C(sp³)–H Hydroxylation of Fluorenes, Oxindoles and Benzofuranones with Mg(NO₃)₂-HP(O)Ph₂ Oxidation System

Chen Hu,[†] Gang Hong,[‡] Pradip D. Nahide,[‡] Yuchen He,[†] Chen Zhou,[†] Marisa C. Kozlowski,^{*,‡} and Limin Wang^{*,†}

† Key Laboratory for Advanced Materials, Institute of Fine Chemicals and School of Chemistry & Molecular
Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China

^{*} Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States

SUPPORTING INFORMATION

Content

EXPERIMENTAL SECTION	S2
1.1 Optimization of the Reaction Conditions	S3
1.2 Control Experiments	S4
Characterization Data of Products	S7
Reference	S20
Copies of ¹ H NMR and ¹³ C NMR	S21

EXPERIMENTAL SECTION

General Information. ¹H NMR and ¹³C NMR, spectra were recorded at 400 MHz or 500 MHz and 100 MHz or 126 MHz respectively using tetramethylsilane as an internal reference. Chemical shifts (δ) and coupling constants (J) were expressed in parts per million and hertz, respectively. Melting points were uncorrected. High-resolution mass spectrometry (HRMS) was performed on an ESI-TOF spectrometer. Fluorene derivatives were prepared according to the literature procedure.¹ Substituted oxindoles and benzofuranones were synthesized according to the reported procedure.² Chemicals were commercially available and used without purification. Chromatography: Column chromatography was performed with silica gel (200-300 mesh ASTM).

1.1 Optimization of the Reaction Conditions^a

entry oxidant (4 eq) additive (2 eq) solvent *t* (°C) time (h) yield (%) 1 24 DTBP Mg(NO₃)₂·6H₂O 1,4-dioxane 100 87 2 24 DTBP 1,4-dioxane 100 trace / 3 TfOH 1,4-dioxane 24 DTBP 100 trace 4 1,4-dioxane DTBP AlCl₃ 100 24 trace 5 1,4-dioxane DTBP LDA 100 24 trace 6 DTBP NaNO₂ 1,4-dioxane 100 24 trace 7 DTBP KO^tBu 1,4-dioxane 100 24 trace 1,4-dioxane 8 DTBP K₃PO₄ 100 24 23 9 100 24 91 TBHP Mg(NO₃)₂·6H₂O 1,4-dioxane 10 Mg(NO₃)₂·6H₂O 1,4-dioxane 100 24 72 DDQ 24 53 11 TBPB $Mg(NO_3)_2 GH_2O$ 1,4-dioxane 100 12 H_2O_2 $Mg(NO_3)_2 \cdot 6H_2O$ 1,4-dioxane 100 24 43 13 Mg(NO₃)₂·6H₂O 1,4-dioxane 100 24 70 BPO 14 81 TBHP $Mg(NO_3)_2 \cdot 6H_2O$ CH₃CN 100 24 15 $Mg(NO_3)_2 \cdot 6H_2O$ 24 72 TBHP DCE 100 $Mg(NO_3)_2 GH_2O$ 100 24 69 16 TBHP CH_2Cl_2 17 TBHP $Mg(NO_3)_2 \cdot 6H_2O$ CHCl₃ 100 24 84 24 18 TBHP Mg(NO₃)₂·6H₂O DMSO 100 24 19 $Mg(NO_3)_2 GH_2O$ DMF 100 24 69 TBHP 20 TBHP Mg(NO₃)₂·6H₂O 1,4-dioxane 120 24 89 1,4-dioxane 80 24 90 21 TBHP $Mg(NO_3)_2 GH_2O$ 22 TBHP Mg(NO₃)₂·6H₂O 1,4-dioxane 50 24 81 83 23 TBHP Mg(NO₃)₂·6H₂O 1,4-dioxane 80 8 24 TBHP Mg(NO₃)₂·6H₂O 1,4-dioxane 80 12 91 25 TBHP $Mg(NO_3)_2 \cdot 6H_2O$ 1,4-dioxane 80 18 88 5 26 TBHP $Mg(NO_3)_2 \cdot 6H_2O$ 1,4-dioxane 80 63 27 TBHP $Mg(NO_3)_2 \cdot 6H_2O(1)$ 1,4-dioxane 100 12 90 $Mg(NO_3)_2 \cdot 6H_2O(1)$ 28 1,4-dioxane 100 12 92 / 29 NaNO₂ / 1,4-dioxane 100 12 trace Mg(NO₃)₂·6H₂O (1.5) 1,4-dioxane 100 12 30 / 88 / $Mg(NO_3)_2 \cdot 6H_2O(1)$ 1,4-dioxane 100 12 $82,^{b}87,^{c}0^{d}$ 31 32 1,4-dioxane 100 12 $0-72^{e}$ / $Mg(NO_3)_2 \cdot 6H_2O(1)$ / 1,4-dioxane 12 0 33 / 100 34 / $Al(NO_3)_3 \cdot 9H_2O(1)$ 1,4-dioxane 100 12 37 1,4-dioxane 12 35 / Fe(NO₃)₃·9H₂O (1) 100 42

36	/	Cu(NO ₃) ₂ ·6H ₂ O (1)	1,4-dioxane	100	12	66
37	/	Co(NO ₃) ₂ ·6H ₂ O (1)	1,4-dioxane	100	12	trace
38	/	Cr(NO ₃) ₃ ·9H ₂ O (1)	1,4-dioxane	100	12	trace

^{*a*} Reaction condition: **1a** (0.25 mmol), **2a** (0.5 mmol), oxidant (4 equiv), additive (2 equiv), solvent (2 mL), under air; isolated yield; DTBP: Di-*t*-butyl peroxide; TBHP: *tert*-Butyl hydroperoxide; TBPB: *tert*-Butyl peroxybenzoate; BPO: Dibenzoyl peroxide. ^{*b*} **2a** (0.25 mmol). ^{*c*} **2a** (0.75 mmol). ^{*d*} without **2a**. ^{*e*} Cs₂CO₃, KOH, benzoic acid, pivalic acid, BF₃·OEt₂, TsOH, trifluoroethanol, PPh₃, diethyl phosphite were employed respectively instead of **2a**.

1.2 Control Experiments^a

	$Ph \qquad O \\ Ph \\ + Ph \\ P \\ H \\ 2$	$\frac{Mg(NO_3)_2 \cdot 6H_2C}{1,4-dioxane, 100 \circ C}$, 12 h	Ph OH	
Entry	2 (2 eq)	Catalyst (1 eq)	T (°C)	t (h)	yield
10	HPPh ₂ instead of 2	$Mg(NO_3)_2$ ·6H ₂ O	100	12	0
11	Diphenylphosphinic acid	$Mg(NO_3)_2$ ·6H ₂ O	100	12	72
	instead of 2				
12	2	HNO ₃ instead of	100	12	67
		$Mg(NO_3)_2$ ·6H ₂ O			

^{*a*} Reaction condition: **1a** (0.25 mmol), **2a** (0.5 mmol), catalyst (1 equiv), 1,4-dioxane (2 mL), under air; isolated yield;

$$Mg(NO_{3})_{2} \cdot 6H_{2}O + HPO(Ph)_{2} \xrightarrow{1,4-dioxane}{100 \circ C, 7 h} ^{31}P NMR$$

(Note: around 25 ppm is the known HPO(Ph)₂ peak, without substrate **1a**, new peak -20.115 ppm showed up, and according to literature, HPPh₂ is around -39.65 ppm)

(Note: when adding substrate **1a**, similar new peak -20.023 ppm showed up under optimized conditions, and according to literature, HPPh₂ is around -39.65 ppm)

Note: these control experiments may indicate more than one mechanism (radical pathway and oxygen in air) may be involved in this interesting reaction. More efforts are being done to figure this mechanism out.

Characterization Data of Products

General procedure A. 9-phenyl-9H-fluorene **1** (0.25 mmol, 1 equiv), Diarylphosphine Oxides **2a** (0.50 mmol, 2 equiv), $Mg(NO_3)_2 \, 6H_2O$ (64.10 mg, 0.25 mmol, 1 equiv), dry 1,4-dioxane (2 mL) and a stir bar were added to a sealed tube. After being stirred at 100 °C for 12 h, the mixture was evaporated under vacuum. The corresponding product **3** was isolated by silica column chromatography with a hexane/ethyl acetate mixture as eluent.

9-phenyl-9H-fluoren-9-ol (3a)

General procedure A was followed using **1a** (60.58 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (10% EtOAc/hexane) afforded **3a** (59.41 mg) in 92% yield as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 7.5 Hz, 2H), 7.41–7.30 (m, 6H), 7.29–7.20 (m, 5H), 2.82–2.21 (m, 1H). HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₁₉H₁₄NaO 281.0942, found 281.0940. Spectral data match those previously reported.³

9-(p-tolyl)-9H-fluoren-9-ol (3b)

General procedure A was followed using **1b** (64.09 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (10% EtOAc/hexane) afforded **3b** (62.64 mg) in 97% yield as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, *J* = 7.6, 3.2 Hz, 2H), 7.40–7.30 (m, 4H), 7.29–7.20 (m, 4H), 7.07 (dt, *J* = 8.2, 2.9 Hz, 2H), 2.59–2.42 (m, 1H), 2.30 (q, *J* = 3.9, 2.6 Hz, 3H). HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₂₀H₁₆NaO 295.1099, found 295.1096. Spectral data match those previously reported.³

9-(4-(tert-butyl)phenyl)-9H-fluoren-9-ol (3c)

General procedure A was followed using **1c** (74.61 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and $Mg(NO_3)_2$ 6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (10% EtOAc/hexane) afforded **3c** (57.38 mg) in 73% yield as a white solid. ¹H NMR

(400 MHz, CDCl₃) δ 7.66 (dd, J = 7.9, 1.2 Hz, 2H), 7.38–7.33 (m, 4H), 7.32–7.27 (m, 3H), 7.27–7.22 (m, 3H), 2.46 (s, 1H), 1.27 (s, 9H). HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₂₃H₂₂NaO 337.1568, found 337.1570. Spectral data match those previously reported.⁴

9-(2,3-dimethylphenyl)-9H-fluoren-9-ol (3d)

General procedure A was followed using **1d** (67.59 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (10% EtOAc/hexane) afforded **3d** (58.71 mg) in 82% yield as a white solid. R_f =0.20 (20% EtOAc/hexane). M.p. 103-105 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.68–7.61 (m, 2H), 7.38–7.30 (m, 4H), 7.24–7.21 (m, 2H), 7.17 (d, *J* = 1.9 Hz, 1H), 7.12–7.06 (m, 1H), 7.01 (d, *J* = 7.9 Hz, 1H), 2.44 (d, *J* = 3.8 Hz, 1H), 2.19 (d, *J* = 5.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 140.6, 139.6, 136.4, 135.6, 129.5, 129.0, 128.5, 126.5, 124.8, 122.9, 120.1, 83.5, 20.0, 19.5. IR (film) 3529, 2735, 1610, 1325, 1260, 650. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₂₁H₁₈NaO 309.1255, found 309.1253.

9-(3,5-dimethylphenyl)-9H-fluoren-9-ol (3e)

General procedure A was followed using **1e** (67.59 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (10% EtOAc/hexane) afforded **3e** (44.39 mg) in 62% yield as a white solid. R_f =0.20 (20% EtOAc/hexane). M.p. 107-109 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.68–7.63 (m, 2H), 7.39–7.31 (m, 4H), 7.25–7.22 (m, 2H), 7.02–6.97 (d, *J* = 1.6 Hz, 2H), 6.83–6.80 (m, 1H), 2.43 (d, *J* = 2.3 Hz, 1H), 2.23 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 143.0, 139.6, 137.7, 129.1, 129.0, 128.5, 124.8, 123.1, 120.1, 83.6, 21.5. IR (film) 3470, 2837, 1410, 1350, 1180, 767, 744. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₂₁H₁₈NaO 309.1255, found 309.1260.

9-(4-methoxyphenyl)-9H-fluoren-9-ol (**3f**)

General procedure A was followed using **1f** (68.09 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and $Mg(NO_3)_2$ ·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h.

Chromatography (10% EtOAc/hexane) afforded **3f** (69.92 mg) in 97% yield as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.66–7.62 (m, 2H), 7.36–7.29 (m, 5H), 7.28 (d, *J* = 2.1 Hz, 1H), 7.25–7.20 (m, 2H), 6.84–6.71 (m, 2H), 3.73 (s, 3H), 2.53 (s, 1H). HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₂₀H₁₆NaO₂ 311.1048, found 311.1051. Spectral data match those previously reported.⁵

9-(4-chlorophenyl)-9H-fluoren-9-ol (3g)

General procedure A was followed using **1g** (69.19 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (10% EtOAc/hexane) afforded **3g** (61.48 mg) in 84% yield as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.68–7.66 (m, 2H), 7.37 (td, J = 7.2, 1.7 Hz, 2H), 7.32–7.26 (m, 4H), 7.26–7.19 (m, 4H), 2.50 (s, 1H). HRMS (ESI-TOF) m/z [M - H]⁻ Calcd for C₁₉H₁₂ClO 291.0577, found 291.0582. Spectral data match those previously reported.³

9-(4-bromophenyl)-9H-fluoren-9-ol (3h)

General procedure A was followed using **1h** (80.30 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (10% EtOAc/hexane) afforded **3h** (60.70 mg) in 72% yield as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.68–7.62 (m, 2H), 7.39–7.32 (m, 4H), 7.28–7.20 (m, 6H), 2.49 (s, 1H). HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₁₉H₁₃BrNaO 359.0047, found 359.0048. Spectral data match those previously reported.³

9-(4-(trifluoromethyl)phenyl)-9H-fluoren-9-ol (3i)

General procedure A was followed using **1i** (77.58 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (10% EtOAc/hexane) afforded **3i** (35.90 mg) in 44% yield as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dt, *J* = 7.6, 0.9 Hz, 2H), 7.65–7.57 (m, 4H), 7.53 (td, *J* = 7.6, 1.1 Hz, 2H),

7.41–7.30 (m, 4H). HRMS (ESI-TOF) m/z $[M + Na]^+$ Calcd for $C_{20}H_{13}F_3NaO$ 349.0816, found 349.0810. Spectral data match those previously reported.³

9-(3-chlorophenyl)-9H-fluoren-9-ol (3j)

General procedure A was followed using **1j** (69.19 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (10% EtOAc/hexane) afforded **3j** (63.68 mg) in 87% yield as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (dt, J = 7.6, 0.9 Hz, 2H), 7.43 (q, J = 1.4 Hz, 1H), 7.38–7.32 (m, 2H), 7.28–7.22 (m, 3H), 7.22–7.11 (m, 4H), 2.57 (s, 1H). HRMS (ESI-TOF) m/z [M - H]⁻ Calcd for C₁₉H₁₂ClO 291.0577, found 291.0587. Spectral data match those previously reported.³

9-(3-fluorophenyl)-9H-fluoren-9-ol (3k)

General procedure A was followed using **1k** (65.08 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (10% EtOAc/hexane) afforded **3k** (55.91 mg) in 81% yield as a pale yellow liquid. ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.68 (dt, *J* = 7.5, 0.9 Hz, 2H), 7.55–7.44 (m, 4H), 7.42–7.36 (m, 2H), 7.30–7.21 (m, 4H), 2.50 (s, 1H). HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₁₉H₁₃FNaO 299.0848, found 299.0847. Spectral data match those previously reported.⁵

9-(3-(trifluoromethyl)phenyl)-9H-fluoren-9-ol (3l)

General procedure A was followed using **11** (77.58 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (10% EtOAc/hexane) afforded **31** (74.24 mg) in 91% yield as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (t, *J* = 1.8 Hz, 1H), 7.72–7.65 (m, 2H), 7.53–7.46 (m, 1H), 7.42–7.26 (m, 7H), 7.25–7.20 (m, 1H), 2.55 (s, 1H). HRMS (ESI-TOF) m/z [M - H]⁻ Calcd for C₂₀H₁₂F₃O 325.0840, found 325.0847. Spectral data match those previously reported.⁴

9-(4-methoxyphenyl)-2-nitro-9H-fluoren-9-ol (3m)

General procedure A was followed using **1m** (79.34 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (10% EtOAc/hexane) afforded **3m** (73.34 mg) in 88% yield as a yellow solid. R_f =0.30 (40% EtOAc/hexane). M.p. 131-133 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (dt, *J* = 8.4, 1.5 Hz, 1H), 8.13 (d, *J* = 2.0 Hz, 1H), 7.73 (d, *J* = 8.1 Hz, 2H), 7.49–7.33 (m, 3H), 7.31–7.23 (m, 2H), 6.83–6.74 (m, 2H), 3.75 (s, 3H), 2.78 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 151.9, 151.7, 147.9, 145.8, 137.2, 133.6, 130.5, 129.7, 126.5, 125.2, 121.5, 120.34, 113.9, 83.1, 55.3. IR (film) 3490, 2958, 1510, 1329, 1249, 770, 753. HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₂₀H₁₅NNaO₄ 356.0899, found 356.0896.

9-propyl-9H-fluoren-9-ol (3n)

General procedure A was followed using **1n** (52.78 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (10% EtOAc/hexane) afforded **3n** (49.35 mg) in 88% yield as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.54 (m, 2H), 7.50–7.43 (m, 2H), 7.37–7.23 (m, 4H), 2.34–1.99 (m, 3H), 0.88 (m, 2H), 0.74 (t, *J* = 7.1 Hz, 3H). HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₁₆H₁₆NaO 247.1099, found 247.1098. Spectral data match those previously reported.⁶

9-(naphthalen-1-yl)-9H-fluoren-9-ol (30)

General procedure A was followed using **10** (73.10 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (10% EtOAc/hexane) afforded **30** (71.69 mg) in 93% yield as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, *J* = 7.2 Hz, 1H), 7.78 (td, *J* = 15.8, 8.0 Hz, 5H), 7.62 (d, *J* = 8.5 Hz, 1H), 7.36 (td, *J* = 7.5, 1.4 Hz, 2H), 7.16–7.04 (m, 4H), 6.87 (d, *J* = 7.9 Hz, 2H), 2.47 (s, 1H). HRMS (ESI-TOF) m/z [M - H]⁻ Calcd for C₂₃H₁₅O 307.1123, found 307.1129. Spectral data match those previously reported.³

9-(naphthalen-2-yl)-9H-fluoren-9-ol (3p)

General procedure A was followed using **1p** (73.10 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (10% EtOAc/hexane) afforded **3p** (57.82 mg) in 75% yield as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 1.8 Hz, 1H), 7.77 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.67 (dd, *J* = 7.5, 1.8 Hz, 1H), 7.64–7.53 (m, 3H), 7.42–7.31 (m, 2H), 7.31–7.20 (m, 4H), 7.13 (td, *J* = 7.5, 1.1 Hz, 2H), 7.05 (dd, *J* = 8.6, 1.8 Hz, 1H), 2.68 (s, 1H). HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₂₃H₁₆NaO 331.1099, found 331.1096. Spectral data match those previously reported.⁴

General procedure B. 9-phenylfluorene 4 (0.25 mmol, 1 equiv), diarylphosphine oxides 2a (0.50 mmol, 2 equiv), Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv), dry 1,4-dioxane (2 mL) and a stir bar were added to a sealed tube. After being stirred at 100 °C for 12 h, the mixture was evaporated under vacuum. The corresponding product 5 was isolated by silica column chromatography with a hexane/ethyl acetate mixture as eluent.

3-hydroxy-1-methyl-3-phenylindolin-2-one (5a)

General procedure B was followed using **4a** (55.82 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (13% EtOAc/hexane) afforded **5a** (56.83 mg) in 95% yield as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.42–7.25 (m, 7H), 7.09 (td, *J* = 7.6, 0.8 Hz, 1H), 6.91 (d, *J* = 7.8 Hz, 1H), 3.25 (s, 3H). HRMS (EI) calcd for C₁₅H₁₃NO₂ [M]⁺ m/z= 239.0946; found 239.0944. Spectral data match those previously reported.⁷

3-hydroxy-1-methyl-3-(m-tolyl)indolin-2-one (5b)

General procedure B was followed using **4b** (59.33 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (13% EtOAc/hexane) afforded **5b** (51.29 mg) in 81% yield as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.36 (td, J = 7.8, 1.2 Hz, 1H), 7.29 (d, J = 7.4 Hz, 1H), 7.24–7.20 (m, 2H), 7.16 (d,

J = 8.1 Hz, 1H), 7.12–7.06 (m, 2H), 6.91 (d, J = 7.8 Hz, 1H), 3.27 (s, 3H), 3.13 (s, 1H), 2.32 (s, 3H). HRMS (EI) calcd for C₁₆H₁₅NO₂ [M]⁺ m/z= 253.1103; found 253.1112. Spectral data match those previously reported.⁸

3-hydroxy-3-(4-methoxyphenyl)-1-methylindolin-2-one (5c)

General procedure B was followed using **4c** (63.33 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (13% EtOAc/hexane) afforded **5c** (58.57 mg) in 87% yield as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.39–7.29 (m, 4H), 7.10 (t, *J* = 7.2 Hz, 1H), 6.90 (d, *J* = 7.8 Hz, 1H), 6.85 (d, *J* = 8.8 Hz, 2H), 3.78 (s, 3H), 3.24 (s, 3H), 3.12 (s, 1H). HRMS (EI) calcd for C₁₆H₁₅NO₃ [M]⁺ m/z= 269.1052; found 269.1050. Spectral data match those previously reported.⁷

3-hydroxy-1,5-dimethyl-3-phenylindolin-2-one (5d)

General procedure B was followed using **4d** (59.33 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (13% EtOAc/hexane) afforded **5d** (59.53 mg) in 94% yield as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, *J* = 6.9 Hz, 2H), 7.35–7.27 (m, 3H), 7.14 (d, *J* = 7.9 Hz, 1H), 7.10 (s, 1H), 6.80 (d, *J* = 7.9 Hz, 1H), 3.24 (d, *J* = 3.3 Hz, 4H), 2.30 (s, 3H). HRMS (EI) calcd for C₁₆H₁₅NO₂ [M]⁺ m/z= 253.1103; found 253.1096. Spectral data match those previously reported.⁷

3-hydroxy-1-methyl-3-(4-(trifluoromethyl)phenyl)indolin-2-one (5e)

General procedure B was followed using **4e** (72.82 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and $Mg(NO_3)_2$ 6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (13% EtOAc/hexane) afforded **5e** (32.45 mg) in 48% yield as a white solid. ¹H NMR

(500 MHz, CDCl₃) δ 7.56 (d, *J* = 8.4 Hz, 2H), 7.48 (d, *J* = 8.3 Hz, 2H), 7.38 (td, *J* = 7.8, 1.2 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 1H), 7.10 (t, *J* = 7.8 Hz, 1H), 6.93 (d, *J* = 7.8 Hz, 1H), 3.97 (s, 1H), 3.24 (s, 3H). HRMS (EI) calcd for C₁₆H₁₂F₃NO₂ [M]⁺ m/z= 307.0820; found 307.0820. Spectral data match those previously reported.⁷

3-benzyl-3-hydroxy-1-methylindolin-2-one (5f)

General procedure B was followed using **4f** (59.33 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (13% EtOAc/hexane) afforded **5f** (27.86 mg) in 44% yield as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.28–7.22 (m, 1H), 7.18–7.10 (m, 4H), 7.06–7.03 (m, 1H), 6.97–6.92 (m, 2H), 6.65 (d, *J* = 7.8 Hz, 1H), 3.30 (d, *J* = 12.9 Hz, 1H), 3.12 (d, *J* = 12.9 Hz, 1H), 3.01 (s, 3H), 2.80 (s, 1H). HRMS (EI) calcd for C₁₆H₁₅NO₂ [M]⁺ m/z= 253.1103; found 253.1089. Spectral data match those previously reported.⁸

3-hydroxy-1,3-dimethylindolin-2-one (5g)

General procedure B was followed using **4g** (40.30 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (13% EtOAc/hexane) afforded **5g** (25.69 mg) in 58% yield as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, *J* = 8.0 Hz, 1H), 7.33 (td, *J* = 7.8, 1.2 Hz, 1H), 7.11 (t, *J* = 7.5 Hz, 1H), 6.85 (d, *J* = 7.8 Hz, 1H), 3.20 (s, 3H), 2.73 (s, 1H), 1.61 (s, 3H). HRMS (EI) calcd for C₁₀H₁₁NO₂ [M]⁺ m/z= 177.0790; found 177.0780. Spectral data match those previously reported.⁹

N-benzyl-3-hydroxy-3-phenylindolin-2-one (5h)

General procedure B was followed using **4h** (74.84 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (13% EtOAc/hexane) afforded **5h** (59.13 mg) in 75% yield as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, *J* = 6.8 Hz, 2H), 7.38–7.27 (m, 9H), 7.23 (td, *J* = 7.8, 1.2 Hz, 1H), 7.05 (td, *J* = 7.6, 0.8 Hz, 1H), 6.79 (d, *J* = 7.9 Hz, 1H), 5.05 (d, *J* = 15.7 Hz, 1H), 4.84 (d, *J* = 15.7 Hz, 1H),

3.33 (s, 1H). HRMS (EI) calcd for $C_{21}H_{17}NO_2$ [M]⁺ m/z= 315.1259; found 315.1240. Spectral data match those previously reported.⁷

3-hydroxy-3-phenylbenzofuran-2(3H)-one (5i)

General procedure B was followed using **4i** (52.56 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (12% EtOAc/hexane) afforded **5i** (32.34 mg) in 57% yield as a yellow oil. R_f =0.28 (20% EtOAc/hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.45–7.33 (m, 7H), 7.24–7.19 (m, 2H), 3.21 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 176.3, 153.5, 138.9, 131.2, 129.4, 129.2, 129.1, 125.5, 125.4, 125.3, 111.6, 77.3. IR (film) 3448, 2961, 1814, 1619, 1487, 1246, 1072, 1049. HRMS (EI) calcd for C₁₄H₁₀O₃ [M]⁺ m/z= 226.0630; found 226.0630.

3-hydroxy-5-methyl-3-phenylbenzofuran-2(3H)-one (5j)

General procedure B was followed using **4j** (56.06 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (12% EtOAc/hexane) afforded **5j** (40.84 mg) in 68% yield as a yellow oil. R_f =0.25 (20% EtOAc/hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.45–7.33 (m, 5H), 7.22–7.18 (m, 1H), 7.14–7.12 (m, 1H), 7.08 (d, *J* = 8.2 Hz, 1H), 3.23 (s, 1H), 2.33 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 176.7, 151.4, 139.1, 135.1, 131.6, 129.3, 129.1, 129.0, 125.8, 125.5, 111.2, 21.2. IR (film) 3447, 2960, 1619, 1449, 1281, 1164, 1031, 890, 762, 640. HRMS (EI) calcd for C₁₅H₁₂O₃ [M]⁺ m/z= 240.0786; found 240.0784.

3-hydroxy-5,6-dimethyl-3-phenylbenzofuran-2(3H)-one (5k)

General procedure B was followed using **4k** (59.57 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (12% EtOAc/hexane) afforded **5k** (31.79 mg) in 50% yield as a colorless oil. R_f =0.25 (20% EtOAc/hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.40–7.31 (m, 5H), 7.21 (d, *J* = 8.2 Hz, 1H), 6.95 (d, *J* = 8.2 Hz, 1H), 3.19 (s, 1H), 2.23 (s, 3H), 2.02 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 176.6, 151.8, 138.2, 135.9, 134.2, 132.0, 129.0, 128.9, 127.4, 125.3, 108.4, 77.8, 19.3, 14.9. IR (film) 3448, 2923, 1603, 1476, 1053, 973, 650. HRMS (EI) calcd for C₁₆H₁₄O₃ [M]⁺ m/z= 254.0943; found 254.0945.

5-(tert-butyl)-3-hydroxy-3-(4-methoxyphenyl)benzofuran-2(3H)-one (5l)

General procedure B was followed using **41** (74.09 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (13% EtOAc/hexane) afforded **51** (47.64 mg) in 61% yield as a yellow oil. $R_f = 0.35$ (40% EtOAc/hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.44 (dd, J = 8.5, 2.2 Hz, 1H), 7.37 (d, J = 2.1 Hz, 1H), 7.36–7.33 (m, 2H), 7.10 (d, J = 8.5 Hz, 1H), 6.90 (d, J = 8.9 Hz, 2H), 3.80 (s, 3H), 3.17 (s, 1H), 1.31 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 176.9, 160.2, 151.3, 148.7, 131.0, 128.8, 128.1, 127.2, 122.2, 114.4, 110.9, 77.1, 55.5, 35.0, 31.6. IR (film) 3430, 2961, 1813, 1486, 1253, 1071, 825. HRMS (EI) calcd for C₁₉H₂₀O₄ [M]⁺ m/z= 312.1362; found 312.1348.

3-hydroxy-5-isopropyl-3-(4-methoxyphenyl)benzofuran-2(3H)-one (5m)

General procedure B was followed using **4m** (70.58 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (14% EtOAc/hexane) afforded **5m** (40.28 mg) in 54% yield as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.35 (d, *J* = 8.9 Hz, 2H), 7.28 (d, *J* = 1.9 Hz, 1H), 7.21 (d, *J* = 2.0 Hz, 1H), 7.10 (d, *J* = 8.3 Hz, 1H), 6.90 (d, *J* = 8.9 Hz, 2H), 3.80 (s, 3H), 3.13 (s, 1H), 2.94-2.88 (m, 1H), 1.23 (dd, *J* = 6.9, 4.4 Hz, 6H). HRMS (EI) calcd for C₁₈H₁₈O₄ [M]⁺ m/z= 298.1205; found 298.1206. Spectral data match those previously reported.¹⁰

3-(benzo[d][1,3]dioxol-5-yl)-5-(tert-butyl)-3-hydroxybenzofuran-2(3H)-one (5n)

General procedure B was followed using **4n** (77.59 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (12% EtOAc/hexane) afforded **5n** (31.00 mg) in 38% yield as a colorless oil. R_f =0.35 (30% EtOAc/hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.45 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.36 (d, *J* = 1.9 Hz, 1H), 7.11 (d, *J* = 8.5 Hz, 1H), 6.97 (d, *J* = 1.6 Hz, 1H), 6.85–6.76 (m, 2H), 6.04–5.92 (m, 2H), 1.31 (s,

9H). ¹³C NMR (126 MHz, CDCl₃) δ 176.6, 151.2, 148.8, 148.4, 132.8, 128.6, 128.3, 122.1, 119.5, 111.0, 108.5, 106.5, 101.6, 77.2, 35.0, 31.6, 29.8. IR (film) 3466, 2960, 1814, 1487, 1245, 1072, 814. HRMS (EI) calcd for C₁₉H₁₈O₅ [M]⁺ m/z= 326.1154; found 326,1145.

Triphenylmethanol (10)

General procedure B was followed using triphenylmethane (61.08 mg, 0.25 mmol), **2a** (101.09 mg, 0.50 mmol) and Mg(NO₃)₂·6H₂O (64.10 mg, 0.25 mmol, 1 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h. Chromatography (8% EtOAc/hexane) afforded **10** (20.18 mg) in 31% yield as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.25 (m, 15H), 2.77 (s, 1H). HRMS (EI) calcd for C₁₉H₁₆O [M]⁺ m/z= 260.1201; found 260.1181.

6,12-diphenyl-6,12-dihydroindeno[1,2-b]fluorine (12)

This compound was synthesized from 1,4-dibromo-2,5-dimethylbenzene (5 mmol scale) in 4 steps according to a modified known procedure,¹⁰ affording **12** in 30% yield (609.79 mg, pale yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 5.9 Hz, 4H), 7.35–7.24 (m, 10H), 7.23–7.11 (m, 6H), 5.07 (s, 2H). HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₂H₂₂Na 429.1619, found 429.1607. Spectral data match those previously reported.¹¹

Preparation of the 6,12-diphenyl-6,12-dihydroindeno[1,2-b]fluorene-6,12-diol (13). 6,12-diphenyl-6,12-dihydroindeno[1,2-b]fluorene **12** (1 mmol, 1 equiv), Diarylphosphine Oxides **2a** (2 mmol, 2 equiv), $Mg(NO_3)_2$ ·6H₂O (256.40 mg, 1 mmol, 1 equiv), dry 1,4-dioxane (10 mL) and a stir bar were added to a sealed tube. After being stirred at 100 °C for indicate time, the mixture was evaporated under vacuum. The corresponding product **13** was isolated by silica column chromatography with a petroleum ether/ethyl acetate mixture as eluent.

6,12-diphenyl-6,12-dihydroindeno[1,2-b]fluorene-6,12-diol (13)

General procedure C was followed using **12** (438.53 mg, 1 mmol), **2a** (404.39 mg, 2 mmol) and Mg(NO₃)₂·6H₂O (256.40 mg, 1 mmol, 1 equiv) in 1,4-dioxane (10 mL) at 100 °C for 12 h. Chromatography (10% EtOAc/hexane) afforded **13** (206.11 mg) in 47% yield as a white solid. ¹H NMR (400 MHz, DMSO- d_6) δ 7.85–7.75 (m, 2H), 7.67 (s, 2H), 7.37–7.30 (m, 6H), 7.28–7.17 (m, 10H), 6.41 (s, 2H).

HRMS (ESI-TOF) m/z $[M + Na]^+$ Calcd for $C_{32}H_{22}NaO_2$ 461.1517, found 461.1520. Spectral data match those previously reported.¹¹

Preparationofthe6,12-diphenylindeno[1,2-b]fluorine(14).6,12-diphenyl-6,12-dihydroindeno[1,2-b]fluorene-6,12-diol (13) (153.48g, 0.35 mmol) was redissolvedin 40 mL toluene and degassed with Ar for 10 min. SnCl₂ (0.27 g, 1.42 mmol) was added to the mixtureand warmed to 65 °C overnight. The solution was then filtered and the filtrate evaporated to dryness.The corresponding product 14 was isolated by silica column chromatography with a petroleumether/ethyl acetate mixture as eluent.¹²

6,12-diphenylindeno[1,2-b]fluorine (14)

General procedure D was followed using **13** (153.48 mg, 0.35 mmol), $SnCl_2$ (0.27 g, 1.42 mmol) in toluene (40 mL) at 65 °C for 12 h. Chromatography (10% EtOAc/hexane) afforded **14** (101.94 mg) in 77% yield as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.65–7.60 (m, 4H), 7.58–7.52 (m, 4H), 7.49–7.44 (m, 2H), 7.42–7.39 (m, 2H), 7.37 (s, 2H), 7.27 (dd, *J* = 2.8, 1.6 Hz, 2H), 7.10–7.01 (m, 4H). HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₃₂H₂₀Na 427.1463, found 427.1460. Spectral data match those previously reported.¹²

Preparation of the tris(2-methoxy-4-(9-phenyl-9H-fluoren-9-yl)phenyl)amine (16). 2,2',2"-Trimethoxytriphenylamine (**15**) (0.42 g, 1.25 mmol) and 9-phenyl-9-fluorenol (**3a**) (1 g, 3.87 mmol) were redissolved in 40 mL 1,4-dioxane. Trifluoromethanesulfonic acid (CF₃SO₃H, 0.48 g, 3.19 mmol) was added to the mixture and warmed to 80 \degree and kept at this temperature for 4 h. The solution was then filtered and the filtrate evaporated to dryness. The corresponding product **16** was isolated by silica column chromatography with a petroleum ether/ethyl acetate mixture as eluent.¹³

tris(2-methoxy-4-(9-phenyl-9H-fluoren-9-yl)phenyl)amine (16)

General procedure E was followed using **15** (0.42 g, 1.25 mmol), **3a** (1 g, 3.87 mmol), CF₃SO₃H (0.48 g, 3.19 mmol) in 1,4-dioxane (40 mL) at 80 °C for 4 h. Chromatography (20% EtOAc/hexane) afforded **16** (369.36 mg) in 28% yield as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.5 Hz, 6H), 7.37 (d, *J* = 7.6 Hz, 6H), 7.31 (td, *J* = 7.5, 1.2 Hz, 6H), 7.25–7.16 (m, 7H), 7.15 (s, 15H), 6.67–6.52 (m, 8H), 3.24 (s, 9H).Spectral data match those previously reported.¹³

Reference

[1] X. Shen, N. N. Gu, B. Dai, X. W. Ma, J. W. Xie, L. He, Y. Liu and P. Liu, RSC Adv., 2015, 5, 63726.

[2] (a) B. B. Dhotare, K. M. Choudhary and K. S. Nayak, *Synth. Commun.* 2016, 46, 1772; (b) X.-L. Zhu, J.-H. Xu, D.-J. Cheng, L.-J. Zhao, X.-Y. Liu and B. Tan, *Org. Lett.* 2014, 16, 2192; (c) B. M. Trost, J. T. Masters and A. C. Burns, *Angew. Chem.* 2013, 125, 2316; (d) B. M. Trost, J. Xie and J. D. Sieber, *J. Am. Chem. Soc.* 2011, 133, 20611.

[3] M. Itoh, K. Hirano, T. Satoh, Y. Shibata, K. Tanaka and M. Miura, J. Org. Chem. 2013, 78, 1365.

[4] J. Y. Mao, K. Eberle, J. D. Zhang, C. R. Escrich, Z. F. Xi, M. A. Peric às and P. J. Walsh, *Tetrahedron Lett.* 2015, 56, 3604.

[5] Y. Y. Ji, L. L. Lu, Y. C. Shi and L. X. Shao, Org. Biomol. Chem. 2014, 12, 8488.

[6] C. A. Fleckenstein and H. Plenio, Chem. Eur. J. 2007, 13, 2701.

[7] Y. X. Jia, D. Katayev and E. P. Ku ndig, Chem. Commun. 2010, 46, 130.

[8] J. X. Hu, H. Wu, C. Y. Li, W. J. Sheng, Y. X. Jia and J. R. Gao, Chem. Eur. J. 2011, 17, 5234.

[9] B. R. Buckley and D. R. B. Fern ández, Tetrahedron Letters 2013, 54, 843.

[10] B. B. Dhotare, M. Kumar and S. K. Nayak, J. Org. Chem., 2018, 83, 10089.

[11] C. J. Xia and R. C. Advincula, *Macromolecules* 2001, 34, 6922.

[12] D. T. Chase, A. G. Fix, S. J. Kang, B. D. Rose, C. D. Weber, Y. Zhong, L. N. Zakharov, M. C. Lonergan, C. Nuckolls and M. M. Haley, *J. Am. Chem. Soc.* 2012, **134**, 10349.

[13] M. Cekaviciute, J. Simokaitiene, D. Volyniuk, G. Sini and J. V. Grazulevicius, *Dyes and Pigments*, 2017, **140**, 187.

Copies of ¹H NMR and ¹³C NMR

3a

3d

3e

3n

30

5b

5e

S32

4.0

5.0 4.5 fl (ppm)

5.5

3.02--0.98-₌

3.5

3.0 2.5

3.03-

1.5

1.0 0.5 0.0

2. 0

7.5 7.0

6.5 6.0

8.5 8.0

9.5 9.0

-4000 -2000 -0

--2000

-0.5

5h

5j

S37

12

14

