Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Supporting Information for

Ligandless Nickel-Catalyzed Transfer Hydrogenation of Alkenes and Alkynes Using Water as the Hydrogen Donor

Xiaoping Hu,^{†,a} Gaonan Wang,^{†,a} Chunxiang Qin,[‡] Xin Xie,[†] Chunli Zhang,[†] Wei Xu[†] and Yuanhong Liu*[†]

[†]State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular

Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of

Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's

Republic of China.

^{*}Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, P. R. China.

Fax: (+86) 21-64166128, E-mail: <u>yhliu@sioc.ac.cn</u>

^aThese authors contributed equally to this work.

Contents	Page
General Methods	S2
Synthesis of alkenes	S2-S4
Optimization studies for transfer hydrogenation of aryl alkenes	S4-S6
Ni-Catalyzed transfer hydrogenation of aryl/heteroaryl alkenes,	
alkyl alkenes and heterocycles	S6-S25
Ni-Catalyzed transfer hydrogenation of alkynes	S25-S31
Control experiments	S31-S35
1 mmol scale reaction	S35-S36
References	S36-S38
X-ray crystallographic structure and data for compound 10c	S38-S51
NMR spectra of new compounds	S52-S159

General Methods. Unless noted, all reactions were carried out using standard Schlenk technique under an argon atmosphere or a dry box technique under a nitrogen atmosphere. Tetrahydrofuran was distilled from sodium and benzophenone. 1,4-Dioxane was distilled from sodium. Acetonitrile was dried using Innovative Technology Solvent Purifier. Ni(COD)₂, NiI₂, Ni(acac)₂ and NiF₂ were purchased from Strem Chemicals Inc. NiCl₂(DME) was purchased from Sigma-Aldrich. NiCl₂·6H₂O and NiCl₂ were purchased from Alfa Aesar. Zinc powder (98%, -325 mesh) was purchased from Adamas. Zinc flake (99.8%, -325 mesh) and Mn powder (APS<10 micron, 99.6% metals basis) were purchased from Alfa Aesar. Al powder (200 mesh) and Mg turning (99.9+%) were purchased from Acros Organics. Before using, zinc powder and zinc flake were stirred with 1 M HCl aqueous solution, filtered and washed thoroughly with water, acetone and diethyl ether and dried under vacuum. The deionized water was deoxygenated by argon gas bubbling method prior to use. Unless noted, all commercial reagents were used without further purification. ¹H and ¹³C NMR spectra were recorded at room temperature in CDCl₃ (containing 0.03% TMS) on Varian or Agilent XL-400 MHz spectrometer. ¹H NMR spectra was recorded with tetramethylsilane ($\delta = 0.00$ ppm); ¹³C NMR spectra was recorded with CDCl₃ (δ = 77.00 ppm) as internal reference. Highresolution mass spectra were obtained by using Waters Micromass GCT Premier mass spectrometer, Agilent Technologies 6224 TOF LC/MS or Thermo Fisher Scientific LTQ FT Ultra mass spectrometers. The IR spectra were measured on a ThermoFisher Nicolet FT-IR spectrometer. H₂ gas analysis was acquired on Agilent 6890Plus gas chromatograph equipped with a Thermal Conductivity Detector.

Alkenes were synthesized according to the published methods. The spectral data of known compounds were in agreement with the literature. For the synthesis of new alkenes **10** and **5d**, see the following:

To a solution of 7-hydroxy-3-(4-methoxyphenyl)-4*H*-chromen-4-one (2.68 g, 10 mmol) and Et₃N (2.02 g, 20 mmol) in DCM (50 mL) was added Tf₂O (3.10 g, 11 mmol) at 0 °C under Argon, then the mixture was warmed up to room temperature and stirred for another 2 h. The reaction was quenched with saturated NH₄Cl and extracted with DCM. The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuum. The residue was purified by column chromatography on silica gel (eluent: dichloromethane/ petroleum ether = 2:1) to give 3-(4-methoxyphenyl)-4-oxo-4*H*-chromen-7-yl trifluoromethanesulfonate (s-10) in 69% yield (2.76 g) as a white solid. M.p.: 125.0-126.3 °C. ¹H NMR (400 M, CDCl₃): δ 8.40 (d, *J* = 8.8 Hz, 1H), 8.01 (s, 1H), 7.49 (d, *J* = 8.8 Hz, 2H), 7.45 (d, *J* = 2.0 Hz, 1H), 7.33 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.97 (d, *J* = 8.8 Hz, 2H), 3.84 (s, 3H). ¹³C NMR (100 M, CDCl₃): δ 175.11, 159.86, 156.27, 152.80, 152.02, 130.00, 129.12, 125.62, 124.14, 123.08, 118.63 (q, ¹*J*_{C-F} = 321.3 Hz), 118.47, 114.04, 111.39, 55.26. IR (neat): 3097, 3076, 3058, 2954, 2907, 2836, 1644, 1612, 1568, 1516, 1424, 1400, 1292, 1250, 1212, 1182, 1168, 1132, 1095, 1029, 952, 883, 864, 824, 801, 788, 782, 689, 659 cm⁻¹. HRMS (ESI) calcd for C₁₇H₁₂F₃O₆S [M+H]⁺: 401.0301, found 401.0298.

To a solution of **s-1o** (1.20 g, 3 mmol), Pd(PPh₃)₂Cl₂ (210.6 mg, 0.3 mmol) and LiCl (127.2 mg, 3 mol) in DMF (18 mL) was added tributyl(vinyl)stannane (1.05 g, 3.3 mmol) dropwise under Argon. The mixture was heated at 90 °C for 4 h. After completion the reaction mixture was cooled down to room temperature and diluted with Et₂O and washed with 1 M HCl (aq.), then washed with saturated NaHCO₃(aq.) and brine. The combined aqueous layers were extracted once with Et₂O. The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/dichloromethane/ethyl acetate = 6:1:1) to give 3-(4-methoxyphenyl)-7-vinyl-4*H*-chromen-4-one (**10**) in 76% yield (637.7 mg) as a white solid. M.p.: 154.0-155.1 °C. ¹H NMR (400 M, CDCl₃): δ 8.24 (d, *J* = 8.4 Hz, 1H), 7.96 (s, 1H),

7.52-7.46 (m, 3H), 7.41 (s, 1H), 6.98-6.96 (m, 2H), 6.79 (dd, J = 17.6, 11.2 Hz, 1H), 5.94 (d, J = 17.6, Hz, 1H), 5.48 (d, J = 11.2 Hz, 1H), 3.83 (s, 3H). ¹³C NMR (100 M, CDCl₃): δ 176.06, 159.55, 156.44, 152.49, 142.89, 135.32, 130.02, 126.49, 124.97, 124.03, 123.62, 122.83, 117.81, 115.37, 113.91, 55.26. IR (neat): 3092, 3076, 3040, 3011, 2972, 2930, 2838, 1624, 1609, 1557, 1513, 1439, 1407, 1358, 1291, 1253, 1233, 1176, 1106, 1024, 985, 927, 901, 886, 878, 830, 821, 802, 791, 767, 717 cm⁻¹. HRMS (ESI) calcd for C₁₈H₁₅O₃ [M+H]⁺: 279.1016, found 279.1007.

To a solution of 1-tosylpiperidin-4-ol (1.79 g, 7 mmol) in DCM (50 mL) was added pyridine (12.5 mL). Then the mixture was cooled to 0 °C and Tf₂O (4.48 mL, 26.6 mmol) was slowly added. Then the mixture was stirred for 3 h at 0 °C. The reaction mixture was quenched by H₂O and extracted with DCM. The combined organic layers were dried over anhydrous Na₂SO₄. The mixture was filtered and the solvent was evaporated under the reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/DCM = 1/1 to DCM) to afford 1-tosyl-1,2,3,6-tetrahydropyridine (**5d**) in 46% yield (762.3 mg) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 5.76-5.73 (m, 1H), 5.63-5.60 (m, 1H), 3.59-3.56 (m, 2H), 3.17 (t, *J* = 5.6 Hz, 2H), 2.43 (s, 3H), 2.24-2.18 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 143.44, 133.18, 129.55, 127.59, 124.97, 122.65, 44.70, 42.56, 25.17, 21.43. The spectroscopic data are in agreement with that previously reported.¹

Optimization studies for transfer hydrogenation of aryl alkenes.

General procedure for optimization studies.

The reaction was conducted in an oven-dried screw-cap vial (4 mL) equipped with a magnetic stir bar. In a nitrogen-filled glove box, NiCl₂·6H₂O (3.6 mg, 0.015 mmol) [or other Ni(II) salts], Zinc powder (39.2 mg, 0.6 mmol) [or other reductants], 2-vinylnaphthalene (46.3

mg, 0.3 mmol), dioxane or other solvents (1.5 mL) were added sequentially to a screw-cap vial. The vial cap was then securely fitted and taken outside the glove box. Then H₂O (0.3 mL or x mL) was added to the vial. After the reaction mixture was stirred at 80 °C, the mixture was filtered through a pad of silica gel and washed with petroleum ether. The solvent was evaporated under the reduced pressure and the residue was dissolved in CDCl₃. The NMR yields were obtained by ¹H NMR analysis of the crude mixture using 1,3,5-trimethoxybenzene (50.5 mg, 0.3 mmol) as an internal standard.

Note: NiCl₂· $6H_2O$ used in the optimization study was stored under air (outside of glove box), which was brought into the glove box and used immediately for every experiment.

 Table 1. Optimization of the reaction conditions

	lia la	5 mo 2.0 e solve	I% Ni catalyst quiv reductant nt, 80 °C, t (h)	a	
entry	catalyst	reductant	solvent	time (h)	yield (%) ^a
1 2	NiCl ₂ •6H ₂ O NiCl ₂	Zn Zn	dioxane/H ₂ O (5/1) dioxane/H ₂ O (5/1)	10 10	88 89
3	NiBr ₂	Zn	dioxane/H ₂ O (5/1)	10	89
4	Nil ₂	Zn	dioxane/H ₂ O (5/1)	10	79 (7)
5	NiF ₂	Zn	dioxane/H ₂ O (5/1)	10	2 (85)
6	Ni(acac) ₂	Zn	dioxane/H ₂ O (5/1)	10	- (89)
7	NiCl ₂ •6H ₂ O	AI	dioxane/H ₂ O (5/1)	10	24 (68)
8	NiCl ₂ •6H ₂ O	Mn	dioxane/H ₂ O (5/1)	10	13 (81)
9	NiCl ₂ •6H ₂ O	Mg	dioxane/H ₂ O (5/1)	10	- (96)
10	NiCl ₂ •6H ₂ O	Zn	DMF/H ₂ O (5/1)	10	90 (1)
11	NiCl ₂ •6H ₂ O	Zn	THF/H ₂ O (5/1)	10	95
12	NiCl ₂ •6H ₂ O	Zn	CH ₃ CN/H ₂ O (5/1)	10	1 (58)
13	NiCl ₂ •6H ₂ O	Zn	dioxane/H ₂ O (25/1)	10	33 (59)
14	NiCl ₂ •6H ₂ O	Zn	dioxane/H ₂ O (3/1)	10	96
15	NiCl ₂ •6H ₂ O	Zn	dioxane/H ₂ O (3/1)	5	95
16 ^b	NiCl ₂ •6H ₂ O	Zn	dioxane/H ₂ O (3/1)	5	48 (48)
17 ^c	NiCl ₂ •6H ₂ O	Zn	dioxane/H ₂ O (3/1)	5	32 (63)
18	-	Zn	dioxane/H ₂ O (3/1)	5	- (94)
19	NiCl ₂ •6H ₂ O	-	dioxane/H ₂ O (3/1)	5	- (94)

^aDetermined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. The yields of the unreacted **1a** are shown in parentheses. ^b1.0 equiv Zn was used. ^c50 °C.

Ni-Catalyzed transfer hydrogenation of aryl/heteroaryl alkenes, alkyl alkenes and heterocycles.

Typical procedure for the synthesis of 2a.

To an oven dried Schlenk tube (25 mL) were added NiCl₂· $6H_2O$ (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), and 2-vinylnaphthalene (77.1 mg, 0.5 mmol) under air. The Schlenk tube was capped with a rubber septum, evacuated and back filled with argon for three times. Then dioxane (2.5 mL) and H₂O (0.8 mL) were added sequentially under argon. (If the starting material is a liquild, after the NiCl₂· $6H_2O$ and Zinc were added, the Schlenk tube was capped with a rubber septum, evacuated and back filled with argon for three times. Then dioxane, the alkene and H₂O were added sequentially under argon). The tube cap was then securely fitted and sealed with electrical tape, and the stopcock valve on the sidearm of the Schlenk tube was closed. After the reaction mixture was stirred at 80 °C for 10 h, it was filtered through a pad of silica gel and washed with petroleum ether. **Note: a stirring speed above 600 rpm is highly important for reproducibility.** The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether) to give the desired product **2a** in 92% yield (72.0 mg) as a colorless oil.

2-Ethylnaphthalene (2a). ¹H NMR (400 MHz, CDCl₃): δ 7.77-7.71 (m, 3H), 7.58 (s, 1H), 7.42-7.35 (m, 2H), 7.31-7.29 (m, 1H), 2.77 (q, *J* = 7.6 Hz, 2H), 1.29 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 141.69, 133.67, 131.90, 127.77, 127.56, 127.38, 127.04, 125.79, 125.50, 124.97, 29.01, 15.51. The spectroscopic data are in agreement with that previously reported.²

1-Ethyl-4-methylbenzene (2b). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg,

1.0 mmol), dioxane (2.5 mL), 1-methyl-4-vinylbenzene (59.1 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 11.5 h. Column chromatography on silica gel (eluent: petroleum ether) afforded the desired product **2b** in 44% yield (26.7 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.09 (s, 4H), 2.61 (q, *J* = 7.2 Hz, 2H), 2.31 (s, 3H), 1.22 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 141.18, 134.96, 128.97, 127.71, 28.42, 20.96, 15.78. The spectroscopic data are in agreement with that previously reported.³

Due to the volatile nature of this compound, the NMR yield was determined. 86% NMR yield of the desired product **2b** was obtained.

1-Ethyl-2-methylbenzene(2c). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), dioxane (2.5 mL), 1-methyl-2-vinylbenzene (59.1 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 24 h. Column chromatography on silica gel (eluent: petroleum ether) afforded the desired product **2c** in 21% yield (12.5 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.15-7.07 (m, 4H), 2.63 (q, *J* = 7.2 Hz, 2H), 2.31 (s, 3H), 1.21 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.29, 135.73, 129.99, 127.86, 125.98, 125.70, 26.15, 19.15, 14.36. The spectroscopic data are in agreement with that previously reported.⁴

Due to the volatile nature of this compound, the NMR yield was determined. 89% NMR yield of the desired product **2c** was obtained.

1-Ethyl-4-methoxybenzene(2d). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), dioxane (2.5 mL), 1-methoxy-4-vinylbenzene (67.1 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 10.5 h. Column chromatography on silica gel (eluent: petroleum ether to petroleum ether/ethyl ether = 50:1) afforded the desired product **2d** in 63% yield (42.6 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.11 (d, *J* = 8.4 Hz, 2H), 6.82 (d,

J = 8.8 Hz, 2H), 3.77 (s, 3H), 2.58 (q, J = 7.6 Hz, 2H), 1.20 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 157.56, 136.33, 128.65, 113.67, 55.18, 27.93, 15.87. The spectroscopic data are in agreement with that previously reported.⁴

4-Ethylaniline(2e). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), dioxane (2.5 mL), 4-vinylaniline (59.6 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 7 h. The mixture was filtered through a pad of silica gel and washed with ethyl ether. Column chromatography on silica gel (eluent: petroleum ether/ethyl ether = 1:1) afforded the desired product **2e** in 90% yield (54.8 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 6.98 (d, *J* = 8.0 Hz, 2H), 6.61 (d, *J* = 8.4 Hz, 2H), 3.46 (bs, 2H), 2.53 (q, *J* = 7.6 Hz, 2H), 1.18 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 143.97, 134.31, 128.48, 115.17, 27.88, 15.87. The spectroscopic data are in agreement with that previously reported.⁵

4-Ethylphenol (2f). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), 4vinylphenol (60.1 mg, 0.5 mmol), dioxane (2.5 mL) and H₂O (0.8 mL) were stirred at 80 °C for 7 h, the mixture was filtered through a pad of silica gel and washed with ethyl ether and ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether/ethyl ether = 3:1) afforded the desired product **2f** in 86% yield (52.5 mg) as a colorless soild. ¹H NMR (400 MHz, CDCl₃): δ 7.05 (d, *J* = 8.0 Hz, 2H), 6.75 (d, *J* = 8.4 Hz, 2H), 5.39 (s, 1H), 2.57 (q, *J* = 8.0 Hz, 2H), 1.19 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 153.19, 136.56, 128.88, 115.13, 27.92, 15.83. The spectroscopic data are in agreement with that previously reported.⁶

1-Chloro-4-ethylbenzene (2g). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), dioxane (2.5 mL), 1-chloro-4-vinylbenzene (69.3 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 20 h. Column chromatography on silica gel (eluent: petroleum ether) afforded the desired product **2g** in 35% yield (24.7 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.24 (d, *J* = 8.4 Hz, 2H), 7.11 (d, *J* = 8.4 Hz, 2H), 2.61 (q, *J* = 8.0 Hz, 2H), 1.21 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.60, 131.22, 129.18, 128.34, 28.23, 15.52. The spectroscopic data are in agreement with that previously reported.⁷

Due to the volatile nature of this compound, the NMR yield was determined. 62% NMR yield of the desired product **2g** was obtained.

Methyl 4-ethylbenzoate (2h). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), methyl 4-vinylbenzoate (81.1 mg, 0.5 mmol), dioxane (2.5 mL) and H₂O (0.8 mL) were stirred at 80 °C for 23.5 h, the mixture was filtered through a pad of silica gel and washed with ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 15:1) afforded the desired product 2h in 76% yield (62.8 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 3.89 (s, 3H), 2.69 (q, *J* = 7.6 Hz, 2H), 1.25 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 167.10, 149.66, 129.63, 127.80, 127.55, 51.86, 28.86, 15.14. The spectroscopic data are in agreement with that previously reported.⁸

2-(4-Ethylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2i). NiCl₂· $6H_2O$ (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), 4,4,5,5-tetramethyl-2-(4-vinylphenyl)-1,3,2-dioxaborolane (115.1 mg, 0.5 mmol), dioxane (2.5 mL) and H₂O (0.8 mL) were stirred at 80 °C for 11 h, the mixture was filtered through a pad of silica gel and washed with ethyl acetate.

Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20:1) afforded the desired product **2i** in 72% yield (83.4 mg) as a colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 8.4 Hz, 2H), 2.65 (q, *J* = 7.6 Hz, 2H), 1.33 (s, 12H), 1.23 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 147.66, 134.87, 127.30, 83.54, 29.06, 24.80, 15.44. The spectroscopic data are in agreement with that previously reported.⁹

4-Ethyl-1,1'-biphenyl (2j). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), 4-vinyl-1,1'-biphenyl (90.1 mg, 0.5 mmol), dioxane (2.5 mL) and H₂O (0.8 mL) were stirred at 80 °C for 7.5 h. Column chromatography on silica gel (eluent: petroleum ether) afforded the desired product **2j** in 94% yield (85.3 mg) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, *J* = 7.2 Hz, 2H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.34-7.27 (m, 3H), 2.70 (q, *J* = 7.6 Hz, 2H), 1.28 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 143.32, 141.14, 138.57, 128.67, 128.25, 127.04, 126.96, 126.92, 28.48, 15.57. The spectroscopic data are in agreement with that previously reported.¹⁰

(4-Ethylphenyl)methanol (2k). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), dioxane (2.5 mL), (4-vinylphenyl)methanol (67.1 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 12 h. Column chromatography on silica gel (eluent: petroleum ether : ether acetate = 5:1) afforded the desired product **2k** in 81% yield (55.2 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.24 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 7.6 Hz, 2H), 4.57 (s, 2H), 2.63 (q, *J* = 7.6 Hz, 2H), 2.27 (s, 1H), 1.22 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 143.63, 138.10, 127.93, 127.10, 64.99, 28.49, 15.58. The spectroscopic data are in agreement with that previously reported.¹¹

1-Ethylferrocene (2l). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), 1-vinylferrocene (106.0 mg, 0.5 mmol), dioxane (2.5 mL) and H₂O (0.8 mL) were stirred at 80 °C for 17 h. The mixture was filtered through a pad of silica gel and washed with petroleum ether and ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether) afforded the desired product **2l** in 97% yield (103.4 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 4.09-4.03 (m, 9H), 2.33 (q, *J* = 7.6 Hz, 2H), 1.16 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 91.03, 68.31, 67.36, 66.88, 22.17, 14.61. The spectroscopic data are in agreement with that previously reported.¹²

3-Ethyl-1*H***-indole (2m)**. NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), 3-vinyl-1*H*-indole (71.6 mg, 0.5 mmol), dioxane (2.5 mL) and H₂O (0.8 mL) were stirred at 80 °C for 8 h. The mixture was filtered through a pad of silica gel and washed with ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5:1) afforded the desired product **2m** in 98% yield (71.0 mg) as a colorless soild. ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, *J* = 7.6 Hz, 2H), 7.25-7.23 (m, 1H), 7.17 (t, *J* = 7.2 Hz, 1H), 7.12-7.08 (m, 1H), 6.84 (s, 1H), 2.76 (q, *J* = 7.6 Hz, 2H), 1.31 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 136.28, 127.30, 121.78, 120.44, 118.98, 118.88, 118.60, 111.02, 18.27, 14.40. The spectroscopic data are in agreement with that previously reported.¹³

2n

2-Ethylpyridine (2n). NiCl₂· $6H_2O$ (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), dioxane (2.5 mL), 2-vinylpyridine (52.6 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80

°C for 9 h. The mixture was filtered through a pad of silica gel and washed with ethyl ether. Column chromatography on silica gel (eluent: petroleum ether to petroleum ether/ethyl ether = 3:1) afforded the desired product **2n** in 25% yield (13.3 mg) as a colorless oil. The product contains small amount of stabilizer and solvent. ¹H NMR (400 MHz, CDCl₃): δ 8.53 (d, *J* = 4.4 Hz, 1H), 7.59 (td, *J* = 8.0, 1.6 Hz, 1H), 7.16 (d, *J* = 8.0 Hz, 1H), 7.11-7.08 (m, 1H), 2.83 (q, *J* = 7.6 Hz, 2H), 1.31 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.47, 149.10, 136.34, 122.00, 120.85, 31.33, 13.87. The spectroscopic data are in agreement with that previously reported.¹⁴

Due to the volatile nature of this compound, the NMR yield was determined. 92% NMR yield of the desired product **2n** was obtained.

7-Ethyl-3-(4-methoxyphenyl)-4*H***-chromen-4-one (20).** NiCl₂·6H₂O (7.1 mg, 0.03 mmol), Zinc powder (39.2 mg, 0.6 mmol), 3-(4-methoxyphenyl)-7-vinyl-4*H*-chromen-4-one (83.5 mg, 0.3 mmol), dioxane (1.5 mL) and H₂O (0.5 mL) were stirred at 80 °C for 20 h. the mixture was filtered through a pad of silica gel and washed with ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5:1) afforded the desired product **20** in 86 % yield (72.4 mg) as a white soild. ¹H NMR (400 MHz, CDCl₃): δ 8.20 (d, *J* = 9.6 Hz, 1H), 7.93 (s, 1H), 7.50 (d, *J* = 8.4 Hz, 2H), 7.25-7.23 (m, 2H), 6.96 (d, *J* = 8.4 Hz, 2H), 3.82 (s, 3H), 2.77 (q, *J* = 8.0 Hz, 2H), 1.29 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 176.21, 159.43, 156.33, 152.21, 150.87, 129.98, 126.08, 125.44, 124.67, 124.17, 122.32, 116.33, 113.82, 55.19, 28.86, 14.88. IR (neat): 3082, 3063, 3032, 2961, 2928, 2870, 2852, 1726, 1633, 1622, 1607, 1575, 1559, 1511, 1461, 1439, 1372, 1358, 1289, 1246, 1225, 1194, 1178, 1105, 1027, 906, 885, 873, 836, 817, 803, 792, 761, 697 cm⁻¹. HRMS (ESI) calcd for C₁₈H₁₇O₃ [M+H]⁺: 281.1172, found 281.1179.

(8R,9S,13S,14S)-3-Ethyl-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-

cyclopenta[*a*]phenanthren-17-one (2p). NiCl₂· $6H_2O$ (7.1 mg, 0.03 mmol), Zinc powder (39.2 mg, 0.6 mmol), (8*R*,9*S*,13*S*,14*S*)-13-methyl-3-vinyl-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclo-

penta[*a*]phenanthren-17-one (84.1 mg, 0.3 mmol), dioxane (1.5 mL) and H₂O (0.5 mL) were stirred at 80 °C for 13 h. The mixture was filtered through a pad of silica gel and washed with ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10:1) afforded the desired product **2p** in 80% yield (68.2 mg) as a white soild. ¹H NMR (400 MHz, CDCl₃): δ 7.21 (d, *J* = 7.6 Hz, 1H), 7.00 (d, *J* = 8.0 Hz, 1H), 6.94 (s, 1H), 2.90-2.88 (m, 2H), 2.59 (q, *J* = 7.6 Hz, 2H), 2.53-2.40 (m, 2H), 2.30-2.25 (m, 1H), 2.18-1.93 (m, 4H), 1.67-1.38 (m, 6H), 1.23 (t, *J* = 7.2 Hz, 3H), 0.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 220.80, 141.60, 136.88, 136.21, 128.40, 125.26, 125.23, 50.40, 47.91, 44.21, 38.16, 35.77, 31.53, 29.33, 28.21, 26.51, 25.66, 21.50, 15.53, 13.75. IR (neat): 2968, 2943, 2925, 2860, 1735, 1499, 1459, 1437, 1403, 1374, 1281, 1256, 1211, 1085, 1048, 1006, 910, 880, 823, 783, 711 cm⁻¹. HRMS (ESI) calcd for C₂₀H₂₇O [M+H]⁺: 283.2056, found 283.2060.

Ph Ph 2q

Ethane-1,1-diyldibenzene (2q). NiCl₂·6H₂O (11.9 mg, 0.05 mmol), Zinc flake (65.4 mg, 1.0 mmol), dioxane (2.5 mL), ethene-1,1-diyldibenzene (90.1 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 24 h. Column chromatography on silica gel (eluent: petroleum ether) afforded the desired product 2q in 90% yield (81.8 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.27-7.11 (m, 10H), 4.13 (q, *J* = 7.2 Hz, 1H), 1.62 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 146.30, 128.32, 127.58, 125.98, 44.70, 21.83. The spectroscopic data are in agreement with that previously reported.¹⁵

2-PropyInaphthalene (2r). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), dioxane (2.5 mL), 2-allyInaphthalene (84.1 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 10 h. The mixture was filtered through a pad of silica gel and washed with ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether) afforded the desired product **2r** in 93% yield (79.1 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.79-7.73 (m, 3H), 7.59 (s, 1H), 7.44-7.37 (m, 2H), 7.31 (d, *J* = 8.4 Hz, 1H), 2.73 (t, *J* = 7.6 Hz, 2H), 1.77-1.67 (m, 2H), 0.96 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 140.14, 133.61, 131.94, 127.69, 127.57, 127.43, 127.38, 126.36, 125.76, 124.96, 38.17, 24.44, 13.85. The spectroscopic data are in agreement with that previously reported.¹⁶

1-Methoxy-4-propylbenzene (2s). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), dioxane (2.5 mL), 1-allyl-4-methoxybenzene (74.1 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 8 h. The mixture was filtered through a pad of silica gel and washed with ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 50:1) afforded the desired product **2s** in 93% yield (70.2 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.08 (d, *J* = 8.4 Hz, 2H), 6.81 (d, *J* = 8.8 Hz, 2H), 3.76 (s, 3H), 2.52 (t, *J* = 7.2 Hz, 2H), 1.64-1.55 (m, 2H), 0.92 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 157.55, 134.72, 129.25, 113.53, 55.12, 37.09, 24.79, 13.74. The spectroscopic data are in agreement with that previously reported.¹⁷

Butoxy(tert-butyl)diphenylsilane (2t). NiCl₂·6H₂O (11.9 mg, 0.05 mmol), Zinc powder

(65.4 mg, 1.0 mmol), dioxane (2.5 mL), (but-3-en-1-yloxy)(*tert*-butyl)diphenylsilane (155.3 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 20 h. The mixture was filtered through a pad of silica gel and washed with ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 50:1) afforded the desired product **2t** in 94% yield (147.0 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, *J* = 6.0 Hz, 4H), 7.42-7.35 (m, 6H), 3.66 (t, *J* = 6.4 Hz, 2H), 1.58-1.50 (m, 2H), 1.43-1.34 (m, 2H), 1.05 (s, 9H), 0.88 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 135.57, 134.17, 129.47, 127.56, 63.69, 34.76, 26.86, 19.23, 19.01, 13.91. The spectroscopic data are in agreement with that previously reported.¹⁸

1-Phenylpentan-3-ol (2u). NiCl₂·6H₂O (11.9 mg, 0.05 mmol), Zinc powder (65.4 mg, 1.0 mmol), dioxane (2.5 mL), 5-phenylpent-1-en-3-ol (81.1 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 12 h. The mixture was filtered through a pad of silica gel and washed with ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 8:1) afforded the desired product **2u** in 86% yield (71.0 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.25 (m, 2H), 7.22-7.15 (m, 3H), 3.57-3.51 (m, 1H), 2.83-2.75 (m, 1H), 2.69-2.62 (m, 1H), 1.83-1.67 (m, 3H), 1.58-1.41 (m, 2H), 0.93 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.18, 128.34, 128.30, 125.69, 72.51, 38.49, 31.99, 30.18, 9.78. The spectroscopic data are in agreement with that previously reported.¹⁹

tert-Butyldimethyl((1-phenylpentan-3-yl)oxy)silane (2v). NiCl₂·6H₂O (11.9 mg, 0.05 mmol), Zinc powder (65.4 mg, 1.0 mmol), dioxane (2.5 mL), *tert*-butyldimethyl((5-phenylpent-1-en-3-yl)oxy)silane (138.3 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 24 h. The mixture was filtered through a pad of silica gel and washed with ethyl acetate.

Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 50:1) afforded the desired product **2v** in 96% yield (133.3 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.25 (m, 2H), 7.20-7.14 (m, 3H), 3.68-3.62 (m, 1H), 2.73-2.55 (m, 2H), 1.77-1.71 (m, 2H), 1.55-1.48 (m, 2H), 0.92-0.87 (m, 12H), 0.06 (s, 3H), 0.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.85, 128.32, 128.31, 125.60, 73.06, 38.49, 31.79, 29.69, 25.94, 18.17, 9.57, -4.36, -4.46. IR (neat): 3061, 3027, 2956, 2928, 2852, 1602, 1495, 1459, 1360, 1253, 1062, 1046, 1005, 833, 792, 772, 745, 697 cm⁻¹. HRMS (ESI) calcd for C₁₇H₃₁OSi [M+H]⁺: 279.2139, found 279.2136.

PhHN 2w

N-Propylaniline (2w). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), dioxane (2.5 mL), *N*-allylaniline (66.6 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 24 h. The mixture was filtered through a pad of silica gel and washed with ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20:1) afforded the desired product **2w** in 91% yield (61.3 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.16 (t, *J* = 8.4 Hz, 2H), 6.67 (t, *J* = 7.2 Hz, 1H), 6.59 (d, *J* = 8.0 Hz, 2H), 3.59 (bs, 1H), 3.06 (t, *J* = 6.8 Hz, 2H), 1.67-1.58 (m, 2H), 0.98 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 148.47, 129.16, 117.01, 112.63, 45.74, 22.68, 11.59. The spectroscopic data are in agreement with that previously reported.^{17a}

N-(Quinolin-8-yl)butyramide (2x). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), dioxane (2.5 mL), *N*-(quinolin-8-yl)but-3-enamide (106.1 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 9 h. The mixture was filtered through a pad of silica gel and washed with ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5:1) afforded the desired product **2x** in 92% yield (98.8 mg) as a

colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 9.80 (s, 1H), 8.80-8.76 (m, 2H), 8.09 (d, J = 8.4 Hz, 1H), 7.52-7.38 (m, 3H), 2.53 (t, J = 7.2 Hz, 2H), 1.90-1.80 (m, 2H), 1.05 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.57, 147.91, 138.08, 136.14, 134.34, 127.70, 127.18, 121.38, 121.16, 116.15, 39.94, 18.96, 13.67. The spectroscopic data are in agreement with that previously reported.²⁰

4-Methoxyphenyl butyrate (2y). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), dioxane (2.5 mL), 4-methoxyphenyl but-3-enoate (96.1 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 10.5 h. The mixture was filtered through a pad of silica gel and washed with ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10:1) afforded the desired product **2y** in 78% yield (76.2 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 6.98 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 3.77 (s, 3H), 2.51 (q, *J* = 7.2 Hz, 2H), 1.81-1.72 (m, 2H), 1.03 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.41, 157.05, 144.12, 122.22, 114.28, 55.42, 36.03, 18.37, 13.53. The spectroscopic data are in agreement with that previously reported.²¹

Diethyl propylphosphonate (2z). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), dioxane (2.5 mL), diethyl allylphosphonate (89.1 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 21 h. Column chromatography on silica gel (eluent: petroleum ether to ethyl ether) afforded the desired product **2z** in 80% yield (71.7 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 4.15-4.04 (m, 4H), 1.75-1.60 (m, 4H), 1.33 (t, *J* = 7.2 Hz, 6H), 1.04-1.00 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 61.09 (d, *J*_{C-P} = 6.4 Hz), 27.46 (d, *J*_{C-P} = 139.5 Hz), 16.23 (d, *J*_{C-P} = 5.9 Hz), 15.90 (d, *J*_{C-P} = 5.4 Hz), 15.06 (d, *J*_{C-P} = 17.7 Hz). The spectroscopic data are in agreement with that previously reported.²²

4-Ethyl-4'-pentyl-1,1'-bi(cyclohexane) (**2za**). NiCl₂·6H₂O (11.9 mg, 0.05 mmol), Zinc powder (65.4 mg, 1.0 mmol), (*trans,trans*)-4-pentyl-4'-vinyl-1,1'-bi(cyclohexane) (131.2 mg, 0.5 mmol), dioxane (2.5 mL) and H₂O (0.8 mL) were stirred at 80 °C for 26 h. Column chromatography on silica gel (eluent: petroleum ether) afforded the desired product **2za** in 58% yield (77.1 mg) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 1.76-1.68 (m, 8H), 1.32-0.79 (m, 28H); ¹³C NMR (100 MHz, CDCl₃): δ 43.56, 39.77, 38.00, 37.56, 33.73, 33.29, 32.31, 30.16, 30.13, 30.10, 26.73, 22.76, 14.13, 11.54. IR (neat): 2958, 2916, 2848, 1459, 1447, 1378, 1219, 1213, 974, 894, 754, 720 cm⁻¹. HRMS (EI) calcd for C₁₉H₃₆ [M]⁺: 264.2817, found 264.2812.

9-Ethyl-9*H***-carbazole (4a).** NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), 9-vinyl-9*H*-carbazole (96.6 mg, 0.5 mmol), dioxane (2.5 mL) and H₂O (0.8 mL) were stirred at 80 °C for 12 h. The mixture was filtered through a pad of silica gel and washed with ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 30:1) afforded the desired product **4a** in 89% yield (86.7 mg) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.08 (d, *J* = 8.0 Hz, 2H), 7.45-7.41 (m, 2H), 7.35-7.33 (m, 2H), 7.20 (t, *J* = 8.0 Hz, 2H), 4.26 (q, *J* = 7.2 Hz, 2H), 1.34 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 139.82, 125.53, 122.83, 120.35, 118.67, 108.36, 37.36, 13.71. The spectroscopic data are in agreement with that previously reported.²³

(Ethylsulfonyl)benzene (4b). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), (vinylsulfonyl)benzene (84.1 mg, 0.5 mmol), dioxane (2.5 mL) and H₂O (0.8 mL) were stirred at 80 °C for 21 h. The mixture was filtered through a pad of silica gel and washed with ethyl ether. The residue was purified by preparative TLC on silica gel (eluent: petroleum ether/ethyl ether = 1:1) to give the desired product 4b in 88% yield (74.6 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, *J* = 7.2 Hz, 2H), 7.69-7.65 (m, 1H), 7.60-7.56 (m, 2H), 3.13 (q, *J* = 7.2 Hz, 2H), 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.29, 133.58, 129.14, 128.03, 50.42, 7.31. The spectroscopic data are in agreement with that previously reported.²⁴

Ethyldimethyl(phenyl)silane (4c). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), dioxane (2.5 mL), dimethyl(phenyl)(vinyl)silane (81.2 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 12 h. Column chromatography on silica gel (eluent: petroleum ether) afforded the desired product **4c** in 78% yield (64.3 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.49 (m, 2H), 7.34-7.33 (m, 3H), 0.95 (t, J = 8.0 Hz, 3H), 0.73 (q, J = 8.0 Hz, 2H), 0.25 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 139.43, 133.58, 128.75, 127.69, 7.41, 7.40, -3.56. IR (neat): 3069, 3048, 2954, 2907, 2873, 1426, 1247, 1112, 1012, 957, 832, 815, 774, 728, 698 cm⁻¹. HRMS (EI) calcd for C₁₀H₁₆Si [M]⁺: 164.1021, found 164.1027.

Due to the volatile nature of this compound, the NMR yield was determined. 93% NMR yield of the desired product **4c** was obtained.

Ph_____Ph 6a **1,2-Diphenylethane (6a)**. NiCl₂·6H₂O (11.9 mg, 0.05 mmol), Zinc powder (65.4 mg, 1.0 mmol), *E*-stilbene (90.1 mg, 0.5 mmol), dioxane (2.5 mL) and H₂O (0.8 mL) were stirred at 80 °C for 17 h. Column chromatography on silica gel (eluent: petroleum ether) afforded the desired product **6a** in 91% yield (82.8 mg) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.27-7.24 (m, 4H), 7.18-7.15 (m, 6H), 2.90 (s, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 141.72, 128.41, 128.29, 125.88, 37.90. The spectroscopic data are in agreement with that previously reported.²⁵

When Z-stilbene was used as the substrate, the desired product **6a** was obtained in 99% yield (90.5 mg) as a white solid.

1-Methoxy-4-propylbenzene (2s). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), (*E*)-1-methoxy-4-(prop-1-en-1-yl)benzene (74.1 mg, 0.5 mmol), dioxane (2.5 mL) and H₂O (0.8 mL) were stirred at 80 °C for 24 h. The mixture was filtered through a pad of silica gel and washed with petroleum ether and ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether/ethyl ether = 50:1) afforded the desired product **2s** in 93% yield (70.1 mg) as a colorless oil. The spectroscopic data are in agreement with that obtained from **1s**.

Cyclohexylbenzene (6c). NiCl₂·6H₂O (11.9 mg, 0.05 mmol), Zinc flake (98.1 mg, 1.5 mmol), dioxane (2.5 mL), 2,3,4,5-tetrahydro-1,1'-biphenyl (79.1 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 24 h. Column chromatography on silica gel (eluent: petroleum ether) afforded the desired product **6c** in 89% yield (71.1 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.26 (m, 2H), 7.21-7.14 (m, 3H), 2.51-2.45 (m, 1H), 1.88-1.82 (m, 4H), 1.76-1.72 (m, 1H), 1.47-1.33 (m, 4H), 1.29-1.22 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 148.05, 128.25, 126.80, 125.74, 44.57, 34.44, 26.90, 26.15. The spectroscopic data are in agreement

with that previously reported.²⁶

1-Tosylpiperidine (6d). NiCl₂·6H₂O (11.9 mg, 0.05 mmol), Zinc powder (98.1 mg, 1.5 mmol), 1-tosyl-1,2,3,6-tetrahydropyridine (118.7 mg, 0.5 mmol), dioxane (2.5 mL) and H₂O (0.8 mL) were stirred at 80 °C for 23 h. The mixture was filtered through a pad of silica gel and washed with ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether/ethyl ether = 5:1) afforded the desired product **6d** in 81% yield (96.5 mg) as a white soild. ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 2.96 (t, *J* = 5.2 Hz, 4H), 2.43 (s, 3H), 1.66-1.60 (m, 4H), 1.43-1.38 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 143.20, 132.96, 129.41, 127.54, 46.80, 25.00, 23.33, 21.37. The spectroscopic data are in agreement with that previously reported.²⁷

Benzyl propionate (8a). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), dioxane (2.5 mL), benzyl acrylate (81.1 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 8 h. Column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate = 20:1) afforded the desired product **8a** in 91% yield (74.5mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.30 (m, 5H), 5.11 (s, 2H), 2.37 (q, *J* = 7.6 Hz, 2H), 1.15 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.15, 136.02, 128.43, 128.06, 66.00, 27.46, 8.99. The spectroscopic data are in agreement with that previously reported.²⁸

Ph^{CO₂Et 8b}

Ethyl 3-phenylpropanoate (8b). NiCl₂·6H₂O (11.9 mg, 0.05 mmol), Zinc powder (65.4 mg, 1.0 mmol), dioxane (2.5 mL), ethyl cinnamate (88.1 mg, 0.5 mmol) and H₂O (0.8 mL) were

stirred at 80 °C for 12 h. The mixture was filtered through a pad of silica gel and washed with petroleum ether and ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate = 20:1) afforded the desired product **8b** in 96% yield (85.6 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.26 (m, 2H), 7.22-7.17 (m, 3H), 4.11 (q, *J* = 7.2 Hz, 2H), 2.94 (t, *J* = 8.0 Hz, 2H), 2.61 (t, *J* = 8.4 Hz, 2H), 1.22 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.78, 140.45, 128.35, 128.19, 126.10, 60.27, 35.81, 30.84, 14.08. The spectroscopic data are in agreement with that previously reported.²⁹

1,3-Diphenylpropan-1-one (8c). NiCl₂·6H₂O (23.8 mg, 0.1 mmol), Al powder (53.9 mg, 2.0 mmol), (*E*)-chalcone (104.1 mg, 0.5 mmol), dioxane (2.5 mL) and H₂O (0.5 mL) were stirred at 80 °C for 10 h in Schlenk tube (10 mL). The mixture was filtered through a pad of silica gel and washed with petroleum ether and ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether/ethyl ether = 30:1) afforded the desired product **8c** in 86% yield (89.9 mg) as a white soild. ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, *J* = 7.6 Hz, 2H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.32-7.24 (m, 4H), 7.22-7.19 (m, 1H), 3.30 (t, *J* = 7.2 Hz, 2H), 3.07 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 199.18, 141.25, 136.79, 133.03, 128.57, 128.49, 128.39, 128.00, 126.10, 40.42, 30.07. The spectroscopic data are in agreement with that previously reported.³⁰

Propiophenone (8d). NiCl₂·6H₂O (23.8 mg, 0.1 mmol), Al powder (53.9 mg, 2.0 mmol), dioxane (2.5 mL), 1-phenylprop-2-en-1-one (66.1 mg, 0.5 mmol) and H₂O (0.5 mL) were stirred at 80 °C for 10 h in Schlenk tube (10 mL). The mixture was filtered through a pad of silica gel and washed with petroleum ether and ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 30:1) afforded the desired product **8d** in 72%

yield (48.0 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, *J* = 8.0 Hz, 2H), 7.55 (t, *J* = 8.0 Hz, 1H), 7.45 (t, *J* = 7.2 Hz, 2H), 3.00 (q, *J* = 7.2 Hz, 2H), 1.23 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.76, 136.82, 132.81, 128.48, 127.90, 31.71, 8.16. The spectroscopic data are in agreement with that previously reported.³¹

1,2,3,4-Tetrahydroquinoline (10a). To an oven dried sealable Schlenk tube (10 mL) were added NiCl₂·6H₂O (7.1 mg, 0.03 mmol), Zinc powder (58.9 mg, 0.9 mmol), dioxane (1.5 mL), quinoline (38.7 mg, 0.3 mmol), NEt₃ (30.4 mg, 0.3 mmol) and H₂O (0.3 mL) were added sequentially under argon. The tube was sealed with a teflon screwcap and the mixture was stirred at 100 °C for 10 h, then the mixture was filtered through a pad of silica gel and washed with ethyl acetate. **Note: the tube should be tightly sealed, which is highly important for reproducibility.** The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5:1) to give the desired product **10a** in 76% yield (30.4 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 6.97-6.93 (m, 2H), 6.59 (t, *J* = 7.6 Hz, 1H), 6.45 (d, *J* = 7.6 Hz, 1H), 3.74 (br, 1H), 3.28 (t, *J* = 5.6 Hz, 2H), 2.75 (t, *J* = 6.4 Hz, 2H), 1.96-1.90 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 144.71, 129.45, 126.65, 121.36, 116.85, 114.11, 41.90, 26.90, 22.10. The spectroscopic data are in agreement with that previously reported.³²

When the reaction was carried out in a 25 mL sealable Schlenk tube, 55% yield of **10a** was obtained. The results indicated that the yield of the product **10a** was decreased by using a larger tube.

1,2,3,4-Tetrahydroquinoxaline (10b). NiCl₂·6H₂O (7.1 mg, 0.03 mmol), Zinc powder (58.9 mg, 0.9 mmol), quinoxaline (39.0 mg, 0.3 mmol), dioxane (1.5 mL) and H₂O (0.5 mL) were

stirred at 100 °C for 11 h in Schlenk tube (10 mL). The mixture was filtered through a pad of silica gel and washed with ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether/ethyl ether = 2:1) to give the desired product **10b** in 52% yield (20.8 mg) as a white soild. ¹H NMR (400 MHz, CDCl₃): δ 6.59-6.57 (m, 2H), 6.50-6.49 (m, 2H), 3.65 (bs, 2H), 3.42 (s, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 133.62, 118.69, 114.64, 41.31. The spectroscopic data are in agreement with that previously reported.³³

3,8a-Diphenyl-8,8a-dihydroindolizin-1(7H)-one (10c). To an oven dried sealable Schlenk tube (10 mL) were added NiCl₂·6H₂O (7.1 mg, 0.03 mmol), Zinc powder (39.2 mg, 0.6 mmol), 3,8a-diphenylindolizin-1(8aH)-one (85.6 mg, 0.3 mmol), dioxane (1.5 mL), NEt₃ (30.4 mg, 0.3 mmol) and H_2O (0.3 mL) were added sequentially under argon. The tube was sealed with a teflon screwcap and the mixture was stirred at 100 °C for 10 h, the mixture was filtered through a pad of silica gel and washed with ethyl acetate. Note: the tube should be tightly sealed, which is highly important for reproducibility. The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5:1) to give the desired product **10c** in 65% yield (55.9 mg) as a yellow soild. ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.54 (m, 7H), 7.38 (t, J = 7.2Hz, 2H), 7.32-7.28 (m, 1H), 6.73 (d, J = 7.6Hz, 1H), 5.36 (s, 1H), 4.96 (t, J = 6.0 Hz, 1H), 2.69-2.65 (m, 1H), 2.04-1.73 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.86, 172.66, 136.79, 130.96, 129.81, 128.96, 128.60, 128.03, 127.56, 125.29, 123.71, 109.50, 101.60, 71.02, 31.16, 19.71. IR (neat): 3095, 3066, 3003, 2966, 2917, 2848, 1668, 1637, 1581, 1537, 1487, 1449, 1407, 1384, 1298, 1210, 1143, 1124, 1071, 1029, 1017, 994, 883, 828, 809, 775, 767, 734, 696, 669, 656 cm⁻¹. HRMS (ESI) calcd for C₂₀H₁₈NO [M+H]⁺: 288.1383, found 288.1386.

Ni-Catalyzed transfer hydrogenation of alkynes.

Typical procedure for the synthesis of 2d from alkyne 11a.

To an oven dried Schlenk tube (25 mL) were added NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (98.1 mg, 1.5 mmol). The Schlenk tube was capped with a rubber septum, evacuated and back filled with argon for three times. Then dioxane (2.5 mL), 1-ethynyl-4-methoxybenzene (66.1 mg, 0.5 mmol) and H₂O (0.8 mL) were added sequentially under argon. The tube cap was then securely fitted and sealed with electrical tape, and the stopcock valve on the sidearm of the Schlenk tube was closed. After the mixture was stirred at 80 °C for 16.5 h, it was filtered through a pad of silica gel and washed with petroleum ether and ethyl ether. **Note: a stirring speed above 600 rpm is highly important for reproducibility.** The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether to petroleum ether/ethyl ether = 50:1) to give the desired product **2d** in 71% yield (48.1 mg) as a colorless oil. The spectroscopic data are in agreement with that obtained from **1d**.

4-Ethylaniline (2e). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (98.1 mg, 1.5 mmol), 4ethynylaniline (58.6 mg, 0.5 mmol), dioxane (2.5 mL) and H₂O (0.8 mL) were stirred at 80 °C for 22 h. The mixture was filtered through a pad of silica gel and washed with ethyl ether. Column chromatography on silica gel (eluent: petroleum ether/ethyl ether = 1:1) afforded the desired product **2e** in 93% yield (56.4 mg) as a yellow oil. The spectroscopic data are in agreement with that obtained from **1e**.

Ethyl 4-ethylbenzoate (12c). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (98.1 mg, 1.5

mmol), ethyl 4-ethynylbenzoate (87.1 mg, 0.5 mmol), dioxane (2.5 mL) and H₂O (0.8 mL) were stirred at 80 °C for 24 h. The mixture was filtered through a pad of silica gel and washed with petroleum ether and ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20:1) afforded the desired product **12c** in 90% yield (80.5 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, *J* = 8.4 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 4.36 (q, *J* = 6.8 Hz, 2H), 2.69 (q, *J* = 7.6 Hz, 2H), 1.38 (t, *J* = 7.2 Hz, 3H), 1.24 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.58, 149.50, 129.57, 127.90, 127.73, 60.62, 28.84, 15.15, 14.25. The spectroscopic data are in agreement with that previously reported.³⁴

4-Ethyl-1,1'-biphenyl (2j). NiCl₂·6H₂O (11.9 mg, 0.05 mmol), Zinc powder (98.1 mg, 1.5 mmol), 4-ethynyl-1,1'-biphenyl (89.1 mg, 0.5 mmol), dioxane (2.5 mL) and H₂O (0.8 mL) were stirred at 80 °C for 24 h. The mixture was filtered through a pad of silica gel and washed with petroleum ether and ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether) afforded the desired product **2j** in 89% yield (80.7 mg) as a white soild. The spectroscopic data are in agreement with that obtained from **1j**.

2-Ethylnaphthalene (2a). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (98.1 mg, 1.5 mmol), 2-ethynylnaphthalene (76.1 mg, 0.5 mmol), dioxane (2.5 mL) and H₂O (0.8 mL) were stirred at 80 °C for 10 h. The mixture was filtered through a pad of silica gel and washed with petroleum ether. Column chromatography on silica gel (eluent: petroleum ether) afforded the desired product **2a** in 91% yield (71.3 mg) as a colorless oil. The spectroscopic data are in agreement with that obtained from **1a**.

1-Methoxy-4-propoxybenzene (12f). NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (98.1 mg, 1.5 mmol), dioxane (2.5 mL), 1-methoxy-4-(prop-2-yn-1-yloxy)benzene (81.1 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 22.5 h, the mixture was filtered through a pad of silica gel and washed with ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10:1) afforded the desired product **12f** in 68% yield (56.1 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 6.82 (s, 4H), 3.85 (t, *J* = 6.8 Hz, 2H), 3.75 (s, 3H), 1.82-1.73 (m, 2H), 1.02 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 153.57, 153.21, 115.32, 114.51, 70.05, 55.62, 22.63, 10.48. The spectroscopic data are in agreement with that previously reported.³⁵

2-Propylisoindoline-1,3-dione (12g). NiCl₂·6H₂O (11.9 mg, 0.05 mmol), Zinc powder (98.1 mg, 1.5 mmol), 2-(prop-2-yn-1-yl)isoindoline-1,3-dione (92.6 mg, 0.5 mmol), dioxane (2.5 mL) and H₂O (0.8 mL) were stirred at 80 °C for 23 h. The mixture was filtered through a pad of silica gel and washed with ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10:1) afforded the desired product **12g** in 86% yield (81.2 mg) as a white soild. ¹H NMR (400 MHz, CDCl₃): δ 7.85-7.83 (m, 2H), 7.73-7.71 (m, 2H), 3.66 (t, *J* = 7.2 Hz, 2H), 1.76-1.67 (m, 2H), 0.96 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 168.30, 133.69, 131.99, 122.98, 39.43, 21.77, 11.19. The spectroscopic data are in agreement with that previously reported.³⁶

1-Ethylcyclohexan-1-ol (12h). NiCl₂·6H₂O (11.9 mg, 0.05 mmol), Zinc powder (98.1 mg, 1.5 mmol), dioxane (2.5 mL), 1-ethynylcyclohexan-1-ol (62.0 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 24 h, the mixture was filtered through a pad of silica gel and washed with petroleum ether and ethyl acetate. Column chromatography on silica gel (eluent: petroleum ether /ethyl acetate = 50:1) afforded the desired product **12h** in 67% yield (43.2 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 1.63-1.37 (m, 11H), 1.31-1.24 (m, 2H), 0.90 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 71.38, 36.81, 34.63, 25.82, 22.16, 7.17. The spectroscopic data are in agreement with that previously reported.³⁷

Butylbenzene (12i). NiCl₂·6H₂O (11.9 mg, 0.05 mmol), Zinc powder (98.1 mg, 1.5 mmol), dioxane (2.5 mL), but-3-yn-1-ylbenzene (65.1 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 24 h, the mixture was filtered through a pad of silica gel and washed with petroleum ether. Column chromatography on silica gel (eluent: petroleum ether) afforded the desired product **12i** in 47% yield (31.7 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.27 (t, *J* = 7.2 Hz, 2H), 7.20-7.14 (m, 3H), 2.60 (t, *J* = 7.6 Hz, 2H), 1.63-1.56 (m, 2H), 1.40-1.31 (m, 2H), 0.92 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.88, 128.39, 128.19, 125.52, 35.66, 33.68, 22.37, 13.96. The spectroscopic data are in agreement with that previously reported.³⁸

Due to the volatile nature of this compound, the NMR yield was determined. 87% NMR yield of the desired product **12i** was obtained.

TIPS— 12j

Ethyltriisopropylsilane (12j). NiCl₂·6H₂O (11.9 mg, 0.05 mmol), Zinc powder (98.1 mg, 1.5

mmol), dioxane (2.5 mL), ethynyltriisopropylsilane (91.2 mg, 0.5 mmol) and H₂O (0.8 mL) were stirred at 80 °C for 22 h, the mixture was filtered through a pad of silica gel and washed with pentane. Column chromatography on silica gel (eluent: pentane) afforded the desired product **12j** in 64% yield (59.9 mg) as a white soild. ¹H NMR (400 MHz, CDCl₃): δ 1.04-0.97 (m, 24H), 0.60 (q, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 18.84, 10.79, 8.21, 0.85. The spectroscopic data are in agreement with that previously reported.³⁹

1,2-Diphenylethane (6a). NiCl₂·6H₂O (11.9 mg, 0.05 mmol), Zinc flake (98.1 mg, 1.5 mmol), 1,2-diphenylethyne (89.1 mg, 0.5 mmol), dioxane (2.5 mL) and H₂O (0.8 mL) were stirred at 80 °C for 24 h. The mixture was filtered through a pad of silica gel and washed with petroleum ether. Column chromatography on silica gel (eluent: petroleum ether) afforded the desired product **6a** in 94% yield (85.4 mg) as a white soild. The spectroscopic data are in agreement with that obtained from **5a**.

Hexylbenzene (121). NiCl₂·6H₂O (11.9 mg, 0.05 mmol), Zinc powder (98.1 mg, 1.5 mmol), dioxane (2.5 mL), hex-1-yn-1-ylbenzene (79.1 mg, 0.5 mmol), and H₂O (0.8 mL) were stirred at 80 °C for 24 h. The mixture was filtered through a pad of silica gel and washed with petroleum ether. Column chromatography on silica gel (eluent: petroleum ether) afforded the desired product **12l** in 93% yield (75.3 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.24 (m, 2H), 7.18-7.14 (m, 3H), 2.59 (t, *J* = 7.6 Hz, 2H), 1.64-1.57 (m, 2H), 1.36-1.30 (m, 6H), 0.88 (t, *J* = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.92, 128.38, 128.19, 125.52, 36.00, 31.75, 31.52, 29.03, 22.63, 14.11. The spectroscopic data are in agreement with that previously reported.¹⁰

Dodecane (12m). NiCl₂·6H₂O (11.9 mg, 0.05 mmol), Zinc flake (98.1 mg, 1.5 mmol), dioxane (2.5 mL), dodec-6-yne (83.2 mg, 0.5 mmol), and H₂O (0.8 mL) were stirred at 80 °C for 24 h. Column chromatography on silica gel (eluent: petroleum ether) afforded the desired product **12m** in 75% yield (63.6 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 1.26 (s, 20H), 0.90-0.86 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 31.99, 29.77, 29.72, 29.43, 22.74, 14.13. The spectroscopic data are in agreement with that previously reported.⁴¹

Control experiments.

(1) Deuterium labeling experiments.

NiCl₂-catalyzed deuterium labeling experiment of 11k with D₂O.

To an oven dried Schlenk tube were added NiCl₂ (6.5 mg, 0.05 mmol), Zinc flake (98.1 mg, 1.5 mmol), 1,2-diphenylethyne (89.1 mg, 0.5 mmol). The tube was evacuated and back filled with argon for three times, then dioxane (2.5 mL) and D₂O (0.8 mL) were added sequentially under argon. The tube was sealed and the mixture was stirred at 80 °C for 24 h, the mixture was filtered through a pad of silica gel and washed with petroleum ether. The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether) to give the desired product **6a**-*d* in 86% yield (80.0 mg) as a white soild. ¹¹H NMR (400 MHz, CDCl₃): δ 7.28-7.24 (m, 4H), 7.19-7.15 (m, 6H), 2.87 (s, 0.36H). ¹³C NMR (100 MHz, CDCl₃): δ 141.64, 128.40, 128.29, 125.87, 37.77-36.63 (m). HRMS (EI) calcd for C₁₄H₁₀D₄ [M]⁺: 186.1347, found 186.1351.

(2) KIE experiment.

To an oven dried Schlenk tube were added NiCl₂ (6.5 mg, 0.05 mmol), Zinc flake (98.1

mg, 1.5 mmol), 1,2-diphenylethyne (89.1 mg, 0.5 mmol). The tube was evacuated and back filled with argon for three times, then dioxane (2.5 mL), H₂O (396 mg, 22 mmol, 44 equiv) and D₂O (440 mg, 22 mmol, 44 equiv) were added sequentially under argon. The tube was sealed and the mixture was stirred at 80 °C for 24 h, the mixture was filtered through a pad of silica gel and washed with petroleum ether. The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether) to give the desired product **6a**-*d*' in 90% yield (82.4 mg) as a colorless oil. (目标产物 FW:183.5) ¹H NMR (400 MHz, CDCl₃): δ 7.27-7.24 (m, 4H), 7.18-7.15 (m, 6H), 2.90-2.87 (m, 2.77H); ¹³C NMR (100 MHz, CDCl₃): δ 141.71, 141.68, 128.40, 128.28, 125.87, 37.90, 37.83, 37.76, 37.53 (t, *J_{C-D}* = 19.5 Hz), 37.46 (t, *J_{C-D}* = 19.5 Hz). HRMS (EI) calcd for C₁₄H₁₀D₄ [M]⁺: 186.1347, found 186.1345.

Kinetic isotopic effect with individual reaction.

Following the general procedure: (1) The reduction of diphenylacetylene with H₂O: NiCl₂ (6.5 mg, 0.05 mmol), Zinc flake (98.1 mg, 1.5 mmol), 1,2-diphenylethyne (89.1 mg, 0.5 mmol), dioxane (2.5 mL) and H₂O (792 mg, 44 mmol, 88 equiv) were stirred at 80 °C for 20 min. (2) The reduction of diphenylacetylene with D₂O: NiCl₂ (6.5 mg, 0.05 mmol), Zinc flake (98.1 mg, 1.5 mmol), 1,2-diphenylethyne (89.1 mg, 0.5 mmol), dioxane (2.5 mL) and D₂O (881 mg, 44 mmol, 88 equiv) were stirred at 80 °C for 20 min. After quenching the reactions, the mixture of the two reactions was combined and purified by preparative TLC on silica gel (eluent: hexane) to give a mixture of **6a** and **6a**-*d*, along with a byproduct of *E*-stilbene. The ratio of **6a** and **6a**-*d* was determined by ¹H NMR, and the KIE of $k_{\rm H}/k_{\rm D}$ was found to be 3.0.

(3) Deuterium labeling experiment.

To an oven dried Schlenk tube were added NiCl₂ (3.2 mg, 0.05 mmol), Zinc powder (65.4 mg, 1.0 mmol), 2-vinylnaphthalene (77.1 mg, 0.5 mmol). The tube was evacuated and back filled with argon for three times, then dioxane (2.5 mL) and D₂O (0.8 mL) were added sequentially under argon. The tube was sealed and the mixture was stirred at 80 °C for 10 h, the mixture was filtered through a pad of silica gel and washed with petroleum ether. The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether) to give the desired product **2a**-*d* in 92% yield (73.1 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.77-7.71 (m, 3H), 7.58 (s, 1H), 7.43-7.35 (m, 2H), 7.30 (d, *J* = 8.4 Hz, 1H), 2.80-2.75 (m, 1.59H), 1.34-1.26 (m, 1.54H); ¹³C NMR (100 MHz, CDCl₃): δ 141.70, 133.66, 131.90, 127.76, 127.57, 127.38, 127.04, 125.79, 125.50, 124.96, 29.01, 28.84 (t, *J*_{C-D} = 8.3 Hz), 15.52, 15.44, 15.22 (t, *J*_{C-D} = 19.4 Hz). HRMS (EI) calcd for C₁₂H₁₀D₂ [M]⁺: 158.1065, found 158.1060.

(4) Mercury poisoning experiment.

To an oven dried Schlenk tube were added NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zn (65.4 mg, 1.0 mmol), **1a** (77.1 mg, 0.5 mmol). The tube was evacuated and back filled with argon for three times, then dioxane (2.5 mL), H₂O (0.8 mL) and Hg (501.5 mg, 2.5 mmol, 100 equiv respect to Ni) were added sequentially under argon. The tube was sealed and the mixture was stirred at 80 °C for 10 h, the mixture was filtered through a pad of silica gel and washed with petroleum ether. The solvent was evaporated under the reduced pressure and the residue was

NiCl₂-catalyzed deuterium labeling experiment of 1a with D₂O.

dissolved in CDCl₃. The NMR yields were obtained by ¹H NMR analysis of the crude mixture using 1, 3, 5-methoxybenzene (84.1 mg, 0.5 mmol) as an internal standard. 14% NMR yield of the desired product **2a** and 80% NMR yield of the **1a** was observed.

(5) Gas-chromatographic analysis of H₂ gas:

The reaction was conducted in an oven-dried screw-cap vial (12 mL) equipped with a magnetic stir bar. In a nitrogen-filled glove box, NiCl₂·6H₂O (5.9 mg, 0.025 mmol), Zinc powder (65.4 mg, 1.0 mmol), 2-vinylnaphthalene (77.1 mg, 0.5 mmol), dioxane (2.5 mL) were added sequentially to a screw-cap vial. The vial cap was then securely fitted and taken outside the glove box, then H₂O (0.8 mL) was added to the vial. After the reaction mixture was stirred at 80 °C for 1 h. The gas in the vial is analyzed by the gas chromatography equipped with TCD detector using N₂ as the carrier gas, and H₂ was detected. H₂ was also detected in the absence of **1a**. See **Figure S1**.

Figure S1. The gas chromatography of the H_2 standard (above). The gas chromatography of the gas in the reaction vial containing alkyne **1a** (middle). The gas chromatography of the gas under the reaction conditions without addition of alkyne **1a** (below). The results indicated that H_2 was formed during the reaction. The retention time of H_2 is around 1.5 min, O_2 is around 1.7 min, and N_2 is around 2.1 min.

1 mmol scale reaction

To an oven dried Schlenk tube were added NiCl₂·6H₂O (11.9 mg, 0.05 mmol), Zn (130.8 mg, 2 mmol), and **1j** (180.3 mg, 1 mmol) under air. The Schlenk tube was capped with a rubber septum, evacuated and back filled with argon for three times. Then dioxane (5 mL) and H₂O (1.6 mL) were added sequentially under argon. The tube cap was then securely fitted and sealed with electrical tape, and the stopcock valve on the sidearm of the Schlenk tube was closed. After the mixture was stirred at 80 °C for 12 h, it was filtered through a pad of silica gel and washed with petroleum ether. The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether) to give the desired product **2j** in 94% yield (171.7 mg) as a white soild.

References:

- (1) Hongfa, C.; Su, H. L.; Bazzi, H. S.; Bergbreiter, D. E. Org. Lett. 2009, 11, 665.
- (2) Liu, X.; Hsiao, C.-C.; Kalvet, I.; Leiendecker, M.; Guo, L.; Schoenebeck, F.; Rueping, M. Angew. Chem. Int. Ed. 2016, 55, 6093.
- (3) Sakai, N.; Nagasawa, K.; Ikeda, R.; Nakaike, Y.; Konakahara, T. *Tetrahedron Lett.* 2011, 52, 3133.
- (4) Leow, D.; Chen, Y.-H.; Hung, T.-H.; Su, Y.; Lin, Y.-Z. Eur. J. Org. Chem. 2014, 2014, 7347.
- (5) Takasaki, M.; Motoyama, Y.; Higashi, K.; Yoon, S.-H.; Mochida, I.; Nagashima, H. Org. Lett. 2008, 10, 1601.
- (6) Bora, S. J.; Chetia, B. J. Organomet. Chem. 2017, 851, 52.
- (7) Cummings, S. P.; Le, T. N.; Fernandez, G. E.; Quiambao, L. G.; Stokes, B. J. J. Am. Chem. Soc. 2016, 138, 6107.
- (8) Jiang, Q.; Zhao, A.; Xu, B.; Jia, J.; Liu, X.; Guo, C. J. Org. Chem. 2014, 79, 2709.
- (9) Browne, D. L.; Baumann, M.; Harji, B. H.; Baxendale, I. R.; Ley, S. V. Org. Lett. 2011, 13, 3312.
- (10) Luan, Y.-X.; Zhang, T.; Yao, W.-W.; Lu, K.; Kong, L.-Y.; Lin, Y.-T.; Ye, M. J. Am. Chem. Soc. 2017, 139, 1786.
- (11)Kotha, S. S.; Sharma, N.; Sekar, G. Adv. Synth. Catal. 2016, 358, 1694.
- (12) Maazaoui, R.; Pin-Nó, M.; Gervais, K.; Abderrahim, R.; Ferreira, F.; Perez-Luna, A.; Chemla, F.; Jackowski, O. *Eur. J. Org. Chem.* 2016, 5732. (b) Teimuri-Mofrad, R.; Safa, K. D.; Rahimpour, K. *J. Organomet. Chem.* 2014, 758, 36.
- (13) Cheng, H.-G.; Lu, L.-Q.; Wang, T.; Yang, Q.-Q.; Liu, X.-P.; Li, Y.; Deng, Q.-H.; Chen, J.-R.; Xiao, W.-J. Angew. Chem. Int. Ed. 2013, 52, 3250.
- (14) Patil, N. M.; Sasaki, T.; Bhanage, B. M. RSC. Adv. 2016, 6, 52347.
- (15) Chatterjee, I.; Oestreich, M. Org. Lett. 2016, 18, 2463.
- (16) Saito, K.; Kondo, K.; Akiyama, T. Org. Lett. 2015, 17, 3366.
- (17) (a) Wang, Y.; Huang, Z.; Leng, X.; Zhu, H.; Liu, G.; Huang, Z. J. Am. Chem. Soc. 2018, 140, 4417. (b) Lundevall, F. J.; Elumalai, V.; Drageset, A.; Totland, C.; Bjørsvik, H.-R. Eur. J. Org. Chem. 2018, 2018, 3416.
- (18) Yang, W.; Gao, L.; Lu, J.; Song, Z. Chem. Commun. 2018, 54, 4834.
- (19) (a) Werner, T.; Bauer, M.; Riahi, A. M.; Schramm, H. *Eur. J. Org. Chem.* 2014, 4876. (b)
 Bastug, G.; Dierick, S.; Lebreux, F.; Markó, I. E. *Org. Lett.* 2012, *14*, 1306.
- (20) Gou, Q.; Zhang, Z.-F.; Liu, Z.-C.; Qin, J. J. Org. Chem. 2015, 80, 3176.
- (21) Nguyen, T. V.; Lyons, D. J. M. Chem. Commun. 2015, 51, 3131.
- (22) Baldwin, I. C.; Beckett, R. P.; Williams, J. M. J. Synthesis. 1996, 34.
- (23) Dhara, K.; Mandal, T.; Das, J.; Dash, J. Angew. Chem. Int. Ed. 2015, 54, 15831.
- (24) Doherty, S.; Knight, J. G.; Carroll, M. A.; Ellison, J. R.; Hobson, S. J.; Stevens, S.; Hardacre, C.; Goodrich, P. *Green Chem.* 2015, *17*, 1559.
- (25) Yuan, Y.; Bian, Y. Appl. Organomet. Chem. 2008, 22, 15.
- (26) Nguyen, J. D.; Reiß, B.; Dai, C.; Stephenson, C. R. J. Chem. Commun. 2013, 49, 4352.
 (b) Zeng, H.; Cao, D.; Qiu, Z.; Li, C.-J. Angew. Chem. Int. Ed. 2018, 57, 3752.
- (27) (a) Shavnya, A.; Hesp, K. D.; Mascitti, V.; Smith, A. C. Angew. Chem. Int. Ed. 2015, 54, 13571.
- (28) Lu, L.; Cheng, D.; Zhan, Y.; Shi, R.; Chiang, C.-W.; Lei, A. Chem. Commun. 2017, 53, 6852.

- (29) Lamani, M.; Guralamata, R. S.; Prabhu, K. R. Chem. Commun. 2012, 48, 6583.
- (30) Fox, D. J.; Pedersen, D. S.; Warren, S. Org. Biomol. Chem. 2006, 4, 3102.
- (31) Wu, J.-C.; Gong, L.-B.; Xia, Y.; Song, R.-J.; Xie, Y.-X.; Li, J.-H. Angew. Chem. Int. Ed. 2012, 51, 9909.
- (32) Murphy, L.; Brulatti, P.; Fattori, V.; Cocchi, M.; Williams, J. A. G. Chem. Commun. 2012, 48, 5817.
- (33) Yang, C.-H.; Chen, X.; Li, H.; Wei, W.; Yang, Z.; Chang, J. Chem. Commun. 2018, 54, 8622.
- (34) Gagnon, A.; Duplessis, M.; Alsabeh, P.; Barabé, F. J. Org. Chem. 2008, 73, 3604.
- (35) Guo, Y.; Fan, X.-M.; Nie, M.; Liu, H.-W.; Liao, D.-H.; Pan, X.-D.; Ji, Y.-F. Eur. J. Org. Chem. 2015, 2015, 4744.
- (36) Konishi, H.; Nagase, H.; Manabe, K. Chem. Commun. 2015, 51, 1854.
- (37) (a) Kapoor, M.; Liu, D.; Young, M. C. J. Am. Chem. Soc. 2018, 140, 6818. (b) St John-Campbell, S. S.; Ou, A. K.; Bull, J. A. Chem. Eur. J. 2018, 24, 17838.
- (38) Alonso, F.; Riente, P.; Yus, M. Tetrahedron. 2009, 65, 10637.
- (39) LaPointe, A. M.; Rix, F. C.; Brookhart, M. J. Am. Chem. Soc. 1997, 119, 906.
- (40) Andersen, T. L.; Donslund, A. S.; Neumann, K. T.; Skrydstrup, T. Angew. Chem. Int. Ed. 2018, 57, 800.
- (41) Iwasaki, T.; Yamashita, K.; Kuniyasu, H.; Kambe, N. Org. Lett. 2017, 19, 3691.

X-ray crystallographic structure and data for compound 10c.

The ellipsoid contour is 30%.

10c CCDC 1908616

Figure S2. X-ray crystal structure of compound 10c

Table S2. Crystal data and structure refinement for d8v19160.

Identification code	d8v19160	
Empirical formula	C20 H17 N O	
Formula weight	287.35	
Temperature	194(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P b c a	
Unit cell dimensions	a = 14.5964(5) Å	α=90°.
	b = 13.9382(5) Å	β= 90°.

	$c = 14.6669(5) \text{ Å}$ $\gamma = 90^{\circ}.$
Volume	2983.94(18) Å ³
Ζ	8
Density (calculated)	1.279 Mg/m ³
Absorption coefficient	0.078 mm ⁻¹
F(000)	1216
Crystal size	0.180 x 0.160 x 0.130 mm ³
Theta range for data collection	2.452 to 25.993°.
Index ranges	-18<=h<=15, -17<=k<=15, -18<=l<=17
Reflections collected	28649
Independent reflections	2907 [R(int) = 0.0400]
Completeness to theta = 25.242°	99.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6536
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2907 / 0 / 200
Goodness-of-fit on F ²	1.034
Final R indices [I>2sigma(I)]	R1 = 0.0359, wR2 = 0.0880
R indices (all data)	R1 = 0.0422, wR2 = 0.0931
Extinction coefficient	0.018(2)
Largest diff. peak and hole	0.254 and -0.156 e.Å ⁻³

	х	У	Z	U(eq)
O(1)	4758(1)	7970(1)	3759(1)	36(1)
N(1)	5932(1)	6078(1)	2663(1)	27(1)
C(1)	5919(1)	5385(1)	1967(1)	32(1)
C(2)	5421(1)	5499(1)	1217(1)	40(1)
C(3)	4781(1)	6326(1)	1086(1)	40(1)
C(4)	4542(1)	6773(1)	2009(1)	33(1)
C(5)	5420(1)	6976(1)	2549(1)	26(1)
C(6)	5216(1)	7267(1)	3549(1)	27(1)
C(7)	5671(1)	6576(1)	4113(1)	28(1)
C(8)	6062(1)	5893(1)	3572(1)	25(1)
C(9)	6593(1)	5049(1)	3876(1)	26(1)
C(10)	6200(1)	4377(1)	4456(1)	29(1)
C(11)	6708(1)	3607(1)	4768(1)	37(1)
C(12)	7618(1)	3514(1)	4518(1)	42(1)
C(13)	8016(1)	4178(1)	3945(1)	42(1)
C(14)	7503(1)	4938(1)	3614(1)	35(1)
C(15)	6012(1)	7744(1)	2094(1)	26(1)
C(16)	6916(1)	7584(1)	1839(1)	32(1)
C(17)	7425(1)	8301(1)	1422(1)	35(1)
C(18)	7037(1)	9187(1)	1252(1)	33(1)
C(19)	6142(1)	9360(1)	1518(1)	32(1)
C(20)	5633(1)	8648(1)	1937(1)	30(1)

Table S3. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for d8v19160. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(6)	1.2258(14)
N(1)-C(8)	1.3708(15)
N(1)-C(1)	1.4067(15)
N(1)-C(5)	1.4674(14)
C(1)-C(2)	1.3276(18)
C(1)-H(1)	0.9500
C(2)-C(3)	1.496(2)
C(2)-H(2)	0.9500
C(3)-C(4)	1.5302(18)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(4)-C(5)	1.5337(16)
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(5)-C(15)	1.5289(15)
C(5)-C(6)	1.5513(16)
C(6)-C(7)	1.4325(16)
C(7)-C(8)	1.3634(16)
C(7)-H(7)	0.9500
C(8)-C(9)	1.4782(16)
C(9)-C(10)	1.3888(16)
C(9)-C(14)	1.3920(17)
C(10)-C(11)	1.3824(17)
C(10)-H(10)	0.9500
C(11)-C(12)	1.383(2)
С(11)-Н(11)	0.9500
C(12)-C(13)	1.380(2)
C(12)-H(12)	0.9500

Table S4. Bond lengths [Å] and angles $[\circ]$ for d8v19160.

C(13)-C(14)	1.3839(18)
С(13)-Н(13)	0.9500
С(14)-Н(14)	0.9500
C(15)-C(16)	1.3897(17)
C(15)-C(20)	1.3944(16)
C(16)-C(17)	1.3880(17)
С(16)-Н(16)	0.9500
C(17)-C(18)	1.3820(18)
С(17)-Н(17)	0.9500
C(18)-C(19)	1.3854(19)
С(18)-Н(18)	0.9500
C(19)-C(20)	1.3833(17)
С(19)-Н(19)	0.9500
С(20)-Н(20)	0.9500
C(8)-N(1)-C(1)	125.40(10)
C(8)-N(1)-C(5)	109.96(9)
C(1)-N(1)-C(5)	119.73(9)
C(2)-C(1)-N(1)	121.79(12)
C(2)-C(1)-H(1)	119.1
N(1)-C(1)-H(1)	119.1
C(1)-C(2)-C(3)	122.72(12)
C(1)-C(2)-H(2)	118.6
C(3)-C(2)-H(2)	118.6
C(2)-C(3)-C(4)	110.05(10)
C(2)-C(3)-H(3A)	109.7
C(4)-C(3)-H(3A)	109.7
C(2)-C(3)-H(3B)	109.7
C(4)-C(3)-H(3B)	109.7
H(3A)-C(3)-H(3B)	108.2

C(3)-C(4)-C(5)	109.94(10)
C(3)-C(4)-H(4A)	109.7
C(5)-C(4)-H(4A)	109.7
C(3)-C(4)-H(4B)	109.7
C(5)-C(4)-H(4B)	109.7
H(4A)-C(4)-H(4B)	108.2
N(1)-C(5)-C(15)	111.06(9)
N(1)-C(5)-C(4)	109.14(9)
C(15)-C(5)-C(4)	112.09(9)
N(1)-C(5)-C(6)	102.29(9)
C(15)-C(5)-C(6)	109.76(9)
C(4)-C(5)-C(6)	112.10(10)
O(1)-C(6)-C(7)	130.23(11)
O(1)-C(6)-C(5)	123.46(10)
C(7)-C(6)-C(5)	106.30(9)
C(8)-C(7)-C(6)	109.13(10)
C(8)-C(7)-H(7)	125.4
С(6)-С(7)-Н(7)	125.4
C(7)-C(8)-N(1)	112.14(10)
C(7)-C(8)-C(9)	126.86(10)
N(1)-C(8)-C(9)	120.98(10)
C(10)-C(9)-C(14)	119.22(11)
C(10)-C(9)-C(8)	120.32(10)
C(14)-C(9)-C(8)	120.41(10)
C(11)-C(10)-C(9)	120.29(11)
C(11)-C(10)-H(10)	119.9
C(9)-C(10)-H(10)	119.9
C(10)-C(11)-C(12)	120.05(12)
C(10)-C(11)-H(11)	120.0
C(12)-C(11)-H(11)	120.0

C(13)-C(12)-C(11)	120.15(12)
C(13)-C(12)-H(12)	119.9
С(11)-С(12)-Н(12)	119.9
C(12)-C(13)-C(14)	119.95(12)
C(12)-C(13)-H(13)	120.0
C(14)-C(13)-H(13)	120.0
C(13)-C(14)-C(9)	120.31(12)
C(13)-C(14)-H(14)	119.8
C(9)-C(14)-H(14)	119.8
C(16)-C(15)-C(20)	118.49(11)
C(16)-C(15)-C(5)	122.75(10)
C(20)-C(15)-C(5)	118.76(10)
C(17)-C(16)-C(15)	120.77(11)
C(17)-C(16)-H(16)	119.6
C(15)-C(16)-H(16)	119.6
C(18)-C(17)-C(16)	120.26(11)
C(18)-C(17)-H(17)	119.9
С(16)-С(17)-Н(17)	119.9
C(17)-C(18)-C(19)	119.39(11)
C(17)-C(18)-H(18)	120.3
C(19)-C(18)-H(18)	120.3
C(20)-C(19)-C(18)	120.48(11)
C(20)-C(19)-H(19)	119.8
C(18)-C(19)-H(19)	119.8
C(19)-C(20)-C(15)	120.59(11)
C(19)-C(20)-H(20)	119.7
C(15)-C(20)-H(20)	119.7

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	36(1)	34(1)	37(1)	0(1)	7(1)	9(1)
N(1)	31(1)	25(1)	24(1)	1(1)	0(1)	2(1)
C(1)	41(1)	28(1)	28(1)	-2(1)	4(1)	0(1)
C(2)	53(1)	39(1)	28(1)	-5(1)	-2(1)	-4(1)
C(3)	45(1)	44(1)	30(1)	2(1)	-10(1)	-8(1)
C(4)	29(1)	36(1)	35(1)	5(1)	-5(1)	-3(1)
C(5)	27(1)	26(1)	26(1)	2(1)	0(1)	2(1)
C(6)	23(1)	28(1)	29(1)	0(1)	4(1)	-2(1)
C(7)	29(1)	31(1)	24(1)	1(1)	1(1)	-1(1)
C(8)	22(1)	27(1)	25(1)	3(1)	0(1)	-4(1)
C(9)	27(1)	27(1)	23(1)	-2(1)	-2(1)	0(1)
C(10)	30(1)	30(1)	28(1)	1(1)	1(1)	-1(1)
C(11)	47(1)	30(1)	35(1)	6(1)	3(1)	3(1)
C(12)	50(1)	39(1)	37(1)	3(1)	-1(1)	19(1)
C(13)	33(1)	54(1)	40(1)	2(1)	4(1)	14(1)
C(14)	31(1)	40(1)	35(1)	6(1)	6(1)	2(1)
C(15)	28(1)	29(1)	21(1)	-1(1)	-2(1)	-1(1)
C(16)	29(1)	30(1)	35(1)	0(1)	1(1)	3(1)
C(17)	28(1)	39(1)	38(1)	-2(1)	3(1)	-2(1)
C(18)	35(1)	35(1)	28(1)	2(1)	-2(1)	-9(1)
C(19)	39(1)	28(1)	30(1)	3(1)	-5(1)	1(1)
C(20)	29(1)	32(1)	28(1)	2(1)	-1(1)	4(1)

Table S5. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for d8v19160. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

	х	у	Z	U(eq)
H(1)	6277	4820	2034	39
H(2)	5473	5036	745	48
H(3A)	4215	6102	782	48
H(3B)	5073	6814	691	48
H(4A)	4145	6329	2358	40
H(4B)	4200	7378	1913	40
H(7)	5696	6590	4760	33
H(10)	5579	4446	4639	35
H(11)	6433	3142	5154	45
H(12)	7969	2991	4743	50
H(13)	8642	4115	3777	50
H(14)	7774	5385	3206	42
H(16)	7188	6976	1951	38
H(17)	8043	8182	1254	42
H(18)	7381	9674	954	40
H(19)	5875	9972	1413	38
H(20)	5020	8775	2119	35

Table S6. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for d8v19160.

Table S7. Torsion angles [°] for d8v19160.

149.63(13)
-3.01(17)
-5.0(2)
-19.83(18)
50.40(14)
113.91(10)
-89.57(12)
-122.03(10)
34.49(14)
-3.14(12)
153.38(10)
-57.70(13)
65.75(13)
-170.29(10)
-176.88(10)
65.14(14)
-60.10(14)
4.09(11)
-113.89(10)
120.87(10)
177.32(12)
-3.74(12)
1.84(13)
-179.73(10)
-153.85(11)
1.02(13)
27.62(17)
-177.51(9)

C(7)-C(8)-C(9)-C(10)	58.47(16)
N(1)-C(8)-C(9)-C(10)	-123.23(12)
C(7)-C(8)-C(9)-C(14)	-118.95(14)
N(1)-C(8)-C(9)-C(14)	59.35(15)
C(14)-C(9)-C(10)-C(11)	-0.04(18)
C(8)-C(9)-C(10)-C(11)	-177.48(11)
C(9)-C(10)-C(11)-C(12)	1.36(19)
C(10)-C(11)-C(12)-C(13)	-1.2(2)
C(11)-C(12)-C(13)-C(14)	-0.3(2)
C(12)-C(13)-C(14)-C(9)	1.7(2)
C(10)-C(9)-C(14)-C(13)	-1.48(19)
C(8)-C(9)-C(14)-C(13)	175.96(12)
N(1)-C(5)-C(15)-C(16)	-0.36(15)
C(4)-C(5)-C(15)-C(16)	-122.72(12)
C(6)-C(5)-C(15)-C(16)	112.03(12)
N(1)-C(5)-C(15)-C(20)	-179.69(10)
C(4)-C(5)-C(15)-C(20)	57.95(14)
C(6)-C(5)-C(15)-C(20)	-67.31(13)
C(20)-C(15)-C(16)-C(17)	-1.09(17)
C(5)-C(15)-C(16)-C(17)	179.58(11)
C(15)-C(16)-C(17)-C(18)	-0.29(19)
C(16)-C(17)-C(18)-C(19)	1.40(18)
C(17)-C(18)-C(19)-C(20)	-1.14(18)
C(18)-C(19)-C(20)-C(15)	-0.25(18)
C(16)-C(15)-C(20)-C(19)	1.35(17)
C(5)-C(15)-C(20)-C(19)	-179.29(10)

Symmetry transformations used to generate equivalent atoms:

Table S8. Hydrogen bonds for d8v19160 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

S56

Due to the volatile nature of this compound, not all the petroleum ether could be removed.

12i

