Diastereoselective Access to 2-Aminoindanones via the Rhodium(II)-Catalyzed Tandem Reaction Involving O-H Insertion and Michael Addition

Siyang Xing,* Hanyu Xia, Xin Wang, Die Wu, Xinrui Xu, Yunran Su, Kui Wang,* Bolin Zhu* and Junshuo Guo

Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China.

Fax: +86 022 23766531 (S. Xing); +86 022 23766531 (K. Wang); +86 022 23766531 (B. Zhu). e-mail: hxxyxsy@tjnu.edu.cn (S. Xing); hxxywk@tjnu.edu.cn (K. Wang); hxxyzbl@gmail.com (B. Zhu).

Supporting Information

General Information	S2
Preparation of alkynes 4	S2
Preparation of triazoles 5	S9
Construction of 2-aminoindanoneS 6	S20
References	S32
NMR Spectra	S33

General Information

The ¹H NMR and ¹³C NMR were recorded with Bruker 400 MHz spectrometer instruments in CDCl₃. The chemical shifts (δ) were measured in ppm and with the solvents as references (For CDCl₃, ¹H: δ =7.26 ppm, ¹³C δ = 77.00 ppm). All solvents were obtained from commercial sources and were purified according to standard procedures. Purification of products was accomplished by flash chromatography using silica gel (200~300 mesh). Thin layer chromatography (TLC) was performed on Merck silica gel GF254 plates and visualized by UV-light (254 nm). Melting points were obtained on a Yanaco-241 apparatus and are uncorrected. IR spectra were recorded on a MAGNA-560 spectrometer made by Nicolet Company. HRMS were recorded on VG ZAB-HS mass spectrometer with ESI resource.

Preparation of alkynes 4

General Procedure A

Under a nitrogen atmosphere, to a triethylamine solution (40 mL) of Pd(PPh₃)₂Cl₂ (0.56 g, 0.8 mmol) and CuI (0.38 g, 2.0 mmol) was added aldehyde **1** (40 mmol) and stirred for 10 mins, then added trimethylsilylacetylene (4.7 g, 48.0 mmol) dropwise over 30 mins. The resulting suspension was allowed to be stirred for 4 hours at 65 °C. After completion of the reaction, the mixture was filtered through a short celite bed and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate, 50:1) to afford compound **2**.

Piperidine (1 mL) and 4Å MS (8 g) was added to the solution of aldehyde **2** (20 mmol), malonic ester (26 mmol) in toluene (20 mL) at room temperature. Then the mixture was stirred at 70 °C for

8 h. After filtration, the solid mixture was washed with EtOAc (100 mL). The combined organic phases were dried over Na_2SO_4 and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate, 25:1) to afford compound **3**.

Under a nitrogen atmosphere, compound **3** (10 mmol) dissolved in freshly distilled THF (100 mL) was added TBAF (20 mL, 1M in THF, 20mmol). The reaction mixture was stirred at rt for 30 min. Then the mixture was concentrated in vacuo. The residue was extracted with DCM (3×50 mL), and the combined organic layers were washed with brine (20 mL), dried over Na₂SO₄, filtered and evaporated in vacuo. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate, 10:1) to afford compound **4**.

Dimethyl 2-(2-ethynylbenzylidene)malonate 4a

4a was synthesized from commercially sourced **1a** according to *General Procedure A* via a threestep sequence. Yield for **2a**: 83%, yield for **3a**: 63%, yield for **4a**: 67%. The data for **4a**: ¹H NMR (400 MHz, CDCl₃) δ 8.23 (s, 1H), 7.61 – 7.35 (m, 4H), 3.86 (s, 3H), 3.78 (s, 3H), 3.44 (s, 1H).

Dimethyl 2-(2-ethynyl-3-methylbenzylidene)malonate 4b

4b was synthesized from commercially sourced **1b** according to *General Procedure A* via a threestep sequence. Yield for **2b**: 64%, yield for **3b**: 67%, yield for **4b**: 54%.

The data for **4b**: ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.36 – 7.16 (m, 3H), 3.87 (s, 3H), 3.78 (s, 3H), 3.71 (d, J = 10.6 Hz, 1H), 2.47 (d, J = 14.3 Hz, 3H).

Dimethyl 2-(2-ethynyl-4-methylbenzylidene)malonate 4c

4c was synthesized from commercially sourced **1c** according to *General Procedure A* via a threestep sequence. Yield for **2c**: 82%, yield for **3c**: 60%, yield for **4c**: 57%. The data for **4c**: ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.38 (s, 1H), 7.31 (d, *J* = 8.1 Hz, 1H), 7.13 (d, *J* = 7.9 Hz, 1H), 3.85 (s, 3H), 3.79 (s, 3H), 3.40 (s, 1H), 2.34 (s, 3H). *Dimethyl 2-((3-ethynyl-[1,1'-biphenyl]-4-yl)methylene)malonate* **4d**

4d was synthesized from aldehyde $1d^1$ and according to *General Procedure A* via a three-step sequence. Yield for **2d**: 95%, yield for **3d**: 69%, yield for **4d**: 58%. The data for **4d**: ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.83 (d, *J* = 1.7 Hz, 1H), 7.62 – 7.39

(m, 7H), 3.90 (s, 3H), 3.85 (s, 3H), 3.50 (s, 1H).

Dimethyl 2-(2-ethynyl-4-methoxybenzylidene)malonate 4e

4e was synthesized from commercially sourced **1e** according to *General Procedure A* via a threestep sequence. Yield for **2e**: 90%, yield for **3e**: 79%, yield for **4e**: 83%. The data for **4e**: ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.37 (d, *J* = 8.8 Hz, 1H), 7.06 (d, *J* = 2.7 Hz, 1H), 6.87 (dd, *J* = 8.8, 2.7 Hz, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 3.81 (s, 3H), 3.44 (s, 1H). *Dimethyl 2-(4-chloro-2-ethynylbenzylidene)malonate* **4f**

4f was synthesized from commercially sourced **1f** according to *General Procedure A* via a threestep sequence. Yield for **2f**: 62%, yield for **3f**: 45%, yield for **4f**: 60%.

The data for **4f**: ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.54 (d, *J* = 1.9 Hz, 1H), 7.32 (dt, *J* = 8.5, 5.2 Hz, 2H), 3.86 (s, 3H), 3.79 (s, 3H), 3.48 (s, 1H).

Dimethyl 2-(2-ethynyl-5-methylbenzylidene)malonate 4g

4g was synthesized from commercially sourced **1g** according to *General Procedure A* via a threestep sequence. Yield for **2g**: 94%, yield for **3g**: 85%, yield for **4g**: 63%. The data for **4g**: ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.45 (d, *J* = 7.9 Hz, 1H), 7.21 (s, 1H), 7.17 (d, *J* = 7.7 Hz, 1H), 3.86 (s, 3H), 3.79 (s, 3H), 3.38 (s, 1H), 2.34 (s, 3H). *Dimethyl 2-((4-ethynyl-[1,1'-biphenyl]-3-yl)methylene)malonate* **4h**

4h was synthesized from aldehyde **1h**¹ according to *General Procedure A* via a three-step sequence. Yield for **2h**: 92%, yield for **3h**: 61%, yield for **4h**: 63%.

The data for **4h**: ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.68 (s, 1H), 7.61 (q, *J* = 8.0 Hz, 2H), 7.54 (d, *J* = 7.3 Hz, 2H), 7.46 (t, *J* = 7.2 Hz, 2H), 7.38 (t, *J* = 7.2 Hz, 1H), 3.88 (s, 3H), 3.78 (s, 3H), 3.49 (s, 1H).

Dimethyl 2-(2-ethynyl-5-methoxybenzylidene)malonate 4i

4i was synthesized from commercially sourced **1i** according to *General Procedure A* via a threestep sequence. Yield for **2i**: 90%, yield for **3i**: 67%, yield for **4i**: 52%.

The data for **4i**: ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.46 (d, *J* = 8.6 Hz, 1H), 6.96 (d, *J* = 2.5 Hz, 1H), 6.88 (dd, *J* = 8.6, 2.6 Hz, 1H), 3.85 (s, 3H), 3.79 (s, 3H), 3.77 (s, 3H), 3.34 (s, 1H). Dimethyl 2-(2-ethynyl-5-fluorobenzylidene)malonate **4**j

4j was synthesized from commercially sourced **1j** according to *General Procedure A* via a threestep sequence. Yield for **2j**: 90%, yield for **3j**: 54%, yield for **4j**: 57%.

The data for 4j: ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.54 (dd, J = 8.6, 5.6 Hz, 1H), 7.13

(dd, J = 9.5, 2.5 Hz, 1H), 7.07 (td, J = 8.3, 2.6 Hz, 1H), 3.87 (s, 4H), 3.82 (s, 3H), 3.41 (s, 1H).

Dimethyl 2-(5-chloro-2-ethynylbenzylidene)malonate 4k

4k was synthesized from commercially sourced **1k** according to *General Procedure A* via a threestep sequence. Yield for **2k**: 83%, yield for **3k**: 36%, yield for **4k**: 63%.

The data for **4k**: ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.48 (d, J = 8.3 Hz, 1H), 7.39 (d, J = 2.0 Hz, 1H), 7.32 (dd, J = 8.3, 2.1 Hz, 1H), 3.87 (s, 3H), 3.82 (s, 3H), 3.46 (s, 1H).

Dimethyl 2-(2-ethynyl-6-methoxybenzylidene)malonate 41

4I was synthesized from commercially sourced **1I** according to *General Procedure A* via a threestep sequence. Yield for **2I**: 81%, yield for **3I**: 51%, yield for **4I**: 47%.

The data for **41**: ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.35 – 7.18 (m, 2H), 6.92 (d, J = 8.4

Hz, 1H), 3.90 (s, 3H), 3.81 (s, 3H), 3.72 (s, 3H), 3.39 (s, 1H).

Dimethyl 2-(2-ethynyl-4,5-dimethoxybenzylidene)malonate 4m

4m was synthesized from commercially sourced **1m** according to *General Procedure A* via a three-step sequence. Yield for **2m**: 91%, yield for **3m**: 56%, yield for **4m**: 41%.

The data for **4m**: ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.00 (d, *J* = 2.2 Hz, 2H), 3.90 (s, 3H), 3.84 (s, 6H), 3.82 (s, 3H), 3.39 (s, 1H).

Dimethyl 2-((1-ethynylnaphthalen-2-yl)methylene)malonate 4n

4n was synthesized from commercially sourced 1n according to General Procedure A via a three-

step sequence. Yield for 2n: 93%, yield for 3n: 56%, yield for 4n: 68%.

The data for **4n**: ¹H NMR (400 MHz, CDCl₃) δ 8.51 (s, 1H), 8.42 (d, J = 8.0 Hz, 1H), 7.81 (dd, J = 13.5, 8.3 Hz, 2H), 7.68 – 7.53 (m, 2H), 7.46 (d, J = 8.7 Hz, 1H), 3.93 (s, 1H), 3.89 (s, 3H), 3.80 (s, 3H).

Diethyl 2-(2-ethynylbenzylidene)malonate 40

40 was synthesized from commercially sourced **1a** according to *General Procedure A* via a threestep sequence. Yield for **30**: 82%, yield for **40**: 59%.

The data for **4o**: ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.61 – 7.41 (m, 2H), 7.38 – 7.28 (m, 2H), 4.29 (dq, *J* = 17.9, 7.1 Hz, 4H), 3.43 (s, 1H), 1.34 (t, *J* = 7.1 Hz, 3H), 1.22 (t, *J* = 7.1 Hz, 3H). *Dipropyl 2-(2-ethynylbenzylidene)malonate* **4p**

4p was synthesized from commercially sourced **1a** according to *General Procedure A* via a threestep sequence. Yield for **3p**: 47%, yield for **3p**: 57%.

The data for **4p**: ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.62 – 7.51 (m, 1H), 7.51 – 7.43 (m, 1H), 7.38 – 7.29 (m, 2H), 4.22 (t, *J* = 6.6 Hz, 2H), 4.16 (t, *J* = 6.6 Hz, 2H), 3.42 (s, 1H), 1.78 – 1.66 (m, 2H), 1.66 – 1.53 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H), 0.84 (t, *J* = 7.4 Hz, 3H).

Diisopropyl 2-(2-ethynylbenzylidene)malonate 4q

4q was synthesized from commercially sourced **1a** according to *General Procedure A* via a threestep sequence. Yield for **3q**: 53%, yield for **4q**: 21%.

The data for **4q**: ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.61 – 7.47 (m, 2H), 7.41 – 7.27 (m, 2H), 5.17 (tt, *J* = 12.5, 6.3 Hz, 2H), 3.42 (s, 1H), 1.31 (d, *J* = 6.3 Hz, 7H), 1.23 (d, *J* = 6.3 Hz, 7H). *Dibutyl 2-(2-ethynylbenzylidene)malonate* **4r**

4r was synthesized from commercially sourced **1a** according to *General Procedure A* via a threestep sequence. Yield for **3r**: 62%, yield for **4r**: 42%.

The data for **4r**: ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.59 – 7.50 (m, 1H), 7.50 – 7.43 (m, 1H), 7.33 (ddd, *J* = 6.6, 5.9, 3.7 Hz, 2H), 4.26 (t, *J* = 6.6 Hz, 2H), 4.20 (t, *J* = 6.6 Hz, 2H), 3.42 (s, 1H), 1.75 – 1.63 (m, 2H), 1.63 – 1.51 (m, 2H), 1.42 (dd, *J* = 15.0, 7.5 Hz, 2H), 1.26 (dd, *J* = 15.0, 7.5 Hz, 2H), 0.95 (t, *J* = 7.4 Hz, 3H), 0.86 (t, *J* = 7.4 Hz, 3H).

Dibenzyl 2-(2-ethynylbenzylidene)malonate 4s

4s was synthesized from commercially sourced **1a** according to *General Procedure A* via a threestep sequence. Yield for **3s**: 61%, yield for **4s**: 70%.

The data for **4s**: ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.56 (d, *J* = 7.7 Hz, 1H), 7.41 – 7.24 (m, 12H), 7.13 (t, *J* = 7.5 Hz, 1H), 5.33 (s, 2H), 5.27 (s, 2H), 3.44 (s, 1H).

(E)-Methyl 3-(2-ethynylphenyl)acrylate 4t

To a suspension of NaH (0.87 g, 21.7 mmol, 1.1 equiv, 60% wt in mineral oil) in THF (40 mL) at 0 °C was added dropwise of trimethyl phosphonacetate (4.33g, 23.7 mmol, 1.2 equiv). The reaction was then brought to room temperature and stirred for 30 min before being cooled to -78 °C. An aldehyde **2a** (4.0 g, 19.8 mmol, 1.0 equiv) was subsequently added and the reaction mixture was slowly raised to room temperature. Then the reaction mixture was stirred at room temperature overnight. The reaction was quenched with saturated NH₄Cl (80 mL) and extracted with ether (200 mL). The combined ether layers were washed with brine, dried and concentrated. The residue was purified by column chromatography (petroleum ether/ethyl acetate, 20:1) on silica gel to afford the desired product **3t** (3.0 g, 62%).

Under a nitrogen atmosphere, compound **3t** (2.58 g, 10 mmol) dissolved in freshly distilled THF (100 mL) was added TBAF (20 mL, 1M in THF, 20mmol). The reaction mixture was stirred at rt for 10 min until starting material disappeared on TLC. The mixture was concentrated in vacuo. The residue was extracted with DCM (3×50 mL), and the combined organic layers were washed with brine (20 mL), dried over Na₂SO₄, filtered and evaporated in vacuo. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate, 10:1) to afford compound **4t** (0.9 g, 45%).

The data for **4t**: ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 16.2 Hz, 1H), 7.63 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.54 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.35 (pd, *J* = 7.5, 1.7 Hz, 2H), 6.52 (d, *J* = 16.1 Hz, 1H), 3.82 (s, 3H), 3.42 (s, 1H).

Preparation of triazoles 5

General Procedure B

Under a nitrogen atmosphere, copper(I) thiophene-2-carboxylate (CuTC, 0.380 g, 2.0 mmol) was added to a stirred solution of alkyne **4** (10.0 mmol) in toluene (45 mL). The reaction mixture was cooled in an ice-water bath. Subsequently, the sulfonyl azide (30.0 mmol, 3 equiv) was added slowly as the limiting reagent to avoid a run-away exotherm, and the reaction mixture allowed to warm to room temperature and stirred overnight. The reaction was diluted with saturated aq NH₄Cl (100 mL) and extracted with EtOAc (2 ×200 mL). The combined organics were dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate, 5:1) to afford triazole **5**.

Dimethyl 2-(2-(1-tosyl-1H-1,2,3-triazol-4-yl)benzylidene)malonate 5a

5a was synthesized from 4a according to General Procedure B. Yield: 63%; white solid; m. p.

116-119 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 8.04 (d, *J* = 8.3 Hz, 2H), 7.95 – 7.83 (m, 2H), 7.51 – 7.33 (m, 5H), 3.89 (s, 3H), 3.71 (s, 3H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.20, 163.98, 147.52, 145.03, 142.61, 132.88, 131.75, 130.55, 130.27, 129.14, 129.11, 128.79, 128.62, 128.42, 128.28, 122.32, 52.80, 52.54, 21.85; HRMS (ESI) Calcd for C₂₁H₂₀N₃O₆S (M+H)⁺: 442.1067; Found: 442.1068; IR (neat): *v* = 539, 854, 991, 1116, 1388, 1598, 1723, 2452, 3140 cm⁻¹.

Dimethyl 2-(3-methyl-2-(1-tosyl-1H-1,2,3-triazol-4-yl)benzylidene)malonate 5b

5b was synthesized from **4b** according to *General Procedure B*. Yield: 60%; white solid; m. p. 107-110 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 8.04 (d, *J* = 8.3 Hz, 2H), 7.48 – 7.45 (m, 3H), 7.37 – 7.28 (m, 3H), 3.83 (s, 3H), 3.75 (s, 3H), 2.51 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.36, 163.77, 147.40, 143.57, 142.94, 138.66, 133.77, 132.94, 132.27, 130.57, 129.17, 128.62, 128.14, 127.84, 125.55, 124.00, 52.55, 52.53, 21.86, 20.73; HRMS (ESI) Calcd for C₂₂H₂₂N₃O₆S (M+H)⁺: 456.1224; Found: 456.1227; IR (neat): *v* = 540, 588, 673, 854, 989, 1115, 1391, 1437, 1598, 1731, 3383 cm⁻¹.

Dimethyl 2-(4-methyl-2-(1-tosyl-1H-1,2,3-triazol-4-yl)benzylidene)malonate 5c

5c was synthesized from **4c** according to *General Procedure B*. Yield: 57%; white solid; m. p. 124-127 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 8.04 (d, J = 8.4 Hz, 2H), 7.87 (s, 1H), 7.70 (s, 1H), 7.42 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.0 Hz, 1H), 7.19 (d, J = 7.8 Hz, 1H), 3.88 (s, 3H), 3.74 (s, 3H), 2.46 (s, 3H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.48, 164.13, 147.49, 145.12, 142.45, 140.85, 132.94, 130.56, 129.99, 129.83, 128.88, 128.78, 128.67, 128.39, 127.48, 122.39, 52.75, 52.54, 21.86, 21.33; HRMS (ESI) Calcd for C₂₂H₂₂N₃O₆S (M+H)⁺: 456.1224; Found: 456.1226; IR (neat): v = 539, 616, 855, 985, 1090, 1387, 1602, 2024, 2070,

2443, 3379 cm⁻¹.

2-((3-(1-Tosyl-1H-1,2,3-triazol-4-yl)-[1,1'-biphenyl]-4-yl)methylene)malonate 5d

5d was synthesized from **4d** according to *General Procedure B*. Yield: 31%; white solid; m. p. 139-142 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 8.13 – 8.11 (m, 1H), 8.09 – 8.04 (m, 2H), 7.94 (s, 1H), 7.66 – 7.61 (m, 3H), 7.53 (d, *J* = 8.2 Hz, 1H), 7.49 – 7.37 (m, 5H), 3.90 (s, 3H), 3.77 (s, 3H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.40, 164.06, 147.56, 145.05, 143.22, 142.08, 139.31, 132.89, 130.59, 130.45, 129.33, 129.04, 128.96, 128.83, 128.23, 127.99, 127.81, 127.65, 127.11, 122.52, 52.84, 52.65, 21.88; HRMS (ESI) Calcd for C₂₇H₂₄N₃O₆S (M+H)⁺: 518.1380; Found: 518.1381; IR (neat): *v* = 538, 671, 765, 853, 993, 1117, 1350, 1394, 1436, 1598, 1632, 1726, 2460, 3134cm⁻¹.

Dimethyl 2-(4-methoxy-2-(1-tosyl-1H-1,2,3-triazol-4-yl)benzylidene)malonate 5e

5e was synthesized from **4e** according to *General Procedure B*. Yield: 68%; white solid; m. p. 123-125 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 8.05 (d, J = 8.5 Hz, 2H), 7.82 (s, 1H), 7.44 – 7.39 (m, 4H), 6.93 (dd, J = 8.7, 2.6 Hz, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.76 (s, 3H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.73, 164.27, 161.12, 147.55, 144.84, 141.85, 132.86, 130.76, 130.59, 130.09, 128.81, 126.36, 123.99, 122.68, 115.66, 113.78, 55.56, 52.72, 52.57, 21.88; HRMS (ESI) Calcd for C₂₂H₂₂N₃O₇S (M+H)⁺: 472.1173; Found: 472.1176; IR (neat): v = 539, 616, 855, 992, 1115, 1387, 1602, 1729, 2025, 2068, 2461, 3404 cm⁻¹.

Dimethyl 2-(4-chloro-2-(1-tosyl-1H-1,2,3-triazol-4-yl)benzylidene)malonate 5f

5f was synthesized from **4f** according to *General Procedure B*. Yield: 61%; white solid; m. p. 104-106 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 8.05 (d, J = 8.3 Hz, 2H), 7.90 (s, 1H), 7.83 (s, 1H), 7.43 (d, J = 8.1 Hz, 2H), 7.40 – 7.33 (m, 2H), 3.89 (s, 3H), 3.73 (s, 3H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.97, 163.82, 147.71, 143.86, 141.32, 136.41, 132.68, 130.62, 130.24, 130.04, 129.81, 129.21, 129.08, 128.86, 128.75, 122.65, 52.93, 52.70, 21.89; HRMS (ESI) Calcd for C₂₁H₁₉ClN₃O₆S (M+H)⁺: 476.0678; Found: 476.0681; IR (neat): v = 540, 586, 670, 733, 816, 850, 995, 1072, 1176, 1223, 1254, 1355, 1397, 1438, 1595, 1633, 1733, 2852, 2922, 2955, 3140 cm⁻¹.

Dimethyl 2-(5-methyl-2-(1-tosyl-1H-1,2,3-triazol-4-yl)benzylidene)malonate 5g

5g was synthesized from **4g** according to *General Procedure B*. Yield: 65%; white solid; m. p. 122-124 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 8.06 – 7.99 (m, 2H), 7.89 (s, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 8.1 Hz, 2H), 7.28 (d, J = 8.1 Hz, 1H), 7.22 (s, 1H), 3.88 (s, 3H), 3.71 (s, 3H), 2.45 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.27, 164.01, 147.44, 145.10, 142.70, 139.19, 132.86, 131.54, 131.12, 130.51, 129.03, 128.82, 128.72, 127.92, 125.86, 121.94, 52.75, 52.43, 21.82, 21.21; HRMS (ESI) Calcd for C₂₂H₂₂N₃O₆S (M+H)⁺: 456.1224; Found: 456.1225; IR (neat): v = 539, 587, 673, 852, 991, 1114, 1352, 1389, 1437, 1596, 1725, 2461, 3122cm⁻¹.

Dimethyl 2-((4-(1-tosyl-1H-1,2,3-triazol-4-yl)-[1,1'-biphenyl]-3-yl)methylene)malonate 5h

5h was synthesized from **4h** according to *General Procedure B*. Yield: 68%; white solid; m. p. 152-154 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 8.06 (d, J = 8.3 Hz, 2H), 7.98 – 7.96 (m, 2H), 7.73 – 7.70 (m, 2H), 7.58 (d, J = 7.4 Hz, 2H), 7.48 – 7.36 (m, 5H), 3.91 (s, 3H), 3.72 (s, 3H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.21, 163.98, 147.53, 144.85, 142.63, 141.80, 139.25, 132.87, 132.10, 130.56, 129.53, 129.02, 128.80, 128.71, 128.60, 128.10, 127.34, 127.02, 126.87, 122.16, 52.85, 52.62, 21.86; HRMS (ESI) Calcd for C₂₇H₂₄N₃O₆S (M+H)⁺: 518.1380; Found: 518.1384; IR (neat): v = 538, 673, 852, 990, 1116, 1390, 1598, 1712, 1742, 2455, 3391cm⁻¹.

Dimethyl 2-(5-methoxy-2-(1-tosyl-1H-1,2,3-triazol-4-yl)benzylidene)malonate 5i

5i was synthesized from **4i** according to *General Procedure B*. Yield: 40%; white solid; m. p. 124-126 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 8.02 (d, *J* = 8.3 Hz, 2H), 7.86 (s, 1H), 7.78 (d, *J* = 8.6 Hz, 1H), 7.40 (d, *J* = 8.3 Hz, 2H), 7.07 – 6.91 (m, 2H), 3.87 (s, 3H), 3.80 (s, 3H), 3.74 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.22, 163.88, 159.86, 147.42, 144.92, 142.21, 132.82, 130.49, 128.66, 128.28, 121.50, 121.19, 116.40, 113.05, 55.38, 52.80, 52.62, 21.80; HRMS (ESI) Calcd for C₂₂H₂₂N₃O₇S (M+H)⁺: 472.1173; Found: 472.1172; IR (neat): *v* = 538, 621, 673, 843, 992, 1074, 1396, 1437, 1602, 1702, 1742, 2467, 2952, 3002, 3121cm⁻¹.

Dimethyl 2-(5-fluoro-2-(1-tosyl-1H-1,2,3-triazol-4-yl)benzylidene)malonate 5j

5j was synthesized from 4j according to General Procedure B. Yield: 65%; white solid; m. p.

114-117 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 8.04 (d, *J* = 8.5 Hz, 2H), 7.87 (dd, *J* = 8.5, 5.6 Hz, 1H), 7.81 (s, 1H), 7.42 (d, *J* = 8.1 Hz, 2H), 7.23 – 7.11 (m, 2H), 3.89 (s, 3H), 3.76 (s, 3H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.67, 163.68, 162.55 (d, *J* = 250.7 Hz), 147.59, 144.18, 140.91 (d, *J* = 1.2 Hz), 133.60 (d, *J* = 8.3 Hz), 132.78, 131.20 (d, *J* = 8.5 Hz), 130.57, 129.28, 128.79, 124.96 (d, *J* = 3.4 Hz), 122.15, 117.42 (d, *J* = 21.8 Hz), 115.29 (d, *J* = 23.5 Hz), 52.93, 52.69, 21.84; HRMS (ESI) Calcd for C₂₁H₁₉FN₃O₆S (M+H)⁺: 460.0973; Found: 460.0971; IR (neat): *v* = 539, 617, 672, 854, 991, 1116, 1260, 1393, 1437, 1600, 1732, 2457, 3411 cm⁻¹. *Dimethyl 2-(5-chloro-2-(1-tosyl-1H-1,2,3-triazol-4-yl)benzylidene)malonate* **5**k

5k was synthesized from **4k** according to *General Procedure B*. Yield: 65%; white solid; m. p. 143-145 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 8.04 (d, *J* = 8.4 Hz, 2H), 7.85 – 7.83 (m, 2H), 7.52 – 7.38 (m, 4H), 3.90 (s, 3H), 3.76 (s, 3H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.60, 163.69, 147.64, 144.09, 140.95, 135.09, 133.12, 132.75, 130.58, 130.36, 130.25, 129.38, 128.83, 128.31, 127.07, 122.30, 52.94, 52.63, 21.86; HRMS (ESI) Calcd for C₂₁H₁₉ClN₃O₆S (M+H)⁺: 476.0678; Found: 476.0681; IR (neat): *v* = 539, 587, 673, 852, 991, 1114, 1352, 1389, 1437, 1596, 1725, 2461, 3122cm⁻¹.

Dimethyl 2-(2-methoxy-6-(1-tosyl-1H-1,2,3-triazol-4-yl)benzylidene)malonate 51

51 was synthesized from **41** according to *General Procedure B*. Yield: 60%; white solid; m. p. 127-130 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 8.02 (d, *J* = 8.3 Hz, 2H), 7.74 (s, 1H), 7.49 (d, *J* = 7.7 Hz, 1H), 7.45 – 7.37 (m, 3H), 6.93 (d, *J* = 8.2 Hz, 1H), 3.88 (s, 3H), 3.80 (s, 3H), 3.59 (s, 3H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.29, 164.60, 156.66, 147.42, 145.00, 140.69, 132.93, 130.90, 130.50, 129.73, 129.16, 128.77, 122.68, 121.31, 121.23, 111.06, 55.45, 52.69, 51.89, 21.86; HRMS (ESI) Calcd for C₂₂H₂₂N₃O₇S (M+H)⁺: 472.1173; Found: 472.1176; IR

(neat): $v = 539, 854, 994, 1114, 1383, 1599, 1735, 2462, 3121 \text{ cm}^{-1}$.

Dimethyl 2-(4,5-dimethoxy-2-(1-tosyl-1H-1,2,3-triazol-4-yl)benzylidene)malonate **5m**

5m was synthesized from **4m** according to *General Procedure B*. Yield: 62%; white solid; m. p. 145-148 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 8.05 (d, J = 8.4 Hz, 2H), 7.81 (s, 1H), 7.44 – 7.41 (m, 3H), 7.03 (s, 1H), 3.95 (s, 3H), 3.89 (s, 3H), 3.88 (s, 3H), 3.78 (s, 3H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.83, 164.20, 150.78, 149.44, 147.48, 144.74, 141.54, 133.00, 130.57, 128.79, 126.66, 124.10, 122.83, 122.22, 111.56, 110.84, 56.16, 55.99, 52.75, 52.65, 21.85; HRMS (ESI) Calcd for C₂₃H₂₄N₃O₈S (M+H)⁺: 502.1279; Found: 502.1282; IR (neat): v = 538, 585, 614, 673, 854, 977 1117, 1250, 1392, 1436, 1506, 1549, 1600, 1723, 2451, 2954, 3141cm⁻¹.

Dimethyl 2-((1-(1-tosyl-1H-1,2,3-triazol-4-yl)naphthalen-2-yl)methylene)malonate 5n

5n was synthesized from **4n** according to *General Procedure B*. Yield: 86%; white solid; m. p. decomposition; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 8.08 (d, J = 8.4 Hz, 2H), 7.92 – 7.81 (m, 3H), 7.64 (s, 1H), 7.59 – 7.42 (m, 5H), 3.83 (s, 3H), 3.74 (s, 3H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.45, 163.88, 147.58, 142.81, 142.76, 133.97, 132.88, 131.99, 131.34, 130.67, 129.99, 128.80, 128.20, 128.11, 127.64, 127.54, 126.92, 126.27, 125.31, 124.31, 52.69, 52.63, 21.93; HRMS (ESI) Calcd for C₂₅H₂₂N₃O₆S (M+H)⁺: 492.1224; Found: 492.1226; IR (neat): v = 542, 612, 677, 751, 853, 988, 1149, 1239, 1356, 1397, 1438, 1595, 1745, 2440, 2924, 2953, 3089, 3380 cm⁻¹.

Diethyl 2-(2-(1-tosyl-1H-1,2,3-triazol-4-yl)benzylidene)malonate 50

50 was synthesized from **40** according to *General Procedure B*. Yield: 57%; white solid; m. p. 99-102 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 8.05 (d, *J* = 8.4 Hz, 2H), 7.92 (d, *J* = 7.7 Hz, 1H), 7.86 (s, 1H), 7.56 – 7.32 (m, 5H), 4.35 (q, *J* = 7.1 Hz, 2H), 4.22 (q, *J* = 7.1 Hz, 2H), 2.46 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.15 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.61, 163.51, 147.46, 144.94, 141.70, 132.81, 131.76, 130.50, 130.07, 129.17, 128.95, 128.70, 128.53, 128.45, 122.29, 61.78, 61.55, 21.79, 14.07, 13.76; HRMS (ESI) Calcd for C₂₃H₂₄N₃O₆S (M+H)⁺: 470.1380; Found: 470.1385; IR (neat): *v* = 540, 588, 671, 760, 853, 991, 1119, 1196, 1255, 1349, 1390, 1446, 1595, 1634, 1717, 2451, 2981, 3143cm⁻¹.

Dipropyl 2-(2-(1-tosyl-1H-1,2,3-triazol-4-yl)benzylidene)malonate 5p

5p was synthesized from **4p** according to *General Procedure B*. Yield: 64%; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 8.04 (d, J = 8.4 Hz, 2H), 7.94 – 7.89 (m, 1H), 7.87 (s, 1H), 7.49 – 7.36 (m, 5H), 4.25 (t, J = 6.7 Hz, 2H), 4.10 (t, J = 6.6 Hz, 2H), 2.46 (s, 3H), 1.75 (dd, J = 14.2, 6.9 Hz, 2H), 1.55 (dd, J = 14.2, 6.9 Hz, 2H), 1.00 (t, J = 7.4 Hz, 3H), 0.77 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.85, 163.62, 147.49, 144.99, 141.71, 132.87, 131.89, 130.54, 130.12, 129.34, 129.04, 128.79, 128.55, 128.49, 122.30, 67.34, 67.24, 21.90, 21.86, 21.60, 10.38, 10.19; HRMS (ESI) Calcd for C₂₅H₂₈N₃O₆S (M+H)⁺: 498.1693; Found: 498.1695; IR (neat): v = 538, 853, 991, 1115, 1389, 1601, 1726, 2457, 3152 cm⁻¹.

Diisopropyl 2-(2-(1-tosyl-1H-1,2,3-triazol-4-yl)benzylidene)malonate 5q

5q was synthesized from **4q** according to *General Procedure B*. Yield: 59%; white solid; m. p. 127-129 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 8.02 (d, J = 8.2 Hz, 2H), 7.92 (d, J = 7.7 Hz, 1H), 7.80 (s, 1H), 7.53 – 7.33 (m, 5H), 5.19 (dt, J = 12.5, 6.3 Hz, 1H), 5.11 (dt, J = 12.5, 6.3 Hz, 1H), 2.44 (s, 3H), 1.34 (d, J = 6.2 Hz, 6H), 1.16 (d, J = 6.3 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 165.13, 163.01, 147.41, 144.88, 140.72, 132.84, 131.77, 130.48, 130.07, 129.94, 128.88, 128.84, 128.67, 128.56, 128.40, 122.30, 69.47, 69.25, 21.76, 21.70, 21.36; HRMS (ESI) Calcd for C₂₅H₂₈N₃O₆S (M+H)⁺: 498.1693; Found: 498.1696; IR (neat): v = 539, 588, 670, 764, 862, 989, 1072, 1255, 1354, 1391, 1636, 1719, 2369, 3375 cm⁻¹.

Dibutyl 2-(2-(1-tosyl-1H-1,2,3-triazol-4-yl)benzylidene)malonate 5r

5r was synthesized from **4r** according to *General Procedure B*. Yield: 40%; white solid; m. p. 115-117 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 8.04 (d, J = 8.4 Hz, 2H), 7.91 (d, J = 7.5 Hz, 1H), 7.86 (s, 1H), 7.53 – 7.32 (m, 5H), 4.29 (t, J = 6.6 Hz, 2H), 4.14 (t, J = 6.6 Hz, 2H), 2.46 (s, 3H), 1.74 – 1.64 (m, 2H), 1.56 – 1.37 (m, 4H), 1.31 – 1.11 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H), 0.81 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.80, 163.61, 147.45, 144.98, 141.66, 132.91, 132.89, 131.90, 130.53, 130.06, 129.40, 129.01, 128.77, 128.55, 128.50, 122.28, 65.65, 65.42, 30.52, 30.24, 21.82, 19.09, 18.86, 13.67, 13.52; HRMS (ESI) Calcd for C₂₇H₃₂N₃O₆S (M+H)⁺: 526.2006; Found: 526.2008; IR (neat): v = 540, 588, 670, 763, 852, 991, 1119, 1198, 1251 1353, 1392, 1467, 1597, 1634, 1718, 2447, 2961, 3151cm⁻¹.

Dibenzyl 2-(2-(1-tosyl-1H-1,2,3-triazol-4-yl)benzylidene)malonate 5s

5s was synthesized from **4s** according to *General Procedure B*. Yield: 61%; white solid; m. p. 115-117 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 8.00 (d, *J* = 8.4 Hz, 2H), 7.95 (s, 1H), 7.87 (d, *J* = 7.6 Hz, 1H), 7.46 – 7.27 (m, 11H), 7.25 – 7.11 (m, 4H), 5.32 (s, 2H), 5.17 (s, 2H),

2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.35, 163.32, 147.42, 144.98, 142.87, 135.35, 134.78, 132.90, 131.58, 130.52, 130.18, 129.05, 129.00, 128.76, 128.65, 128.58, 128.54, 128.46, 128.34, 128.31, 127.96, 122.25, 67.41, 67.38, 21.84; HRMS (ESI) Calcd for C₃₃H₂₈N₃O₆S (M+H)⁺: 594.1693; Found: 594.1696; IR (neat): v = 540, 587, 856, 987, 1090, 1351, 1389, 1598, 1722, 3380 cm⁻¹.

(E)-Methyl 3-(2-(1-tosyl-1H-1,2,3-triazol-4-yl)phenyl)acrylate 5t

5t was synthesized from **4t** according to *General Procedure B*. Yield: 62%; white solid; m. p. 105-108 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 8.09 – 8.02 (m, 2H), 7.90 (d, *J* = 15.9 Hz, 1H), 7.75 – 7.71 (m, 1H), 7.65 (dd, *J* = 7.2, 1.9 Hz, 1H), 7.49 – 7.41 (m, 4H), 6.42 (d, *J* = 15.8 Hz, 1H), 3.81 (s, 3H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.89, 147.53, 145.36, 142.65, 133.19, 132.87, 130.58, 130.09, 129.79, 129.40, 128.80, 127.36, 122.20, 120.77, 51.85, 21.88; HRMS (ESI) Calcd for C₁₉H₁₈N₃O₄S (M+H)⁺: 384.1013; Found: 384.1014; IR (neat): *v* = 541, 585, 669, 765, 996, 1170, 1196, 1320, 1397, 1632, 1713, 2364, 2928, 3449, 3651, 3678, 3753 cm⁻¹. *Dimethyl 2-(2-(1-((4-methoxyphenyl)sulfonyl)-1H-1,2,3-triazol-4-yl)benzylidene)malonate* **5u**

5u was synthesized from **4a** according to *General Procedure B*. Yield: 32%; white solid; m. p. 132-134 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 8.10 (d, *J* = 9.0 Hz, 2H), 7.92 (s, 1H), 7.89 (d, *J* = 7.7 Hz, 1H), 7.51 – 7.38 (m, 3H), 7.07 (d, *J* = 9.0 Hz, 2H), 3.90 (s, 3H), 3.89 (s, 3H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.24, 165.51, 164.00, 144.95, 142.67, 131.75, 131.35, 130.28, 129.15, 129.07, 128.73, 128.43, 128.25, 126.76, 122.20, 115.20, 55.96, 52.81, 52.55; HRMS (ESI) Calcd for C₂₁H₂₀N₃O₇S (M+H)⁺: 458.1016; Found: 458.1019; IR (neat): *v* = 545, 586, 680, 718, 771, 846, 983, 1117, 1267, 1320, 1355, 1396, 1438, 1496, 1594, 1632, 1721, 2454, 2956, 3150 cm⁻¹.

Dimethyl 2-(2-(1-((4-bromophenyl)sulfonyl)-1H-1,2,3-triazol-4-yl)benzylidene)malonate 5v

5v was synthesized from **4a** according to *General Procedure B*. Yield: 21%; white solid; m. p. 140-143 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 8.03 (d, J = 8.8 Hz, 2H), 7.89 (t, J = 3.6 Hz, 2H), 7.79 (d, J = 8.8 Hz, 2H), 7.52 – 7.38 (m, 3H), 3.89 (s, 3H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.15, 163.99, 145.25, 142.48, 134.82, 133.37, 131.75, 130.34, 130.08, 129.29, 129.18, 128.43, 128.38, 122.40, 52.88, 52.59; HRMS (ESI) Calcd for C₂₀H₁₇BrN₃O₆S (M+H)⁺: 506.0016; Found: 506.0018; IR (neat): v = 418, 472, 538, 575, 608, 644, 742, 766, 818, 941, 980, 1065, 1193, 1261, 1326, 1365, 1398, 1436, 1566, 1631, 1718, 1742, 2570, 2922, 2954, 3015, 3090, 3137 cm⁻¹.

Dimethyl 2-(2-(1-(phenylsulfonyl)-1H-1,2,3-triazol-4-yl)benzylidene)malonate 5w

5w was synthesized from **4a** according to *General Procedure B*. Yield: 74%; white solid; m. p. 114-116 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.25 – 8.14 (m, 3H), 7.94 – 7.87 (m, 2H), 7.76 (t, J = 7.5 Hz, 1H), 7.67 – 7.61 (m, 2H), 7.52 – 7.36 (m, 3H), 3.89 (s, 3H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.17, 163.98, 145.13, 142.57, 136.00, 135.81, 131.79, 130.29, 129.94, 129.18, 129.16, 128.73, 128.53, 128.45, 128.37, 122.41, 52.83, 52.55; HRMS (ESI) Calcd for C₂₀H₁₈N₃O₆S (M+H)⁺: 428.0911; Found: 428.0912; IR (neat): v = 470, 541, 592, 681, 725, 762, 843, 986, 1091, 1195, 1264, 1397, 1439, 1604, 1635, 1735, 2464, 2949, 3132, 3391 cm⁻¹. *Dimethyl 2-(2-(1-(propylsulfonyl)-1H-1,2,3-triazol-4-yl)benzylidene)malonate* **5x**

5x was synthesized from **4a** according to *General Procedure B*. Yield: 60%; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.95 (s, 1H), 7.93 (d, J = 7.7 Hz, 1H), 7.55 – 7.49 (m, 1H), 7.49 – 7.41 (m, 2H), 3.87 (s, 3H), 3.72 (s, 3H), 3.67 (dd, J = 8.8, 6.7 Hz, 2H), 1.93 – 1.81 (m, 2H), 1.10 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.13, 163.94, 145.06, 142.52, 131.92, 130.34, 129.30, 129.29, 128.54, 128.49, 128.44, 122.88, 57.05, 52.84, 52.58, 16.89, 12.50; HRMS (ESI) Calcd for C₁₇H₂₀N₃O₆S (M+H)⁺: 394.1067; Found: 394.1069; IR (neat): v = 535, 611, 733, 771, 855, 1062, 1186, 1355, 1440, 1629, 1742, 2454, 2960, 3426 cm⁻¹. *Dimethyl 2-(2-(1-(butylsulfonyl)-1H-1,2,3-triazol-4-yl)benzylidene)malonate* **5**y

5y was synthesized from **4a** according to *General Procedure B*. Yield: 85%; white solid; mp: 75-77 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.96 (s, 1H), 7.92 (d, *J* = 7.7 Hz, 1H), 7.52 (t, *J* = 7.3 Hz, 1H), 7.49 – 7.38 (m, 2H), 3.86 (s, 3H), 3.72 (s, 3H), 3.71 – 3.65 (m, 2H), 1.82 (dt, *J* = 15.4, 7.7 Hz, 2H), 1.47 (tt, *J* = 10.2, 5.1 Hz, 2H), 0.95 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.12, 163.93, 145.05, 142.52, 131.92, 130.32, 129.27, 128.54, 128.48, 128.44, 122.83, 55.23, 52.82, 52.56, 24.74, 21.12, 13.27; HRMS (ESI) Calcd for C₁₈H₂₂N₃O₆S (M+H)⁺: 408.1224; Found: 408.1226; IR (neat): v = 545, 611, 729, 770, 859, 993, 1067, 1170, 1199, 1222, 1257, 1357, 1383, 1438, 1631, 1727, 2369, 2960, 3153, 3435 cm⁻¹.

Construction of 2-aminoindanones 6

General Procedure C.

In a sealed tube, $Rh_2(Piv)_4$ (0.01 mmol, 5 mol %), H_2O (2 mmol, 10 equiv.) was successively added to a solution of triazole **5** (0.2 mmol, 1 equiv.) in toluene (2 mL). The reaction mixture was stirred at 120 °C for 2 h. After cooled to room temperature, the reaction mixture was poured into water (10 mL) and extracted with EtOAc (20 mL × 3). The combined organic phases were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether/ethyl acetate/acetic acid, 100:20:0.5) on silica gel to afford product **6**.

Rel-dimethyl 2-((1R,2S)-2-(4-methylphenylsulfonamido)-3-oxo-2,3-dihydro-1H-inden-1-yl) malonate **6a**

6a was synthesized from **5a** according to *General Procedure C*. Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.81 (m, 2.54H), 7.69 – 7.59 (m, 3.81H), 7.42 – 7.37 (m, 1.27H), 7.33 (dd, J = 8.1, 4.3 Hz, 2.54H), 5.54 (d, J = 6.4 Hz, 0.27H), 5.30 (d, J = 5.4 Hz, 1H), 4.68 (d, J = 2.5 Hz, 1H), 4.46 (dd, J = 8.0, 3.0 Hz, 0.27H), 4.33 (t, J = 5.5 Hz, 1H), 4.28 – 4.21 (m, 0.54H), 3.95 (dd, J = 5.7, 2.5 Hz, 1H), 3.84 (s, 3H), 3.71 (s, 0.81H), 3.57 (s, 3H), 3.48 (s, 0.81H), 2.43 (s, 3H), 2.42 (s, 0.81H); ¹³C NMR (101 MHz, CDCl₃) δ 199.39, 199.35, 169.41, 169.09, 168.16, 167.80, 149.03, 149.03, 144.07, 143.97, 136.08, 135.83, 135.65, 134.11, 133.81, 129.79, 129.16, 128.66, 127.92, 127.56, 127.52, 127.41, 126.36, 124.13, 123.75, 62.27, 60.76, 52.91, 52.56, 52.45, 51.11, 46.12, 42.52, 21.60; HRMS (ESI) Calcd for C₂₁H₂₂NO₇S (M+H)⁺: 432.1111; Found: 432.1114; IR (neat): v = 539, 616, 854, 992, 1115, 1349, 1602, 1730, 2466, 2924, 3253 cm⁻¹.

Rel-dimethyl 2-((1R,2S)-5-methyl-2-(4-methylphenylsulfonamido)-3-oxo-2,3-dihydro-1H-inden-1vl)malonate **6c**

 $MeO_2C \quad CO_2Me$

6c was synthesized from 5c according to General Procedure C. Yellow oil; ¹H NMR (400 MHz,

CDCl₃) δ 7.84 (d, J = 8.2 Hz, 2H), 7.81 (d, J = 8.2 Hz, 0.36H), 7.54 (d, J = 7.8 Hz, 0.18H), 7.51 – 7.40 (m, 3.36H), 7.35 – 7.30 (m, 2.36H), 5.52 (d, J = 6.1 Hz, 0.18H), 5.29 (d, J = 5.3 Hz, 1H), 4.66 (d, J = 2.5 Hz, 1H), 4.40 (dd, J = 7.8, 2.9 Hz, 0.18H), 4.29 (t, J = 5.4 Hz, 1H), 4.25 – 4.14 (m, 0.36H), 3.98 – 3.87 (m, 1H), 3.83 (s, 3H), 3.71 (s, 0.54H), 3.57 (s, 3H), 3.49 (s, 0.54H), 2.46 – 2.41 (m, 3.54H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.39, 169.42, 168.20, 147.51, 144.00, 138.83, 137.28, 135.94, 133.97, 129.77, 127.53, 126.08, 124.05, 62.45, 52.85, 52.52, 51.20, 45.88, 21.58, 21.06; HRMS (ESI) Calcd for C₂₂H₂₄NO₇S (M+H)⁺: 446.1268; Found: 446.1270; IR (neat): v = 541, 617, 663, 856, 985, 1111, 1337, 1437, 1603, 1729, 2442, 2923, 2956, 3274 cm⁻¹.

Rel-dimethyl 2-((1R,2S)-2-(4-methylphenylsulfonamido)-3-oxo-5-phenyl-2,3-dihydro-1H-inden-1yl)malonate 6d

6d was synthesized from **5d** according to *General Procedure C*. Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.33 (m, 17.4H), 5.57 (d, *J* = 6.3 Hz, 0.45H), 5.36 (d, *J* = 5.2 Hz, 1H), 4.70 (d, *J* = 2.4 Hz, 1H), 4.48 (dd, *J* = 7.9, 3.0 Hz, 0.45H), 4.38 (t, *J* = 5.5 Hz, 1H), 4.29 (d, *J* = 3.1 Hz, 0.9H), 3.99 (d, *J* = 6.2 Hz, 1H), 3.86 (s, 3H), 3.74 (s, 1.35H), 3.60 (s, 3H), 3.51 (s, 1.35H), 2.43 – 2.42 (m, 4.5H); ¹³C NMR (100 MHz, CDCl₃) δ 199.34, 199.15, 169.40, 169.13, 168.20, 167.84, 148.94, 147.80, 144.04, 143.98, 142.36, 141.90, 139.22, 139.20, 136.15, 135.98, 134.96, 134.78, 134.49, 134.47, 129.78, 128.99, 128.12, 128.09, 127.90, 127.54, 127.44, 127.05, 126.71, 122.13, 121.77, 62.58, 61.09, 52.92, 52.74, 52.61, 52.48, 51.13, 51.10, 45.98, 42.34, 21.58; HRMS (ESI) Calcd for C₂₇H₂₆NO₇S (M+H)⁺: 508.1424; Found: 508.1427; IR (neat): *v* = 551, 620, 765, 859, 998, 1105, 1325, 1609, 1711, 2460, 2927, 2958, 3269 cm⁻¹.

Rel-dimethyl 2-((1R,2S)-5-methoxy-2-(4-methylphenylsulfonamido)-3-oxo-2,3-dihydro-1H-inden-1 -yl)malonate **6e**

6e was synthesized from **5e** according to *General Procedure C*. Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.1 Hz, 2.6H), 7.56 (d, J = 8.5 Hz, 0.3H), 7.50 (d, J = 8.6 Hz, 1H), 7.33 (d, J = 8.0 Hz, 2.6H), 7.18 (dd, J = 8.6, 2.5 Hz, 1.3H), 7.07 (dd, J = 7.8, 2.4 Hz, 1.3H), 5.55 (d, J = 6.5 Hz, 0.3H), 5.35 (d, J = 5.5 Hz, 1H), 4.60 (d, J = 2.3 Hz, 1H), 4.38 (dd, J = 7.7, 2.8 Hz, 0.3H), 4.34 (t, J = 5.4 Hz, 1H), 4.24 (t, J = 7.2 Hz, 0.3H), 4.19 (d, J = 2.8 Hz, 0.3H), 3.87 (d, J = 3.3 Hz, 1H), 3.82 (s, 3H), 3.78 (s, 3H), 3.78 (s, 0.9H), 3.70 (s, 0.9H), 3.56 (s, 3H), 3.49 (s, 0.9H), 2.43 (s, 3H), 2.42 (s, 0.9H); ¹³C NMR (100 MHz, CDCl₃) δ 199.35, 199.23, 169.42, 169.15, 168.16, 167.88, 160.37, 160.03, 143.96, 143.89, 142.81, 141.46, 136.26, 136.05, 135.35, 135.14, 129.73, 128.42, 127.51, 127.42, 127.40, 124.98, 124.25, 105.42, 105.37, 62.58, 61.21, 55.54, 52.84, 52.67, 52.53, 52.44, 51.24, 51.11, 45.55, 42.02, 21.57; HRMS (ESI) Calcd for C₂₂H₂₄NO₈S (M+H)⁺: 462.1217; Found: 462.1218; IR (neat): v = 547, 623, 670, 736, 826, 861, 994, 1098, 1158, 1249, 1343, 1442, 1493, 1610, 1726, 2589, 2956, 3280 cm⁻¹.

Rel-dimethyl 2-((1R,2S)-5-chloro-2-(4-methylphenylsulfonamido)-3-oxo-2,3-dihydro-1H-inden-1

-yl)malonate 6f

6f was synthesized from **5f** according to *General Procedure C*. Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.3 Hz, 2.52H), 7.67 – 7.55 (m, 3.78H), 7.35 – 7.33 (m, 2.52H), 5.51 (d, J = 6.3 Hz, 0.26H), 5.30 (d, J = 5.6 Hz, 1H), 4.65 (d, J = 2.5 Hz, 1H), 4.40 (dd, J = 7.9, 2.9 Hz, 0.26H), 4.36 (t, J = 5.6 Hz, 1H), 4.25 – 4.22 (m, 0.52H), 3.90 (dd, J = 5.5, 2.4 Hz, 1H), 3.84 (s, 3H), 3.73 (s, 0.78H), 3.59 (s, 3H), 3.50 (s, 0.78H), 2.43 (s, 3H), 2.43 (s, 0.78H); ¹³C NMR (100 MHz, CDCl₃) δ 198.23, 197.89, 169.30, 168.99, 167.98, 167.66, 148.15, 147.04, 144.07, 135.98, 135.87, 135.65, 135.53, 135.35, 135.08, 129.81, 129.76, 128.96, 127.81, 127.43, 127.35, 123.78, 123.55, 62.50, 61.02, 52.96, 52.79, 52.67, 52.54, 50.89, 50.80, 45.70, 42.12, 21.56; HRMS (ESI) Calcd for C₂₁H₂₁CINO₇S (M+H)⁺: 466.0722; Found: 466.0725; IR (neat): v = 539, 617, 853, 994, 1117, 1338, 1600, 1734, 2465, 3379 cm⁻¹.

Rel-dimethyl 2-((1R,2S)-6-methyl-2-(4-methylphenylsulfonamido)-3-oxo-2,3-dihydro-1H-inden-1 -yl)malonate **6g**

6g was synthesized from **5g** according to *General Procedure C*. Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.3 Hz, 2.26H), 7.56 (d, J = 7.9 Hz, 1.13H), 7.39 – 7.30 (m, 3.39H), 7.20 (d, J = 7.8 Hz, 1.13H), 5.52 (d, J = 6.5 Hz, 0.13H), 5.24 (d, J = 5.2 Hz, 1H), 4.67 (d, J = 2.5 Hz, 1H), 4.40 (d, J = 7.9 Hz, 0.13H), 4.28 (t, J = 5.4 Hz, 1H), 4.24 (d, J = 2.9 Hz, 0.13H), 4.22 – 4.19 (m, 0.13H), 3.90 (d, J = 3.4 Hz, 1H), 3.85 (s, 3H), 3.72 (s, 0.39H), 3.57 (s, 3H), 3.49 (s, 0.39H), 2.46 – 2.38 (m, 6.78H); ¹³C NMR (100 MHz, CDCl₃) δ 198.74, 169.45, 168.17, 150.61, 147.72, 144.03, 135.89, 131.52, 129.92, 129.79, 127.55, 126.61, 124.00, 62.34, 52.88, 52.51, 51.21, 46.04, 22.48, 21.60; HRMS (ESI) Calcd for C₂₂H₂₄NO₇S (M+H)⁺: 446.1268; Found: 446.1271; IR (neat): v = 543, 618, 670, 815, 855, 995, 1115, 1334, 1437, 1606, 1727, 2460, 2955, 3280 cm⁻¹.

Rel-dimethyl 2-((1R,2S)-2-(4-methylphenylsulfonamido)-3-oxo-6-phenyl-2,3-dihydro-1H-inden-1 -yl)malonate **6h**

6h was synthesized from **5h** according to *General Procedure C*. Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.85 (m, 2.48H), 7.81 (s, 0.96H), 7.72 (d, *J* = 8.0 Hz, 0.96H), 7.65 – 7.55 (m, 4H), 7.50 – 7.39 (m, 4H), 7.36 – 7.31 (m, 2.48H), 5.57 (d, *J* = 6.4 Hz, 0.24H), 5.35 (d, *J* = 5.4 Hz, 1H), 4.70 (d, *J* = 2.5 Hz, 1H), 4.50 (dd, *J* = 8.0, 2.9 Hz, 0.24H), 4.39 (t, *J* = 5.5 Hz, 1H), 4.30 (d, *J* = 2.8 Hz, 0.24H), 4.29 – 4.24 (m, 0.24H), 4.00 (dd, *J* = 5.5, 2.4 Hz, 1H), 3.84 (s, 3H), 3.72 (s, 0.72H), 3.57 (s, 3H), 3.51 (s, 0.72H), 2.44 (s, 3H), 2.42 (s, 0.72H); ¹³C NMR (100 MHz, CDCl₃) δ 198.86, 198.66, 169.42, 169.14, 168.18, 167.81, 150.82, 149.77, 149.10, 148.63, 144.02, 143.95, 139.71, 139.58, 136.18, 136.02, 132.90, 132.62, 129.79, 129.03, 128.67, 128.39, 128.33, 127.94, 127.53, 127.48, 127.46, 127.44, 125.95, 124.78, 124.47, 124.11, 62.51, 60.95, 52.91, 52.74, 52.59, 52.48, 51.28, 51.18, 46.21, 42.60, 29.67, 21.59; HRMS (ESI) Calcd for C₂₇H₂₆NO₇S (M+H)⁺: 508.1424; Found: 508.1427; IR (neat): ν = 540, 617, 763, 855, 990, 1113, 1338, 1603, 1729, 2458,

Rel-dimethyl 2-((1R,2S)-6-methoxy-2-(4-methylphenylsulfonamido)-3-oxo-2,3-dihydro-1H-inden-1

6i was synthesized from **5i** according to *General Procedure C*. Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 7.8 Hz, 2.22H), 7.58 (d, J = 8.5 Hz, 1.11H), 7.32 (d, J = 7.7 Hz, 2.22H), 7.15 (s, 0.11H), 7.07 (s, 1H), 6.90 – 6.87 (m, 1.11H), 5.55 (d, J = 5.9 Hz, 0.11H), 5.37 (d, J = 4.8 Hz, 1H), 4.65 (s, 1H), 4.38 (d, J = 7.8 Hz, 0.11H), 4.25 (t, J = 5.2 Hz, 1.11H), 4.19 (t, J = 6.9 Hz, 0.11H), 3.86 – 3.84 (m, 7.33H), 3.72 (s, 0.33H), 3.55 (s, 3H), 3.46 (s, 0.33H), 2.42 (s, 3.33H); ¹³C NMR (100 MHz, CDCl₃) δ 197.22, 169.56, 168.10, 166.27, 153.26, 143.93, 135.97, 129.74, 127.50, 126.91, 125.90, 116.53, 109.89, 62.30, 55.73, 52.86, 52.50, 51.28, 46.20, 21.56; HRMS (ESI) Calcd for C₂₂H₂₄NO₈S (M+H)⁺: 462.1217; Found: 462.1215; IR (neat): v = 543, 618, 664, 730, 814, 855, 997, 1096, 1156, 1252, 1339, 1438, 1490, 1601, 1724, 2582, 2954, 3276 cm⁻¹. *Rel-dimethyl 2-((1R,2S)-6-fluoro-2-(4-methylphenylsulfonamido)-3-oxo-2,3-dihydro-1H-inden-1-yl) malonate* **6j**

6j was synthesized from **5j** according to *General Procedure C*. Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 7.6 Hz, 2.6H), 7.69 – 7.63 (m, 1.3H), 7.40 (d, *J* = 8.4 Hz, 0.3H), 7.32 (d, *J* = 8.0 Hz, 3.6H), 7.13 – 7.04 (m, 1.3H), 5.57 (d, *J* = 6.0 Hz, 0.3H), 5.45 (d, *J* = 5.4 Hz, 1H), 4.65 (s, 1H), 4.41 (d, *J* = 6.3 Hz, 0.3H), 4.32 (t, *J* = 5.6 Hz, 1H), 4.29 – 4.21 (m, 0.6H), 3.90 (d, *J* = 3.6 Hz, 1H), 3.84 (s, 3H), 3.73 (s, 0.9H), 3.58 (s, 3H), 3.46 (s, 0.9H), 2.42 (s, 3.9H); ¹³C NMR (100 MHz, CDCl₃) δ 197.52, 197.28, 169.28, 168.94, 167.92, 167.65 (d, *J* =258.4 Hz), 167.59, 167.27 (d, *J* =258.2 Hz), 153.17 (d, *J* = 10.4 Hz), 152.04 (d, *J* = 10.1 Hz), 144.05, 144.02, 135.99, 135.89, 130.51 (d, *J* = 1.8 Hz), 130.29 (d, *J* = 1.6 Hz), 129.79, 129.75, 127.44, 127.36, 126.53 (d, *J* = 10.6

Hz), 126.10 (d, J = 10.4 Hz), 117.39 (d, J = 23.7 Hz), 116.96 (d, J = 23.8 Hz), 114.81 (d, J = 23.3 Hz), 113.66 (d, J = 23.8 Hz), 62.29, 60.74, 52.99, 52.81, 52.65, 52.48, 50.89, 50.82, 46.02, 42.36, 21.55. HRMS (ESI) Calcd for C₂₁H₂₁FNO₇S (M+H)⁺: 450.1017; Found: 450.1020; IR (neat): v = 552, 627, 669, 817, 844, 998, 1159, 1253, 1326, 1413, 1597, 1740, 2479, 2959, 3232 cm⁻¹. *Rel-dimethyl 2-((1R,2S)-6-chloro-2-(4-methylphenylsulfonamido)-3-oxo-2,3-dihydro-1H-inden-1-yl)malonate* **6**k

6k was synthesized from **5k** according to *General Procedure C*. Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.3 Hz, 2.72H), 7.69 (d, J = 1.4 Hz, 0.36H), 7.65 – 7.55 (m, 2.36H), 7.39 – 7.30 (m, 4.08H), 5.55 (d, J = 6.3 Hz, 0.36H), 5.41 (d, J = 5.7 Hz, 1H), 4.63 (d, J = 2.5 Hz, 1H), 4.40 (dd, J = 8.0, 2.9 Hz, 0.36H), 4.34 (t, J = 5.7 Hz, 1H), 4.24 (d, J = 3.0 Hz, 0.36H), 4.21 (dd, J = 7.9, 6.4 Hz, 0.36H), 3.90 (dd, J = 5.6, 2.3 Hz, 1H), 3.85 (s, 3H), 3.74 (s, 1.08H), 3.60 (s, 3H), 3.49 (s, 1.08H), 2.42 (s, 3H), 2.41 (s, 1.08H); ¹³C NMR (100 MHz, CDCl₃) δ 198.06, 197.73, 169.22, 168.93, 167.92, 167.61, 151.61, 150.56, 144.08, 144.06, 142.72, 142.13, 136.00, 135.95, 132.63, 132.33, 129.91, 129.81, 129.78, 129.46, 127.91, 127.46, 127.38, 126.76, 125.18, 124.84, 62.27, 60.73, 53.01, 52.84, 52.68, 52.55, 50.93, 50.84, 45.93, 42.26, 21.57; HRMS (ESI) Calcd for C₂₁H₂₁ClNO₇S (M+H)⁺: 466.0722; Found: 466.0725; IR (neat): v = 550, 623, 669, 814, 849, 996, 1162, 1258, 1325, 1415, 1599, 1740 2477, 2954, 3230 cm⁻¹.

Rel-dimethyl2-((1R,2S)-5,6-dimethoxy-2-(4-methylphenylsulfonamido)-3-oxo-2,3-dihydro-1Hinden-1-yl)malonate **6m**

6m was synthesized from **5m** according to *General Procedure C*. white solid; m. p. 172-175 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.14 (s, 1H), 7.05 (s, 1H), 5.28 (d, *J* = 5.0 Hz, 1H), 4.66 (d, *J* = 2.3 Hz, 1H), 4.23 (t, *J* = 4.9 Hz, 1H), 3.93 (s, 3H), 3.86 - 3.85 (m, 7H), 3.53 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.56, 169.82, 168.15, 156.34, 150.16, 145.85, 144.02, 135.82, 129.78, 127.56, 126.79, 107.90, 104.23, 62.19, 56.36, 56.04, 52.90, 52.52, 51.47, 46.02, 21.60; HRMS (ESI) Calcd for C₂₃H₂₆NO₉S (M+H)⁺: 492.1323; Found: 492.1326; IR (neat): v = 539, 617, 855, 990, 1113, 1502, 1600, 1723, 2455, 2925, 3281 cm⁻¹.

Rel-diethyl 2-((1R,2S)-2-(4-methylphenylsulfonamido)-3-oxo-2,3-dihydro-1H-inden-1-yl)malonate 60

60 was synthesized from **50** according to *General Procedure C*. Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.3 Hz, 2H), 7.67 – 7.58 (m, 3H), 7.41 – 7.36 (m, 1H), 7.32 (d, J = 8.2 Hz, 2H), 5.34 (d, J = 5.5 Hz, 1H), 4.62 (d, J = 2.5 Hz, 1H), 4.38 – 4.24 (m, 3H), 3.99 (qd, J = 7.1, 4.8 Hz, 2H), 3.95 – 3.92 (m, 1H), 2.42 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H), 0.99 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.53, 169.07, 167.75, 150.28, 144.01, 135.98, 135.93, 133.88, 129.76, 128.59, 127.50, 126.75, 123.98, 62.38, 61.94, 61.59, 51.42, 46.03, 21.57, 14.03, 13.75; HRMS (ESI) Calcd for C₂₃H₂₆NO₇S (M+H)⁺: 460.1424; Found: 460.1426; IR (neat): v = 540, 617, 856, 991, 1115, 1381, 1604, 1727, 2458, 2924, 3365 cm⁻¹.

Rel-dipropyl 2-((1R,2S)-2-(4-methylphenylsulfonamido)-3-oxo-2,3-dihydro-1H-inden-1-yl)

malonate 6p

6p was synthesized from **5p** according to *General Procedure C*. Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.82 (m, 2H), 7.66 – 7.58 (m, 3H), 7.41 – 7.36 (m, 1H), 7.32 (d, *J* = 8.1 Hz, 2H), 5.35 (d, *J* = 5.3 Hz, 1H), 4.66 (d, *J* = 2.4 Hz, 1H), 4.36 (t, *J* = 5.6 Hz, 1H), 4.27 – 4.22 (m, 1H), 4.19 – 4.12 (m, 1H), 3.94 (dd, *J* = 5.7, 2.3 Hz, 1H), 3.88 (t, *J* = 6.7 Hz, 2H), 2.42 (s, 3H), 1.72 (h, *J* = 7.2 Hz, 2H), 1.45 – 1.36 (m, 2H), 0.97 (t, *J* = 7.4 Hz, 3H), 0.74 (t, *J* = 7.4 Hz, 3H); ¹³C NMR

(100 MHz, CDCl₃) δ 199.50, 169.21, 167.86, 150.30, 143.99, 135.99, 135.90, 133.86, 129.76, 128.58, 127.50, 126.71, 123.98, 67.55, 67.20, 62.42, 51.44, 46.05, 21.82, 21.56, 10.36, 10.20; HRMS (ESI) Calcd for C₂₅H₃₀NO₇S (M+H)⁺: 488.1737; Found: 488.1738; IR (neat): v = 538, 617, 852, 993, 1116, 1344, 1386, 1602, 1731, 2468, 2963, 3260 cm⁻¹.

Rel-diisopropyl2-((1R,2S)-2-(4-methylphenylsulfonamido)-3-oxo-2,3-dihydro-1H-inden-1-yl)malonate 6q

6q was synthesized from **5q** according to *General Procedure C*. Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.2 Hz, 2H), 7.69 (d, J = 7.9 Hz, 1H), 7.66 – 7.56 (m, 2H), 7.39 – 7.30(m, 3H), 5.37 (t, J = 5.5 Hz, 1H), 5.16 (p, J = 6.3 Hz, 1H), 4.82 (p, J = 6.2 Hz, 1H), 4.57 (t, J = 1.8 Hz, 1H), 4.37 (t, J = 5.6 Hz, 1H), 3.97 – 3.85 (m, 1H), 2.42 (s, 3H), 1.32 (dd, J = 6.2, 3.3 Hz, 6H), 1.01 (d, J = 6.2 Hz, 3H), 0.87 (d, J = 6.2 Hz, 3H);¹³C NMR (100 MHz, CDCl₃) δ 199.64, 168.75, 167.32, 150.33, 143.99, 135.89, 133.95, 129.77, 128.56, 127.52, 127.40, 127.25, 123.86, 69.65, 69.34, 62.48, 51.61, 45.98, 21.74, 21.57, 21.41, 21.16; HRMS (ESI) Calcd for C₂₅H₃₀NO₇S (M+H)⁺: 488.1737; Found: 488.1740; IR (neat): v = 541, 617, 662, 755, 853, 990, 1102, 1261, 1340, 1379, 1462, 1604, 1726, 2447, 2924, 2982, 3266 cm⁻¹.

Rel-dibutyl 2-((1R,2S)-2-(4-methylphenylsulfonamido)-3-oxo-2,3-dihydro-1H-inden-1-yl)malonate **6r**

6r was synthesized from **5r** according to *General Procedure C*. Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.78 (m, 2H), 7.62 (ddd, *J* = 14.0, 7.6, 1.5 Hz, 3H), 7.41 – 7.29 (m, 3H), 5.40 (dd, *J* = 5.8, 2.7 Hz, 1H), 4.64 (d, *J* = 2.4 Hz, 1H), 4.35 (t, *J* = 5.6 Hz, 1H), 4.28 (dt, *J* = 10.8, 6.7 Hz, 1H), 4.25 – 4.16 (m, 1H), 3.96 – 3.88 (m, 3H), 2.42 (s, 3H), 1.72 – 1.64 (m, 2H), 1.44 – 1.30 (m, 4H), 1.20 – 1.10 (m, 2H), 0.95 (t, *J* = 7.4 Hz, 3H), 0.78 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 199.51, 169.22, 167.85, 150.29, 143.97, 135.98, 135.91, 133.86, 129.75, 128.57, 127.50, 126.73, 123.96, 65.83, 65.40, 62.42, 51.43, 46.06, 30.43, 30.19, 21.59, 19.03, 18.86, 13.65, 13.49; HRMS (ESI) Calcd for C₂₇H₃₄NO₇S (M+H)⁺: 516.2050; Found: 516.2054; IR (neat): v = 540, 617, 855, 993, 1113, 1385, 1462, 1603, 1734, 2449, 2961, 3373 cm⁻¹.

(Z)-Methyl 1-((4-methylphenylsulfonamido)methylene)-1H-indene-2-carboxylate 7t and methyl 1-((tosylimino)methyl)-1H-indene-2-carboxylate 8t

7t and **8t** was synthesized from **5t** according to *General Procedure C*. Purification by flash column chromatography (petroleum ether/ethyl acetate, 10:1) on silica gel provide a mixture of compound **7t** and compound **8t** (**7t** : **8t** = 1 : 0.12). Yellow solid; m. p. 185-188 °C; ¹H NMR (400 MHz, CDCl₃) δ 12.19 (d, *J* = 11.1 Hz, 1H), 9.50 (d, *J* = 10.1 Hz, 0.12H), 7.79 – 7.72 (m, 2.24H), 7.69 – 7.54 (m, 3H), 7.38 (dt, *J* = 7.6, 1.0 Hz, 1H), 7.30 – 7.09 (m, 4.72H), 6.86 (d, *J* = 10.3 Hz, 0.12H), 4.07 (s, 0.12H), 3.79 (s, 3H), 3.09 (s, 0.36H), 2.29 (s, 3H), 2.25 (s, 0.36H); ¹³C NMR (100 MHz, CDCl₃) δ 167.93, 144.19, 139.82, 139.61, 137.34, 136.59, 129.98, 128.23, 127.48, 126.59, 125.95, 125.46, 123.35, 118.10, 115.14, 52.60, 21.46; HRMS (ESI) Calcd for C₁₉H₁₈NO₄S (M+H)⁺: 356.0951; Found: 356.0953; IR (neat): *v* = 544, 584, 667, 751, 797, 873, 1087, 1160 1242, 1288, 1346, 1378, 1436, 1636, 1658, 1699, 2364, 3448, 3677 cm⁻¹.

Purification by flash column chromatography (petroleum ether/ethyl acetate/acetic acid, 100:10:0.5) on silica gel provide a mixture of compound **7t** and compound **8t** (**7t** : **8t** = 1 : 0.35). Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 12.20 (d, *J* = 11.1 Hz, 1H), 9.50 (d, *J* = 10.1 Hz, 0.35H), 7.81 – 7.73 (m, 2.70H), 7.71 – 7.56 (m, 3H), 7.40 (dt, *J* = 7.6, 1.0 Hz, 1H), 7.30 – 7.07 (m, 6.1H), 6.86 (d, *J* = 10.1 Hz, 0.35H), 4.08 (s, 0.35H), 3.81 (s, 3H), 3.10 (s, 1.05H), 2.31 (s, 3H), 2.28 (s, 1.05H); ¹³C NMR (100 MHz, CDCl₃) δ 172.68, 167.96, 144.20, 143.76, 141.17, 139.83, 139.65, 138.55, 137.53, 137.37, 136.62, 130.00, 129.78, 128.56, 128.29, 127.71, 127.51, 126.72, 126.62, 125.98, 125.52, 124.80, 123.37, 118.78, 118.61, 118.14, 115.15, 58.44, 55.53, 52.59, 21.54, 21.49.

Rel-dibenzyl 2-((1R,2S)-2-(4-methylphenylsulfonamido)-3-oxo-2,3-dihydro-1H-inden-1-yl)

malonate 6s

6s was synthesized from **5s** according to *General Procedure C*. Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 7.6 Hz, 1H), 7.52 – 7.46 (d, J = 6.2 Hz, 2H), 7.35 – 7.28 (m, 7H), 7.25 – 7.21 (m, 4H), 7.02 (d, J = 7.2 Hz, 2H), 5.32 – 5.21(m, 3H), 4.94 (s, 2H), 4.77 (d, J = 2.4 Hz, 1H), 4.31 (t, J = 5.5 Hz, 1H), 3.97 (dd, J = 5.5, 2.0 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.21, 168.78, 167.43, 149.88, 143.91, 135.97, 135.81, 134.97, 134.64, 133.78, 129.75, 128.60, 128.52, 128.48, 128.44, 128.40, 128.35, 127.48, 126.60, 123.99, 67.76, 67.42, 62.25, 51.39, 46.15, 21.57; HRMS (ESI) Calcd for C₃₃H₃₀NO₇S (M+H)⁺: 584.1737; Found: 584.1741; IR (neat): v = 554, 1092, 1161, 1261, 1340, 1386, 1458, 1605, 1729, 2925, 3443 cm⁻¹. *Rel-dimethyl 2-((1R,2S)-2-(4-bromophenylsulfonamido)-3-oxo-2,3-dihydro-1H-inden-1-yl*)

malonate **6v**

6v was synthesized from **5v** according to *General Procedure C*. Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.6 Hz, 2.5H), 7.69 – 7.57 (m, 6.25H), 7.41 (t, J = 7.3 Hz, 1.25H), 5.69 (d, J = 7.3 Hz, 0.25H), 5.44 (d, J = 6.4 Hz, 1H), 4.56 (d, J = 2.7 Hz, 1H), 4.50 – 4.42 (m, 1.25H), 4.30 (t, J = 7.6 Hz, 0.25H), 4.16 (d, J = 3.1 Hz, 0.25H), 3.94 (dd, J = 5.9, 2.7 Hz, 1H), 3.81 (s, 3H), 3.66 (s, 0.75H), 3.60 (s, 3H), 3.54 (s, 0.75H); ¹³C NMR (100 MHz, CDCl₃) δ 199.22, 199.12, 169.13, 169.03, 168.09, 167.71, 149.89, 148.93, 138.61, 138.42, 136.13, 135.79, 133.98, 133.81, 132.38, 129.26, 128.99, 128.89, 128.78, 128.17, 128.08, 127.34, 126.13, 124.20, 123.89, 62.17, 60.67, 52.92, 52.78, 52.72, 52.69, 51.44, 51.08, 45.94, 42.45; HRMS (ESI) Calcd for C₂₀H₁₉BrNO₇S (M+H)⁺: 496.0060; Found: 496.0063; IR (neat): v = 421, 545, 610, 737, 825, 1000, 1159, 1267, 1339, 1437, 1576, 1605, 1729, 2479, 2851, 2923, 2953, 3090, 3281 cm⁻¹.

Rel-dimethyl 2-((1R,2S)-3-oxo-2-(phenylsulfonamido)-2,3-dihydro-1H-inden-1-yl)malonate 6w

6w was synthesized from **5w** according to *General Procedure C*. Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (dd, J = 5.5, 3.3 Hz, 2.42H), 7.67 – 7.48 (m, 7.26H), 7.39 (q, J = 7.6 Hz, 1.21H), 5.65 (d, J = 6.7 Hz, 0.21H), 5.51 (d, J = 5.9 Hz, 1H), 4.61 (d, J = 2.6 Hz, 1H), 4.46 (dd, J = 7.9, 3.0 Hz, 0.21H), 4.39 (t, J = 5.8 Hz, 1H), 4.27 (dd, J = 7.7, 6.9 Hz, 0.21H), 4.21 (d, J = 3.1 Hz, 0.21H), 3.94 (dd, J = 5.6, 2.5 Hz, 1H), 3.81 (s, 3H), 3.68 (s, 0.63H), 3.56 (s, 3H), 3.49 (s, 0.63H); ¹³C NMR (100 MHz, CDCl₃) δ 199.31, 199.06, 169.28, 169.03, 168.09, 167.76, 150.03, 148.99, 139.30, 139.25, 136.01, 135.64, 134.07, 133.85, 133.06, 129.14, 129.09, 128.64, 127.47, 127.39, 127.31, 126.34, 126.21, 124.11, 123.77, 62.22, 60.73, 52.86, 52.68, 52.56, 52.47, 51.24, 51.14, 45.99, 42.50; HRMS (ESI) Calcd for C₂₀H₂₀NO₇S (M+H)⁺: 418.0955; Found: 418.0954; IR (neat): v = 544, 584, 688, 726, 757, 859, 980, 1093, 1263, 1337, 1440, 1605, 1729, 2437, 2955, 3280 cm⁻¹. *Rel-dimethyl 2-((1R,2S)-3-oxo-2-(propylsulfonamido)-2,3-dihydro-1H-inden-1-yl)malonate* **6x**

6x was synthesized from **5x** according to *General Procedure C*. Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.6 Hz, 1.12H), 7.67 – 7.60 (m, 1.12H), 7.52 (d, J = 7.8 Hz, 1.12H), 7.43 (t, J = 7.5 Hz, 1.12H), 5.45 (d, J = 8.8 Hz, 0.12H), 5.20 (d, J = 7.8 Hz, 1H), 4.65 (dd, J = 7.8, 5.7 Hz, 1H), 4.55 – 4.48 (m, 0.24H), 4.36 (d, J = 3.4 Hz, 1H), 4.08 (d, J = 3.2 Hz, 0.12H), 3.94 – 3.85 (m, 1H), 3.73 (s, 3H), 3.66 (s, 3H), 3.60 (s, 0.36H), 3.59 (s, 0.36H), 3.32 – 3.18 (m, 2.24H), 2.04 – 1.86 (m, 2.24H), 1.09 (t, J = 7.4 Hz, 3.36H); ¹³C NMR (100 MHz, CDCl₃) δ 200.56, 168.79, 168.22, 150.04, 136.03, 134.13, 128.74, 125.51, 124.19, 62.35, 56.25, 52.90, 52.82, 51.20, 45.91, 17.35, 12.90; HRMS (ESI) Calcd for C₁₇H₂₂NO₇S (M+H)⁺: 384.1111; Found: 384.1114; IR (neat): v = 537, 618, 765, 856, 994, 1141, 1329, 1438, 1605, 1728, 2450, 2960, 3301 cm⁻¹.

Rel-dimethyl 2-((1R,2S)-2-(butylsulfonamido)-3-oxo-2,3-dihydro-1H-inden-1-yl)malonate 6y

6y was synthesized from **5y** according to *General Procedure C*. Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.6 Hz, 1.28H), 7.69 – 7.62 (m, 1.56H), 7.53 (d, *J* = 7.7 Hz, 1H), 7.45 (q, *J* = 7.5, 7.0 Hz, 1.28H), 5.44 (d, *J* = 8.8 Hz, 0.28H), 5.06 (d, *J* = 7.6 Hz, 1H), 4.66 (dd, *J* = 7.6, 5.7 Hz, 1H), 4.56 – 4.48 (m, 0.56H), 4.38 (d, *J* = 3.4 Hz, 1H), 4.09 (d, *J* = 3.2 Hz, 0.28H), 3.96 – 3.88 (m, 1H), 3.74 (s, 3H), 3.67 (s, 3H), 3.61 (s, 0.84H), 3.60 (s, 0.84H), 3.32 – 3.22 (m, 2.56H), 1.97 – 1.83 (m, 2.56H), 1.55 – 1.46 (m, 2.56H), 1.00 – 0.93 (m, 3.84H); ¹³C NMR (100 MHz, CDCl₃) δ 200.43, 168.78, 168.24, 150.03, 136.06, 135.87, 134.14, 129.27, 128.77, 125.53, 124.23, 123.98, 62.40, 60.92, 54.33, 53.98, 53.94, 52.93, 52.84, 52.76, 51.92, 51.21, 46.00, 42.59, 25.57, 21.58, 21.51, 13.59; HRMS (ESI) Calcd for C₁₈H₂₄NO₇S (M+H)⁺: 398.1268; Found: 398.1269; IR (neat): v = 537, 616, 803, 858, 1102, 1142, 1262, 1331, 1438, 1606, 1730, 2368, 2926, 2960, 3297 cm⁻¹.

References

1. R. D. Grigg, R. V. Hoveln, J. M. Schomaker, J. Am. Chem. Soc., 2012, 134, 16131.

2. S. Shin, J. -Y. Son, C. Choi, S. Kim, P. L. Lee, J. Org. Chem. 2016, 81, 11706.

NMR Spectra

S52

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 . f1 (ppm)

S74

S77

S78

