydro-[1,1'-biphenyl]-2(3*H*)-one *O*-acetyl oxime (**1m**, 68.7 mg, 0.3 mmol), benzaldehyde (**2a**, 21 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 20/1) yielded **4r** (23.5 mg, 41%) as a yellow solid. mp: 102–104 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.06 (dd, J = 6.4, 3.1 Hz, 2H), 7.93 (d, J = 7.7 Hz, 2H), 7.84 (d, J = 7.9 Hz, 1H), 7.55 (d, J = 7.5 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 7.46–7.37 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 151.7, 139.0, 136.3, 133.8, 130.9, 129.9, 129.0, 128.2, 127.7, 127.6, 126.5, 125.4, 120.7. HRMS (ESI) m/z calcd for C₁₉H₁₄NS⁺ (M+H)⁺ 288.0842, found 288.0844.

2,7-Diphenyl-5-(p-tolyl)benzo[d]thiazole (4s)

The general procedure **A** was followed using 4"-methyl-1',6'-dihydro-[1,1':3',1"-terphenyl]-5'(2'*H*)-one *O*-acetyl oxime (**10**, 95.7 mg, 0.3 mmol), benzaldehyde (**2a**, 21 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 20/1) yielded **4q** (70.1 mg, 93%) as a light yellow

white solid. mp: 159–161 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.28 (s, 1H), 8.15–8.08 (m, 2H), 7.77 (d, J = 7.6 Hz, 2H), 7.69 (s, 1H), 7.64 (d, J = 7.7 Hz, 2H), 7.57–7.45 (m, 6H), 7.31 (d, J = 7.7 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 155.2, 140.6, 140.5, 137.7, 137.4, 136.4, 133.4, 133.0, 131.1, 129.7, 129.0, 129.0, 128.3, 127.9, 127.5, 127.2, 124.4, 120.1, 21.1. HRMS (ESI) m/z calcd for C₂₆H₂₀NS⁺ (M+H)⁺ 378.1311, found 378.1317.

5-(4-Methoxyphenyl)-2,7-diphenylbenzo[d]thiazole (4t)

The general procedure **A** was followed using 4"-methoxy-1',6'-dihydro-[1,1':3',1"-terphenyl]-5'(2'*H*)-one *O*-acetyl oxime (**1p**, 100.5 mg, 0.3 mmol), benzaldehyde (**2a**, 21 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 10/1) yielded **4r** (74.7 mg, 95%) as a light yellow white solid. mp: 149–151 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.22 (s, 1H), 8.13–8.05 (m, 2H), 7.75 (d, *J* = 7.6 Hz, 2H), 7.65 (d, *J* = 8.4 Hz, 3H), 7.52 (t, *J* = 7.5 Hz, 2H), 7.49–7.40 (m, 4H), 7.01 (d, *J* = 8.3 Hz, 2H), 3.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 159.4, 155.4, 140.6, 140.1, 136.3, 133.5, 133.1, 132.8, 131.0, 129.0, 128.9, 128.4, 128.2, 127.8, 127.4, 124.1, 119.9, 114.4, 55.3. HRMS (ESI) m/z calcd for C₂₆H₂₀NOS⁺ (M+H)⁺ 394.1260, found 394.1264.

5-(Naphthalen-2-yl)-2,7-diphenylbenzo[d]thiazole (4u)

The general procedure **A** was followed using 5-(naphthalen-2-yl)-1,6-dihydro-[1,1'-biphenyl]-3(2*H*)-one *O*-acetyl oxime (**1q**, 106.5 mg, 0.3 mmol), benzaldehyde (**2a**, 21 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 20/1) yielded **4s** (76.8 mg, 93%) as a yellow solid. mp: 204–206 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.39 (s, 1H), 8.16 (s, 1H), 8.14–8.04 (m, 2H), 7.94 (d, J = 8.5 Hz, 1H), 7.92–7.83 (m, 3H), 7.83–7.74 (m, 3H), 7.59–7.40 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 155.4, 140.5, 140.3, 137.8, 136.5, 133.6, 133.5, 133.4, 132.7, 131.1, 129.0, 129.0, 128.6, 128.3, 128.2, 127.9, 127.6, 127.5, 126.4, 126.1, 126.0, 125.6, 124.5, 120.6. HRMS (ESI) m/z calcd for C₂₉H₂₀NS⁺ (M+H)⁺ 414.1311, found 414.1314.

7-Phenyl-5-(p-tolyl)-2-(3,4,5-trimethoxyphenyl)benzo[d]thiazole (4v)

The general procedure **A** was followed using 4"-methyl-1',6'-dihydro-[1,1':3',1"-terphenyl]-5'(2'*H*)-one *O*-acetyl oxime (**1r**, 95.7 mg, 0.3 mmol), 3,4,5-trimethoxybenzaldehyde (**2s**, 39.3 mg, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 10/1) yielded **4t** (84.1 mg, 90%) as a gray white solid. mp: 212–214 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.24 (s, 1H), 7.75 (d, J = 7.7 Hz, 2H), 7.66 (s, 1H), 7.62 (d, J = 7.8 Hz, 2H), 7.53 (t, J = 7.5 Hz, 2H), 7.46 (d, J = 6.9 Hz, 1H), 7.34 (s, 2H), 7.29 (d, J = 7.8 Hz, 2H), 3.96 (s, 6H), 3.93 (s, 3H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 155.2, 153.5, 140.6, 140.4, 137.6, 137.4, 136.3, 133.0, 129.6, 128.9, 128.9, 128.2, 127.8, 127.1, 124.2, 119.9, 104.5, 60.9, 56.3, 21.1. HRMS (ESI) m/z calcd for C₂₉H₂₆NO₃S⁺ (M+H)⁺ 468.1628, found 468.1628.

5-(4-Methoxyphenyl)-7-phenyl-2-(thiophen-2-yl)benzo[d]thiazole (4w)

The general procedure **A** was followed using 4"-methoxy-1',6'-dihydro-[1,1':3',1"-terphenyl]-5'(2'*H*)-one *O*-acetyl oxime (**1s**, 100.5 mg, 0.3 mmol), thiophene-2-carbaldehyde (**2v**, 19 μ L, 0.2 mmol), and S₈ (19.2 mg, 0.6 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 10/1) yielded **4u** (72.6 mg, 91%) as a yellow solid. mp: 148–150 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.18 (s, 1H), 7.72 (d, J = 7.6 Hz, 2H), 7.68–7.59 (m, 4H), 7.55–7.41 (m, 4H), 7.10 (t, J = 4.3 Hz, 1H), 7.00 (d, J = 8.6 Hz, 2H), 3.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.2, 159.3, 154.9, 140.5, 140.2, 137.2, 136.2, 132.9, 132.3, 129.4, 129.0, 128.6, 128.3, 128.3, 128.1, 127.8, 124.1, 119.5, 114.3, 55.3. HRMS (ESI) m/z calcd for C₂₄H₁₈NOS₂⁺ (M+H)⁺ 400.0824, found 400.0828.

2-Phenyl-8-(phenylethynyl)naphtho[1,2-*d*]thiazole (5a)

To a stirred mixture of **4d** (68.2 mg, 0.2 mmol), $PdCl_2$ (1.8 mg, 5 mol%), PPh_3 (7.9 mg, 15 mol%) and CuI (1.9 mg, 5 mol%) in pressure tube (10 mL) was evacuated and purged with argon gas three times. To the tube was then added triethylamine (1.0 mL) via syringes. The mixture was stirred at room temperature for 30 min and then added phenylacetylene (33 µL, 0.30 mmol) via syringes. Thereafter, the reaction mixture was allowed to stir at 80 °C for 12 h. Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 50/1) yielded **5c** (56.3 mg, 78%) as a yellow solid. mp: 218–220 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 9.15 (s, 1H), 8.24 (d, *J* = 7.4 Hz, 2H), 7.94 (d, *J* = 8.7 Hz, 2H), 7.80 (d, *J* = 8.6 Hz, 1H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.66 (d, *J* = 7.4 Hz, 2H), 7.55 – 7.46 (m, 3H), 7.44 – 7.33 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 150.0, 133.8, 132.2, 131.7, 131.3, 130.7, 129.1, 128.7, 128.4, 128.3, 128.1, 127.6, 127.4, 125.5, 123.3, 121.6, 119.7, 90.3, 90.0. HRMS (ESI) m/z calcd for C₂₅H₁₆NS⁺ (M+H)⁺ 362.0998, found 362.1000.

8-((4-Pentylphenyl)ethynyl)-2-phenylnaphtho[1,2-d]thiazole (5b)

To a stirred mixture of **4d** (68.2 mg, 0.2 mmol), $PdCl_2$ (1.8 mg, 5 mol%), PPh_3 (7.9 mg, 15 mol%) and CuI (1.9 mg, 5 mol%) in pressure tube (10 mL) was evacuated and purged with argon gas three times. To the tube was then added triethylamine (1.0 mL) via syringes. The mixture was stirred at room temperature for 30 min and then added 4-pentylphenylacetylene (59 µL, 0.30 mmol) via syringes. Thereafter, the reaction mixture was allowed to stir at 80 °C for 12 h. Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 50/1) yielded **5d** (60.3 mg, 70%) as a yellow solid. mp: 136–138 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 9.13 (s, 1H), 8.27–8.21 (m, 2H), 7.93 (dd, *J* = 8.5, 1.8 Hz, 2H), 7.79 (d, *J* = 8.7 Hz, 1H), 7.71 (dd, *J* = 8.4, 1.4 Hz, 1H), 7.55 (q, *J* = 6.9, 5.6 Hz, 5H), 7.23 (d, *J* = 8.0 Hz, 2H), 2.68–2.62 (m, 2H), 1.66 (q, *J* = 7.3 Hz, 2H), 1.36 (dd, *J* = 8.2, 4.6 Hz, 4H), 0.93 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 149.9, 143.5, 133.8, 132.2, 131.6, 131.2, 130.7, 129.0, 128.7, 128.5, 128.3, 128.1, 127.4, 127.3, 125.5, 121.8, 120.4, 119.5, 90.6, 89.4, 35.9, 31.4, 30.9, 22.5, 14.0. HRMS (ESI) m/z calcd for C₃₀H₂₆NS⁺ (M+H)⁺ 432.1781, found 432.1785.

2-Phenyl-8-((trimethylsilyl)ethynyl)naphtho[1,2-d]thiazole (5c)

To a stirred mixture of **4d** (68.2 mg, 0.2 mmol), $PdCl_2$ (1.8 mg, 5 mol%), PPh_3 (7.9 mg, 15 mol%) and CuI (1.9 mg, 5 mol%) in pressure tube (10 mL) was evacuated and purged with argon gas three times. To the tube was then added triethylamine (1.0 mL) via syringes. The mixture was stirred at room temperature for 30 min and then added trimethylsilylacetylene (68 μ L, 0.60 mmol) via syringes. Thereafter, the reaction mixture was allowed to stir at 80 °C for 12 h. Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 50/1) yielded **5e** (59.3 mg, 83%) as a yellow solid. mp: 149–151 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 9.08 (s, 1H), 8.22 (dd, *J* = 7.7, 1.8 Hz, 2H), 7.95–7.87 (m, 2H), 7.77 (dd, *J* = 8.7, 3.8 Hz, 1H), 7.64 (dd, *J* = 8.4, 1.5 Hz, 1H), 7.56–7.50 (m, 3H), 0.35 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 149.9, 133.8, 132.2, 131.4, 130.7, 129.0, 128.9, 128.2, 128.1, 128.0, 127.3, 125.4, 121.4, 119.8, 105.5, 95.1, 0.0. HRMS (ESI) m/z calcd for C₂₂H₂₀NSSi⁺ (M+H)⁺ 358.1080, found 358.1087.

9-(4-Pentylphenyl)-2-phenylthieno[3',2':7,8]naphtho[1,2-d]thiazole (5d)

To a stirred mixture of **5d** (43.1 mg, 0.1 mmol) and S₈ (25.6 mg, 0.8 mmol) in pressure tube (10 mL) was evacuated and purged with argon gas three times. To the tube was then added DMF (1.0 mL) via syringes. Thereafter, the reaction mixture was allowed to stir at 140 °C for 48 h. Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 50/1) yielded **5f** (21.6 mg, 50%) as a yellow solid. mp: 110–112 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.97 (s, 1H), 8.29–8.20 (m, 2H), 7.89 (d, J = 8.7 Hz, 1H), 7.85 (d, J = 8.5 Hz, 1H), 7.79 (d, J = 8.7 Hz, 1H), 7.56 (d, J = 7.8 Hz, 2H), 7.39 (d, J = 2.4 Hz, 2H), 7.25 (d, J = 8.0 Hz, 3H), 2.71–2.62 (m, 2H), 1.68 (q, J = 7.4 Hz, 2H), 1.42–1.32 (m, 4H), 0.94 (t, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 150.3, 142.8, 136.1, 134.7, 133.9, 132.1, 131.4, 130.6, 129.4, 129.0, 129.0, 128.8, 128.4, 127.8, 127.3, 126.5, 125.6, 123.8, 122.3, 118.6, 35.7, 31.5, 31.1, 22.6, 14.1. HRMS (ESI) m/z calcd for C₃₀H₂₆NS₂⁺ (M+H)⁺ 464.1501, found 464.1502.

Copies of ¹H and ¹³C NMR spectra of all products

¹H and ¹³C NMR spectra of **3a**

 1 H and 13 C NMR spectra of **3b**

S29

 1 H and 13 C NMR spectra of **3e**

S31

¹H and ¹³C NMR spectra of **3f**

 1 H and 13 C NMR spectra of **3g**

 ^1H and ^{13}C NMR spectra of 3h

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 3i

S35

¹H and ¹³C NMR spectra of **3**j

S36
1 H and 13 C NMR spectra of **3k**

 1 H and 13 C NMR spectra of **3**l

¹H and ¹³C NMR spectra of **3m**

 1 H and 13 C NMR spectra of **3n**

 1 H and 13 C NMR spectra of **30**

¹H and ¹³C NMR spectra of **3p**

¹H and ¹³C NMR spectra of **3**q

 1 H and 13 C NMR spectra of **3r**

¹H and ¹³C NMR spectra of **3s**

 1 H and 13 C NMR spectra of **3**t

 1 H and 13 C NMR spectra of **3u**

 ^1H and ^{13}C NMR spectra of 3v

 1 H and 13 C NMR spectra of **3w**

 1 H and 13 C NMR spectra of 3x

 1 H and 13 C NMR spectra of **3**y

 1 H and 13 C NMR spectra of 3z

¹H and ¹³C NMR spectra of **3aa**

¹H and ¹³C NMR spectra of **3ab**

¹H and ¹³C NMR spectra of 4a

 1 H and 13 C NMR spectra of **4b**

 1 H and 13 C NMR spectra of **4c**

 1 H and 13 C NMR spectra of 4d

¹H and ¹³C NMR spectra of **4e**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 4f

 1 H and 13 C NMR spectra of 4g

 ^1H and ^{13}C NMR spectra of 4h

¹H and ¹³C NMR spectra of **4i**

¹H and ¹³C NMR spectra of 4j

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 4k

¹H and ¹³C NMR spectra of **4**l

¹H and ¹³C NMR spectra of **4m**

 1 H and 13 C NMR spectra of **4n**

 1 H and 13 C NMR spectra of **40**

 1 H and 13 C NMR spectra of **4p**

 1 H and 13 C NMR spectra of 4q

 ^1H and ^{13}C NMR spectra of 4r

¹H and ¹³C NMR spectra of 4s

¹H and ¹³C NMR spectra of 4t

 1 H and 13 C NMR spectra of **4u**

 1 H and 13 C NMR spectra of 4v

 1 H and 13 C NMR spectra of **4w**

¹H and ¹³C NMR spectra of **5a**

¹H and ¹³C NMR spectra of **5b**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of $\mathbf{5d}$

