Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Supporting Information

Metal-Free Oxidative Trifluoromethylselenolation of Electron-Rich (Hetero)Arenes with the Readily Available [Me₄N][SeCF₃] Reagent

Qiu-Yan Han,^a Cheng-Long Zhao,^a Tao Dong,^a Jin Shi,^a Kai-Li Tan,^a Cheng-Pan Zhang^{a,b,*}

^a School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China.

^b Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic

Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032,

China.

E-mail: cpzhang@whut.edu.cn, zhangchengpan1982@hotmail.com.

Table of contents

1. General information.	S2
2. Screening of the optimal reaction conditions for trifluoromethylselenol	lation of
indole (1a) by [Me ₄ N][SeCF ₃]	S2
3. General procedures for the trifluoromethylselenolation of (hetero)arenes	s (1) by
[Me ₄ N][SeCF ₃] in the presence of an oxidant	S7
4. The scale-up synthesis of 2	S23
5. The control experiments for mechanistic insights	S23
6. The NMR spectra of 2	S57

1. General information

All reactions were carried out under a nitrogen atmosphere. Unless otherwise specified, the NMR spectra were recorded in CDCl₃ or acetone-d₆ on a 500 MHz (for ¹H), 471 MHz (for ¹⁹F), and 126 MHz (for ¹³C) spectrometer. All chemical shifts were reported in ppm relative to TMS for ¹H NMR (0 ppm) and PhOCF₃ for ¹⁹F NMR (-58.56 ppm) as an internal or external standard. The coupling constants were reported in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s =singlet, d = doublet, t = triplet, q = quartet, m = multiplet, brs = broad singlet. The HPLC experiments were carried out on a Wufeng LC-100 II instrument (column: Shodex, C18, 5 μ m, 4.6 \times 250 mm), and the yields of the product were determined by using the corresponding pure compound as the external standard. Melting points were measured and uncorrected. MS experiments were performed on a TOF-Q ESI or EI instrument. [Me₄N][SeCF₃] was prepared according to the literature.¹ The starting materials $(1s, {}^{2} 1w, {}^{3} 1x, {}^{4} 1y-1aa, {}^{5} and 1af^{6})$ were synthesized according to the literatures. Solvents were dried before use according to the literature.⁷ Other reagents used in the reactions were all purchased from the commercial sources and used without further purification.

2. Screening of the optimal reaction conditions for trifluoromethylselenolation of indole (1a) by [Me₄N][SeCF₃]

Table S1 Trifluoromethylselenolation of **1a** by $[Me_4N][SeCF_3]$ in the presence of different oxidants.

N + H 1a	[Me ₄ N][SeCF ₃] <u>oxidant (1.1 equiv.)</u> (1.5 equiv.) CH ₃ CN, N ₂ , 0 °C, 8 h	SeCF ₃ N H 2a
Entry ^a	Oxidant	Yield (2a, %) ^b
1	m-CPBA	96 (93)
2 ^c	TBHP (70% aq.)	62
3 c	$H_2O_2(30\% \text{ aq.})$	50
4	DMP	20
5	PhI(OAc) ₂	89
6	DDQ	95

7	TEMPO	2
8	$K_2S_2O_8$	3
9 c	$KMnO_4$	18
10 ^c	AgNO ₃	<1
11 ^c	$AgBF_4$	<1
12 ^c	NIS	96
13 c	NBS	73
14 ^c	NCS	>99
15 ^c	I_2	8
16 ^{<i>c,d</i>}	O_2	12
17	Selectfluor	69
18 c	NFSI	64

^{*a*} Reaction conditions: To a mixture of oxidant (0.22 mmol) and [Me₄N][SeCF₃] (0.3 mmol) in CH₃CN (1.0 mL) was added slowly a solution of **1a** (0.2 mmol) in CH₃CN (1 mL) at 0 °C. The reaction was maintained at 0 °C under N₂ for 8 hours. ^{*b*} Yields were determined by HPLC using **2a** as an external standard ($t_R = 4.50 \text{ min}$, $\lambda_{max} = 268 \text{ nm}$, methanol/water = 90:10 (v/v)). Isolated yield was depicted in the parentheses. ^{*c*} Reaction conditions: A solution of oxidant (0.22 mmol) in CH₃CN (1 mL) was added slowly to a mixture of [Me₄N][SeCF₃] (0.3 mmol) and **1a** (0.2 mmol) in CH₃CN (1 mL) at 0 °C. The reaction was maintained at 0 °C under N₂ for 8 hours. ^{*d*} An O₂ balloon was used.

Table S2 The solvent effects on the trifluoromethylselenolation of 1a by $[Me_4N][SeCF_3]$ in the presence of *m*-CPBA

NH + 1a	[Me ₄ N][SeCF ₃] - (1.5 equiv.)	<i>m</i> -CPBA (1.1 equiv.) solvent, N ₂ , <i>temp</i> ., 8 h	SeCF ₃ N H 2a
Entry ^a	Solvent	Temperature (°C)	Yield (2a, %) ^b
1	CH ₃ CN	0	96 (93)
2	DMF	0	85
3	NMP	0	49
4	DCM	0	95

5	DCE	0	86
6	THF	0	78
7	1,4-dioxane	25	41
8	DMSO	25	0
9	toluene	0	41

^{*a*} Reaction conditions: To a mixture of *m*-CPBA (0.22 mmol) and [Me₄N][SeCF₃] (0.3 mmol) in solvent (1 mL) was added slowly a solution of **1a** (0.2 mmol) in solvent (1 mL) at 0 °C or 25 °C. The reaction was maintained at 0 °C or 25 °C under N₂ for 8 hours. ^{*b*} Yields were determined by HPLC using **2a** as an external standard (t_R = 4.50 min, $\lambda_{max} = 268$ nm, methanol/water = 90:10 (v/v)). Isolated yield was depicted in the parentheses.

Table S3 The effects of moisture or water on the trifluoromethylselenolation of 1a by $[Me_4N][SeCF_3]$ in the presence of *m*-CPBA

N H 1a	+ [Me ₄ N][SeCF ₃] <u><i>m</i>-CPBA (1.1 equiv.)</u> (1.5 equiv.) conditions, 0 °C, 8 h	SeCF ₃
Entry ^a	Conditions	Yield (2a, %) ^b
1	anhydrous CH ₃ CN, N ₂	96 (93)
2	anhydrous $CH_3CN + 0.1 \text{ mL } H_2O, N_2$	86
3	undried CH ₃ CN, N ₂	89
4	undried CH ₃ CN, air	89

^{*a*} Reaction conditions: To a mixture of *m*-CPBA (0.22 mmol) and [Me₄N][SeCF₃] (0.3 mmol) in solvent (1.0 mL) was added slowly a solution of **1a** (0.2 mmol) in solvent (1 mL) at 0 °C. The reaction was maintained at 0 °C under N₂ for 8 hours. ^{*b*} Yields were determined by HPLC using **2a** as an external standard ($t_R = 4.50 \text{ min}$, $\lambda = 268 \text{ nm}$, methanol/water = 90:10 (v/v)). Isolated yield was depicted in the parentheses.

Table S4 Trifluoromethylselenolation of **1a** by $[Me_4N][SeCF_3]$ in the presence of *m*-CPBA at different reaction times.

H +	[Me₄N][SeCF₃] (1.5 equiv.)	<i>m</i> -CPBA (1.1 equiv.) CH ₃ CN, N ₂ , 0 ^o C, time	SeCF ₃ N H 2a
Entry ^a		Time (h)	Yield (2a, %) ^b
1		10	87
2 ^c		10	87
3		8	96 (93)
4		6	91
5		4	78

^{*a*} Reaction conditions: To a mixture of *m*-CPBA (0.22 mmol) and [Me₄N][SeCF₃] (0.3 mmol) in CH₃CN (1 mL) was added slowly a solution of **1a** (0.2 mmol) in CH₃CN (1 mL) at 0 °C. The reaction was maintained at 0 °C under a nitrogen atmosphere for 4-10 hours. ^{*b*} Yields were determined by HPLC using **2a** as an external standard (t_R = 4.50 min, λ_{max} = 268 nm, methanol/water = 90:10 (v/v)). Isolated yield was depicted in the parentheses. ^{*c*} Reaction conditions: A solution of *m*-CPBA (0.22 mmol) in CH₃CN (1 mL) was added slowly to a mixture of [Me₄N][SeCF₃] (0.3 mmol) and **1a** (0.2 mmol) in CH₃CN (1 mL) at 0 °C. The reaction was maintained at 0 °C under a nitrogen atmosphere for 8 hours.

Table S5 Trifluoromethylselenolation of 1a with different equivalents of $[NMe_4][SeCF_3]$ in the presence of *m*-CPBA.

N H 1a	+ [Me ₄ N][SeCF ₃] · (x equiv.)	<i>m</i> -CPBA (y equiv.) CH ₃ CN, N ₂ , 0 ^o C, 8 h	SeCF ₃ N H 2a
Entry ^a	Х	У	Yield (2a , %) ^b
1	1.0	1.1	75
2	1.1	1.1	84
3	1.1	1.5	67
4	1.3	1.1	91
5	1.3	1.3	>99 (97)
6	1.3	1.5	>99

7	1.5	1.1	96 (93)
8	1.8	1.1	93

^{*a*} Reaction conditions: To a mixture of *m*-CPBA (0.22 or 0.3 mmol) and $[Me_4N][SeCF_3]$ (0.2, 0.22, 0.26, 0.3, or 0.36 mmol) in CH₃CN (1 mL) was added slowly a solution of **1a** (0.2 mmol) in CH₃CN (1 mL) at 0 °C. The reaction was maintained at 0 °C under N₂ for 8 hours. ^{*b*} Yields were determined by HPLC using **2a** as an external standard (t_R = 4.50 min, $\lambda_{max} = 268$ nm, methanol/water = 90:10 (v/v)). Isolated yield was depicted in the parentheses.

Table S6 Trifluoromethylselenolation of **1a** by [Me₄N][SeCF₃] and an oxidant with different charging sequence.

~-

N N H 1a	+ [Me ₄ N][SeCF ₃] - (1.3 equiv.)	oxidant (1.3 equiv.) CH ₃ CN, N ₂ , 0 °C, 8 h	SeCF ₃ N H 2a
Entry	Oxidant	Yield (2a , %) ^{<i>a</i>}	Yield (2a, %) ^b
1	<i>m</i> -CPBA	> 99 (97)	> 99
2	NIS	99	97
3	NCS	85	>99
4	NBS	99	91
5	DDQ	9	53
6	PhI(OAc) ₂	> 99	> 99

^{*a*} Reaction conditions: To a mixture of oxidant (0.26 mmol) and [Me₄N][SeCF₃] (0.26 mmol) in CH₃CN (1 mL) was added slowly a solution of **1a** (0.2 mmol) in CH₃CN (1 mL) at 0 °C. The reaction was maintained at 0 °C under N₂ for 8 hours. Yields were determined by HPLC using **2a** as an external standard (t_R = 4.50 min, λ_{max} = 268 nm, methanol/water = 90:10 (v/v)). Isolated yield was depicted in the parentheses. ^{*b*} Reaction conditions: A solution of oxidant (0.26 mmol) in CH₃CN (1 mL) was added slowly to a mixture of [Me₄N][SeCF₃] (0.26 mmol) and **1a** (0.2 mmol) in CH₃CN (1 mL) was added slowly to a mixture of [Me₄N][SeCF₃] (0.26 mmol) and **1a** (0.2 mmol) in CH₃CN (1 mL) at 0 °C. The reaction was maintained at 0 °C under N₂ for 8 hours. Yields were determined by HPLC using **2a** as an external standard (t_R = 4.50 min, λ_{max} = 268 nm, methanol/water = 90:10 (v/v)).

Table S7 Trifluoromethylselenolation of 1v by $[Me_4N][SeCF_3]$ in the presence of NIS with different reactant ratios.

	+ [Me ₄ N][SeCF ₃] (x equiv.)	NIS (y equiv.) CH ₃ CN, 0 ⁰C, N ₂ , 8 h	SeCF ₃
Entry ^a	x : y	Recovery (1v, %)	Yield (2v , %) ^b
1	1.0 : 1.0	21	62
2	1.1 : 1.1	20	78
3	1.1 : 1.3	<1	83
4	1.2 : 1.2	2	87
5	1.3 : 1.3	<1	90 (90)
6	1.3 : 1.5	<1	85
7	1.4 : 1.4	<1	89
8	1.5 : 1.5	<1	91
9	1.5 : 1.1	88	0

^{*a*} Reaction conditions: To a mixture of NIS (0.20, 0.22, 0.24, 0.26, 0.30 mmol) and $[Me_4N][SeCF_3]$ (0.20, 0.22, 0.24, 0.28, 0.3 mmol) in CH₃CN (1 mL) was added slowly a solution of **1v** (0.2 mmol) in CH₃CN (1 mL) at 0 °C. The reaction was maintained at 0 °C under N₂ for 8 hours. ^{*b*} Yields were determined by HPLC using **2v** as an external standard (t_R = 5.71 min, λ = 268 nm, methanol/water = 90:10 (v/v)). Isolated yield was depicted in the parentheses.

3. General procedures for the trifluoromethylselenolation of (hetero)arenes (1) by [Me₄N][SeCF₃] in the presence of an oxidant.

Procedure A: Under a nitrogen atmosphere, a sealed tube was charged with $[Me_4N][SeCF_3]$ (57.7 mg, 0.26 mmol), CH₃CN (1 mL), and *m*-CPBA (52.5 mg, 85%, 0.26 mmol) at room temperature and cooled to 0 °C with stirring. Then, a solution of 1 (0.2 mmol) in CH₃CN (1 mL) was added slowly. The mixture was reacted at 0 °C for 8 hours and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using a mixture of petroleum ether and ethyl acetate as eluents to give the trifluoromethylselenolated products (2).

Procedure B: Under a nitrogen atmosphere, a sealed tube was charged with $[Me_4N][SeCF_3]$ (57.7 mg, 0.26 mmol), CH₃CN (1 mL), and NIS (58.5 mg, 0.26 mmol) at room temperature and cooled to 0 °C with stirring. Then, a solution of **1** (0.2 mmol) in CH₃CN (1 mL) was added slowly. The mixture was reacted at 0 °C for 8 hours and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using a mixture of petroleum ether and ethyl acetate as eluents to give the trifluoromethylselenolated products (**2**).

3-((Trifluoromethyl)selanyl)-1*H*-indole (**2a**).⁸ Light yellow solid (51.3 mg, 97% yield), petroleum ether/ethyl acetate = 10:1 (v/v) as eluents for column chromatography. M.p.: 64-66 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.49 (brs, 1H), 7.80 (dm, *J* = 5.9 Hz, 1H), 7.51 (d, *J* = 2.7 Hz, 1H), 7.44 (m, 1H), 7.34-7.29 (m, 2H); ¹⁹F NMR (471 MHz, CDCl₃) δ -35.9 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 136.1, 132.9, 130.0, 123.4, 122.3 (q, *J* = 335.1 Hz), 121.5, 120.1, 111.5, 93.3 (q, *J* = 1.6 Hz).

2-Methyl-3-((trifluoromethyl)selanyl)-1*H*-indole (**2b**). White solid (47.3 mg, 85% yield), petroleum ether/ethyl acetate = 10:1 (v/v) as eluents for column chromatography. M.p.: 98-100 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.30 (brs, 1H), 7.70 (m, 1H), 7.32 (m, 1H), 7.25-7.22 (m, 2H), 2.60 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ -37.4 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 142.8, 135.5, 131.3, 122.7 (q, *J* = 336.1 Hz), 122.6, 121.2, 119.5, 110.7, 91.7 (q, *J* = 1.1 Hz), 13.0. IR (KBr): 3382, 1541, 1455, 1402, 1386, 1291, 1233, 1223, 1131, 1118, 1108, 1098, 1059, 1006, 994, 931, 756, 749, 733 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₀H₉F₃NSe ([M+H]⁺): 279.9847; found: 279.9844.

2-Phenyl-3-((trifluoromethyl)selanyl)-1*H*-indole (**2c**). Brown solid (64.6 mg, 95% yield), petroleum ether/ethyl acetate = 10:1 (v/v) as eluents for column chromatography. M.p.: 95-97 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.64 (brs, 1H), 7.83 (d, *J* = 7.2 Hz, 1H), 7.75 (d, *J* = 7.4 Hz, 2H), 7.53 (t, *J* = 7.3 Hz, 2H), 7.48 (t, *J* = 6.9 Hz, 1H), 7.44 (d, *J* = 6.8 Hz, 1H), 7.34-7.29 (m, 2H); ¹⁹F NMR (471 MHz, CDCl₃) δ - 36.6 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 144.1, 135.8, 132.1, 131.4, 129.2, 129.1, 128.7, 123.6, 122.5 (q, *J* = 337.1 Hz), 121.7, 120.7, 111.1, 91.3 (q, *J* = 1.3 Hz). IR (KBr): 3364, 3070, 1602, 1579, 1538, 1484, 1445, 1396, 1347, 1324, 1297, 1276, 1224, 1118, 1096, 1009, 990, 852, 819, 769, 751, 735, 696, 635 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₅H₉F₃NSe ([M–H]⁻): 339.9858; found: 339.9867.

4-Fluoro-3-((trifluoromethyl)selanyl)-1*H*-indole (**2d**). White solid (53.6 mg, 94% yield), petroleum ether/ethyl acetate = 10:1 (v/v) as eluents for column chromatography. M.p.: 101-103 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.67 (brs, 1H), 7.47 (s, 1H), 7.24-7.21 (m, 2H), 6.91 (t, *J* = 8.7 Hz, 1H); ¹⁹F NMR (471 MHz, CDCl₃) δ -38.5 (d, *J* = 3.2 Hz, 3F), -124.7 (m, 1F); ¹³C NMR (126 MHz, CDCl₃) δ 156.8 (d, *J* = 250.9 Hz), 139.0 (d, *J* = 9.4 Hz), 133.7, 123.9 (d, *J* = 7.9 Hz), 122.1 (q, *J* = 335.3 Hz), 118.5 (d, *J* = 17.8 Hz), 107.8 (d, *J* = 3.9 Hz), 106.9 (d, *J* = 19.0 Hz), 89.3. IR (KBr): 3457, 3130, 1660, 1634, 1578, 1510, 1444, 1413, 1347, 1317, 1229, 1161, 1132, 1114, 1089, 1029, 987, 948, 839, 833, 779, 731, 678, 614 cm⁻¹. HRMS-ESI (m/z) calcd. for C₉H₄F₄NSe ([M–H]⁻): 281.9451; found: 281.9460.

5-Methoxy-3-((trifluoromethyl)selanyl)-1*H*-indole (2e).⁹ Pink solid (58.2 mg, 99% yield), petroleum ether/ethyl acetate = 10:1 (v/v) as eluents for column

chromatography. M.p.: 102-104 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.51 (brs, 1H), 7.48 (s, 1H), 7.31 (d, *J* = 8.8 Hz, 1H), 7.20 (s, 1H), 6.95 (d, *J* = 8.8 Hz, 1H), 3.91 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ -37.6 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 155.6, 133.3, 131.0, 130.8, 122.3 (q, *J* = 336.2 Hz), 113.9, 112.4, 101.4, 92.8, 55.9.

5-Iodo-3-((trifluoromethyl)selanyl)-1*H*-indole (**2f**). Lignt yellow solid (76.7 mg, 98% yield), hexane/diethyl ether = 3:1 (v/v) as eluents for column chromatography. M.p.: 75-77 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.60 (brs, 1H), 8.10 (s, 1H), 7.55 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.49 (d, *J* = 2.7 Hz, 1H), 7.22 (d, *J* = 8.6 Hz, 1H); ¹⁹F NMR (471 MHz, CDCl₃) δ -37.5 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 135.2, 133.5, 132.5, 131.9, 129.1, 122.1 (q, *J* = 335.1 Hz), 113.4, 92.6 (q, *J* = 1.7 Hz), 85.3. IR (KBr): 3473, 3120, 1698, 1670, 1498, 1442, 1418, 1401, 1304, 1292, 1263, 1236, 1144, 1121, 1076, 1013, 984, 875, 838, 796, 771, 747, 733, 720, 670 cm⁻¹. HRMS-ESI (m/z) calcd. for C₉H₄F₃INSe ([M–H]⁻): 389.8511; found: 389.8506.

Methyl 3-((trifluoromethyl)selanyl)-1*H*-indole-5-carboxylate (**2g**).⁸ White solid (63.7 mg, >99% yield), hexane/diethyl ether = 1:1 (v/v) as eluents for column chromatography. M.p.: 172-174 °C. ¹H NMR (500 MHz, acetone-d₆) δ 11.34 (brs, 1H), 8.42 (s, 1H), 7.94-7.93 (m, 2H), 7.64 (d, *J* = 8.6 Hz, 1H), 3.91 (s, 3H); ¹⁹F NMR (471 MHz, acetone-d₆) δ -38.9 (s, 3F); ¹³C NMR (126 MHz, acetone-d₆) δ 166.9, 139.4, 136.2, 129.8, 123.8, 123.4, 122.5 (q, *J* = 333.9 Hz), 121.8, 112.2, 92.7 (q, *J* = 1.7 Hz), 51.2.

3-((Trifluoromethyl)selanyl)-1H-indole-5-carbonitrile (2h). Lignt yellow solid (56.6

mg, 98% yield), petroleum ether/ethyl acetate = 5:1 (v/v) as eluents for column chromatography. M.p.: 212-214 °C. ¹H NMR (500 MHz, acetone-d₆) δ 11.60 (brs, 1H), 8.06 (s, 1H), 8.02 (s, 1H), 7.75 (d, *J* = 8.5 Hz, 1H), 7.56 (dd, *J* = 8.5, 1.5 Hz, 1H); ¹⁹F NMR (471 MHz, acetone-d₆) δ -38.9 (s, 3F); ¹³C NMR (126 MHz, acetone-d₆) δ 138.7, 137.1, 130.1, 125.5, 124.6, 122.4 (q, *J* = 333.9 Hz), 119.6, 113.7, 104.3, 92.2. IR (KBr): 3229, 3028, 2993, 2237, 1621, 1470, 1458, 1425, 1340, 1306, 1300, 1244, 1153, 1138, 1130, 1099, 992, 919, 888, 846, 808, 793, 757, 734 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₀H₆F₃N₂Se ([M+H]⁺): 288.9651; found: 288.9644.

5-Nitro-3-((trifluoromethyl)selanyl)-1*H*-indole (**2i**). Lignt yellow solid (62.4 mg, >99% yield), petroleum ether/ethyl acetate = 2:1 (v/v) as eluents for column chromatography. M.p.: 193-195 °C. ¹H NMR (500 MHz, acetone-d₆) δ 11.64 (brs, 1H), 8.59 (s, 1H), 8.17 (d, *J* = 9.0 Hz, 1H), 8.09 (s, 1H), 7.78 (d, *J* = 9.0 Hz, 1H); ¹⁹F NMR (471 MHz, acetone-d₆) δ -38.8 (s, 3F); ¹³C NMR (126 MHz, acetone-d₆) δ 143.0, 139.9, 138.1, 129.8, 122.4 (q, *J* = 334.8 Hz), 118.0, 115.9, 113.0, 93.7. IR (KBr): 3260, 3107, 3032, 1713, 1618, 1583, 1516, 1501, 1474, 1456, 1419, 1325, 1319, 1301, 1244, 1235, 1205, 1163, 1123, 1091, 1075, 989, 947, 901, 861, 831, 816, 783, 739, 696 cm⁻¹. HRMS-ESI (m/z) calcd. for C₉H₄F₃N₂O₂Se ([M–H]⁻): 308.9396; found: 308.9404.

Ethyl 5-chloro-3-((trifluoromethyl)selanyl)-1*H*-indole-2-carboxylate (**2j**). White solid (73.5 mg, 99% yield), hexane/diethyl ether = 1:1 (v/v) as eluents for column chromatography. M.p.: 205-207 °C. ¹H NMR (500 MHz, acetone-d₆) δ 11.87 (brs, 1H), 7.75 (s, 1H), 7.64 (d, *J* = 8.8 Hz, 1H), 7.39 (d, *J* = 8.8 Hz, 1H), 4.45 (q, *J* = 7.0 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H); ¹⁹F NMR (471 MHz, acetone-d₆) δ -37.4 (s, 3F); ¹³C NMR (126 MHz, acetone-d₆) δ 159.8, 134.8, 132.8, 132.3, 127.6, 126.1, 122.6 (q, *J* = 334.9 Hz), 120.3, 114.7, 96.7 (q, *J* = 1.6 Hz), 61.4, 13.6. IR (KBr): 3291, 3069, 2994, 1686, 1618, 1509, 1476, 1453, 1439, 1408, 1383, 1355, 1330, 1265, 1246, 1228, 1205,

1144, 1128, 1100, 1066, 1032, 1014, 941, 917, 882, 872, 805, 780, 748, 736, 714 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₂H₈ClF₃NO₂Se ([M–H]⁻): 369.9366; found: 369.9376.

6-Chloro-3-((trifluoromethyl)selanyl)-1*H*-indole (**2k**). White solid (57.3 mg, 96% yield), petroleum ether/ethyl acetate = 20:1 (v/v) as eluents for column chromatography. M.p.: 42-44 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.57 (brs, 1H), 7.69 (d, *J* = 8.5 Hz, 1H), 7.52 (s, 1H), 7.45 (s, 1H), 7.27 (d, *J* = 8.5 Hz, 1H); ¹⁹F NMR (471 MHz, CDCl₃) δ -37.5 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 136.4, 133.5, 129.4, 128.7, 122.3, 122.2 (q, *J* = 335.7 Hz), 121.1, 111.5, 93.6 (q, *J* = 1.5 Hz). IR (KBr): 3469, 3443, 3115, 1664, 1621, 1614, 1611, 1566, 1501, 1478, 1447, 1385, 1330, 1301, 1272, 1227, 1197, 1153, 1135, 1108, 1085, 1059, 982, 941, 903, 853, 835 780, 732, 708 cm⁻¹. HRMS-ESI (m/z) calcd. for C₉H₄ClF₃NSe ([M–H]⁻): 297.9155; found: 297.9149.

6-Bromo-3-((trifluoromethyl)selanyl)-1*H*-indole (**2l**). White solid (63.1 mg, 92% yield), petroleum ether/ethyl acetate = 5:1 (v/v) as eluents for column chromatography. M.p.: 65-67 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.57 (brs, 1H), 7.62 (d, *J* = 8.5 Hz, 1H), 7.58 (s, 1H), 7.49 (s, 1H), 7.38 (d, *J* = 8.5 Hz, 1H); ¹⁹F NMR (471 MHz, CDCl₃) δ - 37.5 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 136.8, 133.4, 129.0, 124.9, 122.2 (q, *J* = 335.8 Hz), 121.5, 117.0, 114.5, 93.6 (q, *J* = 1.6 Hz). IR (KBr): 3474, 3457, 3129, 3118, 3105, 1662, 1608, 1499, 1446, 1383, 1328, 1302, 1270, 1228, 1198, 1159, 1134, 1101, 1080, 1054, 979, 941, 892, 841, 836, 804, 777, 744, 732 cm⁻¹. HRMS-ESI (m/z) calcd. for C₉H₄BrF₃NSe ([M–H]⁻): 343.8629; found: 343.8623.

7-Methyl-3-((trifluoromethyl)selanyl)-1*H*-indole (**2m**). Light yellow solid (53.2 mg, 96% yield), petroleum ether/ethyl acetate = 10:1 (v/v) as eluents for column chromatography. M.p.: 87-89 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.47 (brs, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.51 (d, *J* = 2.7 Hz, 1H), 7.22 (t, *J* = 7.5 Hz, 1H), 7.12 (d, *J* = 7.2 Hz, 1H), 2.52 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ -37.6 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 135.7, 132.5, 129.7, 123.9, 122.3 (q, *J* = 335.9 Hz), 121.7, 120.7, 117.8, 93.7 (q, *J* = 1.6 Hz), 16.4. IR (KBr): 3382, 3146, 2944, 2919, 1676, 1505, 1494, 1453, 1431, 1413, 1383, 1345, 1313, 1282, 1251, 1163, 1136, 1126, 1096, 1070, 1048, 981, 919, 841, 779, 747, 734 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₀H₇F₃NSe ([M–H]⁻): 277.9701; found: 277.9694.

2,6-Dimethyl-4-((trifluoromethyl)selanyl)phenol (**2n**). Light yellow solid (40.9 mg, 76% yield), petroleum ether/ethyl acetate = 5:1 (v/v) as eluents for column chromatography. M.p.: 43-45 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.37 (s, 2H), 4.88 (s, 1H), 2.26 (s, 6H); ¹⁹F NMR (471 MHz, CDCl₃) δ -37.1 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 154.4, 137.7, 124.5, 122.5 (q, *J* = 333.8 Hz), 112.2 (q, *J* = 1.3 Hz), 15.7. IR (KBr): 3436, 3048, 2983, 2954, 2927, 2862, 1669, 1600, 1582, 1559, 1477, 1456, 1426, 1405, 1335, 1313, 1277, 1258, 1208, 1158, 1092, 1060, 1032, 998, 940, 874, 737, 728, 719 cm⁻¹. HRMS-ESI (m/z) calcd. for C₉H₈F₃OSe ([M–H]⁻): 268.9698; found: 268.9690.

2,6-Diisopropyl-4-((trifluoromethyl)selanyl)phenol (**20**). Light yellow solid (60.2 mg, 93% yield), petroleum ether/ethyl acetate = 5:1 (v/v) as eluents for column chromatography. M.p.: 52-54 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.41 (s, 2H), 5.05 (s, 1H), 3.15 (m, 2H), 1.29 (d, *J* = 6.9 Hz, 12H); ¹⁹F NMR (471 MHz, CDCl₃) δ -37.1 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 152.1, 135.1, 133.0, 122.6 (q, *J* = 333.8 Hz),

113.3 (q, J = 1.2 Hz), 27.2, 22.5. IR (KBr): 3608, 3585, 2967, 2936, 2874, 1576, 1466, 1450, 1436, 1417, 1385, 1363, 1344, 1311, 1262, 1251, 1205, 1136, 1098, 1062, 959, 933, 923, 878, 840, 810, 766, 736, 726 cm⁻¹. HRMS-ESI (m/z) calcd. for $C_{13}H_{16}F_{3}OSe$ ([M–H]⁻): 325.0324; found: 325.0325.

2,6-Di-tert-butyl-4-((trifluoromethyl)selanyl)phenol (**2p**). Light yellow solid (64.3 mg, 91% yield), petroleum ether as eluent for column chromatography. M.p.: 45-47 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.53 (s, 2H), 5.49 (s, 1H), 1.46 (s, 18H); ¹⁹F NMR (471 MHz, CDCl₃) δ -37.1 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 155.9, 137.3, 134.4, 122.7 (q, *J* = 333.9 Hz), 112.6, 34.4, 30.1. IR (KBr): 3637, 3612, 3089, 2955, 2917, 2874, 1781, 1655, 1573, 1471, 1426, 1393, 1362, 1316, 1231, 1202, 1131, 1094, 930, 886, 808, 772, 752, 736, 693 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₅H₂₀F₃OSe ([M–H]⁻): 353.0637; found: 353.0639.

6-((Trifluoromethyl)selanyl)benzo[d][1,3]dioxol-5-ol (**2q**). Light yellow solid (54.2 mg, 95% yield), petroleum ether/ethyl acetate = 10:1 (v/v) as eluents for column chromatography. M.p.: 91-93 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.05 (s, 1H), 6.64 (s, 1H), 6.07 (s, 1H), 5.98 (s, 2H); ¹⁹F NMR (471 MHz, CDCl₃) δ -36.7 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 153.9, 152.5, 142.0, 121.7 (q, *J* = 336.9 Hz), 115.9, 101.9, 97.8, 97.4. IR (KBr): 3422, 3104, 3056, 3002, 2975, 2919, 2852, 1622, 1612, 1591, 1496, 1471, 1439, 1399, 1374, 1278, 1228, 1185, 1156, 1131, 1116, 1092, 1070, 1031, 987, 931, 875, 869, 846, 832, 818, 769, 736, 710 cm⁻¹. HRMS-ESI (m/z) calcd. for C₈H₄F₃O₃Se ([M–H]⁻): 284.9283; found: 284.9282.

Ethyl 3,5-dimethyl-4-((trifluoromethyl)selanyl)-1*H*-pyrrole-2-carboxylate (**2r**). White solid (47.7 mg, 76% yield), petroleum ether/ethyl acetate = 10:1 (v/v) as eluents for column chromatography. M.p.: 173-175 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.54 (brs, 1H), 4.35 (q, *J* = 7.1 Hz, 2H), 2.43 (s, 3H), 2.41 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ -37.9 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 160.6, 138.5, 132.0, 121.4 (q, *J* = 335.5 Hz), 117.7, 101.2, 59.4, 13.5, 11.8, 11.4. IR (KBr): 3384, 3284, 2985, 2925, 1673, 1632, 1564, 1512, 1481, 1440, 1395, 1381, 1322, 1282, 1215, 1119, 1103, 1067, 1044, 1020, 877, 850, 774, 749, 734 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₀H₁₁F₃NO₂Se ([M–H]⁻): 313.9913; found: 313.9911.

2-Phenyl-3-((trifluoromethyl)selanyl)indolizine (**2s**). White solid (46.9 mg, 69% yield), petroleum ether/ethyl acetate = 20:1 (v/v) as eluents for column chromatography. M.p.: 90-92 °C. ¹H NMR (500 MHz, acetone-d₆) δ 8.62 (d, *J* = 7.1 Hz, 1H), 7.67 (dm, *J* = 7.6 Hz, 2H), 7.58 (dm, *J* = 9.0 Hz, 1H), 7.46 (tm, *J* = 7.4 Hz, 2H), 7.38 (tm, *J* = 7.4 Hz, 1H), 7.04 (m, 1H), 6.87 (td, *J* = 6.9, 1.3 Hz, 1H), 6.84 (d, *J* = 0.4 Hz, 1H); ¹⁹F NMR (471 MHz, acetone-d₆) δ -38.3 (s, 3F); ¹³C NMR (126 MHz, acetone-d₆) δ 139.8, 137.7, 135.3, 129.5, 128.2, 127.4, 125.3, 122.1 (q, *J* = 340.3 Hz), 121.2, 118.9, 112.1, 101.8, 97.3 (q, *J* = 1.1 Hz). IR (KBr): 3108, 3061, 3030, 1680, 1662, 1641, 1632, 1602, 1578, 1538, 1505, 1489, 1462, 1449, 1367, 1352, 1332, 1269, 1242, 1190, 1181, 1135, 1093, 1072, 1030, 1011, 974, 918, 834, 830, 789, 761, 734, 720, 698 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₅H₁₁F₃NSe ([M+H]⁺): 342.0003; found: 342.0003.

3-((Trifluoromethyl)selanyl)-1*H*-pyrrolo[2,3-b]pyridine (**2t**). White solid (47.7 mg, 90% yield), petroleum ether/ethyl acetate = 5:1 (v/v) as eluents for column chromatography. M.p.: 194-196 °C. ¹H NMR (500 MHz, DMSO-d₆) δ 12.51 (brs, 1H), 8.34 (d, *J* = 4.3 Hz, 1H), 8.02 (s, 1H), 7.97 (d, *J* = 7.8 Hz, 1H), 7.25 (dd, *J* = 7.4, 4.3 Hz, 1H); ¹⁹F NMR (471 MHz, DMSO-d₆) δ -37.5(s, 3F); ¹³C NMR (126 MHz, DMSO-d₆) δ 149.0, 144.5, 135.9, 127.7, 122.9 (q, J = 336.2 Hz), 122.6, 117.7, 89.5 (q, J = 1.5 Hz). IR (KBr): 3430, 3126, 3075, 3015, 2989, 1608, 1587, 1489, 1445, 1410, 1360, 1340, 1315, 1282, 1244, 1144, 1116, 1092, 1042, 991, 935, 893, 853, 828, 797, 772, 733 cm⁻¹. HRMS-ESI (m/z) calcd. for C₈H₄F₃N₂Se ([M–H]⁻): 262.9505; found: 262.9509.

2-Bromo-7-((trifluoromethyl)selanyl)-5*H*-pyrrolo[2,3-b]pyrazine (**2u**). Pink solid (51.8 mg, 75% yield), petroleum ether/ethyl acetate = 3:1 (v/v) as eluents for column chromatography. M.p.: 194-196 °C. ¹H NMR (500 MHz, (acetone-d₆) δ 12.06 (brs, 1H), 8.46 (s, 1H), 8.38 (s, 1H); ¹⁹F NMR (471 MHz, acetone-d₆) δ -38.6 (s, 3F); ¹³C NMR (126 MHz, acetone-d₆) δ 140.5, 140.3, 140.2, 139.9, 134.5, 122.3 (q, *J* = 334.4 Hz), 90.9 (q, *J* = 1.7 Hz). IR (KBr): 3435, 3174, 3107, 3048, 2995, 1780, 1731, 1586, 1543, 1479, 1450, 1434, 1395, 1375, 1343, 1322, 1287, 1245, 1229, 1205, 1150, 1134, 1112, 1092, 1066, 1004, 918, 892, 868, 837, 772, 736, 696 cm⁻¹. HRMS-ESI (m/z) calcd. for C₇H₄BrF₃N₃Se ([M+H]⁺): 345.8700; found: 345.8700.

1-Methyl-3-((trifluoromethyl)selanyl)-1*H*-indole (**2v**).¹⁰ Light yellow solid (50.1 mg, 90% yield), petroleum ether/ethyl acetate = 20:1 (v/v) as eluents for column chromatography. M.p.: 63-65 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 7.8 Hz, 1H), 7.40-7.38 (m, 2H), 7.35 (m, 1H), 7.30 (m, 1H), 3.84 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ -38.0 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 137.3, 137.1, 130.8, 122.9, 122.3 (q, *J* = 335.7 Hz), 121.1, 120.2, 109.8, 90.9 (q, *J* = 1.6 Hz), 33.2.

1-Benzyl-3-((trifluoromethyl)selanyl)-1*H*-indole (**2w**). White solid (59.5 mg, 84% yield), petroleum ether/ethyl acetate = 40:1 (v/v) as eluents for column

chromatography. M.p.: 86-88 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.80 (m, 1H), 7.45 (s, 1H), 7.36-7.31 (m, 4H), 7.30-7.28 (m, 2H), 7.16 (d, *J* = 7.1 Hz, 2H), 5.36 (s, 2H); ¹⁹F NMR (471 MHz, CDCl₃) δ -37.8 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 136.9, 136.5, 136.3, 131.0, 129.0, 128.1, 127.0, 123.0, 122.3 (q, *J* = 336.2 Hz), 121.3, 120.3, 110.2, 91.9 (q, *J* = 1.6 Hz), 50.6. IR (KBr): 3107, 3059, 3030, 2926, 1663, 1612, 1605, 1572, 1504, 1480, 1458, 1452, 1439, 1386, 1354, 1338, 1329, 1313, 1297, 1200, 1185, 1176, 1159, 1139, 1100, 1089, 1074, 1029, 969, 954, 927, 893, 833, 841, 809, 775, 760, 739, 724 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₆H₁₂F₃NNaSe ([M+Na]⁺): 377.9979; found: 377.9987.

1-Phenyl-3-((trifluoromethyl)selanyl)-1*H*-indole (**2x**). White solid (21.1 mg, 31% yield), petroleum ether as eluent for column chromatography. M.p.: 65-67 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.83 (m, 1H), 7.66 (s, 1H), 7.58-7.55 (m, 3H), 7.54-7.52 (m, 2H), 7.44 (tm, *J* = 7.2 Hz, 1H), 7.33 (m, 2H); ¹⁹F NMR (471 MHz, CDCl₃) δ - 37.4 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 138.6, 136.6, 136.0, 131.2, 129.8, 127.6, 124.7, 123.6, 122.3 (q, *J* = 336.0 Hz), 121.9, 120.5, 111.0, 94.0 (q, *J* = 1.6 Hz). IR (KBr): 3115, 3058, 1642, 1597, 1511, 1496, 1477, 1453, 1429, 1397, 1367, 1318, 1298, 1281, 1262, 1227, 1205, 1196, 1177, 1158, 1115, 1097, 1073, 1037, 1029, 1012, 995, 979, 966, 935, 926, 910, 851, 827, 822, 803, 775, 746, 720, 695 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₅H₁₁F₃NSe ([M+H]⁺): 342.0003; found: 342.0020.

2-(*p*-Tolyl)-3-((trifluoromethyl)selanyl)imidazo[1,2-a]pyridine (**2y**). Yellow solid (59.0 mg, 83% yield), petroleum ether/ethyl acetate = 2:1 (v/v) as eluents for column chromatography. M.p.: 146-148 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.52 (d, *J* = 6.8 Hz, 1H), 7.98 (d, *J* = 8.2 Hz, 2H), 7.72 (d, *J* = 9.0 Hz, 1H), 7.38 (tm, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 6.99 (td, *J* = 6.9, 1.0 Hz, 1H), 2.43 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ -36.0 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 154.3, 148.5, 138.9, 130.2,

129.1, 128.9, 127.4, 125.5, 122.2 (q, J = 340.2 Hz), 117.7, 113.4, 97.6, 21.4. IR (KBr): 3078, 3056, 3033, 2985, 2922, 2861, 1635, 1613, 1501, 1467, 1411, 1343, 1318, 1267, 1231, 1187, 1155, 1138, 1130, 1098, 1036, 1020, 993, 985, 967, 916, 851, 839, 822, 757, 747, 734, 725, 695 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₅H₁₂F₃N₂Se ([M+H]⁺): 357.0112; found: 357.0114.

2-(4-(Methylsulfonyl)phenyl)-3-((trifluoromethyl)selanyl)imidazo[1,2-a]pyridine (**2z**). Light yellow solid (65.4 mg, 78% yield), petroleum ether/ethyl acetate = 1:1 (v/v) as eluents for column chromatography. M.p.: 175-177°C. ¹H NMR (500 MHz, CDCl₃) δ 8.52 (d, *J* = 6.8 Hz, 1H), 7.98 (d, *J* = 8.1 Hz, 2H), 7.72 (d, *J* = 9.0 Hz, 1H), 7.38 (tm, *J* = 9.0 Hz, 1H), 7.30 (d, *J* = 7.9 Hz, 2H), 6.99 (td, *J* = 6.9, 1.1 Hz, 1H), 2.43 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ -35.7 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 151.8, 148.6, 140.4, 138.5, 129.8, 128.1, 127.4, 125.6, 122.0 (q, *J* = 339.4 Hz), 118.1, 114.2, 99.0 (q, *J* = 1.1 Hz), 44.6. IR (KBr): 3106, 3061, 3032, 3013, 2983, 2962, 2927, 2849, 1775, 1709, 1675, 1655, 1635, 1601, 1529, 1499, 1460, 1403, 1345, 1316, 1303, 1268, 1236, 1163, 1146, 1128, 1093, 1016, 992, 978, 960, 955, 916, 856, 843, 826, 777, 763, 757, 745, 734, 719, 694 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₅H₁₂F₃N₂O₂SSe ([M+H]⁺): 420.9731; found: 420.9729.

2-Phenyl-3-((trifluoromethyl)selanyl)imidazo[1,2-a]pyrimidine (**2aa**). Light yellow solid (56.1 mg, 82% yield), petroleum ether/ethyl acetate = 1:1 (v/v) as eluents for column chromatography. M.p.: 123-125 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.78 (dd, *J* = 6.8, 1.8 Hz, 1H), 8.70 (dd, *J* = 4.1, 2.0 Hz, 1H), 8.18 (dm, *J* = 7.1 Hz, 2H), 7.51-7.48 (m, 2H), 7.45 (tm, *J* = 7.2 Hz, 1H) 7.07 (dd, *J* = 7.0, 4.2 Hz, 1H); ¹⁹F NMR (471 MHz, CDCl₃) δ -35.5 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 155.4, 152.5, 151.4, 133.1, 132.4, 129.5, 129.2, 128.4, 122.1 (q, *J* = 339.6 Hz), 109.9, 96.6. IR (KBr): 3160, 3073, 1773, 1695, 1614, 1525, 1509, 1504, 1489, 1464, 1444, 1430, 1417, 1404, 1396, 1370, 1338, 1295, 1239, 1194, 1159, 1137, 1128, 1099, 1093, 1029, 1003, 989,

935, 850, 822, 801, 769, 704 cm⁻¹. HRMS-ESI (m/z) calcd. for $C_{13}H_9F_3N_3Se$ ([M+H]⁺): 343.9908; found: 343.9913.

$$F_3CSe \xrightarrow{H} CO_2Et$$

N SeCF₃

Ethyl 2,4-bis((trifluoromethyl)selanyl)-1*H*-imidazole-5-carboxylate (**2ab**). White solid (29.5 mg, 34% yield), petroleum ether/ethyl acetate = 5:1 (v/v) as eluents for column chromatography. M.p.: 98-100 °C. ¹H NMR (500 MHz, CDCl₃) δ 11.43 (brs, 1H), 4.44 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ -33.4 (s, 3F), -34.4 (s, 3F); ¹³C NMR (126 MHz, acetone-d₆) δ 159.2, 131.9, 129.8, 129.6, 122.6 (q, *J* = 332.6 Hz), 122.3 (q, *J* = 334.3 Hz), 66.1, 13.6. IR (KBr): 3419, 3395, 3040, 2992, 2971, 2849, 2881, 2825, 1881, 1721, 1647, 1518, 1475, 1450, 1395, 1381, 1325, 1293, 1271, 1223, 1149, 1095, 1049, 1016, 990, 866, 842, 789, 777, 739 cm⁻¹. HRMS-ESI (m/z) calcd. for C₈H₇F₆N₂O₂Se₂ ([M+H]⁺): 436.8737; found: 436.8736.

2,6-Dimethyl-4-((trifluoromethyl)selanyl)aniline (**2ac**). Light yellow solid (45.6 mg, 85% yield), petroleum ether/ethyl acetate = 5:1 (v/v) as eluents for column chromatography. M.p.: 38-40 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.33 (s, 2H), 3.81 (brs, 2H), 2.18 (s, 6H); ¹⁹F NMR (471 MHz, CDCl₃) δ -37.6 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 145.1, 137.4, 122.6 (q, *J* = 334.2 Hz), 122.4, 108.9 (q, *J* = 1.1 Hz), 17.3. IR (KBr): 3432, 2922, 2852, 1654, 1591, 1466, 1437, 1379, 1261, 1189, 1166, 1100, 1029, 849, 779, 717, 705 cm⁻¹. HRMS-ESI (m/z) calcd. for C₉H₁₀F₃NNaSe ([M+Na]⁺): 291.9823; found: 291.9820.

N-Methyl-4-((trifluoromethyl)selanyl)aniline (**2ad**). Light brown liquid (42.7 mg, 84% yield), hexane/tetrahydrofurane = 20:1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, *J* = 8.7 Hz, 2H), 6.59 (dm, *J* = 8.7 Hz, 2H), 4.02 (brs, 1H), 2.88 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ -37.9 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 150.9, 138.9, 122.6 (q, *J* = 334.2 Hz), 112.9, 108.0, 30.2. IR (KBr): 3431, 3017, 2927, 2902, 2855, 2836, 2820, 1597, 1510, 1481, 1469, 1451, 1434, 1397, 1325, 1296, 1267, 1185, 1102, 1077, 1058, 1001, 817, 736 cm⁻¹. HRMS-ESI (m/z) calcd. for C₈H₉F₃NSe ([M+H]⁺): 255.9847; found: 255.9843.

Et^NEt

N,*N*-Diethyl-4-((trifluoromethyl)selanyl)aniline (**2ae**). Colorless liquid (53.3 mg, 90% yield), petroleum ether/ethyl acetate = 40:1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.53 (dm, *J* = 9.0 Hz, 2H), 6.62 (dm, *J* = 9.0 Hz, 2H), 3.38 (q, *J* = 7.1 Hz, 4H), 1.19 (t, *J* = 7.1 Hz, 6H); ¹⁹F NMR (471 MHz, CDCl₃) δ -38.0 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 149.2, 138.9, 122.7 (q, *J* = 334.7 Hz), 112.0, 105.8 (q, *J* = 1.2 Hz), 44.4, 12.4. IR (KBr): 2974, 2933, 2899, 2874, 1589, 1551, 1506, 1469, 1451, 1403, 1378, 1357, 1270, 1197, 1102, 1080, 1013, 808, 735 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₁H₁₅F₃NSe ([M+H]⁺): 298.0316; found: 298.0319.

1-Benzyl-5-((trifluoromethyl)selanyl)indoline (**2af**). Light yellow liquid (46.3 mg, 65% yield), hexane/dichloromethane = 10:1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.43-7.41 (m, 2H), 7.39-7.29 (m, 5H), 6.45 (d, *J* = 8.1 Hz, 1H), 4.32 (s, 2H), 3.46 (t, *J* = 8.5 Hz, 2H), 3.04 (t, *J* = 8.5 Hz, 2H); ¹⁹F NMR (471 MHz, CDCl₃) δ -37.9 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 153.1, 136.8, 136.6, 132.4, 130.2, 127.6, 126.7, 126.3, 121.6 (q, *J* = 334.5 Hz), 107.0, 105.8, 51.9, 51.4, 26.9. IR (KBr): 3086, 3063, 3030, 2958, 2923, 2845, 1597, 1497, 1472, 1454, 1440, 1401, 1386, 1356, 1316, 1272, 1242, 1201, 1111, 1092, 1062, 1029, 1003, 941, 980, 889, 877, 802, 763, 735, 698 cm⁻¹. HRMS-ESI (m/z) calcd. for $C_{16}H_{15}F_3NSe$ ([M+H]⁺): 358.0316; found: 358.0320.

1-(4-((Trifluoromethyl)selanyl)phenyl)piperidine (**2ag**). Colorless liquid (57.3 mg, 93% yield), petroleum ether as eluent for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.57 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.9 Hz, 2H), 3.26 (t, *J* = 5.3 Hz, 4H), 1.70 (m, 4H), 1.64-1.60 (m, 2H); ¹⁹F NMR (471 MHz, CDCl₃) δ -37.5 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 153.1, 138.5, 122.6 (q, *J* = 334.0 Hz), 115.9, 109.4 (q, *J* = 1.1 Hz), 49.2, 25.5, 24.3. IR (KBr): 2937, 2856, 2815, 1647, 1636, 1588, 1558, 1499, 1466, 1452, 1387, 1350, 1308, 1277, 1267, 1241, 1197, 1124, 1101, 1080, 1025, 1001, 919, 858, 814, 736 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₂H₁₅F₃NSe ([M+H]⁺): 310.0316; found: 310.0310.

1-((Trifluoromethyl)selanyl)naphthalen-2-amine (**2ah**). Light brown solid (53.4 mg, 92% yield), petroleum ether/ethyl acetate = 5:1 (v/v) as eluents for column chromatography. M.p.: 74-76 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.33 (d, *J* = 8.6 Hz, 1H), 7.76 (d, *J* = 8.8 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.53 (tm, *J* = 7.7 Hz, 1H), 7.30 (tm, *J* = 7.5 Hz, 1H), 7.03 (d, *J* = 8.7 Hz, 1H), 4.83 (brs, 2H); ¹⁹F NMR (471 MHz, CDCl₃) δ -34.6 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 149.4, 137.1, 133.4, 128.4, 128.2, 128.1, 126.1, 122.8, 122.6 (q, *J* = 337.7 Hz), 117.3, 99.9. IR (KBr): 3466, 1614, 1556, 1503, 1469, 1429, 1386, 1348, 1284, 1244, 1213, 1120, 1107, 1046, 1031, 974, 962, 947, 868, 816, 769, 748, 733 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₁H₉F₃NSe ([M+H]⁺): 289.9855; found: 289.9860.

3,4,5-Trimethoxy-2-((trifluoromethyl)selanyl)phenol (**2ai**). Light yellow solid (42.4 mg, 64% yield), petroleum ether/ethyl acetate = 5:1 (v/v) as eluents for column chromatography. M.p.: 47-49 °C. ¹H NMR (500 MHz, CDCl₃) δ 6.46 (s, 1H), 6.27 (s, 1H), 3.97 (s, 3H), 3.87 (s, 3H), 3.80 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ -34.6 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 158.2, 155.1, 154.7, 136.0, 121.7 (q, *J* = 337.0 Hz), 95.1, 94.5, 61.4, 61.0, 56.0. IR (KBr): 3452, 2944, 2876, 2849, 1596, 1576, 1482, 1461, 1450, 1429, 1404, 1360, 1301, 1232, 1194, 1109, 1093, 1012, 990, 927, 818, 737 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₀H₁₀F₃O₄Se ([M–H]⁻): 330.9702; found: 330.9700.

1-((Trifluoromethyl)selanyl)naphthalen-2-ol (**2aj**). White solid (53.0 mg, 91% yield), petroleum ether/ethyl acetate = 5:1 (v/v) as eluents for column chromatography. M.p.: 81-83 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.31 (d, *J* = 8.5 Hz, 1H), 7.94 (d, *J* = 8.9 Hz, 1H), 7.80 (d, *J* = 8.1 Hz, 1H), 7.61 (tm, *J* = 7.7 Hz, 1H), 7.42 (tm, *J* = 7.5 Hz, 1H), 7.34 (d, *J* = 8.9 Hz, 1H), 6.85 (s, 1H); ¹⁹F NMR (471 MHz, CDCl₃) δ -34.6 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 157.2, 135.9, 134.6, 129.4, 128.5, 128.3, 126.5, 124.2, 121.9 (q, *J* = 337.7 Hz), 116.8, 103.7. IR (KBr): 3420, 1617, 1595, 1565, 1508, 1463, 1437, 1396, 1384, 1347, 1253, 1211, 1142, 1123, 1098, 1055, 1029, 982, 966, 951, 928, 866, 824, 769, 752, 737, 728 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₁H₆F₃OSe ([M–H]⁻): 290.9541; found: 290.9555.

(8R,9S,13S,14S,17S)-13-Methyl-2,4-bis((trifluoromethyl)selanyl)-

7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[a]phenanthrene-3,17-diol (**2ak**). White solid (32.8 mg, 29% yield), petroleum ether/ethyl acetate = 10:1 (v/v) as eluents for column chromatography. M.p.: 72-74 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.76 (s, 1H), 6.81 (s, 1H), 3.75 (t, *J* = 8.5 Hz, 1H), 3.21 (m, 1H), 2.95 (m, 1H), 2.31

(m, 1H), 2.21 (m, 1H), 2.14 (m, 1H), 2.02-1.95 (m, 2H), 1.72 (m, 1H), 1.54-1.49 (m, 2H), 1.41-1.30 (m, 5H), 1.19 (m, 1H), 0.80 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ - 34.1 (s, 3F), -35.5 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 156.3, 147.2, 139.5, 135.5, 122.3 (q, *J* = 334.9 Hz), 122.0 (q, *J* = 336.5 Hz), 111.4 (q, *J* = 0.5 Hz), 106.5 (q, *J* = 1.0 Hz), 81.7, 50.0, 44.0, 43.2, 37.8, 36.5, 32.3, 30.6, 27.1, 26.4, 23.0, 11.0. IR (KBr): 3554, 3420, 2931, 2868, 1575, 1533, 1449, 1421, 1395, 1333, 1279, 1265, 1250, 1131, 1093, 1012, 988, 971, 948, 926, 906, 858, 738 cm⁻¹. HRMS-ESI (m/z) calcd. for C₂₀H₂₁F₆O₂Se₂ ([M–H]⁻): 566.9782, found: 566.9774.

4. The scale-up synthesis of 2

4.1. Procedure for a large scale synthesis of 2a

Under a nitrogen atmosphere, a round-bottom flask was charged with $[Me_4N][SeCF_3]$ (1.155 g, 5.2 mmol), CH₃CN (20 mL), and *m*-CPBA (1.056 g, 85%, 5.2 mmol) at room temperature and cooled to 0 °C with stirring. Then, a solution of **1a** (0.469 g, 4.0 mmol) in CH₃CN (20 mL) was added slowly. The resulting mixture was reacted at 0 °C for 8 hours and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using a mixture of petroleum ether and ethyl acetate (8:1, v/v) as eluents to give **2a** (1.048 g, 99%) as a light yellow solid.

4.2. Procedure for a large scale synthesis of 2v

Under a nitrogen atmosphere, a round-bottom flask was charged with [Me₄N][SeCF₃] (0.577 g, 2.6 mmol), CH₃CN (7.5 mL), and NIS (0.585 g, 2.6 mmol) at room temperature and cooled to 0 °C with stirring. Then, a solution of **1v** (0.262 g, 2.0 mmol) in CH₃CN (7.5 mL) was added slowly. The mixture was reacted at 0 °C for 8 hours and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using a mixture of petroleum ether and ethyl acetate (8:1, v/v) as eluents to give **2v** (0.529 g, 95%) as a light yellow solid.

5. The control experiments for mechanistic insights

5.1. The standard reactions of 1a, [Me₄N][SeCF₃] and oxidant in the presence of different radical inhibitors.

Table S8

	oxidant (1.3 equiv) additive (1.5 equiv)	SeCF ₃
Ň	MeCN, N ₂ , 0 °C, 8 h	N N
1a		Н 2а

Entry ^a	Oxidant	Additive	Yield (%) ^b
1	<i>m</i> -CPBA	none	>99
2	<i>m</i> -CPBA	TEMPO	98
3	<i>m</i> -CPBA	BHT	>99
4	<i>m</i> -CPBA	1,1-Diphenylethylene	98
5	<i>m</i> -CPBA	Diallyl-PTSA	>99
6	<i>m</i> -CPBA	1,3-dinitrobenzene	93
7	<i>m</i> -CPBA	1,4-dinitrobenzene	95
8 c	<i>m</i> -CPBA	none	95
9 <i>c</i> , <i>d</i>	<i>m</i> -CPBA	none	99
10	NIS	none	99
11	NIS	TEMPO	92
12	NIS	BHT	36
13	NIS	1,1-Diphenylethylene	95
14	NIS	Diallyl-PTSA	84
15	NIS	1,3-dinitrobenzene	94
16	NIS	1,4-dinitrobenzene	89
17 ^c	NIS	none	72
18 ^{c,d}	NIS	none	>99

^{*a*} Reaction conditions: To a mixture of oxidant (0.26 mmol), $[Me_4N][SeCF_3]$ (0.26 mmol), and additive (0.3 mmol) in CH₃CN (1 mL) was added slowly a solution of **1a** (0.2 mmol) in CH₃CN (1 mL) at 0 °C. The reaction was maintained at 0 °C under N₂ for 8 hours. Diallyl-PTSA: *N*,*N*-diallyl-4-methylbenzenesulfonamide. ^{*b*} Yields were determined by HPLC using **2a** as an external standard ($t_R = 4.50 \text{ min}$, $\lambda = 268 \text{ nm}$, methanol/water = 90:10 (v/v)). ^{*c*} The reaction was run in the darkness. ^{*d*} Reaction conditions: A solution of oxidant (0.26 mmol) in CH₃CN (1 mL) was added slowly to a mixture of **1a** (0.2 mmol), [Me₄N][SeCF₃] (0.26 mmol), and additive (0.3 mmol) in CH₃CN (1 mL) at 0 °C. The reaction was maintained at 0 °C under N₂ for 8 hours.

Figure 1. The ¹⁹F NMR analysis of the reaction mixture (entry 1, Table S8, PhOCF₃ (32.0 mg, 0.198 mmol) was used as an internal standard)

Figure 2. The ¹⁹F NMR analysis of the reaction mixture (entry 10, Table S8, PhOCF₃ (33.1 mg, 0.204 mmol) was used as an internal standard)

Figure 3. The ¹⁹F NMR analysis of the reaction mixture (entry 12, Table S8, PhOCF₃ (33.2 mg, 0.205 mmol) was used as an internal standard)

5.2. Trifluoromethylselenolation of 1a by a mixture of [Me₄N][SeCF₃] and an oxidant which was already reacted at room temperature for 45 minutes.

Table S9

[Me₄N][SeCF₃] - (1.0 equiv.)	oxidant (1.0 equiv.) MeCN, N ₂ , r.t., 45 min	$ \begin{array}{c} $	
Entry ^a	oxidant	Yield (2a , %) ^b	
1	<i>m</i> -CPBA	75%	
2	NIS	92%	

^{*a*} Reaction conditions: Oxidant (0.20 mmol) was added to a solution of [Me₄N][SeCF₃] (0.20 mmol) in CH₃CN (1 mL) and kept stirring at room temperature for 45 minutes. Then, a solution of **1a** (0.2 mmol) in CH₃CN (1 mL) was added slowly at 0 °C. The mixture was reacted at 0 °C under N₂ for 8 hours. ^{*b*} Yields were determined by HPLC using **2a** as an external standard (t_R = 4.50 min, λ_{max} = 268 nm, methanol/water = 90:10 (v/v)).

5.3. The EPR analysis of the reaction mixtures of 1a, [Me₄N][SeCF₃] and *m*-CPBA or NIS under the standard conditions.

General: EPR experiments were carried out at room temperature using a Bruker EMX spectrometer operating at X-band with 100 kHz modulation frequency. The instrument settings were as follows: microwave power: 0.002 or 2.0 mW; modulation amplitude: 0.6 G; center field set: 3509.85 G; time constant: 0.01 ms; scan time: 30.04 s; number of scans: 5.

Procedure: Under a nitrogen atmosphere, a sealed tube was charged with $[Me_4N][SeCF_3]$ (0.13 mmol, 28.9 mg), **1a** (0.1 mmol, 11.7 mg), PBN (0.2 mmol, 35.4 mg), and CH₃CN (1 mL) at room temperature and cooled to 0 °C with stirring. A solution of oxidant (0.13 mmol) in CH₃CN (0.5 mL) was added slowly. The mixture was reacted at 0 °C for 30 min and then analyzed by EPR spectroscopy.

The EPR spectrum of the reaction mixture of [Me₄N][SeCF₃]/1a/PBN and *m*-CPBA:

The EPR spectrum of the reaction mixture of [Me₄N][SeCF₃]/1a/PBN and NIS:

5.4. The ¹⁹F NMR analysis of the mixtures of [Me₄N][SeCF₃] and an oxidant at room temperature after reacting for 45 minutes.

General procedure: Under a N₂ atmosphere, oxidant (0.1, 0.15 or 0.4 mmol) was added to a solution of $[Me_4N][SeCF_3]$ (0.1, 0.15, 0.2, 0.4 mmol) in CH₃CN (1.0 mL). The mixture was maintained at room temperature for 45 minutes and analyzed by ¹⁹F NMR using PhOCF₃ (24.5 mg, 0.151 mmol) as an internal standard.

Figure 4. The ¹⁹F NMR spectrum of the reaction mixture of [Me₄N][SeCF₃] and *m*-CPBA (4 equiv.):

Figure 5. The ¹⁹F NMR spectrum of the reaction mixture of [Me₄N][SeCF₃] and *m*-CPBA (1.5 equiv.):

Figure 6. The ¹⁹F NMR spectrum of the reaction mixture of [Me₄N][SeCF₃] and *m*-CPBA (1 equiv.):

Figure 7. The ${}^{19}F$ NMR spectrum of the reaction mixture of [Me₄N][SeCF₃] (1.5

Figure 8. The ¹⁹F NMR spectrum of the reaction mixture of [Me₄N][SeCF₃] (2 equiv.) and *m*-CPBA:

Figure 9. The ¹⁹F NMR spectrum of the reaction mixture of $[Me_4N][SeCF_3]$ (4 equiv.) and *m*-CPBA:

The combination of the above spectra (Figures 4-9)

[Me₄N][SeCF₃] : <i>m</i> -CPBA = 1 : 4				
[Me₄N][SeCF₃] : <i>m</i> -CPBA = 1 : 1.5			1	
[Me₄N][SeCF₃] : <i>m</i> -CPBA = 1 : 1			1	
[Me₄N][SeCF₃] : <i>m</i> -CPBA = 1.5 : 1			1	
[Me ₄ N][SeCF ₃] : <i>m</i> -CPBA = 2 : 1				
[Me₄N][SeCF₃] : <i>m</i> -CPBA = 4 : 1]
30 25 20 15 10 5 0 -5 -10 -15 -20	-25 -30 -35 f1 (pom)	-40 -45 -50 -55	-60 -65 -70 -75	-80 -85 -90 -95 -100

Figure 10. The ¹⁹F NMR spectrum of the reaction mixture of [Me₄N][SeCF₃] and NIS (4 equiv.):

Figure 11. The ¹⁹F NMR spectrum of the reaction mixture of [Me₄N][SeCF₃] and NIS (1.5 equiv.):

Figure 12. The ¹⁹F NMR spectrum of the reaction mixture of [Me₄N][SeCF₃] and NIS (1 equiv.):

Figure 13. The ¹⁹F NMR spectrum of the reaction mixture of $[Me_4N][SeCF_3]$ (1.5 equiv.) and NIS:

Figure 14. The ¹⁹F NMR spectrum of the reaction mixture of $[Me_4N][SeCF_3]$ (2 equiv.) and NIS:

Figure 15. The 19 F NMR spectrum of the reaction mixture of [Me₄N][SeCF₃] (4 equiv.) and NIS:

The combination of the above spectra (Figures 10-15)

Figure 16. The ¹⁹F NMR spectrum of the reaction mixture of [Me₄N][SeCF₃] and DDQ (4 equiv.):

Figure 17. The ¹⁹F NMR spectrum of the reaction mixture of $[Me_4N][SeCF_3]$ and DDQ (1.5 equiv.):

Figure 18. The ¹⁹F NMR spectrum of the reaction mixture of $[Me_4N][SeCF_3]$ and DDQ (1 equiv.):

Figure 19. The ¹⁹F NMR spectrum of the reaction mixture of $[Me_4N][SeCF_3]$ (1.5 equiv.) and DDQ:

Figure 20. The ¹⁹F NMR spectrum of the reaction mixture of $[Me_4N][SeCF_3]$ (2 equiv.) and DDQ:

Figure 21. The ¹⁹F NMR spectrum of the reaction mixture of $[Me_4N][SeCF_3]$ (4 equiv.) and DDQ:

The combination of the above spectra (Figures 16-21)

Figure 23. The ¹⁹F NMR spectrum of the reaction mixture of $[Me_4N][SeCF_3]$ and PhI(OAc)₂ (1.5 equiv.):

Figure 24. The ¹⁹F NMR spectrum of the reaction mixture of $[Me_4N][SeCF_3]$ and PhI(OAc)₂ (1 equiv.):

Figure 25. The ¹⁹F NMR spectrum of the reaction mixture of $[Me_4N][SeCF_3]$ (1.5 equiv.) and PhI(OAc)₂:

Figure 26. The ¹⁹F NMR spectrum of the reaction mixture of $[Me_4N][SeCF_3]$ (2 equiv.) and PhI(OAc)₂:

Figure 27. The ¹⁹F NMR spectrum of the reaction mixture of [Me₄N][SeCF₃] (4 equiv.) and PhI(OAc)₂:

The combination of the above spectra (Figures 22-27)

5.5. Isolation of the possible reactive intermediates

$$[Me_4N][SeCF_3] + m-CPBA \xrightarrow{35 \circ C, 2 h} F_3CSe-SeCF_3$$
sulfolane

Procedure A: Under a nitrogen atmosphere, a Schlenk tube was charged with $[Me_4N][SeCF_3]$ (2 mmol, 444 mg) and sulfolane (5 mL, degass). Then, *m*-CPBA (2 mmol, 400 mg) was added and the tube was sealed. The mixture was reacted at 35 °C for 2 h and distilled under reduced pressure (4.2 KPa / 60 °C / 2 h). The volatile compounds were captured by cold trap (liquid nitrogen) to give a light yellow liquid (133.3 mg).

The purity of CF₃SeSeCF₃ was calculated according to the ¹⁹F NMR spectrum using PhOCF₃ (30.5 mg, 0.188 mmol) as an internal standard.

Table S10 The reactions of 1a with $CF_3SeSeCF_3$ under the standard or similar conditions

	$ \begin{array}{c} $	e (x equiv) 0 °C, 8 h, N ₂	SeCF ₃
Entry ^a	Additive (x equiv.)	Recovery $(1a, \%)^{b}$	Yield (2a, %) ^b
1	None	87	< 1
2 ^c	3-chlorobenzoic acid (1.1 equiv.)	87	< 1
3 <i>d</i>	<i>m</i> -CPBA (0.5 equiv.)	62	< 1

^{*a*} Reaction conditions: $F_3CSeSeCF_3$ (0.3 mmol) was dissolved in CH₃CN (1 mL) and cooled to 0 °C. Then, a solution of **1a** (0.2 mmol) in CH₃CN (1 mL) was added. The mixture was maintained at 0 °C under N₂ for 8 hours. ^{*b*} The conversion of **1a** and the yields of **2a** were determined by HPLC ($\lambda = 268$ nm, water/methanol = 10 : 90 (v / v)) using pure 1*H*-indole (**1a**, t_R = 3.624 min) and 3-((trifluoromethyl)selanyl)-1*H*-

indole (**2a**, $t_R = 4.523$ min) as the external standards, respectively. ^c 3-Chlorobenzoic acid (0.22 mmol) ^d m-CPBA (0.1 mmol).

5.6. GC-MS analysis of the reaction mixture of [Me₄N][SeCF₃] and *m*-CPBA

Procedure: *m*-CPBA (0.2 mmol) was added to a solution of $[Me_4N][SeCF_3]$ (0.2 mmol) in CH₃CN (2 mL). The mixture was maintained at room temperature under N₂ for 45 minutes and examined by a GC-MS instrument (Agilent 222-5532LTM DB-5ms).

Figure 28. The GC-MS spectra of the above reaction mixture

Retention time = 2.20 minutes, CF₃SeSeCF₃ (m/z 297.9) was detected (see below):

5.7. The cyclic voltammetry of [Me₄N][SeCF₃]

General: The electrochemical studies were performed by using a CHI660E electrochemical workstation with a three-electrode one-compartment cell fitted with a Pt working microelectrode (0.5×37 mm), a Pt wire counter electrode, and a Ag/AgCl reference electrode (Ag wire dipped in saturated KCl aqueous solution). The General Purpose Electrochemical Software (GPES) was utilized to record and process the data. The dry CH₃CN from commercial source was degassed by bubbling nitrogen gas before use. All experiments were performed at ambient temperature with a scan rate of 0.05 V•s⁻¹ in CH₃CN solutions containing 1.0 or 2.0 mmol/L analyte and 0.1 mol/L [*n*-Bu₄N][PF₆] supporting electrolyte. Potentials were referenced to an external ferrocene/ferrocenium reference redox couple (E_{1/2} = 0.481 V vs. Ag/AgCl).

Figure 29. Cyclic voltammogram of $[Me_4N][SeCF_3]$ (2.0 mmol/L) in CH₃CN containing $[n-Bu_4N][PF_6]$ supporting electrolyte (0.1 mol/L). $E_{pa} = 0.28 \text{ V}$

Figure 30. Cyclic voltammogram of $[Me_4N][SCF_3]$ (2.0 mmol/L) in CH₃CN containing $[n-Bu_4N][PF_6]$ supporting electrolyte (0.1 mol/L).

 $E_{pa} = 0.89 V$

Figure 31. Cyclic voltammogram of indole (1.0 mmol/L) in CH₃CN containing [n-

Bu₄N][PF₆] supporting electrolyte (0.1 mol/L). $E_{pa} = 1.81 \text{ V}$

General: The UV-vis absorption spectra of the individual reactants and their mixtures were measured on an AOE 360 spectrophotometer to investigate the formation of possible donor-acceptor complexes and the electron transfer reactions among these compounds. The anhydrous acetonitrile solutions of individual **1a**, $[Me_4N][SeCF_3]$ and oxidant were prepared at the concentration of 0.02 mmol/L and their mixtures were prepared by mixing these individual solutions. The resulting solutions were scanned from 200 to 800 nm by the UV-vis spectrophotometer at room temperature.

Figure 32. The UV-vis absorption spectra of 1a, [Me₄N][SeCF₃], *m*-CPBA and their mixtures.

Red: a solution of **1a**; **Wine**: a solution of $[Me_4N][SeCF_3]$; **Green**: a solution of *m*-CPBA; **Olive**: a mixture of the individual solutions of **1a** and $[Me_4N][SeCF_3]$ (1:1, v/v); **Yellow**: a mixture of the individual solutions of **1a** and *m*-CPBA (1:1, v/v); **Blue**: a mixture of the individual solutions of $[Me_4N][SeCF_3]$ and *m*-CPBA (1:1, v/v); **Magenta**: a mixture of the individual solutions of $[Me_4N][SeCF_3]$ and *m*-CPBA was treated with a solution of **1a** (1:1:1, v/v/v).

Figure 33. Comparison of the UV-vis spectra of the mixtures with the mathematical sum of the UV-vis spectra of the individual compounds.

Olive: a mixture of the individual solutions of **1a** and $[Me_4N][SeCF_3]$ (1:1, v/v); **Yellow**: a mixture of the individual solutions of **1a** and *m*-CPBA (1:1, v/v); **Blue**: a mixture of the individual solutions of $[Me_4N][SeCF_3]$ and *m*-CPBA (1:1, v/v); **Green**: a mathematical sum of the UV-vis spectra of the individual solutions of **1a** and $[Me_4N][SeCF_3]$; **Red**: a mathematical sum of the UV-vis spectra of the individual solutions of $[Me_4N][SeCF_3]$; **Red**: a mathematical sum of the UV-vis spectra of the individual solutions of $[Me_4N][SeCF_3]$; **Red**: a mathematical sum of the UV-vis spectra of the individual solutions of $[Me_4N][SeCF_3]$ and *m*-CPBA; **Cyan**: a mathematical sum of the UV-vis spectra of the individual solutions of **1a** and *m*-CPBA.

Figure 34. The UV-vis absorption spectra of 1a, [Me₄N][SeCF₃], NIS and their mixtures.

Red: a solution of **1a**; **Wine**: a solution of $[Me_4N][SeCF_3]$; **Green**: a solution of NIS; **Olive**: a mixture of the individual solutions of **1a** and $[Me_4N][SeCF_3]$ (1:1, v/v); **Yellow**: a mixture of the individual solutions of **1a** and NIS (1:1, v/v); **Blue**: a mixture of the individual solutions of $[Me_4N][SeCF_3]$ and NIS (1:1, v/v); **Magenta**: a mixture of the individual solutions of $[Me_4N][SeCF_3]$ and NIS (1:1, v/v); **Magenta**: a solution of **1a** (1:1:1, v/v/v).

Figure 35. Comparison of the UV-vis spectra of the mixtures with the mathematical sum of the UV-vis spectra of the individual compounds.

Olive: a mixture of the individual solutions of **1a** and $[Me_4N][SeCF_3]$ (1:1, v/v); **Yellow**: a mixture of the individual solutions of **1a** and NIS (1:1, v/v); **Blue**: a mixture of the individual solutions of $[Me_4N][SeCF_3]$ and NIS (1:1, v/v); **Black**: a mathematical sum of the UV-vis spectra of the individual solutions of **1a** and $[Me_4N][SeCF_3]$; **Red**: a mathematical sum of the UV-vis spectra of the individual solutions of **1a** and $[Me_4N][SeCF_3]$; **Red**: a mathematical sum of the UV-vis spectra of the individual solutions of **1a** and $[Me_4N][SeCF_3]$; **Red**: a mathematical sum of the UV-vis spectra of the individual solutions of the individual solutions of $[Me_4N][SeCF_3]$ and NIS; **Cyan**: a mathematical sum of the UV-vis spectra of the individual solutions of **1a** and NIS.

5.9. The reactions of 1a and [Me₄N][SCF₃] under the standard conditions that were used for [Me₄N][SeCF₃].

Figure 36. The ¹⁹F NMR analysis of the above reaction mixture (no trifluoromethylthiolated product was observed according to the ¹⁹F NMR spectrum by using PhOCF₃ (33.7 mg, 0.208 mmol) as an internal standard):^{12a}

Figure 37. The ¹⁹F NMR analysis of the above reaction mixture (no trifluoromethylthiolated product was observed according to the ¹⁹F NMR spectrum by using PhOCF₃ (34.4 mg, 0.212 mmol) as an internal standard):^{12a}

Figure 38. The ¹⁹F NMR analysis of the above reaction mixture (no trifluoromethylthiolated product was observed according to the ¹⁹F NMR spectrum by using PhOCF₃ (34.2 mg, 0.211 mmol) as an internal standard):^{12b}

Figure 39. The ¹⁹F NMR analysis of the above reaction mixture (no trifluoromethylthiolated product was observed according to the ¹⁹F NMR spectrum by using PhOCF₃ (33.9 mg, 0.209 mmol) as an internal standard):^{12b}

Reference:

[1] (a) W. Tyrra, D. Naumann, Y. L. Yagupolskii, *J. Fluorine Chem.* 2003, *123*, 183-187. (b) T. Dong, J. He, Z.-H. Li, C.-P. Zhang, *ACS Sustainable Chem. Eng.* 2018, *6*, 1327-1335.

[2] B. Li, Z. Chen, H. Cao, H. Zhao, Org. Lett. 2018, 20, 3291-3295.

[3] A. Das, K. Watanabe, H. Morimoto, T. Ohshima, Org. Lett. 2017, 19, 5794-5797.

[4] C. R. Johnson, M. I. Ansari, A. Coop, ACS Omega 2018, 3, 10886-10890.

[5] K. Pericherla, P. Kaswan, P. Khedar, B. Khungar, K. Parangb, A. Kumar, *RSC Adv.* **2013**, *3*, 18923-18930.

[6] T. Torigoe, T. Ohmura, M. Suginome, Angew. Chem. Int. Ed. 2017, 56, 14272-14276.

[7] W. L. F. Armarego, C. L. L. Chai, *Purification of Laboratory Chemicals*, 5th ed; Butterworth Heinemann: Oxford, 2003.

[8] Q. Glenadel, E. Ismalaj, T. Billard, J. Org. Chem. 2016, 81, 8268-8275.

[9] N. Muniraj, J. Dhineshkumar, K. R. Prabhu, ChemistrySelect 2016, 5, 1033-1038.

[10] S. Potash, S. Rozen, J. Org. Chem. 2014, 79, 11205-11208.

[11] C. J. Marsden, J. Fluorine Chem. 1975, 5, 401-422.

[12] (a) K. Lu, Q. Li, X. Xi, Y. Huang, Z. Gong, P. Yu, X. Zhao, Org. Chem. Front.

2018, *5*, 3088-3092. (b) M. Jereb, K. Gosak, Org. Biomol. Chem. **2015**, *13*, 3103-3115.

6. The NMR spectra of 2

S59

S60

S61

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fi (ppm)

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fil (ppm)

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fl (ppm)

S78

S84

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fi (ppm)

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100

-120

-140

-160

-180

-200

S98

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fl (ppm)

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fl (ppm)

S107

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fl (ppm)

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fl (ppm)

