Supporting Information

Metal-Free Oxidative Trifluoromethylselenolation of Electron-Rich (Hetero)Arenes with the Readily Available [$\left.\mathrm{Me}_{4} \mathbf{N}\right]\left[\mathrm{SeCF}_{3}\right]$ Reagent

Qiu-Yan Han, ${ }^{\text {a }}$ Cheng-Long Zhao, ${ }^{a}$ Tao Dong, ${ }^{\text {a }}$ Jin Shi, ${ }^{a}$ Kai-Li Tan, ${ }^{a}$ Cheng-Pan Zhang ${ }^{\text {a,b,* }}$
${ }^{\text {a }}$ School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China.
${ }^{\text {b }}$ Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
E-mail: cpzhang@whut.edu.cn, zhangchengpan1982@hotmail.com.

Table of contents

1. General information. S2
2. Screening of the optimal reaction conditions for trifluoromethylselenolation of indole (1a) by $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ S2
3. General procedures for the trifluoromethylselenolation of (hetero)arenes (1) by $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ in the presence of an oxidant. S7
4. The scale-up synthesis of 2 S23
5. The control experiments for mechanistic insights S23
6. The NMR spectra of 2 S57

1. General information

All reactions were carried out under a nitrogen atmosphere. Unless otherwise specified, the NMR spectra were recorded in CDCl_{3} or acetone- d_{6} on a 500 MHz (for ${ }^{1} \mathrm{H}$), 471 MHz (for ${ }^{19} \mathrm{~F}$), and 126 MHz (for ${ }^{13} \mathrm{C}$) spectrometer. All chemical shifts were reported in ppm relative to TMS for ${ }^{1} \mathrm{H}$ NMR (0 ppm) and PhOCF_{3} for ${ }^{19} \mathrm{~F}$ NMR (58.56 ppm) as an internal or external standard. The coupling constants were reported in Hertz (Hz). The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, brs = broad singlet. The HPLC experiments were carried out on a Wufeng LC-100 II instrument (column: Shodex, C18, $5 \mu \mathrm{~m}, 4.6 \times 250 \mathrm{~mm}$), and the yields of the product were determined by using the corresponding pure compound as the external standard. Melting points were measured and uncorrected. MS experiments were performed on a TOF-Q ESI or EI instrument. $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ was prepared according to the literature. ${ }^{1}$ The starting materials ($\mathbf{1 s},{ }^{2} \mathbf{1 w},{ }^{3} \mathbf{1 x},{ }^{4} \mathbf{1 y} \mathbf{- 1 a a},{ }^{5}$ and $\mathbf{1 a f}{ }^{6}$) were synthesized according to the literatures. Solvents were dried before use according to the literature. ${ }^{7}$ Other reagents used in the reactions were all purchased from the commercial sources and used without further purification.

2. Screening of the optimal reaction conditions for trifluoromethylselenolation of indole (1a) by [$\left.\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$

Table S1 Trifluoromethylselenolation of 1a by $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ in the presence of different oxidants.

Entry a	Oxidant	Yield (2a, \%) b
$\mathbf{1}$	$\mathbf{m - C P B A}$	$\mathbf{9 6 ~ (9 3)}$
2^{c}	TBHP (70\% aq.)	62
3^{c}	$\mathrm{H}_{2} \mathrm{O}_{2}(30 \%$ aq. $)$	50
4	DMP	20
5	$\operatorname{PhI}(\mathrm{OAc})_{2}$	89
6	DDQ	95

7	TEMPO	2
8	$\mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	3
9^{c}	KMnO_{4}	18
10^{c}	AgNO_{3}	<1
11^{c}	AgBF_{4}	<1
12^{c}	NIS	96
13^{c}	NBS	73
14^{c}	NCS	>99
15^{c}	I_{2}	8
$16^{c}, d$	O_{2}	12
17	Selectfluor	69
18^{c}	NFSI	64

${ }^{a}$ Reaction conditions: To a mixture of oxidant (0.22 mmol) and $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right](0.3$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ was added slowly a solution of $\mathbf{1 a}(0.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}$ $(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was maintained at $0^{\circ} \mathrm{C}$ under N_{2} for 8 hours. ${ }^{b}$ Yields were determined by HPLC using 2a as an external standard $\left(\mathrm{t}_{\mathrm{R}}=4.50 \mathrm{~min}, \lambda_{\max }=268\right.$ nm , methanol/water $=90: 10(\mathrm{v} / \mathrm{v})$). Isolated yield was depicted in the parentheses.
${ }^{c}$ Reaction conditions: A solution of oxidant (0.22 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was added slowly to a mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right](0.3 \mathrm{mmol})$ and $\mathbf{1 a}(0.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was maintained at $0{ }^{\circ} \mathrm{C}$ under N_{2} for 8 hours. ${ }^{d} \mathrm{An} \mathrm{O}_{2}$ balloon was used.

Table S2 The solvent effects on the trifluoromethylselenolation of $\mathbf{1 a}$ by $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ in the presence of m-CPBA

Entry a	Solvent	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Yield (2a, \%) ${ }^{b}$
$\mathbf{1}$	$\mathbf{C H}_{\mathbf{3}} \mathbf{C N}$	$\mathbf{0}$	$\mathbf{9 6 (9 3)}$
2	DMF	0	85
3	NMP	0	49
4	DCM	0	95

5	DCE	0	86
6	THF	0	78
7	1,4-dioxane	25	41
8	DMSO	25	0
9	toluene	0	41

${ }^{a}$ Reaction conditions: To a mixture of m-CPBA (0.22 mmol) and $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right](0.3$ $\mathrm{mmol})$ in solvent $(1 \mathrm{~mL})$ was added slowly a solution of $\mathbf{1 a}(0.2 \mathrm{mmol})$ in solvent $(1$ mL) at $0{ }^{\circ} \mathrm{C}$ or $25^{\circ} \mathrm{C}$. The reaction was maintained at $0^{\circ} \mathrm{C}$ or $25^{\circ} \mathrm{C}$ under N_{2} for 8 hours. $\quad{ }^{b}$ Yields were determined by HPLC using 2a as an external standard $\left(\mathrm{t}_{\mathrm{R}}=\right.$ $4.50 \mathrm{~min}, \lambda_{\max }=268 \mathrm{~nm}$, methanol/water $\left.=90: 10(\mathrm{v} / \mathrm{v})\right)$. Isolated yield was depicted in the parentheses.

Table S3 The effects of moisture or water on the trifluoromethylselenolation of 1a by $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ in the presence of m-CPBA

Entry ${ }^{a}$	Conditions	Yield (2a, \%) ${ }^{b}$
$\mathbf{1}$	anhydrous $\mathbf{C H}_{3} \mathbf{C N}, \mathbf{N}_{2}$	$\mathbf{9 6}(\mathbf{9 3})$
2	anhydrous $\mathrm{CH}_{3} \mathrm{CN}+0.1 \mathrm{~mL} \mathrm{H}$	$\mathrm{O}, \mathrm{N}_{2}$
36		
4	undried $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{N}_{2}$	89
4	undried $\mathrm{CH}_{3} \mathrm{CN}$, air	89

$\overline{{ }^{a} \text { Reaction conditions: To a mixture of } m \text { - } \mathrm{CPBA}(0.22 \mathrm{mmol}) \text { and }\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right](0.3}$ $\mathrm{mmol})$ in solvent $(1.0 \mathrm{~mL})$ was added slowly a solution of $\mathbf{1 a}(0.2 \mathrm{mmol})$ in solvent (1 mL) at $0{ }^{\circ} \mathrm{C}$. The reaction was maintained at $0{ }^{\circ} \mathrm{C}$ under N_{2} for 8 hours. ${ }^{b}$ Yields were determined by HPLC using 2a as an external standard ($\mathrm{t}_{\mathrm{R}}=4.50 \mathrm{~min}, \lambda=268 \mathrm{~nm}$, methanol/water $=90: 10(\mathrm{v} / \mathrm{v}))$. Isolated yield was depicted in the parentheses.

Table S4 Trifluoromethylselenolation of $\mathbf{1 a}$ by $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ in the presence of m CPBA at different reaction times.

Abstract

Entry a	Time (h)	Yield (2a, \%) b
1	10	87
2^{c}	10	87
$\mathbf{3}$	$\mathbf{8}$	$\mathbf{9 6}(\mathbf{9 3})$
4	6	91
5	4	78

Table S5 Trifluoromethylselenolation of 1a with different equivalents of $\left[\mathrm{NMe}_{4}\right]\left[\mathrm{SeCF}_{3}\right]$ in the presence of m-CPBA.

Entry a	x	y	Yield (2a, \%) b
1	1.0	1.1	75
2	1.1	1.1	84
3	1.1	1.5	67
4	1.3	1.1	91
$\mathbf{5}$	$\mathbf{1 . 3}$	$\mathbf{1 . 3}$	$>\mathbf{9 9}$ (97)
6	1.3	1.5	>99
		55	

${ }^{a}$ Reaction conditions: To a mixture of m-CPBA (0.22 or 0.3 mmol) and $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right](0.2,0.22,0.26,0.3$, or 0.36 mmol$)$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was added slowly a solution of $\mathbf{1 a}(0.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was maintained at $0{ }^{\circ} \mathrm{C}$ under N_{2} for 8 hours. ${ }^{b}$ Yields were determined by HPLC using 2a as an external standard $\left(\mathrm{t}_{\mathrm{R}}=4.50 \mathrm{~min}, \lambda_{\max }=268 \mathrm{~nm}\right.$, methanol $/$ water $=90: 10$ $(\mathrm{v} / \mathrm{v}))$. Isolated yield was depicted in the parentheses.

Table S6 Trifluoromethylselenolation of 1a by $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and an oxidant with different charging sequence.

Entry	Oxidant	Yield (2a, \%) a	Yield (2a, \%) b
1	m-CPBA	$>99(97)$	>99
2	NIS	99	97
3	NCS	85	>99
4	NBS	99	91
5	DDQ	9	53
6	$\operatorname{PhI}(\mathrm{OAc})_{2}$	>99	>99

$\overline{{ }^{a}}$ Reaction conditions: To a mixture of oxidant (0.26 mmol) and $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right](0.26$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was added slowly a solution of $\mathbf{1 a}(0.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1$ mL) at $0{ }^{\circ} \mathrm{C}$. The reaction was maintained at $0{ }^{\circ} \mathrm{C}$ under N_{2} for 8 hours. Yields were determined by HPLC using 2a as an external standard ($\mathrm{t}_{\mathrm{R}}=4.50 \mathrm{~min}, \lambda_{\text {max }}=268 \mathrm{~nm}$, methanol/water $=90: 10(\mathrm{v} / \mathrm{v}))$. Isolated yield was depicted in the parentheses. Reaction conditions: A solution of oxidant $(0.26 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was added slowly to a mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right](0.26 \mathrm{mmol})$ and $\mathbf{1 a}(0.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1$ mL) at $0{ }^{\circ} \mathrm{C}$. The reaction was maintained at $0{ }^{\circ} \mathrm{C}$ under N_{2} for 8 hours. Yields were determined by HPLC using 2a as an external standard ($\mathrm{t}_{\mathrm{R}}=4.50 \mathrm{~min}, \lambda_{\max }=268 \mathrm{~nm}$, methanol/water $=90: 10(\mathrm{v} / \mathrm{v}))$.

Table S7 Trifluoromethylselenolation of $\mathbf{1 v}$ by $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ in the presence of NIS with different reactant ratios.

Entry a	$\mathrm{x}: \mathrm{y}$	Recovery (1v, \%)	Yield (2v, \%) b
1	$1.0: 1.0$	21	62
2	$1.1: 1.1$	20	78
3	$1.1: 1.3$	<1	83
4	$1.2: 1.2$	2	87
$\mathbf{5}$	$\mathbf{1 . 3}: \mathbf{1 . 3}$	$<\mathbf{1}$	$\mathbf{9 0}(\mathbf{9 0})$
6	$1.3: 1.5$	$<\mathbf{1}$	85
7	$1.4: 1.4$	<1	89
8	$1.5: 1.5$	<1	91
9	$1.5: 1.1$	88	0

${ }^{a} \overline{\text { Reaction conditions: To a mixture of NIS }(0.20,0.22,0.24,0.26,0.30 \mathrm{mmol}) \text { and }}$ $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right](0.20,0.22,0.24,0.28,0.3 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was added slowly a solution of $\mathbf{1 v}(0.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was maintained at $0{ }^{\circ} \mathrm{C}$ under N_{2} for 8 hours. ${ }^{b}$ Yields were determined by HPLC using 2 v as an external standard $\left(\mathrm{t}_{\mathrm{R}}=5.71 \mathrm{~min}, \lambda=268 \mathrm{~nm}\right.$, methanol/water $=90: 10(\mathrm{v} / \mathrm{v})$). Isolated yield was depicted in the parentheses.

3. General procedures for the trifluoromethylselenolation of (hetero)arenes (1)

 by $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ in the presence of an oxidant.Procedure A: Under a nitrogen atmosphere, a sealed tube was charged with $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ ($57.7 \mathrm{mg}, 0.26 \mathrm{mmol}$), $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$, and m-CPBA ($52.5 \mathrm{mg}, 85 \%$, 0.26 mmol) at room temperature and cooled to $0^{\circ} \mathrm{C}$ with stirring. Then, a solution of $\mathbf{1}(0.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was added slowly. The mixture was reacted at $0{ }^{\circ} \mathrm{C}$ for 8 hours and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using a mixture of petroleum ether and ethyl acetate as eluents to give the trifluoromethylselenolated products (2).

Procedure B: Under a nitrogen atmosphere, a sealed tube was charged with $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right](57.7 \mathrm{mg}, 0.26 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$, and NIS ($58.5 \mathrm{mg}, 0.26 \mathrm{mmol}$) at room temperature and cooled to $0^{\circ} \mathrm{C}$ with stirring. Then, a solution of $\mathbf{1}(0.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was added slowly. The mixture was reacted at $0^{\circ} \mathrm{C}$ for 8 hours and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using a mixture of petroleum ether and ethyl acetate as eluents to give the trifluoromethylselenolated products (2).

3-((Trifluoromethyl)selanyl)-1 H -indole (2a). ${ }^{8}$ Light yellow solid $(51.3 \mathrm{mg}, 97 \%$ yield), petroleum ether/ethyl acetate $=10: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $64-66{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.49$ (brs, 1 H), 7.80 (dm, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-35.9$ (s, 3F); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 136.1, 132.9, $130.0,123.4,122.3(\mathrm{q}, ~ J=335.1 \mathrm{~Hz}), 121.5,120.1,111.5,93.3(\mathrm{q}, J=1.6 \mathrm{~Hz})$.

2-Methyl-3-((trifluoromethyl)selanyl)-1 H-indole (2b). White solid ($47.3 \mathrm{mg}, 85 \%$ yield), petroleum ether/ethyl acetate $=10: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $98-100{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.30$ (brs, 1H), 7.70 $(\mathrm{m}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-37.4 (s, 3F); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.8,135.5,131.3,122.7(\mathrm{q}, ~ J=$ 336.1 Hz), 122.6, 121.2, 119.5, 110.7, 91.7 (q, $J=1.1 \mathrm{~Hz}$), 13.0. IR (KBr): 3382, 1541, 1455, 1402, 1386, 1291, 1233, 1223, 1131, 1118, 1108, 1098, 1059, 1006, 994, 931, 756, 749, $733 \mathrm{~cm}^{-1}$. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NSe}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 279.9847; found: 279.9844.

2-Phenyl-3-((trifluoromethyl)selanyl)-1 H-indole (2c). Brown solid ($64.6 \mathrm{mg}, 95 \%$ yield), petroleum ether/ethyl acetate $=10: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $95-97{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.64$ (brs, 1 H), 7.83 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-$ 36.6 (s, 3F); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.1,135.8,132.1,131.4,129.2,129.1$, 128.7, 123.6, 122.5 (q, $J=337.1 \mathrm{~Hz}$), 121.7, 120.7, 111.1, 91.3 (q, $J=1.3 \mathrm{~Hz}$). IR (KBr): 3364, 3070, 1602, 1579, 1538, 1484, 1445, 1396, 1347, 1324, 1297, 1276, 1224, 1118, 1096, 1009, 990, 852, 819, 769, 751, 735, 696, $635 \mathrm{~cm}^{-1}$. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NSe}([\mathrm{M}-\mathrm{H}])$): 339.9858; found: 339.9867 .

4-Fluoro-3-((trifluoromethyl)selanyl)-1 H -indole (2d). White solid (53.6 mg, 94\% yield), petroleum ether/ethyl acetate $=10: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $101-103{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67$ (brs, 1 H), $7.47(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-38.5$ (d, $J=3.2 \mathrm{~Hz}, 3 \mathrm{~F}),-124.7(\mathrm{~m}, 1 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.8(\mathrm{~d}, J$ $=250.9 \mathrm{~Hz}), 139.0(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 133.7,123.9(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 122.1(\mathrm{q}, J=335.3$ $\mathrm{Hz}), 118.5(\mathrm{~d}, J=17.8 \mathrm{~Hz}), 107.8(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 106.9(\mathrm{~d}, J=19.0 \mathrm{~Hz})$, 89.3. IR (KBr): 3457, 3130, 1660, 1634, 1578, 1510, 1444, 1413, 1347, 1317, 1229, 1161, 1132, 1114, 1089, 1029, 987, 948, 839, 833, 779, 731, 678, $614 \mathrm{~cm}^{-1}$. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{~F}_{4} \mathrm{NSe}\left([\mathrm{M}-\mathrm{H}]^{-}\right):$: 281.9451; found: 281.9460 .

5-Methoxy-3-((trifluoromethyl)selanyl)-1 H -indole (2e). ${ }^{9}$ Pink solid (58.2 mg, 99\% yield), petroleum ether/ethyl acetate $=10: 1(\mathrm{v} / \mathrm{v})$ as eluents for column
chromatography. M.p.: $102-104{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.51$ (brs, 1 H), $7.48(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}$, 3H); ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-37.6(\mathrm{~s}, 3 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $155.6,133.3,131.0,130.8,122.3(\mathrm{q}, J=336.2 \mathrm{~Hz}), 113.9,112.4,101.4,92.8$, 55.9.

5-Iodo-3-((trifluoromethyl)selanyl)-1 H -indole (2f). Lignt yellow solid ($76.7 \mathrm{mg}, 98 \%$ yield), hexane/diethyl ether $=3: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $75-77{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60$ (brs, 1 H), 8.10 (s, 1H), 7.55 (dd, $J=8.6$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.22 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{19} \mathrm{~F}$ NMR (471 MHz , CDCl_{3}) δ-37.5 (s, 3F); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.2,133.5,132.5,131.9$, 129.1, 122.1 (q, $J=335.1 \mathrm{~Hz}$), 113.4, $92.6(\mathrm{q}, J=1.7 \mathrm{~Hz}), 85.3$. IR (KBr): 3473, 3120, $1698,1670,1498,1442,1418,1401,1304,1292,1263,1236,1144,1121,1076,1013$, 984, 875, 838, 796, 771, 747, 733, 720, $670 \mathrm{~cm}^{-1}$. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{INSe}([\mathrm{M}-\mathrm{H}]$) $): 389.8511$; found: 389.8506 .

Methyl 3-((trifluoromethyl)selanyl)-1H-indole-5-carboxylate (2g). ${ }^{8}$ White solid (63.7 $\mathrm{mg},>99 \%$ yield), hexane/diethyl ether $=1: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $172-174{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 11.34$ (brs, $1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.94-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (471 MHz, acetone- d_{6}) $\delta-38.9(\mathrm{~s}, 3 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , acetone- d_{6}) $\delta 166.9$, $139.4,136.2,129.8,123.8,123.4,122.5(\mathrm{q}, ~ J=333.9 \mathrm{~Hz}), 121.8,112.2,92.7(\mathrm{q}, J=$ $1.7 \mathrm{~Hz})$, 51.2.

3-((Trifluoromethyl)selanyl)-1H-indole-5-carbonitrile (2h). Lignt yellow solid (56.6
$\mathrm{mg}, 98 \%$ yield), petroleum ether/ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $212-214{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 11.60$ (brs, $1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{19} \mathrm{~F}$ NMR (471 MHz , acetone- d_{6}) $\delta-38.9$ (s, 3F); ${ }^{13} \mathrm{C}$ NMR (126 MHz , acetone- d_{6}) δ 138.7, 137.1, 130.1, 125.5, 124.6, 122.4 (q, $J=333.9 \mathrm{~Hz}$), 119.6, 113.7, 104.3, 92.2. IR (KBr): 3229, 3028, 2993, 2237, 1621, 1470, 1458, 1425, 1340, 1306, 1300, 1244, 1153, 1138, 1130, 1099, 992, 919, 888, 846, 808, 793, 757, $734 \mathrm{~cm}^{-1}$. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{Se}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 288.9651; found: 288.9644.

5-Nitro-3-((trifluoromethyl)selanyl)-1 H -indole (2i). Lignt yellow solid ($62.4 \mathrm{mg},>99 \%$ yield), petroleum ether/ethyl acetate $=2: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: 193-195 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 11.64$ (brs, 1H), $8.59(\mathrm{~s}, 1 \mathrm{H})$, 8.17 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.09$ (s, 1H), 7.78 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (471 MHz , acetone- d_{6}) $\delta-38.8(\mathrm{~s}, 3 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , acetone- d_{6}) $\delta 143.0$, 139.9, 138.1, $129.8,122.4$ (q, $J=334.8 \mathrm{~Hz}$), 118.0, 115.9, 113.0, 93.7. IR (KBr): 3260, 3107, 3032, $1713,1618,1583,1516,1501,1474,1456,1419,1325,1319,1301,1244,1235,1205$, 1163, 1123, 1091, 1075, 989, 947, 901, 861, 831, 816, 783, 739, $696 \mathrm{~cm}^{-1}$. HRMSESI (m/z) calcd. for $\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Se}([\mathrm{M}-\mathrm{H}])$): 308.9396; found: 308.9404.

Ethyl 5-chloro-3-((trifluoromethyl)selanyl)-1H-indole-2-carboxylate (2j). White solid ($73.5 \mathrm{mg}, 99 \%$ yield), hexane/diethyl ether $=1: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $205-207{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 11.87$ (brs, $1 \mathrm{H}), 7.75$ (s, 1H), 7.64 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.39 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.45 (q, $J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}$), $1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (471 MHz , acetone- d_{6}) $\delta-37.4(\mathrm{~s}, 3 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , acetone- d_{6}) $\delta 159.8,134.8,132.8,132.3,127.6,126.1,122.6$ (q, $J=$ 334.9 Hz), 120.3, 114.7, 96.7 (q, $J=1.6 \mathrm{~Hz}$), 61.4, 13.6. IR (KBr): 3291, 3069, 2994, $1686,1618,1509,1476,1453,1439,1408,1383,1355,1330,1265,1246,1228,1205$,
$1144,1128,1100,1066,1032,1014,941,917,882,872,805,780,748,736,714 \mathrm{~cm}^{-1}$. HRMS-ESI (m / z) calcd. for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{ClF}_{3} \mathrm{NO}_{2} \mathrm{Se}\left([\mathrm{M}-\mathrm{H}]^{-}\right): 369.9366$; found: 369.9376 .

6-Chloro-3-((trifluoromethyl)selanyl)-1H-indole (2k). White solid (57.3 mg, 96\% yield), petroleum ether/ethyl acetate $=20: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $42-44{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.57$ (brs, 1 H), 7.69 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (471 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-37.5(\mathrm{~s}, 3 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.4,133.5,129.4$, 128.7, 122.3, 122.2 (q, $J=335.7 \mathrm{~Hz}$), 121.1, 111.5, 93.6 (q, $J=1.5 \mathrm{~Hz}$). IR (KBr): $3469,3443,3115,1664,1621,1614,1611,1566,1501,1478,1447,1385,1330,1301$, 1272, 1227, 1197, 1153, 1135, 1108, 1085, 1059, 982, 941, 903, 853, 835780,732 , $708 \mathrm{~cm}^{-1}$. HRMS-ESI (m / z) calcd. for $\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{ClF}_{3} \mathrm{NSe}\left([\mathrm{M}-\mathrm{H}]^{-}\right)$: 297.9155; found: 297.9149.

6-Bromo-3-((trifluoromethyl)selanyl)-1H-indole (21). White solid ($63.1 \mathrm{mg}, 92 \%$ yield), petroleum ether/ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $65-67^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.57(\mathrm{brs}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 37.5 (s, 3F); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.8,133.4,129.0,124.9,122.2$ (q, $J=$ 335.8 Hz), $121.5,117.0,114.5,93.6(\mathrm{q}, J=1.6 \mathrm{~Hz})$. IR (KBr): 3474, 3457,3129 , $3118,3105,1662,1608,1499,1446,1383,1328,1302,1270,1228,1198,1159,1134$, 1101, 1080, 1054, 979, 941, 892, 841, 836, 804, 777, 744, $732 \mathrm{~cm}^{-1}$. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{BrF}_{3} \mathrm{NSe}\left([\mathrm{M}-\mathrm{H}]^{-}\right): 343.8629$; found: 343.8623 .

7-Methyl-3-((trifluoromethyl)selanyl)-1 H -indole (2m). Light yellow solid (53.2 mg , 96% yield), petroleum ether/ethyl acetate $=10: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $87-89^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47$ (brs, 1 H), 7.65 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.52 (s, 3H); ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-37.6 ($\mathrm{s}, 3 \mathrm{~F}$); ${ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.7,132.5,129.7,123.9,122.3(\mathrm{q}, J=335.9 \mathrm{~Hz}), 121.7,120.7$, 117.8, 93.7 (q, $J=1.6 \mathrm{~Hz}$), 16.4. IR (KBr): 3382, 3146, 2944, 2919, 1676, 1505, 1494, $1453,1431,1413,1383,1345,1313,1282,1251,1163,1136,1126,1096,1070,1048$, 981, 919, 841, 779, 747, $734 \mathrm{~cm}^{-1}$. HRMS-ESI (m / z) calcd. for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{NSe}\left([\mathrm{M}-\mathrm{H}]^{-}\right)$: 277.9701; found: 277.9694.

2,6-Dimethyl-4-((trifluoromethyl)selanyl)phenol (2n). Light yellow solid (40.9 mg , 76% yield), petroleum ether/ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $43-45{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ (s, 2H), 4.88 (s, 1H), 2.26 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-37.1$ (s, 3F); ${ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 154.4,137.7,124.5,122.5(\mathrm{q}, J=333.8 \mathrm{~Hz}), 112.2(\mathrm{q}, J=1.3 \mathrm{~Hz}), 15.7$. IR (KBr): 3436, 3048, 2983, 2954, 2927, 2862, 1669, 1600, 1582, 1559, 1477, 1456, $1426,1405,1335,1313,1277,1258,1208,1158,1092,1060,1032,998,940,874$, 737, 728, $719 \mathrm{~cm}^{-1}$. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{OSe}\left([\mathrm{M}-\mathrm{H}]^{-}\right): 268.9698$; found: 268.9690 .

2,6-Diisopropyl-4-((trifluoromethyl)selanyl)phenol (20). Light yellow solid (60.2 mg , 93% yield), petroleum ether/ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $52-54{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~s}, 2 \mathrm{H}), 5.05(\mathrm{~s}$, $1 \mathrm{H}), 3.15(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-37.1(\mathrm{~s}$, $3 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.1,135.1,133.0,122.6$ ($\mathrm{q}, J=333.8 \mathrm{~Hz}$),
113.3 ($\mathrm{q}, ~ J=1.2 \mathrm{~Hz}$), 27.2, 22.5. IR (KBr): 3608, 3585, 2967, 2936, 2874, 1576, 1466, 1450, 1436, 1417, 1385, 1363, 1344, 1311, 1262, 1251, 1205, 1136, 1098, 1062, 959, 933, 923, $878,840,810,766,736,726 \mathrm{~cm}^{-1}$. HRMS-ESI (m/z) calcd. for $\left.\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{OSe}([\mathrm{M}-\mathrm{H}])^{-}\right): 325.0324$; found: 325.0325 .

2,6-Di-tert-butyl-4-((trifluoromethyl)selanyl)phenol (2p). Light yellow solid (64.3 mg , 91% yield), petroleum ether as eluent for column chromatography. M.p.: $45-47{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{~s}, 2 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (471 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-37.1(\mathrm{~s}, 3 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.9,137.3$, 134.4, 122.7 (q, $J=333.9 \mathrm{~Hz}$), 112.6, 34.4, 30.1. IR (KBr): 3637, 3612, 3089, 2955, 2917, $2874,1781,1655,1573,1471,1426,1393,1362,1316,1231,1202,1131,1094,930$, 886, 808, 772, 752, 736, $693 \mathrm{~cm}^{-1}$. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{OSe}\left([\mathrm{M}-\mathrm{H}]^{-}\right.$): 353.0637, found: 353.0639.

6-((Trifluoromethyl)selanyl)benzo[d][1,3]dioxol-5-ol (2q). Light yellow solid (54.2 $\mathrm{mg}, 95 \%$ yield), petroleum ether/ethyl acetate $=10: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $91-93{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}$, $1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-36.7(\mathrm{~s}, 3 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.9,152.5,142.0,121.7(\mathrm{q}, J=336.9 \mathrm{~Hz}), 115.9,101.9,97.8$, 97.4. IR (KBr): 3422, 3104, 3056, 3002, 2975, 2919, 2852, 1622, 1612, 1591, 1496, $1471,1439,1399,1374,1278,1228,1185,1156,1131,1116,1092,1070,1031,987$, 931, 875, 869, 846, 832, 818, 769, 736, $710 \mathrm{~cm}^{-1}$. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{Se}\left([\mathrm{M}-\mathrm{H}]^{-}\right):$284.9283; found: 284.9282 .

Ethyl 3,5-dimethyl-4-((trifluoromethyl)selanyl)-1 H -pyrrole-2-carboxylate (2r). White solid $(47.7 \mathrm{mg}, 76 \%$ yield $)$, petroleum ether/ethyl acetate $=10: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $173-175{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.54$ (brs, $1 \mathrm{H}), 4.35(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-37.9$ (s, 3F); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.6,138.5$, $132.0,121.4$ ($\mathrm{q}, ~ J=335.5 \mathrm{~Hz}$), 117.7, 101.2, 59.4, 13.5, 11.8, 11.4. IR (KBr): 3384, $3284,2985,2925,1673,1632,1564,1512,1481,1440,1395,1381,1322,1282,1215$, 1119, 1103, 1067, 1044, 1020, 877, 850, 774, 749, $734 \mathrm{~cm}^{-1}$. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{Se}\left([\mathrm{M}-\mathrm{H}]^{-}\right)$: 313.9913; found: 313.9911.

2-Phenyl-3-((trifluoromethyl)selanyl)indolizine (2s). White solid (46.9 mg, 69\% yield), petroleum ether/ethyl acetate $=20: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $90-92{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 8.62(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.67(\mathrm{dm}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{dm}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{tm}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.38(\mathrm{tm}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{td}, J=6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J$ $=0.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (471 MHz , acetone- d_{6}) $\delta-38.3(\mathrm{~s}, 3 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , acetone- d_{6}) $\delta 139.8,137.7,135.3,129.5,128.2,127.4,125.3,122.1$ ($\mathrm{q}, ~ J=340.3 \mathrm{~Hz}$), 121.2, 118.9, 112.1, 101.8, 97.3 (q, $J=1.1 \mathrm{~Hz}$). IR (KBr): 3108, 3061, 3030, 1680, $1662,1641,1632,1602,1578,1538,1505,1489,1462,1449,1367,1352,1332,1269$, 1242, 1190, 1181, 1135, 1093, 1072, 1030, 1011, 974, 918, 834, 830, 789, 761, 734, $720,698 \mathrm{~cm}^{-1}$. HRMS-ESI (m / z) calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NSe}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 342.0003$; found: 342.0003 .

3-((Trifluoromethyl)selanyl)-1 H -pyrrolo[2,3-b]pyridine (2t). White solid ($47.7 \mathrm{mg}, 90 \%$ yield), petroleum ether/ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $194-196{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d $_{6}$) $\delta 12.51$ (brs, 1 H), 8.34 (d, $J=4.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 8.02 (s, 1H), 7.97 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$ (dd, $J=7.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (471 MHz, DMSO-d d_{6}) -37.5(s, 3F); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 149.0$,
144.5, 135.9, 127.7, 122.9 (q, $J=336.2 \mathrm{~Hz}), 122.6,117.7,89.5(\mathrm{q}, ~ J=1.5 \mathrm{~Hz}) . \mathrm{IR}$ (KBr): 3430, 3126, 3075, 3015, 2989, 1608, 1587, 1489, 1445, 1410, 1360, 1340, 1315, 1282, 1244, 1144, 1116, 1092, 1042, 991, 935, 893, 853, 828, 797, 772, 733 cm^{-1}. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{Se}\left([\mathrm{M}-\mathrm{H}]^{-}\right): ~ 262.9505$; found: 262.9509 .

2-Bromo-7-((trifluoromethyl)selanyl)-5H-pyrrolo[2,3-b]pyrazine (2u). Pink solid ($51.8 \mathrm{mg}, 75 \%$ yield), petroleum ether/ethyl acetate $=3: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $194-196{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , (acetone-d ${ }_{6}$) $\delta 12.06$ (brs, $1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (471 MHz , acetone- d_{6}) $\delta-38.6(\mathrm{~s}, 3 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, acetone- d_{6}) $\delta 140.5,140.3,140.2,139.9,134.5,122.3$ ($\mathrm{q}, J=334.4$ Hz), 90.9 ($\mathrm{q}, ~ J=1.7 \mathrm{~Hz}$). IR (KBr): 3435, 3174, 3107, 3048, 2995, 1780, 1731, 1586, $1543,1479,1450,1434,1395,1375,1343,1322,1287,1245,1229,1205,1150,1134$, 1112, 1092, 1066, 1004, 918, 892, 868, 837, 772, 736, $696 \mathrm{~cm}^{-1}$. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{BrF}_{3} \mathrm{~N}_{3} \mathrm{Se}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 345.8700$; found: 345.8700 .

1-Methyl-3-((trifluoromethyl)selanyl)-1H-indole (2v). ${ }^{10}$ Light yellow solid (50.1 mg , 90% yield), petroleum ether/ethyl acetate $=20: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $63-65^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (471 MHz , CDCl_{3}) $\delta-38.0(\mathrm{~s}, 3 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.3,137.1,130.8,122.9$, $122.3(\mathrm{q}, J=335.7 \mathrm{~Hz}), 121.1,120.2,109.8,90.9(\mathrm{q}, J=1.6 \mathrm{~Hz}), 33.2$.

1-Benzyl-3-((trifluoromethyl)selanyl)-1H-indole (2w). White solid (59.5 mg, 84\% yield), petroleum ether/ethyl acetate $=40: 1(\mathrm{v} / \mathrm{v})$ as eluents for column
chromatography. M.p.: 86-88 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~s}$, $1 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-37.8(\mathrm{~s}, 3 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.9,136.5$, 136.3, 131.0, 129.0, 128.1, 127.0, 123.0, 122.3 (q, $J=336.2 \mathrm{~Hz}$), 121.3, 120.3, 110.2, 91.9 (q, $J=1.6 \mathrm{~Hz}$), 50.6. IR (KBr): 3107, 3059, 3030, 2926, 1663, 1612, 1605, 1572, $1504,1480,1458,1452,1439,1386,1354,1338,1329,1313,1297,1200,1185,1176$, $1159,1139,1100,1089,1074,1029,969,954,927,893,833,841,809,775,760,739$, $724 \mathrm{~cm}^{-1}$. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NNaSe}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 377.9979; found: 377.9987.

1-Phenyl-3-((trifluoromethyl)selanyl)-1H-indole (2x). White solid (21.1 mg, 31\% yield), petroleum ether as eluent for column chromatography. M.p.: $65-67{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.54-7.52$ (m, 2H), $7.44(\mathrm{tm}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 37.4 (s, 3F); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.6,136.6,136.0,131.2,129.8,127.6$, 124.7, 123.6, 122.3 (q, $J=336.0 \mathrm{~Hz}$), 121.9, 120.5, 111.0, 94.0 (q, $J=1.6 \mathrm{~Hz}$). IR (KBr): 3115, 3058, 1642, 1597, 1511, 1496, 1477, 1453, 1429, 1397, 1367, 1318, $1298,1281,1262,1227,1205,1196,1177,1158,1115,1097,1073,1037,1029,1012$, 995, 979, 966, 935, 926, 910, 851, 827, 822, 803, 775, 746, 720, $695 \mathrm{~cm}^{-1}$. HRMS$\operatorname{ESI}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NSe}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 342.0003$; found: 342.0020 .

2-(p-Tolyl)-3-((trifluoromethyl)selanyl)imidazo[1,2-a]pyridine (2y). Yellow solid ($59.0 \mathrm{mg}, 83 \%$ yield), petroleum ether/ethyl acetate $=2: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $146-148{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.98$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.72 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38 (tm, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.99 (td, $J=6.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.43 (s, 3H); ${ }^{19} \mathrm{~F}$ NMR (471 MHz , CDCl_{3}) δ-36.0 (s, 3F); ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 154.3,148.5,138.9,130.2$,
129.1, 128.9, 127.4, 125.5, 122.2 (q, $J=340.2 \mathrm{~Hz}$), 117.7, 113.4, 97.6, 21.4. $\mathrm{IR}(\mathrm{KBr}):$ $3078,3056,3033,2985,2922,2861,1635,1613,1501,1467,1411,1343,1318,1267$, $1231,1187,1155,1138,1130,1098,1036,1020,993,985,967,916,851,839,822$, 757, 747, 734, $725,695 \mathrm{~cm}^{-1}$. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{Se}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 357.0112; found: 357.0114.

2-(4-(Methylsulfonyl)phenyl)-3-((trifluoromethyl)selanyl)imidazo[1,2-a]pyridine (2z). Light yellow solid ($65.4 \mathrm{mg}, 78 \%$ yield), petroleum ether/ethyl acetate $=1: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $175-177^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.52(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{tm}, J$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{td}, J=6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-35.7 (s, 3F); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.8$, 148.6, 140.4, 138.5, 129.8, 128.1, 127.4, 125.6, 122.0 (q, $J=339.4 \mathrm{~Hz}$), 118.1, 114.2, 99.0 ($\mathrm{q}, J=1.1 \mathrm{~Hz}$), 44.6. IR (KBr): 3106, 3061, 3032, 3013, 2983, 2962, 2927, 2849, $1775,1709,1675,1655,1635,1601,1529,1499,1460,1403,1345,1316,1303,1268$, $1236,1163,1146,1128,1093,1016,992,978,960,955,916,856,843,826,777,763$, 757, 745, 734, 719, $694 \mathrm{~cm}^{-1}$. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SSe}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 420.9731$; found: 420.9729.

2-Phenyl-3-((trifluoromethyl)selanyl)imidazo[1,2-a]pyrimidine (2aa). Light yellow solid ($56.1 \mathrm{mg}, 82 \%$ yield), petroleum ether/ethyl acetate $=1: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $123-125^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.78(\mathrm{dd}, J$ $=6.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{dd}, J=4.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{dm}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-$ 7.48 (m, 2H), 7.45 (tm, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) 7.07$ (dd, $J=7.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{19}$ F NMR (471 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-35.5$ (s, 3F); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.4,152.5,151.4$, 133.1, 132.4, 129.5, 129.2, 128.4, 122.1 (q, $J=339.6 \mathrm{~Hz}$), 109.9, 96.6. IR (KBr): $3160,3073,1773,1695,1614,1525,1509,1504,1489,1464,1444,1430,1417,1404$, $1396,1370,1338,1295,1239,1194,1159,1137,1128,1099,1093,1029,1003,989$,

935, 850, 822, 801, 769, $704 \mathrm{~cm}^{-1}$. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{Se}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 343.9908$; found: 343.9913 .

Ethyl 2,4-bis((trifluoromethyl)selanyl)-1H-imidazole-5-carboxylate (2ab). White solid ($29.5 \mathrm{mg}, 34 \%$ yield), petroleum ether/ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $98-100{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.43$ (brs, $1 \mathrm{H}), 4.44(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -33.4 (s, 3F), -34.4 (s, 3F); ${ }^{13} \mathrm{C}$ NMR (126 MHz , acetone- d_{6}) $\delta 159.2,131.9,129.8$, $129.6,122.6$ ($\mathrm{q}, ~ J=332.6 \mathrm{~Hz}$), 122.3 ($\mathrm{q}, ~ J=334.3 \mathrm{~Hz}$), 66.1, 13.6. IR (KBr): 3419, $3395,3040,2992$, 2971, 2849, 2881, 2825, 1881, 1721, 1647, 1518, 1475, 1450, 1395, 1381, 1325, 1293, 1271, 1223, 1149, 1095, 1049, 1016, 990, 866, 842, 789, 777, 739 cm^{-1}. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Se}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 436.8737; found: 436.8736.

2,6-Dimethyl-4-((trifluoromethyl)selanyl)aniline (2ac). Light yellow solid (45.6 mg , 85% yield), petroleum ether/ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $38-40{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{~s}, 2 \mathrm{H}), 3.81$ (brs, 2H), 2.18 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-37.6$ (s, 3F); ${ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.1,137.4,122.6(\mathrm{q}, J=334.2 \mathrm{~Hz}), 122.4,108.9(\mathrm{q}, J=1.1 \mathrm{~Hz})$, 17.3. IR (KBr): 3432, 2922, 2852, 1654, 1591, 1466, 1437, 1379, 1261, 1189, 1166, 1100, 1029, 849, 779, 717, $705 \mathrm{~cm}^{-1}$. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NNaSe}$ ([M+Na] ${ }^{+}$): 291.9823; found: 291.9820.

N-Methyl-4-((trifluoromethyl)selanyl)aniline (2ad). Light brown liquid ($42.7 \mathrm{mg}, 84 \%$ yield), hexane/tetrahydrofurane $=20: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{dm}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 4.02 (brs, 1H), 2.88 (s, 3H); ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-37.9$ (s, 3F); ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.9,138.9,122.6(\mathrm{q}, J=334.2 \mathrm{~Hz}), 112.9,108.0,30.2$. IR (KBr): 3431, 3017, 2927, 2902, 2855, 2836, 2820, 1597, 1510, 1481, 1469, 1451, 1434, 1397, 1325, 1296, 1267, 1185, 1102, 1077, 1058, 1001, 817, $736 \mathrm{~cm}^{-1}$. HRMSESI (m / z) calcd. for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NSe}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 255.9847 ; found: 255.9843 .

N, N-Diethyl-4-((trifluoromethyl)selanyl)aniline (2ae). Colorless liquid (53.3 mg, 90% yield), petroleum ether/ethyl acetate $=40: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{dm}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{dm}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (471 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-38.0(\mathrm{~s}, 3 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.2$, 138.9, 122.7 (q, J $=334.7 \mathrm{~Hz}$), 112.0, $105.8(\mathrm{q}, J=1.2 \mathrm{~Hz})$, 44.4, 12.4. IR (KBr): 2974, 2933, 2899, 2874, 1589, 1551, 1506, 1469, 1451, 1403, 1378, 1357, 1270, 1197, 1102, 1080, 1013, 808, $735 \mathrm{~cm}^{-1}$. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NSe}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 298.0316; found: 298.0319.

1-Benzyl-5-((trifluoromethyl)selanyl)indoline (2af). Light yellow liquid ($46.3 \mathrm{mg}, 65 \%$ yield), hexane/dichloromethane $=10: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.41$ (m, 2H), 7.39-7.29 (m, 5H), 6.45 (d, $J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 3.46(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (471 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-37.9(\mathrm{~s}, 3 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.1,136.8,136.6$, 132.4, 130.2, 127.6, 126.7, 126.3, 121.6 (q, $J=334.5 \mathrm{~Hz}$), 107.0, 105.8, 51.9, 51.4, 26.9. IR (KBr): 3086, 3063, 3030, 2958, 2923, 2845, 1597, 1497, 1472, 1454, 1440, 1401, 1386, 1356, 1316, 1272, 1242, 1201, 1111, 1092, 1062, 1029, 1003, 941, 980,

889, 877, 802, 763, 735, $698 \mathrm{~cm}^{-1}$. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NSe}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 358.0316$; found: 358.0320 .

1-(4-((Trifluoromethyl)selanyl)phenyl)piperidine (2ag). Colorless liquid (57.3 mg, 93\% yield), petroleum ether as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{t}, J=5.3 \mathrm{~Hz}, 4 \mathrm{H})$, $1.70(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.60(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-37.5(\mathrm{~s}, 3 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.1,138.5,122.6(\mathrm{q}, ~ J=334.0 \mathrm{~Hz}$), 115.9, 109.4 (q, $J=$ 1.1 Hz), 49.2, 25.5, 24.3. IR (KBr): 2937, 2856, 2815, 1647, 1636, 1588, 1558, 1499, $1466,1452,1387,1350,1308,1277,1267,1241,1197,1124,1101,1080,1025,1001$, 919, 858, 814, $736 \mathrm{~cm}^{-1}$. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NSe}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 310.0316; found: 310.0310 .

1-((Trifluoromethyl)selanyl)naphthalen-2-amine (2ah). Light brown solid (53.4 mg , 92% yield), petroleum ether/ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $74-76{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.33(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{tm}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30$ (tm, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.03 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.83 (brs, 2 H); ${ }^{19} \mathrm{~F}$ NMR (471 MHz , CDCl_{3}) δ-34.6 ($\mathrm{s}, 3 \mathrm{~F}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.4,137.1,133.4,128.4$, 128.2, 128.1, 126.1, 122.8, 122.6 (q, $J=337.7 \mathrm{~Hz}$), 117.3, 99.9. IR (KBr): 3466, 1614, $1556,1503,1469,1429,1386,1348,1284,1244,1213,1120,1107,1046,1031,974$, 962, 947, 868, 816, 769, 748, $733 \mathrm{~cm}^{-1}$. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NSe}$ ([M+H] ${ }^{+}$): 289.9855; found: 289.9860 .

3,4,5-Trimethoxy-2-((trifluoromethyl)selanyl)phenol (2ai). Light yellow solid (42.4 $\mathrm{mg}, 64 \%$ yield), petroleum ether/ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $47-49{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.27$ (s, $1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-34.6(\mathrm{~s}$, 3 F); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.2,155.1,154.7,136.0,121.7$ (q, $J=337.0$ Hz), 95.1, 94.5, 61.4, 61.0, 56.0. IR (KBr): 3452, 2944, 2876, 2849, 1596, 1576, 1482, 1461, 1450, 1429, 1404, 1360, 1301, 1232, 1194, 1109, 1093, 1012, 990, 927, 818, $737 \mathrm{~cm}^{-1}$. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{Se}\left([\mathrm{M}-\mathrm{H}]^{-}\right)$: 330.9702; found: 330.9700 .

1-((Trifluoromethyl)selanyl)naphthalen-2-ol (2aj). White solid (53.0 mg, 91\% yield), petroleum ether/ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: 81-83 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{tm}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{tm}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.34(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-34.6(\mathrm{~s}, 3 \mathrm{~F}) ;$ ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.2,135.9,134.6,129.4,128.5,128.3,126.5,124.2$, 121.9 (q, $J=337.7 \mathrm{~Hz}$), 116.8, 103.7. IR (KBr): 3420, 1617, 1595, 1565, 1508, 1463 , 1437, 1396, 1384, 1347, 1253, 1211, 1142, 1123, 1098, 1055, 1029, 982, 966, 951, 928, 866, 824, 769, 752, 737, $728 \mathrm{~cm}^{-1}$. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{OSe}$ ([M-H]): 290.9541; found: 290.9555.

($8 R, 9 S, 13 S, 14 S, 17 S$)-13-Methyl-2,4-bis((trifluoromethyl)selanyl)-
7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-3,17-diol (2ak). White solid ($32.8 \mathrm{mg}, 29 \%$ yield), petroleum ether/ethyl acetate $=10: 1(\mathrm{v} / \mathrm{v})$ as eluents for column chromatography. M.p.: $72-74{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.76(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~m}, 1 \mathrm{H}), 2.31$
$(\mathrm{m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.49(\mathrm{~m}$, $2 \mathrm{H}), 1.41-1.30(\mathrm{~m}, 5 \mathrm{H}), 1.19(\mathrm{~m}, 1 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 34.1 (s, 3F), -35.5 (s, 3F); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.3,147.2,139.5,135.5$, $122.3(\mathrm{q}, J=334.9 \mathrm{~Hz}), 122.0(\mathrm{q}, J=336.5 \mathrm{~Hz}), 111.4(\mathrm{q}, J=0.5 \mathrm{~Hz}), 106.5(\mathrm{q}, J=$ 1.0 Hz), 81.7, $50.0,44.0,43.2,37.8,36.5,32.3,30.6,27.1,26.4,23.0,11.0$. IR (KBr): 3554, 3420, 2931, 2868, 1575, 1533, 1449, 1421, 1395, 1333, 1279, 1265, 1250, 1131, 1093, 1012, 988, 971, 948, 926, 906, 858, $738 \mathrm{~cm}^{-1}$. HRMS-ESI (m/z) calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{O}_{2} \mathrm{Se}_{2}([\mathrm{M}-\mathrm{H}])$): 566.9782, found: 566.9774.

4. The scale-up synthesis of 2

4.1. Procedure for a large scale synthesis of 2a

Under a nitrogen atmosphere, a round-bottom flask was charged with $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ ($1.155 \mathrm{~g}, 5.2 \mathrm{mmol}$), $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$, and m-CPBA ($1.056 \mathrm{~g}, 85 \%, 5.2 \mathrm{mmol}$) at room temperature and cooled to $0^{\circ} \mathrm{C}$ with stirring. Then, a solution of $\mathbf{1 a}(0.469 \mathrm{~g}, 4.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ was added slowly. The resulting mixture was reacted at 0 ${ }^{\circ} \mathrm{C}$ for 8 hours and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using a mixture of petroleum ether and ethyl acetate ($8: 1, \mathrm{v} / \mathrm{v}$) as eluents to give $\mathbf{2 a}(1.048 \mathrm{~g}, 99 \%)$ as a light yellow solid.

4.2. Procedure for a large scale synthesis of $2 v$

Under a nitrogen atmosphere, a round-bottom flask was charged with $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ $(0.577 \mathrm{~g}, 2.6 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{CN}(7.5 \mathrm{~mL})$, and NIS $(0.585 \mathrm{~g}, 2.6 \mathrm{mmol})$ at room temperature and cooled to $0{ }^{\circ} \mathrm{C}$ with stirring. Then, a solution of $\mathbf{1 v}(0.262 \mathrm{~g}, 2.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(7.5 \mathrm{~mL})$ was added slowly. The mixture was reacted at $0{ }^{\circ} \mathrm{C}$ for 8 hours and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using a mixture of petroleum ether and ethyl acetate $(8: 1, \mathrm{v} / \mathrm{v})$ as eluents to give $\mathbf{2 v}(0.529 \mathrm{~g}, 95 \%)$ as a light yellow solid.

5. The control experiments for mechanistic insights

5.1. The standard reactions of $1 \mathrm{a},\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and oxidant in the presence of different radical inhibitors.

Table S8

	$+\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$	$\xrightarrow[\text { MeCN, } \mathrm{N}_{2}, 0^{\circ} \mathrm{C}, 8 \mathrm{~h}]{\substack{\text { oxidant }(1.3 \text { equiv) } \\ \text { additive } \\ \hline}}$	
Entry ${ }^{a}$	Oxidant	Additive	Yield (\%) ${ }^{b}$
1	m-CPBA	none	>99
2	m-CPBA	TEMPO	98
3	m-CPBA	BHT	>99
4	m-CPBA	1,1-Diphenylethylene	98
5	m-CPBA	Diallyl-PTSA	>99
6	m-CPBA	1,3-dinitrobenzene	93
7	m-CPBA	1,4-dinitrobenzene	95
8^{c}	m-CPBA	none	95
$9^{\text {c,d }}$	m-CPBA	none	99
10	NIS	none	99
11	NIS	TEMPO	92
12	NIS	BHT	36
13	NIS	1,1-Diphenylethylene	95
14	NIS	Diallyl-PTSA	84
15	NIS	1,3-dinitrobenzene	94
16	NIS	1,4-dinitrobenzene	89
17^{c}	NIS	none	72
$18^{c, d}$	NIS	none	>99

${ }^{a}$ Reaction conditions: To a mixture of oxidant (0.26 mmol), $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right](0.26$ $\mathrm{mmol})$, and additive (0.3 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was added slowly a solution of $\mathbf{1 a}$ $(0.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was maintained at $0{ }^{\circ} \mathrm{C}$ under N_{2} for 8 hours. Diallyl-PTSA: N,N-diallyl-4-methylbenzenesulfonamide. ${ }^{b}$ Yields were determined by HPLC using 2a as an external standard $\left(\mathrm{t}_{\mathrm{R}}=4.50 \mathrm{~min}, \lambda=268\right.$ nm , methanol/water $=90: 10(\mathrm{v} / \mathrm{v})) . \quad{ }^{c}$ The reaction was run in the darkness. Reaction conditions: A solution of oxidant $(0.26 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was added slowly to a mixture of $\mathbf{1 a}(0.2 \mathrm{mmol}),\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right](0.26 \mathrm{mmol})$, and additive (0.3 $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was maintained at $0{ }^{\circ} \mathrm{C}$ under N_{2} for 8 hours.

Figure 1. The ${ }^{19} \mathrm{~F}$ NMR analysis of the reaction mixture (entry 1, Table $\mathrm{S} 8, \mathrm{PhOCF}_{3}$ ($32.0 \mathrm{mg}, 0.198 \mathrm{mmol}$) was used as an internal standard)

Figure 2. The ${ }^{19} \mathrm{~F}$ NMR analysis of the reaction mixture (entry 10 , Table $\mathrm{S} 8, \mathrm{PhOCF}_{3}$ ($33.1 \mathrm{mg}, 0.204 \mathrm{mmol}$) was used as an internal standard)

Figure 3. The ${ }^{19} \mathrm{~F}$ NMR analysis of the reaction mixture (entry 12 , Table S8, PhOCF_{3} ($33.2 \mathrm{mg}, 0.205 \mathrm{mmol}$) was used as an internal standard)

$36 \%{ }^{19}$ F NMR yield

5.2. Trifluoromethylselenolation of 1 a by a mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and an

 oxidant which was already reacted at room temperature for $\mathbf{4 5}$ minutes.Table S9

Entry a	oxidant	Yield (2a, \%) ${ }^{b}$
1	m-CPBA	75%
2	NIS	92%

${ }^{a}$ Reaction conditions: Oxidant $(0.20 \mathrm{mmol})$ was added to a solution of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$
$(0.20 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ and kept stirring at room temperature for 45 minutes.
Then, a solution of 1 a $(0.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was added slowly at $0{ }^{\circ} \mathrm{C}$. The
mixture was reacted at $0{ }^{\circ} \mathrm{C}$ under N_{2} for 8 hours. ${ }^{b}$ Yields were determined by
HPLC using 2a as an external standard $\left(\mathrm{t}_{\mathrm{R}}=4.50\right.$ min, $\lambda_{\max }=268 \mathrm{~nm}$, methanol/water
$=90: 10(\mathrm{v} / \mathrm{v}))$.

5.3. The EPR analysis of the reaction mixtures of $1 \mathrm{a},\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and m CPBA or NIS under the standard conditions.

General: EPR experiments were carried out at room temperature using a Bruker EMX spectrometer operating at X -band with 100 kHz modulation frequency. The instrument settings were as follows: microwave power: 0.002 or 2.0 mW ; modulation amplitude: 0.6 G; center field set: 3509.85 G; time constant: 0.01 ms ; scan time: 30.04 s; number of scans: 5.
Procedure: Under a nitrogen atmosphere, a sealed tube was charged with $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right](0.13 \mathrm{mmol}, 28.9 \mathrm{mg})$, $1 \mathbf{1 a}(0.1 \mathrm{mmol}, 11.7 \mathrm{mg}), \mathrm{PBN}(0.2 \mathrm{mmol}, 35.4$ $\mathrm{mg})$, and $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ at room temperature and cooled to $0{ }^{\circ} \mathrm{C}$ with stirring. A solution of oxidant $(0.13 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added slowly. The mixture was reacted at $0^{\circ} \mathrm{C}$ for 30 min and then analyzed by EPR spectroscopy.

The EPR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right] / \mathbf{1 a} / \mathrm{PBN}$ and m-CPBA:

The EPR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right] / \mathbf{1 a} / \mathrm{PBN}$ and NIS:

5.4. The ${ }^{19} \mathrm{~F}$ NMR analysis of the mixtures of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and an oxidant at room temperature after reacting for $\mathbf{4 5}$ minutes.

General procedure: Under a N_{2} atmosphere, oxidant ($0.1,0.15$ or 0.4 mmol) was added to a solution of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right](0.1,0.15,0.2,0.4 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$. The mixture was maintained at room temperature for 45 minutes and analyzed by ${ }^{19} \mathrm{~F}$ NMR using $\mathrm{PhOCF}_{3}(24.5 \mathrm{mg}, 0.151 \mathrm{mmol})$ as an internal standard.

Figure 4. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and m CPBA (4 equiv.):

Figure 5. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and m CPBA (1.5 equiv.):

Figure 6. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and m CPBA (1 equiv.):

Figure 7. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ (1.5
equiv.) and m-CPBA:

Figure 8. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ (2 equiv.) and m-СРBA:

Figure 9. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ (4 equiv.) and m-CPBA:

The combination of the above spectra (Figures 4-9)

Figure 10. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and NIS (4 equiv.):

Figure 11. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and NIS (1.5 equiv.):

Figure 12. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and NIS (1 equiv.):

Figure 13. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ (1.5 equiv.) and NIS:

Figure 14. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ (2 equiv.) and NIS:

Figure 15. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ (4 equiv.) and NIS:

The combination of the above spectra (Figures 10-15)

Figure 16. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and DDQ (4 equiv.):

Figure 17. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and DDQ (1.5 equiv.):

Figure 18. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and DDQ (1 equiv.):

Figure 19. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ (1.5 equiv.) and DDQ :

Figure 20. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ (2 equiv.) and DDQ :

Figure 21. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ (4 equiv.) and DDQ :

The combination of the above spectra (Figures 16-21)

Figure 22. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and $\mathrm{PhI}(\mathrm{OAc})_{2}$ (4 equiv.):

Figure 23. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and $\mathrm{PhI}(\mathrm{OAc})_{2}$ (1.5 equiv.):

Figure 24. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and $\mathrm{PhI}(\mathrm{OAc})_{2}$ (1 equiv.):

Figure 25. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ (1.5 equiv.) and $\mathrm{PhI}(\mathrm{OAc})_{2}$:

Figure 26. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ (2 equiv.) and $\mathrm{PhI}(\mathrm{OAc})_{2}$:

Figure 27. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ (4 equiv.) and $\mathrm{PhI}(\mathrm{OAc})_{2}$:

The combination of the above spectra (Figures 22-27)

5.5. Isolation of the possible reactive intermediates

$$
\left[\mathrm{Me}_{4} \mathrm{~N}^{2}\left[\mathrm{SeCF}_{3}\right]+m \text {-CPBA } \xrightarrow[\text { sulfolane }]{35^{\circ} \mathrm{C}, 2 \mathrm{~h}} \mathrm{~F}_{3} \mathrm{CSe}^{2}-\mathrm{SeCF}_{3}\right.
$$

Procedure A: Under a nitrogen atmosphere, a Schlenk tube was charged with $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ ($2 \mathrm{mmol}, 444 \mathrm{mg}$) and sulfolane (5 mL , degass). Then, m-CPBA (2 $\mathrm{mmol}, 400 \mathrm{mg}$) was added and the tube was sealed. The mixture was reacted at $35^{\circ} \mathrm{C}$ for 2 h and distilled under reduced pressure ($4.2 \mathrm{KPa} / 60{ }^{\circ} \mathrm{C} / 2 \mathrm{~h}$). The volatile compounds were captured by cold trap (liquid nitrogen) to give a light yellow liquid (133.3 mg).

$\mathrm{CF}_{3} \mathrm{SeSeCF}_{3}$ (88% purity): ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-38.5$ (s, 6 F). ${ }^{11}$
The purity of $\mathrm{CF}_{3} \mathrm{SeSeCF}_{3}$ was calculated according to the ${ }^{19} \mathrm{~F}$ NMR spectrum using $\mathrm{PhOCF}_{3}(30.5 \mathrm{mg}, 0.188 \mathrm{mmol})$ as an internal standard.

Table $\mathbf{S 1 0}$ The reactions of $\mathbf{1 a}$ with $\mathrm{CF}_{3} \mathrm{SeSeCF}_{3}$ under the standard or similar conditions

Entry a	Additive (x equiv.)	Recovery (1a, \%) ${ }^{b}$	Yield (2a, \%) b
1	None	87	<1
2^{c}	3-chlorobenzoic acid (1.1 equiv.)	87	<1
3^{d}	m-CPBA (0.5 equiv.)	62	<1

${ }^{a}$ Reaction conditions: $\mathrm{F}_{3} \mathrm{CSeSeCF}_{3}(0.3 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. Then, a solution of $\mathbf{1 a}(0.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was added. The mixture was maintained at $0{ }^{\circ} \mathrm{C}$ under N_{2} for 8 hours. ${ }^{b}$ The conversion of $\mathbf{1 a}$ and the yields of 2a were determined by HPLC ($\lambda=268 \mathrm{~nm}$, water/methanol $=10: 90(\mathrm{v} /$ v)) using pure $1 H$-indole ($\mathbf{1 a}, \mathrm{t}_{\mathrm{R}}=3.624 \mathrm{~min}$) and 3-((trifluoromethyl)selanyl)-1H-
indole $\left(2 a, t_{R}=4.523 \mathrm{~min}\right)$ as the external standards, respectively. Chlorobenzoic acid $(0.22 \mathrm{mmol}) \quad{ }^{d} m$ - $\mathrm{CPBA}(0.1 \mathrm{mmol})$.

5.6. GC-MS analysis of the reaction mixture of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and \boldsymbol{m}-CPBA

Procedure: m-CPBA $(0.2 \mathrm{mmol})$ was added to a solution of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right](0.2$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$. The mixture was maintained at room temperature under N_{2} for 45 minutes and examined by a GC-MS instrument (Agilent 222-5532LTM DB5 ms).

Figure 28. The GC-MS spectra of the above reaction mixture

Retention time $=2.20$ minutes, $\mathrm{CF}_{3} \mathrm{SeSeCF}_{3}(\mathrm{~m} / \mathrm{z} 297.9)$ was detected (see below):

5.7. The cyclic voltammetry of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$

General: The electrochemical studies were performed by using a CHI660E electrochemical workstation with a three-electrode one-compartment cell fitted with a Pt working microelectrode ($0.5 \times 37 \mathrm{~mm}$), a Pt wire counter electrode, and a $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode (Ag wire dipped in saturated KCl aqueous solution). The General Purpose Electrochemical Software (GPES) was utilized to record and process the data. The dry $\mathrm{CH}_{3} \mathrm{CN}$ from commercial source was degassed by bubbling nitrogen gas before use. All experiments were performed at ambient temperature with a scan rate of $0.05 \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ in $\mathrm{CH}_{3} \mathrm{CN}$ solutions containing 1.0 or $2.0 \mathrm{mmol} / \mathrm{L}$ analyte and $0.1 \mathrm{~mol} / \mathrm{L}$ $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ supporting electrolyte. Potentials were referenced to an external ferrocene/ferrocenium reference redox couple $\left(\mathrm{E}_{1 / 2}=0.481 \mathrm{~V}\right.$ vs. $\left.\mathrm{Ag} / \mathrm{AgCl}\right)$.

Figure 29. Cyclic voltammogram of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right](2.0 \mathrm{mmol} / \mathrm{L})$ in $\mathrm{CH}_{3} \mathrm{CN}$ containing $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ supporting electrolyte $(0.1 \mathrm{~mol} / \mathrm{L})$.
$\mathrm{E}_{\mathrm{pa}}=0.28 \mathrm{~V}$

Figure 30. Cyclic voltammogram of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SCF}_{3}\right](2.0 \mathrm{mmol} / \mathrm{L})$ in $\mathrm{CH}_{3} \mathrm{CN}$ containing $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ supporting electrolyte $(0.1 \mathrm{~mol} / \mathrm{L})$.
$\mathrm{E}_{\mathrm{pa}}=0.89 \mathrm{~V}$

Figure 31. Cyclic voltammogram of indole ($1.0 \mathrm{mmol} / \mathrm{L}$) in $\mathrm{CH}_{3} \mathrm{CN}$ containing [n -
$\left.\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ supporting electrolyte $(0.1 \mathrm{~mol} / \mathrm{L})$.

5.8. The UV-vis spectra of the individual reactants and their mixtures

General: The UV-vis absorption spectra of the individual reactants and their mixtures were measured on an AOE 360 spectrophotometer to investigate the formation of possible donor-acceptor complexes and the electron transfer reactions among these compounds. The anhydrous acetonitrile solutions of individual 1a, $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and oxidant were prepared at the concentration of $0.02 \mathrm{mmol} / \mathrm{L}$ and their mixtures were prepared by mixing these individual solutions. The resulting solutions were scanned from 200 to 800 nm by the UV-vis spectrophotometer at room temperature.

Figure 32. The UV-vis absorption spectra of 1a, $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right], m$-CPBA and their mixtures.

Red: a solution of $\mathbf{1 a}$; Wine: a solution of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$; Green: a solution of m CPBA; Olive: a mixture of the individual solutions of $\mathbf{1 a}$ and $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ (1:1, $\mathrm{v} / \mathrm{v})$; Yellow: a mixture of the individual solutions of $\mathbf{1 a}$ and m-CPBA ($1: 1, \mathrm{v} / \mathrm{v}$); Blue: a mixture of the individual solutions of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and m - $\operatorname{CPBA}(1: 1, \mathrm{v} / \mathrm{v})$; Magenta: a mixture of the individual solutions of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and m-CPBA was treated with a solution of $\mathbf{1 a}(1: 1: 1, \mathrm{v} / \mathrm{v} / \mathrm{v})$.

Figure 33. Comparison of the UV-vis spectra of the mixtures with the mathematical sum of the UV-vis spectra of the individual compounds.

Olive: a mixture of the individual solutions of $\mathbf{1 a}$ and $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right](1: 1, \mathrm{v} / \mathrm{v})$; Yellow: a mixture of the individual solutions of $\mathbf{1 a}$ and m - $\operatorname{CPBA}(1: 1, \mathrm{v} / \mathrm{v})$; Blue: a mixture of the individual solutions of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and m - $\mathrm{CPBA}(1: 1, \mathrm{v} / \mathrm{v})$; Green: a mathematical sum of the UV-vis spectra of the individual solutions of 1a and [$\left.\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$; Red: a mathematical sum of the UV-vis spectra of the individual solutions of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and m-CPBA; Cyan: a mathematical sum of the UV-vis spectra of the individual solutions of $\mathbf{1 a}$ and m-CPBA.

Figure 34. The UV-vis absorption spectra of 1a, $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$, NIS and their mixtures.

Red: a solution of 1a; Wine: a solution of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$; Green: a solution of NIS; Olive: a mixture of the individual solutions of $\mathbf{1 a}$ and $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right](1: 1, \mathrm{v} / \mathrm{v})$; Yellow: a mixture of the individual solutions of 1a and NIS (1:1, v/v); Blue: a mixture of the individual solutions of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and NIS (1:1, v/v); Magenta: a mixture of the individual solutions of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and NIS was treated with a solution of $\mathbf{1 a}(1: 1: 1, \mathrm{v} / \mathrm{v} / \mathrm{v})$.

Figure 35. Comparison of the UV-vis spectra of the mixtures with the mathematical sum of the UV-vis spectra of the individual compounds.

Olive: a mixture of the individual solutions of $\mathbf{1 a}$ and $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right](1: 1, \mathrm{v} / \mathrm{v})$; Yellow: a mixture of the individual solutions of 1a and NIS (1:1, v/v); Blue: a mixture of the individual solutions of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and NIS (1:1, v/v); Black: a mathematical sum of the UV-vis spectra of the individual solutions of 1a and [$\left.\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$; Red: a mathematical sum of the UV-vis spectra of the individual solutions of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$ and NIS; Cyan: a mathematical sum of the UV-vis spectra of the individual solutions of 1 a and NIS.

5.9. The reactions of 1 a and $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SCF}_{3}\right]$ under the standard conditions that were used for $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{SeCF}_{3}\right]$.

Figure 36. The ${ }^{19} \mathrm{~F}$ NMR analysis of the above reaction mixture (no trifluoromethylthiolated product was observed according to the ${ }^{19} \mathrm{~F}$ NMR spectrum by using PhOCF_{3} ($33.7 \mathrm{mg}, 0.208 \mathrm{mmol}$) as an internal standard): ${ }^{12 \mathrm{a}}$

Figure 37. The ${ }^{19} \mathrm{~F}$ NMR analysis of the above reaction mixture (no trifluoromethylthiolated product was observed according to the ${ }^{19} \mathrm{~F}$ NMR spectrum by using PhOCF_{3} ($34.4 \mathrm{mg}, 0.212 \mathrm{mmol}$) as an internal standard): ${ }^{12 \mathrm{a}}$

Figure 38. The ${ }^{19} \mathrm{~F}$ NMR analysis of the above reaction mixture (no trifluoromethylthiolated product was observed according to the ${ }^{19} \mathrm{~F}$ NMR spectrum by using PhOCF_{3} ($34.2 \mathrm{mg}, 0.211 \mathrm{mmol}$) as an internal standard): ${ }^{12 \mathrm{~b}}$

Figure 39. The ${ }^{19} \mathrm{~F}$ NMR analysis of the above reaction mixture (no trifluoromethylthiolated product was observed according to the ${ }^{19} \mathrm{~F}$ NMR spectrum by using PhOCF_{3} ($33.9 \mathrm{mg}, 0.209 \mathrm{mmol}$) as an internal standard): ${ }^{12 b}$

Reference:

[1] (a) W. Tyrra, D. Naumann, Y. L. Yagupolskii, J. Fluorine Chem. 2003, 123, 183187. (b) T. Dong, J. He, Z.-H. Li, C.-P. Zhang, ACS Sustainable Chem. Eng. 2018, 6, 1327-1335.
[2] B. Li, Z. Chen, H. Cao, H. Zhao, Org. Lett. 2018, 20, 3291-3295.
[3] A. Das, K. Watanabe, H. Morimoto, T. Ohshima, Org. Lett. 2017, 19, 5794-5797.
[4] C. R. Johnson, M. I. Ansari, A. Coop, ACS Omega 2018, 3, 10886-10890.
[5] K. Pericherla, P. Kaswan, P. Khedar, B. Khungar, K. Parangb, A. Kumar, RSC Adv. 2013, 3, 18923-18930.
[6] T. Torigoe, T. Ohmura, M. Suginome, Angew. Chem. Int. Ed. 2017, 56, 1427214276.
[7] W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals, $5^{\text {th }} \mathrm{ed}$; Butterworth Heinemann: Oxford, 2003.
[8] Q. Glenadel, E. Ismalaj, T. Billard, J. Org. Chem. 2016, 81, 8268-8275.
[9] N. Muniraj, J. Dhineshkumar, K. R. Prabhu, ChemistrySelect 2016, 5, 1033-1038.
[10] S. Potash, S. Rozen, J. Org. Chem. 2014, 79, 11205-11208.
[11] C. J. Marsden, J. Fluorine Chem. 1975, 5, 401-422.
[12] (a) K. Lu, Q. Li, X. Xi, Y. Huang, Z. Gong, P. Yu, X. Zhao, Org. Chem. Front.

2018, 5, 3088-3092. (b) M. Jereb, K. Gosak, Org. Biomol. Chem. 2015, 13, 31033115.

6. The NMR spectra of 2

2a
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

®
$\stackrel{\circ}{\infty}$
$\stackrel{\sim}{0}$

2a
${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^0]

2b
${ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N
O
N

2b
${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

©

咢苗

$\stackrel{\Gamma}{\sigma}$
$\int\|\|$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2e
${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2e
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right)$

2f
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

م8888

${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right)$

2g
${ }^{19} \mathrm{~F}$ NMR (471 MHz , Acetone- d_{6})

2h
${ }^{19}$ F NMR (471 MHz , Acetone $-\mathrm{d}_{6}$)

90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-120	-140	-160	-180	-200
															ppm)						-140	-160	-180	

2j
${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6})

2j
${ }^{19}$ F NMR (471 MHz , Acetone- d_{6})

8 80" ob

$\stackrel{N}{\text { N}}$

2k
${ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\begin{aligned}
& \text { M M్ల్N }
\end{aligned}
$$

2k
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right)$

下

21
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

21
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

がNNNNNNNN

2m
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\infty}{\infty}$

2m
${ }^{19} \mathrm{~F}$ NMR（ $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

2n
${ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

-154.350
137.690
$\left[\begin{array}{r}126.517 \\ 124.480 \\ -123.868 \\ -121.219 \\ 118.570 \\ 112.235 \\ 112.225\end{array}\right.$

2n
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
-37.145

20
${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2p
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{N}{\text { N }}$

2p
${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-120	-140	-160	-180	-200
														f1	(ppm)									

2q
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\circ
N

2q
${ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2q
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3})

$$
\begin{aligned}
& \text { O. } \\
& \stackrel{0}{0} \\
& \text { oj }
\end{aligned}
$$

N

IJ

${ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N			
N		$\stackrel{\bigcirc}{\bigcirc}$	¢ ¢ ¢
\bigcirc		\cdots	\checkmark -
$\stackrel{\square}{\bullet}$	$\stackrel{\sim}{\sim} \stackrel{N}{\sim} \sim \sim F$ -	\bigcirc	$\stackrel{\sim}{\sim}$
\|	-		

${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2s
${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6})

2s
${ }^{19}$ F NMR (471 MHz , Acetone- d_{6})

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{19}$ F NMR (471 MHz , DMSO- d_{6})

n
\sim
\sim
0
0
0

${ }^{19}$ F NMR (471 MHz , DMSO- d_{6})

${ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$2 v$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\ominus}{\stackrel{\circ}{+}}$

${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-120	-140	-160	-180	-200
														$f 1$	(ppm)									

${ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

©

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

0
0
0

1

2y
${ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$2 z$
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

-35.531

${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3})

$\stackrel{\sim}{\underset{\sim}{+}}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2ab
${ }^{13} \mathrm{C}$ NMR (126 MHz , Acetone $-\mathrm{d}_{6}$)

${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$$
\begin{aligned}
& \infty \\
& \stackrel{n}{0} \\
& \infty \\
&
\end{aligned}
$$

${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2ah
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2ah
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$--36.068$

2ai
${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2aj
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3})

2aj
${ }^{19} \mathrm{~F}$ NMR (471 MHz, $\left.\mathrm{CDCl}_{3}\right)$

2aj
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-34.093
-35.480

2ak
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^1]
[^0]:

[^1]:

