Supporting information

A Simple Approach to Indeno-Coumarins via Visible–Light–Induced

Cyclization of Aryl Alkynoates with Diethyl Bromomalonate

Qingrui Li, Yunnian Yin, Yabo Li, Jianye Zhang, Mengmeng Huang, Jung Keun Kim,* and Yangjie Wu*

College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P.R. China.

wyj@zzu.edu.cn; kim@zzu.edu.cn

Experimental details and spectroscopic data

Contents:

1.	General information	S3
2.	Experimental Procedures	S4
3	Mechanistic investigations	S5
4	Property test	S11
5.	Characterization data	S17
6.	References	\$30
7.	¹ H, ¹³ C and ¹⁹ F NMR spectra	S31
7.	Determination of Structures of 3a , 4a , 5a , 6a , 6p	S65

1. General information

All reactions were performed using quartz tube. Solvents were dried and degassed by standard methods before they were used. Commercial grade reagents were used without further purification except as indicated below. Silica gel was purchased from Qing Dao Hai Yang Chemical Industry Co. The LCD Digital Hotplate Magnetic Stirrer MS-H-Pro⁺ was purchased from Dragon Laboratory Instruments Limited. ¹H NMR spectra was recorded on a Bruker DPX-400 (400 MHz) spectrometer with deuteraterated chloroform as solution, the chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak or 0.0 ppm for tetramethylsilane. ¹³C NMR spectra was recorded at 100 MHz on Bruker DPX-400. The chemical shifts δ are reported relative to residual CHCl₃ ($\delta_{\rm C}$ = 77.00 ppm). ¹⁹F NMR spectra was recorded at 376.5 MHz on Bruker DPX-400, the chemical shifts δ are reported relative to CFCl₃ (δ = 0 ppm) as internal standard. The multiplicity of signals is designated by the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd = doublet of doublet. Coupling constants J are reported in Hertz (Hz). High resolution mass spectra (HR-MS) were obtained on an Agilent LC-MSD-Trap-XCT spectrometer with micromass MS software using electrospray ionisation (ESI). The UV/Vis Absorption spectra was recorded in DMF on a Perkin Elmer Lambda 35 Spectrometer. The Cyclic voltammetry (CV) was recorded in DMF by CHI660A. And the Luminescence Quenching Experiments were recorded using a F-4500 FL Spectrophotometer in DMF. All reactions were carried out with photoreactor (Serial No: D243V12) which was purchased from LUOYANG JINFENG ELECTROMECHANICAL EQUIPMENT CO., LTD.

S3

2. Experimental Procedures

1) General Procedure A for the synthesis of the starting materials

Scheme S1. the synthesis of aryl 3- phenylpropionate

According to the method in the literature,^{1, 2, 3, 4} typical procedure for the synthesis of aryl 3phenylpropionate: Me₃N·HCl (258 mg, 2.7 mmol) was added to a stirred solution of phenylpropiolic acid (204.6 mg, 1.4 mmol), phenol (131.6 mg, 1.4 mmol), Et₃N (414.9 mg, 4.1 mmol), and DMAP (12.2 mg, 0.10 mmol) in CH₃CN (1.0 mL) at 0-5 °C under an nitrogen atmosphere, and the mixture was stirred for 10 min. Me₂NSO₂Cl (387.7 mg, 2.7 mmol) in CH₃CN (1.0 mL) was added to the mixture at 0-5 °C, and the mixture was stirred at that temperature for 3 h. The reaction was quenched with water and extracted with ethyl acetate. The combined organic extracts were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 5:1 to 7:1, V/V) to obtain the phenyl 3-phenylpropiolate as a colorless solid.

2) General Procedure B for the synthesis of the indeno-coumarins

P-tolyl 3-phenylpropiolate (23.6mg, 0.1mmol), diethyl bromomalonate (71.8 mg, 0.3 mmol), *fac*-Ir(ppy)₃ (0.005 mmol) and K₂HPO₄·3H₂O (0.2 mmol) were combined in DMF (1.0 mL) under Ar atmosphere. The mixture was stirred at room temperature under blue LED lamp (3 W). After 48 or 96 hours, the reaction mixture was extracted with ethyl acetate and saturated salt water, organic phase was purified by chromatography on silica gel (elute: ethyl acetate/petroleum ether = 1/5-1/7, v/v) to give the desired products.

3 Mechanistic investigations

3.1 Kinetic Isotope Effect (KIE) Measurement

Scheme S2. Kinetic Isotope Effect (KIE) Measurement

The representative procedure 2) was followed using **1d** (11.1mg, 0.05mmol), **1d-d**₅ (11.4mg, 0.05mmol), diethyl bromomalonate (71.8 mg, 0.3 mmol), *fac*-Ir(ppy)₃ (0.005 mmol) and K₂HPO₄·3H₂O (0.2 mmol) were combined in DMF (1.0 mL) under Ar atmosphere. The mixture was stirred at room temperature under blue LED lamp (3 W). After 48 hours, the reaction mixture was extracted with ethyl acetate and saturated salt water, organic phase was purified by chromatography on silica gel (elute: ethyl acetate/petroleum ether 1/5-1/7, v/v). The deuterium content was determinded by NMR spectroscopy.

18-W-HMM-2.ESP

Figure S1. ¹H NMR spectrum of compound 4d/4d-d₄

Figure S2. ¹³C NMR spectrum of compound 4d/4d-d₄

Figure S3. ¹H NMR spectrum of compound 6d/6d-d₄

Figure S4. ¹³C NMR spectrum of compound 6d/6d-d₄

3.2 Radical scavenger experiments

P-tolyl 3-phenylpropiolate (23.6mg, 0.1mmol), diethyl bromomalonate (71.8 mg, 0.3 mmol), *fac*-Ir(ppy)₃ (0.005 mmol), K₂HPO₄·3H₂O (0.2 mmol) and TEMPO (0.3 mmol, 3 equiv., 46.8 mg) or BHT (0.3 mmol, 3 equiv., 55.7 mg) were combined in DMF (1.0 mL) under Ar atmosphere. The mixture was stirred at room temperature under blue LED lamp (3 W). After 12 hours, two strong molecular ion peaks (m/z = 316.2123 and 379.2480) were detected by ESI-MS (electrospray ionization mass spectrometry) and attributed to [I + H]⁺ (exact mass: 316.2119) and [II + H]⁺ (exact mass 379.2479). In addition, we found another one (m/z = 615.3317) from the reaction with BHT, which could be attributed to $[III + H]^+$ (exact mass: 615.3316).

Figure S5. HRMS spectrum of compound [I+ H]⁺ for exp 1

Figure S6. HRMS spectrum of compound [II+ H]⁺ for exp 2

18-W-HMM-6.ESP

Figure S8. ¹H NMR spectrum of compound 7

Figure S9. ¹³C NMR spectrum of compound 7

4 Property test

4.1 UV/Vis Absorption spectra

The UV/Vis Absorption spectra was recorded in DMF of a 0.1 mM solution in 10 mm path length quartz cuvette on a Perkin Elmer Lambda 35 Spectrometer.

Figure S11. Absorption spectra of $Ir(ppy)_3$ ($\lambda_{max} = 505$ nm), *p*-tolyl 3-phenylpropiolate **1a** ($\lambda_{max} = 322$ nm), diethyl bromomalonate **2** ($\lambda_{max} = 274$ nm), **3a** ($\lambda_{max} = 367$ nm), **4a** ($\lambda_{max} = 357$ nm), **5a** ($\lambda_{max} = 357$ nm), **6a** ($\lambda_{max} = 383$ nm) in DMF (0.1 mM).

Figure S12. Absorption spectras of different catalysts: $Ir(ppy)_3$ ($\lambda_{max} = 505$ nm), [$Ir(ppy)_2bpy$]PF₆ ($\lambda_{max} = 485$ nm), [$Ir(ppy)_2dtbbpy$]PF₆ ($\lambda_{max} = 485$ nm) in DMF (0.1 mM).

4.2 Cyclic Voltammetry

Cyclic voltammetry was measured under Ar balloon protection with conventional threeelectrode system (Reference electrode: Ag/AgCl, working electrode: Glassy carbon, counter electrode: Pt wire, Supporting electrolyte: 0.1 M TBAPF₆ in DMF) at 50 mV/sec of scan rate.

Figure S13. CV of Reaction reagents (1 mM in DMF)

4.3 Luminescence Quenching Experiments

Emission intensities were recorded using a F-4500 FL Spectrophotometer. First, all $Ir(ppy)_3$ solutions were excited at 381 nm and the emission /intensity at 370 nm was observed. In a typical experiment, the emission spectrum of a 5×10^{-5} M solution of $Ir(ppy)_3$ and different concentration of *p*-tolyl 3-phenylpropiolate **1a**, diethyl bromomalonate **2** and **6a** in DMF in 10 mm path length quartz cuvette was collected. Next, the product **5a** solution was excited at 377 nm and the emission intensity at 300 nm was observed. In a typical experiment, the emission spectrum of a 5×10^{-5} M solution of **5a** and different concentration of diethyl bromomalonate **2** in DMF in 10 mm path length quartz cuvette was collected. The product **6a** solution was excited at 309 nm and the emission intensity at 300 nm was observed. In a typical experiment, the emission spectrum of a 5×10^{-5} M solution of **5a** and different concentration of **6a** and different concentration of diethyl bromomalonate **2** in DMF in 10 mm path length quartz cuvette was collected. In a typical experiment, the emission spectrum of a 5×10^{-5} M solution of **5a** and different was collected. The product **6a** solution was excited at 309 nm and the emission intensity at 300 nm was observed. In a typical experiment, the emission spectrum of a 5×10^{-5} M solution of **6a** and different concentration of diethyl bromomalonate **2** in DMF in 10 mm path length quartz cuvette was

collected.

Figure S14. Luminescence quenching experiments of $Ir(ppy)_3$ with 1a

Figure S15. Luminescence quenching experiments of $Ir(ppy)_3$ with 2

Figure S16. Luminescence quenching experiments of Ir(ppy)₃ with 6a

Figure S17. Luminescence quenching experiments of 5a with 2

Figure S18. Luminescence quenching experiments of 6a with 2

4.4 Measurement and calculation of fluorescence quantum yield

The quantum yields of the different samples was calculated using quinine sulfate (QY = 0.542) as the standard (in 0.1 M H₂SO₄).⁷ Emission spectra of solutions were recorded from 310 to 600 nm and 345 nm as the excitation wavelength as reference For calculation of quantum yield, various concentrations of each samples were made, all of which had absorbance less than 0.05 at 345 nm. And absorbance (optical density, OD) of all the samples was recorded at 345 nm.

Figure S19. Absorption spectra of prodct 6 in CH₃CN (0.05 mM).

Figure S20. Fluorescence experiments of 6 in CH₃CN (0.05 mM).

	Fluorescence		
Product 6	Absorbance	area	Φ _F (%)
6a	0.010849	9623.145	1.04
6b	0.010595	9623.145	1.06
6c	0.010812	211114.5	22.79
6d	0.005415	9472.53	2.04
6e	0.004289	7999.405	2.18
6f	0.006968	9396.07	1.57
6g	0.023081	11751.78	0.59
6h	0.022783	8769.94	0.45
6i	0.005449	11889.6	2.55
6j	0.007292	9089.995	1.45
6k	0.020544	15708.41	0.89
61	0.013975	10939.06	0.91
61'	0.009899	10477.38	1.24
6m	0.005199	15448.07	3.47
6n	0.038741	14649.24	0.44
60	0.018062	12934.98	0.84
6р	0.012191	12154.05	1.16
6q	0.031577	136246.5	5.04

Table S1. Fluorescence quantum yield of product 6

4.5 Data processing

We could see the Reversible reduction waves of all the reagents. With these datas in hand we calculated the excited redox potential, Eg by CV and UV absorption spectrometry theory [**S19**].

Figure S21. The $E_{HOMO},\,E_{LUMO}$ and Eg of different reagents

5. Characterization data

 H_3C **C O O 7-methyl-4-phenyl-2H-chromen-2-one (4a):** This compound was synthesized from *p*-tolyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:5) as the eluting solvent to give the product as a white solid (7.3 mg, 31%), mp. 84.7-89.5 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.54-7.51 (m, 3H), 7.46-7.44 (m, 2H), 7.38-7.36 (m, 1H), 7.22 (s, 1H), 7.06-7.03 (m, 1H), 6.32 (s, 1H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 161.13, 155.72, 154.30, 143.23, 135.42, 129.63, 128.86, 128.45, 126.71, 125.39, 117.49, 116.57, 114.06, 21.65. HRMS (ESI) calcd. for C₁₆H₁₃O₂ (M+H)⁺: 237.0910, found: 237.0914.

Ph

diethyl 3-methyl-6-oxoindeno[2,1-*c*]chromene-7,7(*6H*)-dicarboxylate (6a): This compound was synthesized from *p*-tolyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:7) as the eluting solvent to give the product as a white solid (21.0 mg, 54%). mp. 165.2-166.1 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.22-8.19 (m, 4H), 7.95-7.92 (m, 1H), 7.61-7.55 (m, 2H), 7.30 (s, 1H), 7.23 (d, *J* = 8.1Hz, 1H), 4.31-4.14 (m, 4H), 2.51 (s, 3H), 1.22 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 166.20, 157.79, 155.48, 151.57, 143.89, 143.37, 138.51, 130.52, 129.51, 125.81, 125.59, 125.24, 124.63, 124.46, 117.93, 114.64, 67.45, 62.68, 21.81, 13.91. HRMS (ESI) calcd. for C₂₃H₂₁O₆ (M+H)⁺: 393.1333, found: 393.1332.

*t*Bu **O 7-(***tert***-butyl)-4-phenyl-2***H***-chromen-2-one (4b): This compound was synthesized from 4-(***tert***-butyl)phenyl 3-phenylpropiolate following general procedure B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:5) as

the eluting solvent to give the product as a yellow oil (3.2 mg, 12%). ¹H NMR (400 MHz, CDCl₃): δ 7.53-7.51 (m, 3H), 7.47-7.42 (m, 4H), 7.28-7.26 (m, 1H), 6.33 (s, 1H), 1.36 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 161.20, 156.45, 155.54, 154.23, 135.40, 129.60, 128.82, 128.41, 126.52, 121.70, 116.46, 114.22, 35.19, 31.02. HRMS (ESI) calcd. for C₁₉H₁₉O₂ (M+H)⁺: 279.1380, found: 279.1383.

diethyl 2-(7-(*tert*-butyl)-2-oxo-4-phenyl-2H-chromen-3-yl)malonate (5b): This compound was synthesized from 4-(*tert*-butyl)phenyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:7) as the eluting solvent to give the product as a yellow oil (7.0 mg, 16%). ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.47 (m, 3H), 7.43-7.39 (m, 3H), 7.21 (d, *J* = 8.6 Hz, 1H), 7.01 (d, *J* = 8.4 Hz, 1H), 4.57 (s, 1H), 4.01-3.85 (m, 4H), 1.33 (s, 9H), 1.18 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 169.05, 160.93, 156.97, 154.27, 152.79, 132.69, 130.15, 129.40, 127.85, 122.67, 121.96, 117.93, 113.47, 78.64, 62.94, 35.20, 30.95, 13.71. HRMS (ESI) calcd. for C₂₆H₂₉O₆ (M+H)⁺: 437.1959, found: 437.1958.

diethyl 3-(*tert*-butyl)-6-oxoindeno[2,1-*c*]chromene-7,7(*6H*)-dicarboxylate (6b): This compound was synthesized from 4-(*tert*-butyl)phenyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:5) as the eluting solvent to give the product as a white solid (27.4 mg, 63%), mp. 165.3-165.7 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.26 (d, *J* = 8.4 Hz, 1H), 8.22-8.20 (m, 1H), 7.95-7.93 (m, 1H), 7.61-7.55 (m, 2H), 7.51 (d, *J* = 1.8 Hz, 1H), 7.46 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.8 Hz, 1H), 4.29-4.15 (m, 4H), 1.40(s, 9H), 1.21(t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 166.18, 157.87, 156.54, 155.45, 151.44, 143.89, 138.52, 130.50, 129.53, 125.79, 125.50, 124.58, 124.34, 121.96, 114.59, 114.55, 67.42, 62.66, 35.32, 31.04, 13.91. HRMS (ESI) calcd. for C₂₆H₂₇O₆ (M+H)⁺: 435.1802, found: 435.1804.

diethyl 3-methoxy-6-oxoindeno[2,1-c]chromene-7,7(6H)-dicarboxylate (6c): This compound was synthesized from 4-methoxyphenyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:7) as the eluting solvent to give the product as a white solid (30.2 mg, 74%), mp. 178.9-180.4 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.25-8.22 (m, 1H), 8.19-8.17 (m, 1H), 7.94-7.92 (m, 1H), 7.59-7.56 (m, 2H), 7.00-6.98 (m, 2H), 4.31-4.15 (m, 4H), 3.93 (s, 3H), 1.22 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 166.32, 162.84, 157.81, 157.42, 151.68, 144.03, 138.54, 130.50, 129.45, 125.88, 125.73, 124.50, 122.97, 112.78, 110.59, 101.48, 67.41, 62.63, 55.83, 13.89. HRMS (ESI) calcd. for C₂₃H₂₃₁O₇ (M+H)⁺: 409.1282, found: 409.1285.

Ph

O O O diethyl 6-oxoindeno[2,1-*c***]chromene-7,7(***6H***)-dicarboxylate (6d): This compound was synthesized from phenyl 3-phenylpropiolate following general procedure B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:7) as the eluting solvent to give the product as a white solid (30.1 mg, 80%), mp. 133.1-134.9 °C.. ¹H

NMR (400 MHz, CDCl₃): δ 8.36 (dd, J_1 = 8.1 Hz, J_2 = 1.3 Hz, 1H), 8.24-8.22 (m, 1H), 7.96-7.94 (m, 1H), 7.66-7.58 (m, 3H), 7.51-7.49 (m, 1H), 7.45-7.41 (m, 1H), 4.31-4.14 (m, 4H), 1.22 (t, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 166.02, 157.55, 155.30, 151.47, 143.81, 138.34, 132.04, 130.59, 129.56, 126.41, 125.83, 124.81, 124.64, 124.38, 117.81, 117.12, 67.47, 62.71, 13.88. HRMS (ESI) calcd. for C₂₂H₁₉O₆ (M+H)⁺: 379.1176, found: 379.1177.

F \circ O **7-fluoro-4-phenyl-2H-chromen-2-one (4e):** This compound was synthesized from 4-fluorophenyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:5) as the eluting solvent to give the product as a white solid (5.8 mg, 24%), mp. 119.1-120.5 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.55-7.52 (m, 3H), 7.50 (dd, $J_1 = 8.9$ Hz, $J_2 = 6.1$ Hz, 1H), 7.45-7.43 (m, 2H), 7.14 (dd, $J_1 = 8.9$ Hz, $J_2 = 2.5$ Hz, 1H), 7.00-6.95 (m, 1H), 6.34 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 165.78, 161.85 (d, J = 282.4 Hz), 155.32, 135.07, 129.91, 129.03, 128.81 (d, J = 10.3 Hz), 128.38, 115.80 (d, J = 2.9 Hz), 113.98 (d, J = 2.9 Hz), 112.38, 112.16, 104.82 (d, J = 25.7). ¹⁹F NMR (376.5 MHz, CDCl₃): δ -105.35. HRMS (ESI) calcd. for C₁₅H₁₀FO₂ (M+H)⁺: 241.0659, found: 241.0660.

diethyl 3-fluoro-6-oxoindeno[2,1-*c*]chromene-7,7(*6H*)-dicarboxylate (6e): This compound was synthesized from 4-fluorophenyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:7) as the eluting solvent to give the product as an oil (22.0 mg, 56%). ¹H NMR (400 MHz, CDCl₃): δ 8.34 (dd, J_1 = 8.9 Hz, J_2 = 5.9 Hz, 1H), 8.18-8.16 (m, 1H), 7.96-7.94 (m, 1H), 7.62-7.57 (m, 2H), 7.23-7.15 (m, 2H), 4.32-4.15 (m, 4H), 1.23 (t, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 165.93, 165.73, 163.20, 157.13, 156.77, 156.65, 151.09, 143.87, 138.03, 130.21 (d, J = 118.8 Hz), 126.50, 126.39, 125.97, 124.43, 113.89 (d, J = 2.9 Hz), 112.53 (d, J = 22.7 Hz), 105.30 (d, J = 25.7 Hz), 67.50, 62.79, 13.88. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -104.49. HRMS (ESI) calcd. for C₂₂H₁₉FO₆ (M+H)⁺: 397.1082, found: 397.1081.

Cl **7-chloro-4-phenyl-2H-chromen-2-one** (4f): This compound was synthesized from 4-chlorophenyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:5) as the eluting solvent to give the product as a white solid (5.1 mg, 20%), mp. 86.5-88.0 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.55-7.53 (m, 3H), 7.44-7.42 (m, 4H), 7.22-7.20 (m, 1H), 6.37 (d, *J* = 0.98 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 160.12, 155.10, 154.48, 137.91, 134.82, 129.96, 129.04, 128.37, 127.96, 124.76, 117.68, 117.58, 115.03. HRMS (ESI) calcd. for C₁₅H₁₀ClO₂ (M+H)⁺: 257.0364, found: 257.0364.

Ph

Ph

diethyl 3-chloro-6-oxoindeno[2,1-*c*]chromene-7,7(*6H*)-dicarboxylate (6f): This compound was synthesized from 4-chlorophenyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:7) as the eluting solvent to give the product as a white solid (16.5 mg, 40%), mp. 182.9-184.2 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.27 (d, *J* = 8.6 Hz, 1H), 8.18-8.16 (m, 1H), 7.96-7.94 (m, 1H), 7.61-7.59 (m, 2H), 7.51 (d, *J* = 2.1 Hz, 1H), 7.41 (dd, *J*₁ = 8.6 Hz, *J*₂ = 2.0 Hz, 1H), 4.30-4.16 (m, 4H), 1.23 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 165.83, 156.90, 155.66, 150.93, 143.81, 138.06, 137.93, 130.85, 129.66, 126.20, 125.98, 124.95, 124.47, 118.08, 115.72, 67.56, 62.84, 13.90. HRMS (ESI) calcd. for C₂₂H₁₈ClO₆ (M+H)⁺: 413.0786, found: 413.0791.

Br **7-bromo-4-phenyl-2H-chromen-2-one (4g):** This compound was synthesized from 4-bromophenyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:5) as the eluting solvent to give the product as a yellow oil (6.3 mg, 21%). ¹H NMR (400 MHz, CDCl₃): δ 7.59-7.58 (m, 1H), 7.55-7.53 (m, 3H), 7.45-7.42 (m, 2H), 7.36 (d, *J* = 1.0 Hz, 2H), 6.39 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 160.00, 155.15, 154.39, 134.74, 129.95, 129.03, 128.35, 127.81 (d, *J* =

46.2 Hz), 125.93, 120.52, 118.02, 115.24. HRMS (ESI) calcd. for $C_{15}H_{10}BrO_2$ (M+H)⁺: 300.9859, found: 300.9860.

diethyl 3-bromo-6-oxoindeno[2,1-*c*]chromene-7,7(*6H*)-dicarboxylate (6g): This compound was synthesized from 4-bromophenyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:7) as the eluting solvent to give the product as a white solid (17.4 mg, 38%), mp. 172.0-172.8 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.20 (d, *J* = 8.6 Hz 1H), 8.18-8.15 (m, 1H), 7.96-7.94 (m, 1H), 7.68 (d, *J* = 2.0 Hz, 1H), 7.61-7.53 (m, 3H), 4.34-4.14 (m, 4H), 1.22 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 166.63, 165.76, 156.87, 155.52, 143.78, 137.90, 130.84, 129.65, 129.25, 128.06, 127.75, 126.07, 125.96, 125.71, 124.44, 121.03, 119.88, 116.06, 62.82, 62.03, 13.88. HRMS (ESI) calcd. for C₂₂H₂₀BrO₆ (M+H)⁺: 459.0438, found: 459.0440.

 F_3C **O O 4-phenyl-7-(trifluoromethyl)-2H-chromen-2-one** (**4h**): This compound was synthesized from 4-(trifluoromethyl)phenyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:5) as the eluting solvent to give the product as a white solid (16.6 mg, 57%), mp. 70.9-71.7 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.67-7.63 (m, 2H), 7.58-7.55 (m, 3H), 7.49-7.44 (m, 3H), 6.50 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 159.74, 154.64, 153.81, 134.39, 133.69, 133.25, 129.13, 129.01 (d, *J* = 223.0 Hz), 128.36, 121.64, 120.67 (d, *J* = 3.7 Hz), 117.06, 114.72 (d, *J* = 4.4 Hz). ¹⁹F NMR (376.5 MHz, CDCl₃): δ -62.90. HRMS (ESI) calcd. for C₁₆H₁₀F₃O₂ (M+H)⁺: 291.0627, found: 291.0630.

diethyl 6-oxo-3-(trifluoromethyl)indeno[2,1-*c*]chromene-7,7(6H)-dicarboxylate (6h): This compound was synthesized from 4-(trifluoromethyl)phenyl 3-phenylpropiolate following general

procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:7) as the eluting solvent to give the product as a white solid (16.0 mg, 36%), mp. 84.7-85.9 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.47 (d, *J* = 8.3 Hz, 1H), 8.22-8.20 (m, 1H), 7.98-7.96 (m, 1H), 7.75 (s, 1H), 7.68-7.66 (m, 1H), 7.64-7.55 (m, 2H), 4.32-4.15 (m, 4H), 1.23 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 165.56, 156.64, 154.92, 150.42, 143.70, 137.66, 133.53 (d, *J* = 33.8 Hz), 130.39 (d, *J* = 122.5 Hz), 129.36, 128.68, 128.22 (d, *J* = 36.0 Hz), 125.83 (d, *J* = 36.7 Hz), 124.49, 120.86 (d, *J* = 3.7 Hz), 119.75, 1115.14 (d, *J* = 3.7 Hz), 67.63, 62.92, 13.87. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -62.98. HRMS (ESI) calcd. for C₂₃H₁₈F₃O₆ (M+H)⁺: 447.1050, found: 447.1053.

Ph

diethyl 3-cyano-6-oxoindeno[2,1-*c*]chromene-7,7(*6H*)-dicarboxylate (6i): This compound was synthesized from 4-cyanophenyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:7) as the eluting solvent to give the product as an oil (11.3 mg, 28%). ¹H NMR (400 MHz, CDCl₃): δ 8.45 (d, J = 8.2 Hz, 1H), 8.19-8.17 (m, 1H), 7.99-7.96 (m, 1H), 7.78 (d, J = 8.2 Hz, 1H), 7.69 (dd, $J_1 = 8.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.64-7.62 (m, 2H), 4.30-4.17 (m, 4H), 1.23 (t, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 167.02, 165.36, 156.14, 154.69, 150.10, 143.63, 137.31, 131.17, 129.85, 128.99, 127.33, 126.09, 125.83, 124.43, 121.47, 120.72, 117.30, 114.97, 67.73, 63.01, 13.86. HRMS (ESI) calcd. for C₂₃H₁₈NO₆ (M+H)⁺: 404.1129, found: 404.1131.

 $^{\circ}$ **5-chloro-4-phenyl-2H-chromen-2-one (4j):** This compound was synthesized from 2-chlorophenyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:5) as the eluting solvent to give the product as a white solid (3.9 mg, 15%), mp. 86.3-87.6 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.59-7.56 (m, 1H), 7.55-7.53 (m, 2H), 7.52-7.50 (m, 1H), 7.48-7.45 (m, 2H), 7.44-7.41 (m, 1H), 7.24-7.22 (m, 1H), 6.40 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 160.83, 155.69, 154.15, 135.17, 131.95, 129.70, 128.88, 128.45, 127.01, 124.19, 118.96, 117.35, 115.18. HRMS (ESI) calcd. for

C₁₅H₁₀ClO₂ (M+H)⁺: 257.0364, found: 257.0366.

diethyl 1-chloro-6-oxoindeno[2,1-*c*]chromene-7,7(*6H*)-dicarboxylate (6j): This compound was synthesized from 2-chlorophenyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:7) as the eluting solvent to give the product as a yellow oil (6.4 mg, 17%). ¹H NMR (400 MHz, CDCl₃): δ 8.36 (dd, J_1 = 8.0 Hz, J_2 = 1.4 Hz, 1H), 8.24-8.22 (m, 1H), 7.96-7.94 (m, 1H), 7.66-7.56 (m, 3H), 7.52-7.49 (m, 1H), 7.45-7.41 (m, 1H), 4.37 (s, 1H), 4.31-4.14 (m, 4H), 1.22 (t, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 166.03, 157.55, 155.35, 151.45, 143.88, 138.38, 132.03, 130.58, 129.56, 126.49, 125.87, 124.82, 124.64, 124.37, 117.85, 117.17, 67.52, 62.72, 13.89. HRMS (ESI) calcd. for C₂₂H₁₈ClO₆ (M+H)⁺: 413.0786, found: 413.0796.

8-methyl-4-phenyl-2H-chromen-2-one (4k): This compound was synthesized from *m*-tolyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:5) as the eluting solvent to give the product as a yellow oil (3.6 mg, 15%). ¹H NMR (400 MHz, CDCl₃): δ 7.54-7.50 (m, 4H), 7.46-7.43 (m, 2H), 7.41 (d, *J* = 7.5 Hz, 1H), 7.33-7.31 (m, 1H), 7.13 (t, *J* = 7.7 Hz, 1H), 6.37 (s, 1H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 160.93, 156.07, 152.48, 135.56, 133.23, 129.53, 128.78, 128.46, 126.69, 124.77, 123.60, 118.73, 114.89, 15.80. HRMS (ESI) calcd. for C₁₆H₁₃O₂ (M+H)⁺: 237.0910, found: 237.0911.

Ph H₃C

 \sim \circ \circ **6-methyl-4-phenyl-2H-chromen-2-one** (4k'): This compound was synthesized from *m*-tolyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:5) as the eluting solvent to give the product as a yellow oil (2.4 mg, 10%). ¹H NMR (400 MHz, CDCl₃): δ 7.55-7.53

(m, 3H), 7.46-7.44 (m, 2H), 7.37-7.35 (m, 1H), 7.32-7.30 (m, 1H), 7.25 (s, 1H), 6.35 (s, 1H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 161.01, 155.63, 152.31, 135.37, 133.88, 132.93, 129.60, 128.86, 128.43, 126.70, 118.67, 117.06, 115.18, 20.95. HRMS (ESI) calcd. for C₁₆H₁₃O₂ (M+H)⁺: 237.0910, found: 237.0911.

diethyl 4-methyl-6-oxoindeno[2,1-*c*]chromene-7,7(*6H*)-dicarboxylate (6k) and diethyl 2-methyl-6-oxoindeno[2,1-*c*]chromene-7,7(*6H*)-dicarboxylate (6k'): This compound was synthesized from *m*-tolyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:7) as the eluting solvent to give the product as a white solid (15.7 mg, 40%), mp. 85.9-87.7 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.25-8.19 (m, 2.7H), 8.12 (s, 1.1H), 7.95-7.93 (m, 1.9H), 7.62-7.56 (m, 4.0H), 7.50-7.38 (m, 3.5H), 7.32 (t, *J* = 7.7 Hz, 0.8H), 4.31-4.14 (m, 8.1H), 2.55 (s, 2.0H), 2.53 (s, 3.0H), 1.24-1.20 (m, 12.3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.14, 166.09, 157.76, 157.62, 153.69, 153.45, 151.76, 151.36, 143.82, 138.56, 138.47, 134.02, 133.34, 133.03, 130.49, 130.45, 129.49, 127.27, 126.35, 126.20, 125.77, 124.70, 124.60, 123.88, 122.43, 117.48, 116.88, 116.84, 67.42, 67.37, 62.67, 21.20, 16.33, 13.90, 13.88. HRMS (ESI) calcd. for C₂₃H₂₁O₆ (M+H)⁺: 393.1333, found: 393.1334.

diethyl 4-(*tert*-butyl)-6-oxoindeno[2,1-*c*]chromene-7,7(*6H*)-dicarboxylate (6l): This compound was synthesized from 3-(*tert*-butyl)phenyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:7) as the eluting solvent to give the product as an oil (7.8 mg, 18%). ¹H NMR (400 MHz, CDCl₃): δ 8.26-8.22 (m, 2H), 7.95-7.92 (m, 1H), 7.64 (dd, J_1 = 7.8 Hz, J_2 = 1.3 Hz, 1H), 7.59-7.56 (m, 2H), 7.35 (t, J_2

= 7.8 Hz, 1H), 4.32-4.17 (m, 4H), 1.57 (s, 9H), 1.24 (t, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 166.25, 156.86, 154.09, 152.07, 143.83, 138.83, 138.77, 130.93, 130.33, 129.62, 129.49, 125.83, 125.72, 124.70, 123.81, 122.96, 117.58, 67.42, 65.58, 62.65, 35.36, 30.01, 13.88. HRMS (ESI) calcd. for C₂₆H₂₇O₆ (M+H)⁺: 435.1802, found: 435.1800.

diethyl 2-(*tert*-butyl)-6-oxoindeno[2,1-*c*]chromene-7,7(*6H*)-dicarboxylate (6l'): This compound was synthesized from 3-(*tert*-butyl)phenyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:7) as the eluting solvent to give the product as an oil (19.5 mg, 45%). ¹H NMR (400 MHz, CDCl₃): δ 8.34 (d, *J* = 2.2 Hz, 1H), 8.21 (d, *J* = 7.0 Hz, 1H), 7.96-7.94 (m, 1H), 7.69 (dd, *J*₁ = 8.8 Hz, *J*₂ = 2.2 Hz, 1H), 7.65-7.57 (m, 2H), 7.44 (d, *J* = 8.8 Hz, 1H), 4.31-4.11 (m, 4H), 1.45 (s, 9H), 1.21 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 166.09, 157.86, 153.31, 151.70, 147.36, 143.94, 138.53, 130.52, 129.77, 129.57, 126.28, 125.82, 124.61, 120.90, 117.31, 116.58, 67.42, 62.65, 34.79, 31.47, 13.88. HRMS (ESI) calcd. for C₂₆H₂₇O₆ (M+H)⁺: 435.1802, found: 435.1797.

6,8-dimethyl-4-phenyl-2H-chromen-2-one (4m): This compound was synthesized from 3,5-dimethylphenyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:5) as the eluting solvent to give the product as a yellow oil (7.3 mg, 29%). ¹H NMR (400 MHz, CDCl₃): δ 7.54-7.51 (m, 3H), 7.45-7.42 (m, 2H), 7.23 (s, 1H), 7.07 (s, 1H), 6.34 (s, 1H), 2.47 (s, 3H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 161.15, 156.03, 150.65, 135.74, 133.19, 129.45, 128.77, 126.33, 124.45, 118.48, 114.90, 20.87, 15.71. HRMS (ESI) calcd. for C₁₇H₁₅O₂ (M+H)⁺: 251.1067, found: 251.1068.

diethyl 2,4-dimethyl-6-oxoindeno[2,1-*c*]chromene-7,7(*6H*)-dicarboxylate (6m): This compound was synthesized from 3,5-dimethylphenyl 3-phenylpropiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:7) as the eluting solvent to give the product as a white solid (9.3 mg, 23%), mp. 198.3-201.1 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.25-8.23 (m, 1H), 7.97-7.92 (m, 2H), 7.62-7.55 (m, 2H), 7.31 (s, 1H), 4.28-4.16 (m, 4H), 2.51 (s, 3H), 2.49 (s, 3H), 1.22 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 166.20, 159.93, 152.81, 149.90, 143.86, 143.17, 134.49, 133.40, 130.37, 129.43, 126.87, 125.75, 124.76, 122.20, 116.66, 114.67, 66.84, 62.63, 21.14, 16.25, 13.90. HRMS (ESI) calcd. for C₂₄H₂₃O₆ (M+H)⁺: 407.1489, found: 407.1492.

diethyl 9-methyl-6-oxoindeno[2,1-*c*]chromene-7,7(*6H*)-dicarboxylate (6n): This compound was synthesized from phenyl 3-(*p*-tolyl)propiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:7) as the eluting solvent to give the product as a white solid (24.3 mg, 62%), mp. 132.7-135.2 °C.. ¹H NMR (400 MHz, CDCl₃): δ 8.33 (dd, J_1 = 8.0 Hz, J_2 = 1.2 Hz, 1H), 8.09 (d, J = 8.0 Hz, 1H), 7.75 (s, 1H), 7.65-7.60 (m, 1H), 7.50-7.48 (m, 1H), 7.43-7.38 (m, 2H), 4.32-4.13 (m, 4H), 2.50 (s, 3H), 1.22 (t, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 166.23, 157.63, 155.35, 151.56, 144.14, 141.47, 135.63, 131.93, 130.40, 126.50, 125.73, 124.87, 124.32, 124.28, 117.79, 117.22, 67.24, 62.67, 21.92, 13.89. HRMS (ESI) calcd. for C₂₃H₂₁O₆ (M+H)⁺: 393.1333, found: 393.1336.

diethyl 9-fluoro-6-oxoindeno[2,1-*c*]chromene-7,7(*6H*)-dicarboxylate (6o): This compound was synthesized from phenyl 3-(4-fluorophenyl)propiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:7) as the eluting solvent to give the product as a white solid (20.0 mg, 51%), mp. 153.4-154.5 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.27 (dd, J_1 = 8.1 Hz, J_2 = 1.2 Hz, 1H), 8.19 (dd, J_1 = 8.7 Hz, J_2 = 4.8 Hz, 1H), 7.67-7.62 (m, 2H), 7.51-7.48 (m, 1H), 7.44-7.40 (m, 1H), 7.32-7.27 (m, 1H), 4.33-4.17 (m, 4H), 1.25 (t, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 165.57, 165.25, 162.73, 157.20, 155.36, 150.71, 146.43 (d, J = 9.5 Hz), 134.39 (d, J = 2.9 Hz), 132.33, 126.18 (d, J = 2.9 Hz), 125.96 (d, J = 8.8 Hz), 124.59, 124.44, 117.37 (d, J = 109.31 Hz), 117.04, 114.01 (d, J = 24.2 Hz), 67.51, 62.98, 13.88. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -107.23. HRMS (ESI) calcd. for C₂₂H₁₈FO₆ (M+H)*: 397.1082, found: 397.1084.

 $^{\circ}$ ^O **4-(4-chlorophenyl)**-*2H*-chromen-2-one (4p)^{6, 7}: This compound was synthesized from phenyl 3-(4-chlorophenyl)propiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:5) as the eluting solvent to give the product as a white solid (6.8 mg, 27%), mp. 180.3-181.9 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.59-7.55 (m, 1H), 7.54-7.51 (m, 2H), 7.45-7.40 (m, 4H), 7.25-7.23 (m, 1H), 6.37 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 160.49, 154.45, 154.20, 136.01, 133.58, 132.17, 129.81, 129.25, 126.69, 124.31, 118.71, 117.49, 115.42. HRMS (ESI) calcd. for C₁₅H₁₀ClO₂ (M+H)⁺: 257.0364, found: 257.0365.

diethyl 9-chloro-6-oxoindeno[2,1-*c*]chromene-7,7(*6H*)-dicarboxylate (6p): This compound was synthesized from phenyl 3-(4-chlorophenyl)propiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:7) as the eluting solvent to give the product as an oil (19.8 mg, 48%). ¹H NMR (400 MHz, CDCl₃): δ 8.26 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 8.13 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 1.8 Hz, 1H), 7.66-7.62 (m, 1H), 7.57 (dd, $J_1 = 8.3$ Hz, $J_2 = 2.1$ Hz, 1H), 7.51-7.48 (m, 1H), 7.44-7.40 (m, 1H), 4.32-4.18 (m, 4H), 1.23 (t, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 165.49, 157.23, 155.33, 150.55, 145.33, 136.96, 136.82, 132.27, 129.92, 126.47, 126.43, 125.36, 124.60, 124.48, 117.90, 116.77, 67.47, 63.02, 13.89. HRMS (ESI) calcd. for C₂₂H₁₈ClO₆ (M+H)⁺: 413.0786, found: 413.0787.

diethyl 3-(*tert*-butyl)-9-methoxy-6-oxoindeno[2,1-*c*]chromene-7,7(*6H*)-dicarboxylate (6q): This compound was synthesized from phenyl 4-(*tert*-butyl)phenyl 3-(4-methoxyphenyl)propiolate following general procedure **B** and purified by flash silica gel column chromatography using ethyl acetate/petroleum ether (1:7) as the eluting solvent to give the product as an oil (17.6 mg, 38%). ¹H NMR (400 MHz, CDCl₃): δ 8.20 (d, *J* = 8.4 Hz, 1H), 8.09 (d, *J* = 8.7 Hz, 1H), 7.48 (dd, *J*₁ = 9.5 Hz, *J*₂ = 2.5 Hz, 2H), 7.44 (dd, *J*₁ = 6.7 Hz, *J*₂ = 1.7 Hz, 1H), 7.09 (dd, *J*₁ = 8.6 Hz, *J*₂ = 2.5 Hz, 1H), 4.32-4.13 (m, 4H), 3.92 (s, 3H), 1.39 (s, 9H), 1.22 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 166.33, 161.80, 157.82, 156.42, 155.51, 151.52, 146.38, 130.85, 125.46, 124.31, 123.66, 121.78, 115.90, 114.54, 111.16, 67.24, 62.63, 55.79, 35.29, 31.04, 13.91. HRMS (ESI) calcd. for C₂₇H₂₉O₇ (M+H)⁺: 465.1908, found: 465.1910.

6. References

- 1 K. Park, J. M, You, S. Jeon and S. Lee, *Eur. J. Org. Chem.*, 2013, **2013**, 1973-1978.
- J. Lim, J. Choi, H. S. Kim, I. S. Kim, K. C. Nam, J. Kim and S. Lee, *J. Org. Chem.*, 2016, **81**, 303-308.
- 3 C. E. Song, D. Jung, S. Y. Choung, E. J. Roh and S. Lee, *Angew. Chem. Int. Ed.*, 2004, **43**, 6183-6185.
- 4 Y. Zhou, M. X. Zhou, M. Chen, J. H. Su, J. F. Du and Q. L. Song, *RSC Adv.*, 2015, **5**, 103977-103981.
- 5 A. Dikova, N. P. Cheval, A. Blanc, J. M. Weibel and P. Palea, *Adv. Synth. Catal.*, 2015, **357**, 4093-4100.
- 6 M. L. N. Rao, V. Venkatesh and D. N. Jadhav, *Eur. J. Org. Chem.*, 2010, 3945-3955.
- 7 J. M. Pérez, R. Cano, G. P. McGlacken and D. J. Ramón, *RSC Adv.*, 2016, **6**, 36932-36941.
- 8 F. X. Zhu and X. F. Wu, Org. Lett., 2018, 20, 3422-3425.

7. ¹H, ¹³C and ¹⁹F NMR spectra

° Ë^r Å_2140001r

° Ë' Å_2141001r Ph H₃C O 4a 77.37 -77.06 -76.74 128.86 49 -21.65 -143.23 -155.72 -154.30 135.42 161.13 128 120 112 104 96 88 Chemical Shift (ppm) 192 184 176 168 80 72 160 152 144 136 40 32 24 'nŢr 64 56 48 16 8

Figure S23. ¹³C NMR spectrum of compound 4a

° Ë´ Å_2150001r

° Ë′ Å_2151001r

Figure S25. ¹³C NMR spectrum of compound 6a

19-w-hmm-7.15_6570001r

Figure S27. ¹³C NMR spectrum of compound 4b

°Ë′Å_071001r

Figure S29. ¹³C NMR spectrum of compound 5b

°Ë′Å_061001r

Figure S33. ¹³C NMR spectrum of compound 6c

Figure S35. ¹³C NMR spectrum of compound 4d

Figure S37. ¹³C NMR spectrum of compound 6d

° Ë' Å_1391000fid

Figure S39. ¹³C NMR spectrum of compound 4e

° Ë' Å_1392001r

Figure S40. ¹⁹F NMR spectrum of compound 4e

Figure S41. ¹H NMR spectrum of compound 6e

Figure S42. ¹³C NMR spectrum of compound 6e

°Ë′Å_4541001r

Figure S43. ¹⁹F NMR spectrum of compound 6e

Figure S45. ¹³C NMR spectrum of compound 4f

189-WA-HAMMA-14.ESSP

Figure S47. ¹³C NMR spectrum of compound 6f

% Ë: A_2520001R ESP

° Ë′ Å_2521001r

Figure S51. ¹³C NMR spectrum of compound 6g

Figure S53. ¹³C NMR spectrum of compound 4h

° Ë' Å_1512001r

18-W-HMM-2.ESP

°Ë′Å_2161001r

°E[∵]A_24400004r

Figure S57. ¹⁹F NMR spectrum of compound 6h

Figure S58. ¹H NMR spectrum of compound 6i

Figure S59. ¹³C NMR spectrum of compound 6i

Figure S60. ¹H NMR spectrum of compound 4j

Figure S61. ¹³C NMR spectrum of compound 4j

Figure S62. ¹H NMR spectrum of compound 6j

Figure S63. ¹³C NMR spectrum of compound 6j

°Ë'Å_11431001r

148-00011177777-140390_11144400001r

148-Wolthminin-140:390_111444140804r

Figure S67. ¹³C NMR spectrum of compound 4k'

Figure S68. ¹H NMR spectrum of compound 6k and 6k'

Figure S69. ¹³C NMR spectrum of compound 6k and 6k'

° Ë' Å_4550001r

Figure S71. ¹³C NMR spectrum of compound 6I

18-w-hmm-4.3_4561001r

19-w-hmm-0715_6550001r

19-w-hmm-7.esp

Figure S75. ¹³C NMR spectrum of compound 4m

Figure S77. ¹³C NMR spectrum of compound 6m

°Ë[:] A_7220001/RESP

Figure S79. ¹³C NMR spectrum of compound 6n

18:W-HMM-6.ESP

°Ë′Å_6911001r

° Ë′ Å_6991001r

Figure S88. ¹³C NMR spectrum of compound 6q

7. Determination of Structures of 3a, 4a, 5a, 6a, 6p

The adducts **3a**, **4a**, **5a**, **6a**, **6p** were readily crystallized from mixtures of ethyl EtOH and dichloromethane.

7.1 3a (CCDC 1858970)

The structure of **3a** was determined by the X-ray diffraction. Recrystallized from EtOH/dichloromethane. Further information can be found in the CIF file. This crystal was deposited in the Cambridge Crystallographic Data Centre and assigned as CCDC **1858970**.

Table 5 Crystal data and structure refinement for 3a.

Identification code	201711251
Empirical formula	$C_{16}H_{11}BrO_2$
Formula weight	315.16
Temperature/K	293(2)
Crystal system	Monoclinic
Space group	P2 ₁ /c
a/Å	10.0036(11)
b/Å	15.5670(13)
c/Å	8.7599(11)
α/°	90
β/°	100.953(11)
γ/°	90

Volume/ų	1339.3(3)	
Z	4	
$\rho_{calc}g/cm^3$	1.563	
µ/mm ⁻¹	4.138	
F(000)	632.0	
Crystal size/mm ³	$0.17 \times 0.15 \times 0.13$	
Radiation	CuKα (λ = 1.54184)	
20 range for data collection/° 9.004 to 134.176		
Index ranges	$-11 \le h \le 11, -17 \le k \le 18, -10 \le l \le 7$	
Reflections collected	5202	
Independent reflections	2381 [R _{int} = 0.0295, R _{sigma} = 0.0413]	
Data/restraints/parameters	2381/0/173	
Goodness-of-fit on F ²	1.025	
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0403$, $wR_2 = 0.0957$	
Final R indexes [all data]	$R_1 = 0.0661$, $wR_2 = 0.1132$	

Largest diff. peak/hole / e Å⁻³ 0.35/-0.36

7.2 4a (CCDC 1858972)

The structure of **4a** was determined by the X-ray diffraction. Recrystallized from EtOH/dichloromethane. Further information can be found in the CIF file. This crystal was deposited in the Cambridge Crystallographic Data Centre and assigned as CCDC **1858972**.

Table 1 Crystal data and structure refinement for 4a.

Identification code	201803171	
Empirical formula	C ₁₆ H ₁₂ O ₂	
Formula weight	236.26	
Temperature/K	293(2)	
Crystal system	Monoclinic	
Space group	C2/c	
a/Å	25.676(2)	
b/Å	4.1792(4)	
c/Å	24.335(3)	
α/°	90	
β/°	112.380(14)	
γ/°	90	
Volume/ų	2414.6(5)	
Z	8	
$\rho_{calc}g/cm^3$	1.300	
µ/mm ⁻¹	0.085	
F(000)	992.0	
Crystal size/mm ³	$0.2 \times 0.14 \times 0.13$	
Radiation	ΜοΚα (λ = 0.71073)	
20 range for data collection/° 6.732 to 52.744		
Index ranges	$-32 \le h \le 32, -4 \le k \le 5, -30 \le l \le 20$	
Reflections collected	5181	
Independent reflections	2469 [R _{int} = 0.0439, R _{sigma} = 0.0596]	
Data/restraints/parameters	2469/0/164	
Goodness-of-fit on F ²	1.050	
Final R indexes [I>=2σ (I)]	R ₁ = 0.0687, wR ₂ = 0.1635	
Final R indexes [all data]	$R_1 = 0.1134$, $wR_2 = 0.2052$	
Largest diff. peak/hole / e Å ⁻³	0.19/-0.25	

7.3 5a (CCDC 1858971)

The structure of **5a** was determined by the X-ray diffraction. Recrystallized from EtOH/dichloromethane. Further information can be found in the CIF file. This crystal was deposited in the Cambridge Crystallographic Data Centre and assigned as CCDC **1858971**.

Table 2 Crystal data and structure refinement for 5a.

Identification code	201803161
Empirical formula	$C_{23}H_{22}O_6$
Formula weight	394.40
Temperature/K	293(2)
Crystal system	Monoclinic
Space group	P2 ₁ /c
a/Å	14.7414(4)
b/Å	8.7416(3)
c/Å	16.4090(5)
α/°	90
β/°	104.242(3)
γ/°	90
Volume/ų	2049.53(11)
Z	4
$\rho_{calc}g/cm^3$	1.278
µ/mm⁻¹	0.762
F(000)	832.0
Crystal size/mm ³	$0.23 \times 0.18 \times 0.15$
Radiation	CuKα (λ = 1.54184)
20 range for data collection/	° 11.126 to 141.79
Index ranges	$-17 \le h \le 12, -10 \le k \le 10, -19 \le l \le 20$

Reflections collected	8150
Independent reflections	3871 [R_{int} = 0.0250, R_{sigma} = 0.0307]
Data/restraints/parameters	3871/0/266
Goodness-of-fit on F ²	1.051
Final R indexes [I>=2σ (I)]	R ₁ = 0.0626, wR ₂ = 0.1809
Final R indexes [all data]	$R_1 = 0.0794$, $wR_2 = 0.2038$
Largest diff. peak/hole / e Å ⁻³	0.43/-0.25

7.4 6a (CCDC **1858969**)

The structure of **6a** was determined by the X-ray diffraction. Recrystallized from EtOH/dichloromethane. Further information can be found in the CIF file. This crystal was deposited in the Cambridge Crystallographic Data Centre and assigned as CCDC **1858969**.

Table 3 Crystal data a	nd structure	refinement for	6a.
------------------------	--------------	----------------	-----

Identification code	201709178
Empirical formula	$C_{23}H_{20}O_{6}$
Formula weight	392.39
Temperature/K	293(2)
Crystal system	Triclinic
Space group	P-1
a/Å	7.7957(7)
b/Å	10.1827(6)
c/Å	12.7574(8)

α/°	79.033(5)	
β/°	76.634(7)	
γ/°	77.369(6)	
Volume/ų	950.95(13)	
Z	2	
$\rho_{calc}g/cm^3$	1.370	
µ/mm ⁻¹	0.099	
F(000)	412.0	
Crystal size/mm ³	$0.18 \times 0.16 \times 0.14$	
Radiation	ΜοΚα (λ = 0.71073)	
20 range for data	6.638 to 52.744	
collection/°		
Index ranges	$-9 \le h \le 9, -12 \le k \le 12, -13 \le l \le 15$	
Reflections collected	7725	
Independent reflections	3885 [R_{int} = 0.0289, R_{sigma} = 0.0508]	
Data/restraints/parameters	3885/0/265	
Goodness-of-fit on F ²	1.026	
Final R indexes [I>=2σ (I)]	$R_1 = 0.0530$, $wR_2 = 0.1189$	
Final R indexes [all data]	$R_1 = 0.0829$, $wR_2 = 0.1395$	
Largest diff. peak/hole / e Å ⁻³ 0.21/-0.21		

7.5 6p (CCDC 1858974)

The structure of **6p** was determined by the X-ray diffraction. Recrystallized from EtOH/dichloromethane. Further information can be found in the CIF file. This crystal was deposited in the Cambridge Crystallographic Data Centre and assigned as CCDC **1858974**.

Table 4 Crystal data a	d structure	e refinement	for 6p.
------------------------	-------------	--------------	---------

Identification code	201806307
Empirical formula	$C_{22}H_{17}CIO_6$
Formula weight	412.80
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	14.6483(3)
b/Å	17.4042(4)
c/Å	15.2455(4)
α/°	90
β/°	94.817(2)
γ/°	90
Volume/ų	3872.98(15)
Z	8
$\rho_{calc}g/cm^3$	1.416
µ/mm ⁻¹	2.077
F(000)	1712.0
Crystal size/mm ³	$0.17 \times 0.15 \times 0.12$
Radiation	CuKα (λ = 1.54184)
20 range for data collection/	7.724 to 134.156
Index ranges	$-17 \leq h \leq 12, \ -20 \leq k \leq 20, \ -18 \leq l \leq 18$
---	--
Reflections collected	16152
Independent reflections	6898 [R _{int} = 0.0232, R _{sigma} = 0.0267]
Data/restraints/parameters	6898/29/548
Goodness-of-fit on F ²	1.028
Final R indexes [I>=2σ (I)]	$R_1 = 0.0613$, $wR_2 = 0.1690$
Final R indexes [all data]	$R_1 = 0.0746$, $wR_2 = 0.1846$
Largest diff. peak/hole / e Å ⁻³	0.47/-0.28