Supporting Information for

Cobalt-Catalyzed Condensation of Sulfonyl Azides with o-

Diisocyanoarenes and Anilines: A New Approach to N-Sulfonyl

Guanidines

Yue Fang,^{1,2,3} Jin-Ming Yang,²* Rong Zhang,¹ Shun-Yi Wang¹* and Shun-Jun Ji¹*

 ¹Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
²School of Pharmacy, Yancheng Teachers University, Yancheng, 224051, China
³College of Chemical Engineering, Nanjing University of Technology, Nanjing, 210009, China E-mail: chemyjm@163.com; shunyi@suda.edu.cn; shunjun@suda.edu.cn

Contents

I. General Information	S2
II. Optimization of Reaction Condition	S2
III. General Procedure and Product Characterization	S2
1. General Procedure	S2
2. Product Characterization	S3
IV. Copies of ¹ H NMR 1 ³ C NMR Spectra and ¹⁹ F NMR	S 10
V. The MS spectra of 4'	S 33
VI. X-Ray Structure of 40	S34

I. General information

Unless otherwise noted, all commercially available compounds were used as provided without further purification. Solvents for chromatography were analytical grade and used without further purification. Anhydrous MeCN, was purchased from Sam Chemical Technology (Shanghai) Co., Ltd. Analytical thin-layer chromatography (TLC) was performed on silica gel, visualized by irradiation with UV light. For column chromatography, 200-300 mesh silica gel was used. ¹H-NMR and ¹³C-NMR were recorded on a BRUKER 400 MHz spectrometer in CDCl₃ or DMSO-*d6*. Data are reported in the following order: chemical shift (δ) in ppm; multiplicities are indicated s (singlet), bs (broad singlet), d (doublet), t (triplet), m (multiplet); coupling constants (J) are in Hertz (Hz). IR spectra were recorded on a BRUKER VERTEX 70 spectrophotometer and are reported in terms of frequency of absorption (cm⁻¹). HRMS spectra were obtained by using BRUKER micrOTOF-Q III instrument with ESI source.

	o o ^s N ₃	+ () NH ₂ () + () + () + () + () + () + () + ()	NC [Co] (x mol %) <u>H₂O (x uL)</u> NC Solvent, T °(C C S' N ² 4a		
Entry	[Co]. (mol %)	H ₂ O (x µL)	Solvent	T (°C)	Time (h)	Yield $(\%)^b$
1	CoC ₂ O ₄ (5)		MeCN	80	6	60^a
2	CoC ₂ O ₄ (5)		MeCN	80	6	63 ^c
3	CoC ₂ O ₄ (5)		MeCN	80	6	54^d
4	CoC ₂ O ₄ (5)	10	MeCN	80	6	40
5	CoC ₂ O ₄ (5)	50	MeCN	80	6	50
6	$CoC_2O_4(5)$	100	MeCN	80	6	63

II. Optimization of reaction condition: Effects of water.

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.44 mmol), **3a** (0.4 mmol), catalyst (5 mol %), dry solvent (2 mL), 6 h. ^{*b*}Isolated yield. ^{*c*}MeCN without molecular sieve (commercial available MeCN). ^{*d*}Dry MeCN (2 mL), under Ar atmosphere.

III. General procedure and product characterization1. General procedure for the formation of 4aaa

In a 25 mL oven- dried reaction tube, a mixture of T_{sN_3} **1a** (0.2 mmol, 1 equiv), aniline **2a** (0.44 mmol, 2.2 equiv), 1,2-diisocyano-4,5-dimethylbenzene **3a** (0.4 mmol, 2 equiv), Co(acac)₂ (5 mol %), were added in 2 mL dry MeCN with 100 μ L H₂O. The tube was sealed with a rubber cap and the resulting mixture was stirred at 80 °C for 6 h (checked by TLC). After 6 h, cooled to rt. The system was evaporated under the reduced pressure directly. The residue was purified by flash column chromatography with ethyl acetate and petroleum ether (EA : PE = 1 : 50~1 : 4) as eluents to afford pure product **4aaa** in 77% yield.

2. Product characterization

N-(bis(phenylamino)methylene)-4-methylbenzenesulfonamide (4a)

Yield: 77% (56.2 mg isolated). Yellowish brown oil. ¹**H** NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.3 Hz, 2H), 7.26 (t, J = 7.8 Hz, 4H), 7.16 (h, J = 7.9, 7.4 Hz, 8H), 2.33 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 151.9, 142.5, 140.5, 135.8, 129.7, 129.4, 126.7, 126.2, 124.3, 21.6. **IR** (ATR): v = 3262, 3195, 3154,3057, 3041, 2962, 1668, 1598, 1542, 1491, 1441, 1372, 865, 749, 670 cm⁻¹; **HRMS** (**ESI**): calcd. for C₂₀H₁₉N₃O₂S [M+Na]⁺:388.1096, found: 388.1100.

N-(bis(phenylamino)methylene)benzenesulfonamide (4b)

Yield: 80% (56.5 mg isolated). Yellowish brown oil. ¹**H** NMR (400 MHz, DMSO-*d*6) δ 9.10 (s, 2H), 7.78 (dd, *J* = 8.1, 1.6 Hz, 2H), 7.52 – 7.48 (m, 3H), 7.24 – 7.19 (m, 4H), 7.11 – 7.03 (m, 6H). ¹³**C** NMR (100 MHz, DMSO-*d*6) δ 152.3, 143.4, 137.5, 131.8, 129.0, 128.9, 125.7, 125.0, 123.3. **IR** (ATR): v = 3284, 3063, 2960, 1671, 1574, 1537, 1492, 1451, 1362, 895, 744, 687 cm⁻¹; **HRMS (ESI)**: calcd. for C₁₉H₁₇N₃O₂S [M+Na]⁺: 374.0939, found: 374.0936.

N-(bis(phenylamino)methylene)-4-methoxybenzenesulfonamide (4c)

Yield: 74% (56.6 mg isolated). Yellowish brown oil. ¹**H** NMR (400 MHz, DMSO-*d*6) δ 9.06 (s, 2H), 7.71 (d, J = 8.6 Hz, 2H), 7.26 – 7.21 (m, 4H), 7.11 (d, J = 8.2 Hz, 4H), 7.06 (t, J = 7.8 Hz, 2H), 7.03 – 7.00 (m, 2H), 3.75 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*6) δ 161.7, 152.1, 137.6, 135.4, 128.9, 127.8, 124.9, 123.2, 114.1, 55.6. IR (ATR): v = 3278, 1594, 1574, 1538, 1492, 1451, 1397, 1360, 1300, 1057, 893, 745, 671 cm⁻¹; HRMS (ESI): calcd. for C₂₀H₁₉N₃O₃S [M+H]⁺: 382.1225, found: 382.1221.

N-(bis(phenylamino)methylene)-4-chlorobenzenesulfonamide (4d)

Yield: 64% (49.3 mg isolated). Yellowish brown solid. m.p.: 122.2-122.7 °C. ¹**H NM**R (400 MHz, DMSO-*d*6) δ 9.17 (s, 2H), 7.90 – 7.77 (m, 2H), 7.70 – 7.54 (m, 2H), 7.30

(td, J = 7.3, 1.9 Hz, 4H), 7.19 – 7.10 (m, 6H). ¹³C NMR (100 MHz, DMSO-*d*6) δ 152.3, 142.3, 137.4, 136.5, 129.1, 128.9, 127.7, 125.1, 123.4. **IR** (**ATR**): v = 3398, 3294, 2924, 1674, 1605, 1580, 1527, 1452, 1393, 1250, 1065, 897, 740, 680 cm⁻¹; **HRMS** (**ESI**): calcd. for C₁₉H₁₆ClN₃O₂S [M+Na]⁺: 408.0549, found: 408.0540.

Br O NH

N-(bis(phenylamino)methylene)-4-bromobenzenesulfonamide (4e)

Yield: 63% (54.3 mg isolated). Yellowish brown solid. m.p.: 138.2-139.1 °C. ¹**H NMR** (400 MHz, DMSO-*d*6) δ 9.17 (s, 2H), 7.78 (d, *J* = 8.5 Hz, 4H), 7.30 (t, *J* = 7.6 Hz, 4H), 7.15 (dd, *J* = 14.0, 7.3 Hz, 6H). ¹³**C NMR** (100 MHz, DMSO-*d*6) δ 152.3, 142.7, 137.4, 128.9, 127.8, 125.1, 123. 5. **IR** (**ATR**): v = 3396, 3293, 2954, 1605, 1579, 1525, 1390, 1064, 846, 766, 673 cm⁻¹; **HRMS** (**ESI**): calcd. for C₁₉H₁₆BrN₃O₂S [M+H]⁺: 430.0225, found: 430.0225.

N-(bis(phenylamino)methylene)-4-iodobenzenesulfonamide (4f)

Yield: 67% (63.7 mg isolated). Yellowish brown solid. m.p.: 128.2-128.9 °C. ¹**H NMR** (400 MHz, DMSO-*d*6) δ 9.16 (s, 2H), 7.96 – 7.93 (m, 2H), 7.61 – 7.57 (m, 2H), 7.32 – 7.27 (m, 4H), 7.17 – 7.11 (m, 6H). ¹³**C NMR** (100 MHz, DMSO-*d*6) δ 152.3, 143.1, 137.8, 137.4, 128.9, 127. 6, 125.1, 123.4, 99.4. **IR** (**ATR**): v = 3397, 3390, 3291, 3243, 1673, 1603, 1577, 1391, 1066, 897, 766, 698, 507, 436 cm⁻¹; **HRMS** (**ESI**): calcd. for C₁₉H₁₆IN₃O₂S [M+H]⁺: 478.0086, found: 478.0070.

F₃C N^CN^HC

N-(bis(phenylamino)methylene)-4-(trifluoromethyl)benzenesulfonamide (4g) Yield: 65% (54.2 mg isolated). Yellowish brown solid. m.p.: 129.4-130.8 °C. ¹H NMR (400 MHz, DMSO-*d*6) δ 9.19 (s, 2H), 7.94 (dd, *J* = 41.0, 8.1 Hz, 4H), 7.31 – 7.03 (m, 10H). ¹³C NMR (100 MHz, DMSO-*d*6) δ 152.4, 147.3, 137.3, 131.5 (d, *J* = 32.0 Hz), 132.8, 126.7 (d, *J* = 7.0 Hz), 126.2(d, *J* = 3.0 Hz), 125.2, 123.5, 123.6 (d, *J* = 271.0 Hz). IR (ATR): v = 3393, 3293, 2964, 1674, 1576, 1531, 1394, 1321, 1125, 1061, 859, 764, 698 cm⁻¹; HRMS (ESI): calcd. for C₂₀H₁₆F₃N₃O₂S [M+H]⁺: 420.0994, found: 420.0974.

N-(bis(phenylamino)methylene)pyridine-3-sulfonamide (4h)

Yield: 66% (46.4 mg isolated). Yellowish brown solid. m.p.: 163.4-164.2 °C. ¹**H NMR** (400 MHz, DMSO-*d*6) δ 9.17 (s, 2H), 8.98 – 8.90 (m, 1H), 8.73 (d, *J* = 4.6 Hz, 1H), 8.16 (d, *J* = 8.0 Hz, 1H), 7.56 (dd, *J* = 7.9, 4.8 Hz, 1H), 7.25 (t, *J* = 7.8 Hz, 4H), 7.11 (dd, *J* = 12.3, 7.5 Hz, 6H). ¹³**C NMR** (100 MHz, DMSO-*d*6) δ 152.4, 152.3(5), 146.4, 139.6, 137.3, 133.7, 128.9, 125.2, 124.1, 123.6. **IR** (**ATR**): v = 3333, 1730, 1595, 1575, 1496, 1454, 1371, 1277, 1107, 1026, 896, 769, 674 cm⁻¹; **HRMS** (**ESI**): calcd. for C₁₈H₁₆N₄O₂S [M+Na]⁺: 375.0892, found: 375.0889.

N-(bis(phenylamino)methylene)naphthalene-2-sulfonamide (4i)

Yield: 62% (49.4 mg isolated). Yellowish brown oil. ¹**H** NMR (400 MHz, CDCl₃) δ 8.51 (s, 1H), 7.99 – 7.93 (m, 3H), 7.90 (d, J = 8.5 Hz, 1H), 7.60 (qd, J = 6.9, 1.4 Hz, 2H), 7.35 (t, J = 7.7 Hz, 4H), 7.28 – 7.22 (m, 6H). ¹³**C** NMR (100 MHz, CDCl₃) δ 152.0, 140.3, 135.7, 134.6, 132.3, 129.7, 129.3, 129.1, 128.3, 127.9, 127.3, 126.8, 126.6, 124.4, 122.4. **IR** (ATR): v = 3396, 3289, 2958, 2924, 2853, 1740, 1677, 1595, 1580, 1494, 1450, 1375, 1260, 1140, 1074, 895, 746, 690 cm⁻¹; **HRMS** (**ESI**): calcd. for C₂₃H₁₉N₃O₂S [M+H]⁺: 402.1276, found: 402.1264.

N-(bis(phenylamino)methylene)thiophene-2-sulfonamide (4j)

Yield: 79% (56.6 mg isolated). Yellowish brown oil. ¹**H** NMR (400 MHz, DMSO-*d*6) δ 9.16 (s, 2H), 7.83 (d, J = 4.6 Hz, 1H), 7.62 – 7.52 (m, 1H), 7.28 (t, J = 7.5 Hz, 4H), 7.13 (dd, J = 17.3, 7.9 Hz, 7H). ¹³**C** NMR (100 MHz, DMSO-*d*6) δ 152.5, 144.6, 137.3, 131.4, 130.0, 128.9, 127.2, 125.2, 123.4. **IR** (ATR): v = 3330, 3284, 1673, 1612, 1575, 1543, 1494, 1452, 1368, 1275, 1131, 1068, 894, 740, 681 cm⁻¹; **HRMS (ESI)**: calcd. for C₁₇H₁₅N₃O₂S₂ [M+H]⁺: 358.0684, found: 358.0686.

N-(bis(phenylamino)methylene)propane-1-sulfonamide (4k)

Yield: 48% (30.3 mg isolated). Yellowish brown oil. ¹**H NMR** (400 MHz, DMSO-*d*6) δ 9.00 (s, 2H), 7.33 – 7.27 (m, 8H), 7.15 – 7.09 (m, 2H), 3.05 – 2.97 (m, 2H), 2.26 (d, J = 11.0 Hz, 2H), 0.94 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 152.1, 135.9,

129.7, 126.6, 124.2, 56.8, 17.5, 13.2. **IR** (**ATR**): v = 3330, 3285, 2952, 2926, 2854, 1672, 1615, 1542, 1493, 1451, 1380, 1293, 1119, 1082, 895, 804, 747, 694 cm⁻¹; **HRMS** (**ESI**): calcd. for C₁₆H₁₉N₃O₂S [M+Na]⁺: 340.1096, found: 340.1095.

NH S N^C N

N-(bis(p-tolylamino)methylene)-4-methylbenzenesulfonamide (41)

Yield: 60% (47.2 mg isolated). Yellowish brown solid. m.p.: 113.1-113.9 °C. ¹**H NMR** (400 MHz, DMSO-*d*6) δ 8.89 (s, 2H), 7.65 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.05 (d, *J* = 8.3 Hz, 4H), 6.99 (d, *J* = 8.4 Hz, 4H), 2.32 (s, 3H), 2.20 (s, 6H). ¹³**C NMR** (100 MHz, DMSO-*d*6) δ 152.5, 141.8, 140.8, 134.7, 134.4, 129.4, 129.3, 125. 7, 123. 7, 21.0, 20.5. **IR** (**ATR**): v = 3320, 3284, 2917, 2858, 1674, 1572, 1539, 1399, 1360, 1286, 1140, 1101, 876, 767, 690 cm⁻¹; **HRMS (ESI**): calcd. for C₂₂H₂₃N₃O₂S [M+H]⁺: 394.1589, found: 394.1590.

N-(bis((4-methoxyphenyl)amino)methylene)-4-methylbenzenesulfonamide (4m)

Yield: 59% (50.2 mg isolated). Yellowish brown oil. ¹**H** NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.1 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.8 Hz, 4H), 6.85 (d, J = 8.6 Hz, 4H), 3.78 (s, 6H), 2.41 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 153.0, 142.2, 140.8, 129.3, 126.1, 114.8, 114.1, 55.6, 21.6. IR (ATR): v = 3284, 2956, 2927, 2836, 1678, 1594, 1579, 1506, 1440, 1391, 1360, 1242, 1234, 1098, 878, 802, 745, 669 cm⁻¹; **HRMS (ESI)**: calcd. for C₂₂H₂₃N₃O₄S [M+Na]⁺: 448.1307, found: 448.1306.

N-(bis((4-ethoxyphenyl)amino)methylene)-4-methylbenzenesulfonamide (4n) Yield: 46% (41.7 mg isolated). Yellowish brown oil. ¹H NMR (400 MHz, DMSO-*d*6) δ 8.71 (s, 2H), 7.67 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.02 (d, *J* = 8.8 Hz, 4H), 6.82 (d, *J* = 8.8 Hz, 4H), 3.95 (q, *J* = 6.9 Hz, 4H), 2.35 (s, 3H), 1.27 (t, *J* = 6.9 Hz, 6H). ¹³C NMR (100 MHz, DMSO-*d*6) δ 156.3, 153.2, 141.6, 141.0, 129.6, 129.3, 126.0, 125.6, 114.6, 63.2, 20.9, 14.6. **IR** (ATR): v = 3323, 3279, 3049, 2975, 2922, 1683, 1587, 1531, 1506, 1394, 1363, 1290, 1235, 1139, 1101, 825, 804, 775, 671 cm⁻¹; **HRMS** (**ESI**): calcd. for C₂₄H₂₇N₃O₄S [M+H]+: 454.1801, found: 454.1799.

N-(bis((4-fluorophenyl)amino)methylene)-4-methylbenzenesulfonamide (4o) Yield: 54% (43.7 mg isolated). Yellowish brown oil. ¹H NMR (400 MHz, DMSO-*d*6) δ 9.02 (s, 2H), 7.72 (d, *J* = 7.9 Hz, 2H), 7.36 (d, *J* = 7.9 Hz, 2H), 7.22 – 7.11 (m, 8H), 2.37 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*6) δ 159.6 (d, *J* = 240.0 Hz), 152.7, 141.8, 140.7, 133.5 (d, *J* = 3.0 Hz), 129.3, 126.2 (d, *J* = 8.0 Hz), 125.7, 115.5 (d, *J* = 23 Hz), 20.9. IR (ATR): v = 3322, 3249, 3078, 2930, 1674, 1582, 1541, 1505, 1366, 1213, 1140, 1090, 1067, 829, 812, 777, 690 cm⁻¹; HRMS (ESI): calcd. for C₂₀H₁₇F₂N₃O₂S [M+Na]⁺: 424.0907, found: 424.0908.

N-(bis((4-chlorophenyl)amino)methylene)-4-methylbenzenesulfonamide (4p) Yield: 49% (43.7 mg isolated). Yellowish brown solid. m.p.: 116.7-117.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.2 Hz, 3H), 7.29 (d, *J* = 8.6 Hz, 5H), 7.16 (d, *J* = 8.7 Hz, 4H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.6, 142.8, 140.2, 134.2, 132.4, 129.8, 129.5, 126.1, 125.8, 21.6. **IR** (**ATR**): v = 3342, 3273, 1671, 1616, 1573, 1530, 1488, 1384, 1261, 1137, 1100, 1013, 867, 824, 771, 682 cm⁻¹; **HRMS (ESI**): calcd. for C₂₀H₁₇Cl₂N₃O₂S [M+Na]⁺: 456.0316, found: 456.0314.

N-(bis((4-bromophenyl)amino)methylene)-4-methylbenzenesulfonamide (4q) **Yield**: 33% (34.7 mg isolated). Yellowish brown solid. m.p.: 186.4-187.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.2 Hz, 2H), 7.45 (d, *J* = 8.7 Hz, 4H), 7.28 (d, *J* = 8.1 Hz, 2H), 7.13 (s, 4H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.4, 142.8, 140.2, 134.8, 132.8, 129.5, 126.2, 126.0 120.2, 21.6. **IR** (**ATR**): v = 3406, 3248, 1734, 1675, 1615, 1528, 1483, 1380, 1248, 1135, 1061, 1010, 873, 813, 763, 656 cm⁻¹; **HRMS** (**ESI**): calcd. for C₂₀H₁₇Br₂N₃O₂S [M+Na]⁺: 543.9306, found: 543.9302.

N-(bis((4-iodophenyl)amino) methylene)-4-methylbenzenesulfonamide~(4r)

Yield: 37% (45.1 mg isolated). Yellowish brown oil. ¹**H** NMR (400 MHz, DMSO-*d*6) δ 9.17 (s, 2H), 7.72 – 7.68 (m, 2H), 7.65 – 7.59 (m, 4H), 7.35 (d, J = 8.0 Hz, 2H), 6.99 – 6.95 (m, 4H), 2.37 (s, 3H). ¹³**C** NMR (100 MHz, DMSO-*d*6) δ 151.6, 142.0, 140.4, 137.5, 137.4, 129.4, 125.8, 125.4 89.5, 21.0. **IR** (ATR): v = 3401, 3255, 2961, 2922, 2853, 1723, 1674, 1583, 1525, 1484, 1378, 1259, 1133, 1017, 871, 797, 663 cm⁻¹; **HRMS (ESI)**: calcd. for C₂₀H₁₇I₂N₃O₂S [M+Na]⁺: 639.9029, found: 639.9028.

diethyl 4,4'-(((tosylimino)methylene)bis(azanediyl))dibenzoate (4s) Yield: 46% (46.5 mg isolated). Yellowish brown oil. ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.96 (m, 4H), 7.86 – 7.81 (m, 2H), 7.34 – 7.27 (m, 6H), 4.34 (q, *J* = 7.1 Hz, 4H), 2.42 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 150.7, 143.0, 140.1, 139. 9, 131.2, 129.6, 128.0, 126.2, 122.8, 61.3, 21.6, 14.4. IR (ATR): v = 3273, 2961, 2920, 2854, 1709, 1596, 1533, 1364, 1270, 1092, 852, 759, 679 cm⁻¹; HRMS (ESI): calcd. for C₂₆H₂₇N₃O₆S [M+H]⁺: 510.1699, found: 510.1693.

N-(bis((4-(tert-butyl)phenyl)amino)methylene)-4-methylbenzenesulfonamide (4t) Yield: 50% (47.4 mg isolated). Yellowish brown solid. m.p.: 125.9-126.7 °C. ¹H NMR (400 MHz, DMSO-*d*6) δ 9.00 (s, 2H), 7.69 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.28 (d, *J* = 8.6 Hz, 4H), 7.06 (d, *J* = 8.6 Hz, 4H), 2.35 (s, 3H), 1.23 (s, 18H). ¹³C NMR (100 MHz, DMSO-*d*6) δ 152.4, 147.3, 141.8, 140.7, 134.8, 129.4, 125.7, 125.6, 122.9, 34.1, 31.1, 20.9. **IR** (ATR): v = 3306, 2958, 2907, 2866, 1615, 1574, 1515, 1355, 1264, 1088, 905, 805, 686 cm⁻¹; **HRMS** (**ESI**): calcd. for C₂₈H₃₅N₃O₂S [M+H]⁺: 478.2528, found: 478.2531.

N-(bis(naphthalen-2-ylamino)methylene)-4-methylbenzenesulfonamide (4v)

Yield: 31% (28.7 mg isolated). Yellowish brown solid. m.p.: 204.9-205.8 °C. ¹H NMR (400 MHz, DMSO-*d*6) δ 9.41 (s, 2H), 7.88 – 7.75 (m, 8H), 7.70 (d, J = 2.2 Hz, 2H), 7.51 – 7.39 (m, 6H), 7.34 (dd, J = 8.8, 2.2 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*6) δ 152.2, 141.9, 140.8, 135.1, 133.1, 130.7, 129.5, 128.5, 127.5, 127.3, 126.5, 125.8, 125.5, 123.2, 120.5, 21.0. **IR** (**ATR**): v = 3252, 3241, 2236, 2167, 1739, 1612, 1578, 1555, 1327, 1239, 1001, 858, 817, 711, 669 cm⁻¹; **HRMS (ESI)**: calcd. for C₂₈H₂₃N₃O₂S [M+H]⁺: 466.1589, found: 466.1573.

IV. Copies of ¹H NMR and ¹³C NMR Spectra

¹H NMR Spectra of **4a**

¹³C NMR Spectra of 4a

¹³C NMR Spectra of 4c

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1. fl (ppm)

¹³C NMR Spectra of 4d

¹³C NMR Spectra of 4e

¹H NMR Spectra of 4f

¹H NMR Spectra of 4g

90 80 f1 (ppm)

70 60

50 40

-10

.

.

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 fl (ppm)

¹³C NMR Spectra of **4h**

¹H NMR Spectra of 4i

O NH

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

¹³C NMR Spectra of 4i

----0.00

¹³C NMR Spectra of **4**l

¹³C NMR Spectra of 4m

¹H NMR Spectra of 4n

180 170

90 80 f1 (ppm) -10

130 120

¹³C NMR Spectra of **40**

¹⁹F NMR Spectra of **40**

¹³C NMR Spectra of **4p**

¹³C NMR Spectra of 4q

¹H NMR Spectra of 4r

Jul17-2019-h400-fy-03087.12.fid

¹³C NMR Spectra of 4r

¹H NMR Spectra of 4s

¹³C NMR Spectra of 4s

¹³C NMR Spectra of 4t

${}^{1}H \text{ NMR Spectra of } \mathbf{4v}_{_{Jul17-2019-h400-fy-04111, 21, fid}}$

¹³C NMR Spectra of 4v

V. The MS Spectra of 4'

VI. X-Ray Structure of 40

CCDC 1913025 (**4aea**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.