Supporting Information

Canescones A–E: Aromatic Polyketide Dimers with PTP1B inhibitory activity from *Penicillium canescens*

Yi Zang,[†] Yihua Gong,[†] Xuwen Li,[‡] Xiao-Nian Li,[§] Junjun Liu,[†] Chunmei Chen,[†] Yuan Zhou,[†] Lianghu Gu,[†] Zengwei Luo,[†] Jianping Wang,[†] Weiguang Sun,^{*,†} Hucheng Zhu,^{*,†} Yonghui Zhang^{*,†}

[†]Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.

[‡]State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

[§]State Key Laboratory of Phytochemistry and Plant Rescources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China.

Contents

Table S1. ¹ H (600 MHz) and ¹³ C (150 MHz) NMR Data of 1 and 2 recorded in pyridine-d ₅
Table S2. ¹ H (600 MHz) and ¹³ C (150 MHz) NMR Data of 3–5 recorded in DMSO- d_6
S1. Cloning, Expression, and Purification
S2. Detailed computational procedures
eq:s3.optimized coordinates of compound 1 at B3LYP/6-31++G(d,p) level in methanol5
Table S4. Optimized coordinates of compound 2 at B3LYP/6-31++G(d,p) level in methanol6
Table S5. Optimized coordinates of compound 3 at B3LYP/6-31+G(d,p) level in methanol
Table S6. Optimized coordinates of compound 5 at $B3LYP/6-31++G(d,p)$ level in methanol14
Figure S1. ¹ H NMR spectrum of canescone A (1) in pyridine- <i>d</i> ₅
Figure S2. ¹³ C NMR spectrum of canescone A (1) in pyridine- <i>d</i> ₅
Figure S3. DEPT-135 ° spectrum of canescone A (1) in pyridine- <i>d</i> ₅
Figure S4. COSY spectrum of canescone A (1) in pyridine- <i>d</i> ₅ 17
Figure S5. HSQC spectrum of canescone A (1) in pyridine- <i>d</i> ₅
Figure S6. HMBC spectrum of canescone A (1) in pyridine- <i>d</i> ₅
Figure S7. NOESY spectrum of canescone A (1) in pyridine- <i>d</i> ₅
Figure S8. (+) ESI-MS spectrum of canescone A (1)
Figure S9. ¹ H NMR spectrum of canescone B (2) in pyridine- <i>d</i> ₅
Figure S10. ¹³ C NMR spectrum of canescone B (2) in pyridine- <i>d</i> ₅
Figure S11. DEPT-135 ° spectrum of canescone B (2) in pyridine- <i>d</i> ₅

Figure	S12.	HSQC spectrum of canescone B (2) in pyridine- <i>d</i> ₅	21
Figure	S13.	COSY spectrum of canescone B (2) in pyridine-d ₅	22
Figure	S14.	HMBC spectrum of canescone B (2) in pyridine-d ₅	22
Figure	S15.	NOESY spectrum of canescone B (2) in pyridine-d ₅	23
Figure	S16.	(+) ESI-MS spectrum of canescone B (2)	23
Figure	S17.	¹ H NMR spectrum of canescone C (3) in DMSO- <i>d</i> ₆	24
Figure	S18.	¹³ C NMR spectrum of canescone C (3) in DMSO- <i>d</i> ₆	24
Figure	S19.	DEPT-135 ° spectrum of canescone C (3) in DMSO-d ₆	25
Figure	S20.	HSQC spectrum of canescone C (3) in DMSO-d ₆	25
Figure	S21.	COSY spectrum of canescone C (3) in DMSO-d ₆	26
Figure	S22.	HMBC spectrum of canescone C (3) in DMSO-d ₆	26
Figure	S23.	NOESY spectrum of canescone C (3) in DMSO- d_6	27
Figure	S24.	(+) ESI-MS spectrum of canescone C (3)	27
Figure	S25.	¹ H NMR spectrum of canescone D (4) in DMSO- <i>d</i> ₆	28
Figure	S26.	¹³ C NMR spectrum of canescone D (4) in DMSO- <i>d</i> ₆	28
Figure	S27.	DEPT-135 ° spectrum of canescone D (4) in DMSO-d ₆	29
Figure	S28.	HSQC spectrum of canescone D (4) in DMSO-d ₆	29
Figure	S29.	HMBC spectrum of canescone D (4) in DMSO-d ₆	30
Figure	S30.	(+) ESI-MS spectrum of canescone D (4)	30
Figure	S31.	¹ H NMR spectrum of canescone E (5) in DMSO- <i>d</i> ₆	31
Figure	S32.	13 C NMR spectrum of canescone E (5) in DMSO- d_6	31
Figure	S33.	DEPT-135 ° spectrum of canescone E (5) in DMSO- d_6	32
Figure	S34.	HSQC spectrum of canescone E (5) in DMSO- <i>d</i> ₆	32
Figure	S35.	COSY spectrum of canescone E (5) in DMSO- <i>d</i> ₆	33
Figure	S36.	(+) ESI-MS spectrum of canescone E (5)	33
Figure	S37.	Comparison of calculated and experimental ECD spectra of 5	33
Figure	S38.	¹ H NMR spectrum of the mixture of 4 and 5 in DMSO- d_6	34
Figure	S39.	13 C NMR spectrum of the mixture of 4 and 5 in DMSO- d_6	34
Figure	S40.	DEPT-135 ° spectrum of the mixture of 4 and 5 in DMSO- <i>d</i> ₆	35
Figure	S41.	HSQC spectrum of the mixture of 4 and 5 in DMSO- d_6	35
Figure	S42.	HMBC spectrum of the mixture of 4 and 5 in DMSO- <i>d</i> ₆	36
Figure	S43.	The enlargement view of annotated amino acids	37

No	1		2		No	1		2	
INO.	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	$\delta_{ m C}$	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	$\delta_{ m C}$	INU.	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	$\delta_{ m C}$	$\delta_{\rm H}(J~{\rm in}~{\rm Hz})$	$\delta_{ m C}$
2		93.9		93.9	14	7.12, s	102.6	7.13, s	102.5
3		186.3		186.2	15		153.9		153.9
4		117.9		117.9	16	5.39, dd 6.8,3.2	68.2	5.46, dd 6.8,2.9	68.2
5		159.8		159.8	17	2.88, dd 18.0,3.2	49.4	2.85, dd 18.0,2.9	49.4
7	7.43, brs	137.9	7.43, brs	137.9		3.13, dd 18.0,6.8		3.19, dd 18.0,6.8	
8		119.6		119.6	18		199.6		199.6
9	3.78, dd 16.3,2.0	24.8	3.78, dd 16.2,2.0	24.9	19		120.1		120.1
	3.89, d 16.3		3.89, d 16.2		20		140.3		140.2
10		99.9		99.9	21	2.40, s	14.1	2.40, s	14.1
12		130.4		130.5	22	3.35, s	49.8	3.38, s	49.9
13		156.2		156.1	23	3.80, s	56.8	3.81, s	56.7
					-				

Table S1. ¹H (600 MHz) and ¹³C (150 MHz) NMR Data of 1 and 2 recorded in pyridine- d_5

		-		
Table S2.	1 H (600 MHz) and	¹³ C (150 MHz) NMR I	Data of 3–5 recorded in	n DMSO- <i>d</i> ₆

Ne	3		4		5		
INO.	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	$\delta_{ m C}$	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	$\delta_{\rm C}$	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	$\delta_{ m C}$	
2		91.5		91.6		91.5	
3		184.7		184.1		184.2	
4		116.2		116.2		116.2	
5		158.8		158.8		158.9	
7	7.57, d 1.7	137.6	7.57, d 1.9	137.6	7.57, brs	137.6	
8		117.8		117.7		117.7	
9	3.07, dd 16.2,1.7	23.2	3.08, dd 16.3,2.0	23.2	3.08, d 16.2	23.2	
	3.66, d 16.2		3.67, d 16.3		3.69, d 16.2		
10		98.6		98.7		98.8	
12		131.5		133.9/134.3 ^a		133.9/134.3 ^a	
13		149.4		150.2		150.2	
14	6.96, s	98.9	7.07, s	99.9	7.07, s	99.9	
15		125.1		119.6/119.8 ^a		119.6/119.8 ^a	
16		166.6		167.4		167.5	
18	4.75, q 6.7	54.1		$105.0/105.2^{a}$		105.0/105.2 ^a	
19		127.7		130.8/131.2 ^a		130.8/131.2 ^a	
20		136.5		136.2/136.6 ^a		136.2/136.6 ^a	
21	2.58, s	13.5	2.57, s	13.5	2.58, s	13.5	
22	3.09, s	49.2	3.09, s	49.2	3.10, s	49.3	
23	3.87, s	56.2	3.89, s	56.2	3.90, s	56.3	
24	3.22, dt 14.1,7.4	41.8	1.84/1.86, s ^a	$24.1/24.2^{a}$	1.84/1.86, s ^a	$24.1/24.2^{a}$	
	3.84, dt 14.1,5.4						
25	3.60, m	59.6					
	3.56, m						
26	1.49, d 6.7	16.5					

^{*a*}Those data were collected from NMR spectra of the mixture of 4 and 5, because those carbons were not observed in their individual spectra of pure 4 or 5.

S1. Cloning, Expression, and Purification

Full length of PTP1B were cloned, expressed, and purified essentially as described previously. The cDNA was cloned into the pET28a vector (Novagen). The expression construct of pET28a-PTP1B was transformed into Escherichia coli strain BL21 (DE) (Invitrogen) and selected on kanamycin plates. The transformed cells were cultivated in Luria-Bertani (LB) media at 37 °C in the presence of kanamycin until the optical density (OD600) reached 0.8. Cells were then induced with 0.4 mM IPTG (isopropyl- β -D-1-thiogalactopyranoside) for 16 h at 20 °C. The cells harvested by centrifugation were lysed by ultrasonication on ice in a buffer containing 20 mM Tris, pH 8.5, 200 mM NaCl, 5 mM mercaptoethanol, 0.1% TritonX-100, and 5% glycerol. Soluble PTP1B was bound to Ni-agarose affinity resin (Qiagen), washed with buffer A (20 mM Tris, pH 8.5, 200 mM NaCl, and 10 mM imidazole), and eluted with buffer B (20 mM Tris, pH 8.8, 250 mM NaCl, and 150 mM imidazole). The protein was further purified with anion exchange chromatography and size exclusion chromatography.

S2. Detailed computational procedures

ECD calculation for compounds 1–3 and 5:

All calculations were performed using Gaussian 09W. The X-ray single diffraction tridimensional structure of **1**, **2**, and **5** were used as geometry input. The electronic circular dichroism (ECD) spectrum were calculated for each conformer using the TDDFT methodology at the B3LYP/6-311++G(d,p) level with MeOH as solvent by the IEFPCM solvation model implemented in Gaussian 09 program.¹ The ECD spectra were simulated using a Gaussian function with a bandwidth σ of 0.3 eV. The spectra were combined after Boltzmann weighting according to their population contributions and UV correction was applied.²

The theoretical calculations of compound **3** were performed using Gaussian 09³ and figured using Gauss View 5.0⁴. Conformation search using molecular mechanics calculations of **3** was performed in Discovery Studio 3.5 Client with MMFF force field with 20 kcal mol⁻¹ upper energy limit.⁵ The optimized conformation geometries and thermodynamic parameters of all selected conformations were provided. The predominant conformers were optimized at B3LYP/6-31G(d,p) level. The theoretical calculation of ECD was performed using time dependent Density Functional Theory (TDDFT) at B3LYP/6-31G(d,p) level in MeOH with PCM model.⁶ The ECD spectra of **3** were obtained by weighing the Boltzmann distribution rate of each geometric conformation.⁷ The ECD spectra were simulated by overlapping Gaussian functions for each transition according to:

$$\Delta \varepsilon(E) = \frac{1}{2.297 \times 10^{-39}} \times \frac{1}{\sqrt{2\pi\sigma}} \sum_{i}^{A} \Delta E_{i} R_{i} e^{-[(E-E_{i})/(2\sigma)]^{2}}$$
(1)

The σ represented the width of the band at 1/e height, and ΔEi and Ri were the excitation energies and rotational strengths for transition i, respectively. Rvel had been used in this work.

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.

Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2009**.

[2] H.-J. Zhu, Organic Stereochemistry: Experimental and Computational Methods, John Wiley & Sons 2015.

[3] Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2010**.

[4] GaussView, Version 5, Dennington, R.; Keith, T.; Millam, J. Semichem Inc., Shawnee Mission, KS, 2009.

[5] Smith, S. G.; Goodman, J. M. J. Am. Chem. Soc. 2010, 132, 12946–12959.

[6] (a) Miertus, S.; Scrocc, E.; Tomasi, J. J. Chem. Phys. 1981, 55, 117. (b) Miertus, S.; Tomasi, J. J. Chem. Phys.

1982, 65, 239. (c) Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett. 1996, 255, 327.

[7] Tähtinen, P.; Bagno, A.; Klika, K. D.; Pihlaja, K. J. Am. Chem. Soc. 2003, 125, 4609-4618.

Atom	X	Y	Z	Atom	X	Y	Z
0	0.037	1.714	-0.41	С	-2.343	1.817	-0.441
0	0.035	-1.12	-0.216	Н	-2.363	2.786	0.064
0	-1.085	0.742	1.391	Н	-2.228	2.012	-1.512
0	-1.118	-0.213	-2.022	С	1.2	-0.402	-0.217
Н	-1.121	-1.093	-2.44	С	-3.571	-0.436	-0.104
0	2.281	3.055	-0.378	С	-3.58	1.01	-0.173
0	1.919	-3.45	0.039	С	-4.865	1.378	0.04
0	5.735	-0.771	0.964	Н	-5.378	2.326	0.091
Н	6.566	-1.262	0.864	С	-1.124	1.007	0.015
0	-2.292	-2.458	-0.135	С	2.428	-1.079	-0.096
0	-5.656	0.262	0.228	С	3.622	-0.352	-0.098
С	4.221	-2.652	0.298	С	1.203	0.988	-0.308
Н	4.634	-3.473	-0.295	С	3.643	1.035	-0.198
Н	4.389	-2.884	1.357	Н	4.582	1.572	-0.186
С	2.421	1.713	-0.294	С	4.828	-1.267	-0.019
С	-5.511	-2.162	0.324	Н	5.327	-1.292	-0.999
Н	-5.986	-2.235	1.309	С	3.464	3.86	-0.369
Н	-4.755	-2.943	0.234	Н	3.116	4.891	-0.44
Н	-6.288	-2.325	-0.432	Н	4.105	3.628	-1.226
С	-1.097	1.878	2.264	Н	4.026	3.724	0.561

Table S3. Optimized coordinates of compound 1 at B3LYP/6-31++G(d,p) level in methanol

Н	-2.096	2.326	2.324	С	2.709	-2.517	0.067
Н	-0.371	2.63	1.942	С	-2.363	-1.24	-0.234
Н	-0.816	1.499	3.248	С	-4.868	-0.836	0.143
С	-1.115	-0.404	-0.629				

Table S4. Optimized coordinates of compound 2 at B3LYP/6-31++G(d,p) level in methanol

Atom	X	Y	Z	Atom	Х	Y	Z
0	0.033	1.691	-0.462	С	-2.352	1.807	-0.467
0	2.275	3.054	-0.324	Н	-2.384	2.774	0.041
0	-1.132	-0.314	-2.035	Н	-2.23	2.013	-1.535
Н	-0.551	0.424	-2.299	С	-1.134	1.001	0.006
0	-1.086	0.775	1.382	С	-4.878	1.358	-0.029
0	-5.669	0.239	0.142	Н	-5.395	2.304	0.017
0	-2.284	-2.463	-0.11	С	3.452	3.866	-0.263
0	0.035	-1.122	-0.182	Н	4.154	3.6	-1.061
0	5.862	-0.884	-0.399	Н	3.945	3.772	0.71
0	1.905	-3.436	0.301	Н	3.107	4.89	-0.404
С	1.193	-0.402	-0.107	С	-5.519	-2.185	0.234
С	2.412	1.718	-0.175	Н	-6.278	-2.351	-0.54
С	2.413	-1.07	0.111	Н	-6.017	-2.259	1.208
С	-2.365	-1.253	-0.26	Н	-4.759	-2.964	0.163
С	1.203	0.984	-0.242	С	4.228	-2.656	0.284
С	3.625	1.05	0.038	Н	4.564	-3.047	-0.684
Н	4.562	1.59	0.089	Н	4.531	-3.368	1.058
С	-3.577	-0.453	-0.157	С	-1.09	1.932	2.23
С	-3.589	0.993	-0.222	Н	-0.367	2.676	1.883
С	2.7	-2.509	0.244	Н	-0.798	1.574	3.218
С	-1.112	-0.414	-0.638	Н	-2.088	2.379	2.289
С	3.599	-0.332	0.188	Н	5.103	-1.085	1.518
С	4.788	-1.228	0.474	Н	6.657	-1.331	-0.07
С	-4.876	-0.856	0.069				

Optimized geometries of predominant conformers for compound **3** at the B3LYP/6-31G(d,p) level in the gas phase.

compound 3 at B3LYP/6-31G(d,p) level in the gas phase								
Conformations	E+ZPE	G	%					
3-a-crystal	-1583.528787	-1583.588208	32					
3 -b	-1583.521807	-1583.581854	0					
3-с	-1583.519989	-1583.579980	0					
3 -d	-1583.523293	-1583.583439	0.2					
3-е	-1583.522150	-1583.582338	0.1					
3 -f	-1583.520230	-1583.580320	0					
3 -g	-1583.527251	-1583.586740	6.7					
3 -h	-1583.529246	-1583.588818	61					

Important thermodynamic parameters (a.u.) and Boltzmann distributions of the optimized compound **3** at B3LYP/6-31G(d,p) level in the gas phase

-1583.578604

0

-1583.518112

3-i

3-j

-1583.516366

-1583.576716

0

E+ZPE, G: total energy with zero point energy (ZPE) and Gibbs free energy in the gas phase at B3LYP/6-31G(d,p) level., %: Boltzmann distributions, using the relative Gibbs free energies as weighting factors

3-a-crysta	.1			3 -b			
0	-1.01659	1.936726	-0.37263	0	-1.13385	1.9968	-0.2576
0	-0.40106	-0.83651	-0.23	0	-0.33767	-0.72842	-0.40904
0	-1.95082	0.707384	1.374026	0	-1.87249	0.558715	1.423221
0	5.314648	0.577379	0.195948	0	5.31496	0.980126	-0.20819
0	-1.69041	-0.18437	-2.05024	0	-1.7869	-0.01019	-2.07793
Н	-1.46588	-1.03374	-2.45961	Н	-1.52945	-0.8006	-2.57623
0	0.869107	3.757003	-0.2373	0	0.639423	3.923732	-0.07041
0	-6.26112	-0.73771	0.113796	0	-6.15516	-1.06276	0.30306
0	7.195659	-1.37253	-0.01624	0	7.000065	-3.03928	0.656202
Н	6.751521	-0.50972	0.110499	Н	6.659279	-3.90863	0.407893
0	-2.38654	-2.65731	-0.25402	0	-2.19941	-2.67243	-0.46789
Ν	3.957017	-1.32387	0.119403	Ν	4.044399	-0.95916	-0.30022
С	1.303629	2.46826	-0.18006	С	1.156657	2.666663	-0.15469
С	0.578472	0.128685	-0.18144	С	0.582421	0.292627	-0.32553
С	0.278998	1.492693	-0.24404	С	0.193955	1.633039	-0.24613
С	1.906589	-0.26419	-0.04825	С	1.938164	-0.02105	-0.30465
С	4.212152	0.024997	0.125443	С	4.231705	0.408777	-0.23466
С	2.899039	0.702544	0.00801	С	2.86988	1.003908	-0.21779
С	-1.66606	-0.3864	-0.65639	С	-1.65347	-0.33067	-0.7122
С	2.635996	2.070197	-0.06106	С	2.516224	2.350479	-0.14917
Н	3.453216	2.778229	-0.01296	Н	3.289392	3.105519	-0.0858
С	-4.39205	0.450157	-0.24694	С	-4.39313	0.277503	-0.06358
С	-4.06816	-0.9579	-0.18462	С	-3.97749	-1.10513	-0.14778
С	2.515612	-1.63934	0.06372	С	2.632695	-1.36302	-0.36987
Н	2.315684	-2.22886	-0.84376	Н	2.440637	-1.84171	-1.34343
С	-1.99896	0.980481	-0.00228	С	-2.02689	0.947841	0.082769
С	-2.71018	-1.48105	-0.30795	С	-2.59999	-1.52072	-0.39951
С	-3.35448	1.506976	-0.49061	С	-3.44247	1.420045	-0.27363
Н	-3.59105	2.449267	0.010271	Н	-3.70553	2.297973	0.322133
Н	-3.25333	1.720814	-1.55835	Н	-3.42597	1.729876	-1.32232
С	4.95696	-2.38745	0.239986	С	5.164858	-1.86855	-0.46184
Н	4.458604	-3.31078	-0.07433	Н	5.888556	-1.42009	-1.1503
Н	5.260822	-2.51626	1.287444	Н	4.795866	-2.79645	-0.91662
С	-5.2466	-1.63288	0.037068	С	-5.09324	-1.87606	0.08476
С	-5.73107	0.5241	-0.05605	С	-5.71827	0.242502	0.214849
Н	-6.44028	1.335503	-0.01427	Н	-6.47292	0.996554	0.373129

Table S5. Optimized Z-matrixes of compound 3 in the gas phase (Å) at B3LYP/6-31G(d,p) level

С	6.230858	-2.20522	-0.60489	С	5.888757	-2.17724	0.858249
Н	6.69147	-3.19503	-0.709	Н	6.288888	-1.24399	1.26159
Н	5.939839	-1.87505	-1.61716	Η	5.179673	-2.58667	1.593644
С	2.01694	-2.42944	1.283008	С	2.214476	-2.33795	0.739341
Н	2.514978	-3.40082	1.355846	Н	2.778942	-3.27324	0.669474
Н	0.941594	-2.60032	1.189762	Н	1.151176	-2.57135	0.642806
Н	2.206939	-1.86928	2.203051	Н	2.391766	-1.89531	1.723694
С	-2.20599	1.806165	2.248729	С	-2.13098	1.55901	2.407717
Н	-1.63984	2.693068	1.947346	Н	-1.63571	2.501697	2.15477
Н	-1.87666	1.484779	3.237983	Н	-1.72086	1.173459	3.342389
Н	-3.27514	2.046938	2.292827	Н	-3.20686	1.729297	2.53728
С	-5.57473	-3.07128	0.201683	С	-5.3174	-3.34252	0.140391
Н	-6.03934	-3.25725	1.176384	Н	-5.69878	-3.64291	1.12267
Н	-4.65648	-3.65398	0.124052	Н	-4.37174	-3.85103	-0.04878
Н	-6.28061	-3.40271	-0.56816	Н	-6.05374	-3.65527	-0.60844
С	1.851406	4.783341	-0.19825	С	1.556779	5.006341	0.001228
Н	1.302853	5.723911	-0.26049	Н	0.948589	5.91028	0.052755
Н	2.543885	4.709576	-1.04562	Н	2.198055	5.049604	-0.88762
Н	2.424776	4.75759	0.736733	Н	2.188712	4.941663	0.8958
3-с	1			3 -d			
0	-1.14159	1.994328	-0.34861	0	-1.13109	1.994732	-0.25612
0	-0.34554	-0.71222	-0.52787	0	-0.34331	-0.73288	-0.40755
0	-1.76822	0.568885	1.402123	0	-1.87413	0.558389	1.424147
0	5.304693	0.9629	-0.14682	0	5.315914	0.957126	-0.21504
0	-1.90179	-0.03691	-2.12932	0	-1.78904	-0.00944	-2.07721
Н	-1.52484	0.837655	-2.31775	Н	-1.53512	-0.80104	-2.57549
0	0.641235	3.923542	-0.06801	0	0.647313	3.91648	-0.07162
0	-6.13937	-1.08604	0.385564	0	-6.1619	-1.04938	0.303606
0	6.954807	-3.07046	0.698092	0	6.974077	-3.06898	0.672392
Н	6.617407	-3.93633	0.433479	Н	7.667676	-2.55661	0.236393
0	-2.1819	-2.65869	-0.42957	0	-2.21171	-2.67103	-0.47057
Ν	4.030714	-0.97024	-0.3088	Ν	4.037794	-0.97551	-0.30316
С	1.156752	2.666578	-0.16474	С	1.161047	2.657835	-0.15597
С	0.574494	0.294466	-0.39762	С	0.579911	0.285138	-0.32496
С	0.197251	1.637342	-0.30143	С	0.195434	1.626845	-0.24581
С	1.929317	-0.02458	-0.34914	С	1.934797	-0.03261	-0.30506
С	4.221833	0.394026	-0.21297	С	4.228662	0.390575	-0.23857
С	2.861096	0.995472	-0.22037	С	2.86947	0.990261	-0.22032
С	-1.68094	-0.31437	-0.7727	С	-1.65773	-0.33095	-0.7115
С	2.514796	2.343015	-0.13304	С	2.519671	2.337966	-0.15208
Н	3.291057	3.09112	-0.03542	Н	3.294783	3.091121	-0.0902
С	-4.3906	0.266726	0.010721	С	-4.39574	0.28552	-0.06261
С	-3.97698	-1.11006	-0.1372	С	-3.98447	-1.09833	-0.14774

С	2.619246	-1.36762	-0.42359	С	2.625255	-1.37699	-0.37094
Н	2.450107	-1.82412	-1.41147	Н	2.431298	-1.85462	-1.3444
С	-2.01584	0.942947	0.080254	С	-2.02745	0.948317	0.083843
С	-2.60312	-1.51652	-0.42654	С	-2.60834	-1.51819	-0.40028
С	-3.4515	1.421121	-0.18421	С	-3.44152	1.425108	-0.27239
Н	-3.68865	2.267004	0.466159	Н	-3.70177	2.303743	0.323575
Н	-3.49815	1.787225	-1.21382	Н	-3.42406	1.735149	-1.32102
С	5.151991	-1.8822	-0.45313	С	5.159451	-1.88422	-0.45556
Н	5.89348	-1.42976	-1.11966	Н	5.884799	-1.4161	-1.1328
Н	4.79025	-2.80374	-0.92579	Н	4.813342	-2.81209	-0.92143
С	-5.08328	-1.89012	0.106908	С	-5.10257	-1.86593	0.084352
С	-5.7062	0.220807	0.331576	С	-5.72094	0.254512	0.216091
Н	-6.45409	0.968133	0.544572	Н	-6.47316	1.010852	0.375029
С	5.842074	-2.20642	0.881323	С	5.864956	-2.20242	0.871846
Н	6.235575	-1.2788	1.303704	Н	6.157769	-1.25961	1.352465
Н	5.113272	-2.62018	1.594651	Н	5.182433	-2.72696	1.547241
С	2.166553	-2.3628	0.653524	С	2.208559	-2.35238	0.738235
Н	2.729152	-3.29884	0.579683	Н	2.771651	-3.28797	0.665083
Н	1.105609	-2.58938	0.521151	Н	1.144569	-2.5836	0.644307
Н	2.317812	-1.94166	1.651652	Н	2.388848	-1.91076	1.722587
С	-1.95711	1.573503	2.400402	С	-2.13079	1.558569	2.409126
Н	-1.49487	2.519924	2.102807	Н	-1.63321	2.500323	2.157118
Н	-1.46731	1.197656	3.299793	Н	-1.72205	1.171392	3.343728
Н	-3.02063	1.731232	2.615975	Н	-3.20633	1.731295	2.538325
С	-5.30522	-3.35777	0.114834	С	-5.33126	-3.33171	0.138932
Н	-5.6788	-3.69076	1.089469	Η	-5.71326	-3.63168	1.121096
Н	-4.35968	-3.85773	-0.09646	Η	-4.38726	-3.84305	-0.05092
Н	-6.04585	-3.64739	-0.63911	Н	-6.06877	-3.64159	-0.60994
С	1.560312	5.001077	0.057496	С	1.567566	4.996421	-0.00043
Н	0.953611	5.905575	0.114964	Η	0.961979	5.902077	0.051814
Н	2.226438	5.064119	-0.8115	Η	2.208339	5.038287	-0.88976
Н	2.165932	4.910346	0.967572	Н	2.200055	4.929848	0.893657
3-е				3- f	_		
0	-1.13414	1.994733	-0.26023	0	-1.14168	1.992192	-0.35067
0	-0.33954	-0.73121	-0.40454	0	-0.34765	-0.71525	-0.5248
0	-1.87686	0.561489	1.422886	0	-1.77176	0.570638	1.401882
0	5.314163	0.975547	-0.19954	0	5.303575	0.957971	-0.13871
0	-1.78646	-0.01676	-2.07697	0	-1.90234	-0.04184	-2.12868
Н	-1.52693	-0.8082	-2.5726	Н	-1.52219	0.830865	-2.31919
0	0.639825	3.921024	-0.07361	0	0.641896	3.920582	-0.0711
0	-6.15863	-1.05935	0.300356	0	-6.14287	-1.08223	0.384472
0	6.923805	-3.10219	0.533649	0	6.882226	-3.13015	0.574337
Н	7.519286	-3.15537	1.290716	Н	7.456446	-3.19567	1.346714

0	-2.20306	-2.67421	-0.45977	0	-2.1863	-2.66007	-0.42396
Ν	4.043209	-0.96345	-0.29184	Ν	4.029355	-0.97497	-0.30121
С	1.156628	2.663245	-0.15518	С	1.156861	2.662862	-0.16545
С	0.581342	0.289228	-0.32262	С	0.5733	0.290761	-0.39556
С	0.193617	1.630014	-0.24612	С	0.19692	1.634068	-0.3016
С	1.936954	-0.02533	-0.30063	С	1.927976	-0.02927	-0.34598
С	4.230617	0.403287	-0.22815	С	4.22051	0.388132	-0.20715
С	2.868984	0.99945	-0.21392	С	2.860112	0.990586	-0.21723
С	-1.65451	-0.33353	-0.71003	С	-1.68239	-0.31689	-0.77134
С	2.515944	2.34637	-0.14734	С	2.514556	2.338522	-0.13175
Н	3.289443	3.101115	-0.08431	Н	3.291219	3.086265	-0.03449
С	-4.39493	0.278566	-0.06712	С	-4.39256	0.268257	0.008375
С	-3.98017	-1.10458	-0.14664	С	-3.97996	-1.10914	-0.13624
С	2.631424	-1.36733	-0.36378	С	2.617882	-1.37238	-0.41826
Н	2.441577	-1.84675	-1.33718	Н	2.450935	-1.82969	-1.40594
С	-2.02831	0.947447	0.080797	С	-2.01721	0.94238	0.078788
С	-2.60243	-1.52198	-0.39524	С	-2.60609	-1.51749	-0.42361
С	-3.44302	1.419695	-0.27895	С	-3.45217	1.421292	-0.18826
Н	-3.70614	2.299529	0.314013	Н	-3.68923	2.268977	0.45981
Н	-3.42476	1.726623	-1.32847	Н	-3.49727	1.784891	-1.21882
С	5.159731	-1.87518	-0.46576	С	5.147275	-1.88898	-0.45666
Н	5.869094	-1.4391	-1.17664	Н	5.875043	-1.4491	-1.14624
Н	4.791524	-2.81541	-0.8879	Н	4.785913	-2.82375	-0.89606
С	-5.09672	-1.87407	0.086212	С	-5.08704	-1.88777	0.108531
С	-5.72063	0.245255	0.209064	С	-5.70852	0.224127	0.328103
Н	-6.47497	1.000341	0.363851	Н	-6.45599	0.972535	0.538689
С	5.902435	-2.16007	0.840609	С	5.856349	-2.18817	0.865156
Н	6.312478	-1.2146	1.219357	Н	6.259522	-1.24775	1.263396
Н	5.199401	-2.55391	1.591342	Н	5.133308	-2.58702	1.593899
С	2.214052	-2.34237	0.745536	С	2.165971	-2.36768	0.658938
Н	2.785134	-3.2736	0.679479	Н	2.735108	-3.29975	0.589212
Н	1.152348	-2.58156	0.645493	Н	1.106713	-2.59991	0.522838
Н	2.384634	-1.89614	1.729567	Н	2.310414	-1.94296	1.656681
С	-2.1354	1.564797	2.403971	С	-1.96083	1.577518	2.397604
Н	-1.6377	2.505876	2.149681	Н	-1.49688	2.522731	2.098751
Н	-1.72821	1.180931	3.340645	Н	-1.47296	1.202955	3.298608
Н	-3.21121	1.737849	2.530881	Н	-3.02446	1.737234	2.611275
С	-5.32187	-3.34022	0.145799	С	-5.30996	-3.35526	0.119718
Н	-5.70522	-3.63751	1.128258	Н	-5.68211	-3.68613	1.095647
Н	-4.37613	-3.8498	-0.04013	Н	-4.36506	-3.85625	-0.09197
Н	-6.05693	-3.65484	-0.60351	Н	-6.05201	-3.64589	-0.63242
С	1.557744	5.003038	-0.00505	С	1.561691	4.997521	0.051415
Н	0.950274	5.907667	0.043465	Н	0.95585	5.902796	0.106266

Н	2.19949	5.043155	-0.89375	Н	2.228102	5.057595	-0.81762	
Н	2.189454	4.940871	0.889931	Н	2.167283	4.909023	0.961801	
3 -g				3-h				
0	-1.03885	1.954828	-0.40949	0	-1.03085	1.958504	-0.31518	
0	-0.41096	-0.80054	-0.47813	0	-0.40454	-0.81483	-0.34504	
0	-1.77381	0.637173	1.382583	0	-1.88448	0.637051	1.405462	
0	5.311673	0.573727	-0.04884	0	5.325023	0.589265	-0.10773	
0	-1.90198	-0.09073	-2.1256	0	-1.77653	-0.0749	-2.06859	
Н	-1.4719	0.752829	-2.33986	Н	-1.56969	-0.90091	-2.53153	
0	0.854764	3.779024	-0.16735	0	0.853624	3.777902	-0.16867	
0	-6.22687	-0.78187	0.369164	0	-6.24299	-0.76004	0.26649	
0	7.117431	-1.43078	0.473609	0	7.157251	-1.39724	0.370233	
Н	6.679191	-0.56657	0.338205	Н	6.709214	-0.53707	0.2394	
0	-2.36627	-2.62496	-0.33835	0	-2.38382	-2.64068	-0.37026	
N	3.948016	-1.31354	-0.16905	Ν	3.96437	-1.30348	-0.14582	
С	1.292849	2.490973	-0.21061	С	1.293648	2.490201	-0.19575	
С	0.566698	0.15143	-0.37012	С	0.574633	0.149914	-0.28627	
С	0.273119	1.517845	-0.32784	С	0.269866	1.514079	-0.26547	
С	1.899039	-0.24705	-0.29117	С	1.908509	-0.24384	-0.23325	
С	4.20371	0.034009	-0.12277	С	4.216128	0.046924	-0.13572	
С	2.889387	0.717459	-0.17916	С	2.899725	0.724452	-0.16682	
С	-1.71721	-0.33029	-0.75711	С	-1.68855	-0.34877	-0.68966	
С	2.627346	2.086866	-0.14269	С	2.630538	2.092798	-0.15321	
Н	3.446037	2.789206	-0.05409	Н	3.447227	2.801247	-0.10195	
С	-4.39374	0.445538	-0.0321	С	-4.39461	0.453006	-0.11664	
С	-4.06508	-0.95874	-0.12523	С	-4.06532	-0.95499	-0.1411	
С	2.509929	-1.62664	-0.29769	С	2.524628	-1.62182	-0.22609	
Н	2.3342	-2.11585	-1.26768	Н	2.323383	-2.13513	-1.17892	
С	-1.98314	0.975735	0.045209	С	-1.99419	0.980617	0.048873	
С	-2.71625	-1.45989	-0.3811	С	-2.71299	-1.46482	-0.35105	
С	-3.38286	1.53188	-0.25674	С	-3.37121	1.525543	-0.35195	
Н	-3.57411	2.414744	0.358663	Н	-3.58872	2.440736	0.204806	
Н	-3.39476	1.86124	-1.29971	Н	-3.31785	1.792949	-1.41109	
С	4.977699	-2.33678	-0.36366	С	4.988958	-2.32748	-0.36024	
Н	5.450498	-2.21207	-1.34726	Н	5.421035	-2.22385	-1.36499	
Н	4.460568	-3.30053	-0.36448	Н	4.476118	-3.29277	-0.31823	
С	-5.22031	-1.65949	0.132803	С	-5.23109	-1.64565	0.098738	
С	-5.7129	0.492746	0.273676	С	-5.72375	0.511125	0.137992	
Н	-6.41507	1.292101	0.450386	Н	-6.43215	1.316099	0.253438	
С	6.089641	-2.36166	0.700534	С	6.143997	-2.32714	0.657347	
Н	5.623163	-2.25022	1.695095	Н	5.718266	-2.1981	1.667924	
Н	6.553664	-3.35517	0.671454	Н	6.610675	-3.31948	0.628143	
С	1.985293	-2.54035	0.818156	С	2.037729	-2.51134	0.925964	

Н	2.488175	-3.51199	0.801511	Н	2.54453	-3.48111	0.917555
Н	0.914275	-2.70705	0.678977	Η	0.963673	-2.68552	0.824702
Н	2.149928	-2.07945	1.796096	Η	2.229743	-2.02641	1.887047
С	-1.91748	1.686532	2.341963	С	-2.10293	1.68786	2.346418
Н	-1.39784	2.593662	2.017852	Н	-1.54862	2.590037	2.069325
Н	-1.46158	1.316033	3.261113	Н	-1.734	1.315181	3.303155
Н	-2.97288	1.911866	2.535713	Н	-3.16925	1.924548	2.446464
С	-5.53385	-3.10918	0.190488	С	-5.54832	-3.09197	0.20458
Н	-5.94656	-3.38032	1.168438	Н	-5.96523	-3.32976	1.18955
Н	-4.61807	-3.67507	0.017891	Н	-4.63383	-3.66605	0.05345
Н	-6.27652	-3.38098	-0.56811	Н	-6.28976	-3.38641	-0.54662
С	1.836261	4.803135	-0.06397	С	1.833929	4.805725	-0.11813
Н	1.284926	5.743925	-0.04887	Н	1.280683	5.745562	-0.11035
Н	2.517662	4.794209	-0.92321	Н	2.491172	4.777892	-0.99578
Н	2.420947	4.708627	0.859207	Н	2.445174	4.735775	0.790207
3 -i				3 -j			
0	-1.0225	2.009828	-0.23938	0	-1.03037	2.008248	-0.33324
0	-0.32462	-0.73712	-0.4533	0	-0.33368	-0.72079	-0.56481
0	-1.78604	0.567372	1.426972	0	-1.68542	0.579512	1.404573
0	5.375135	0.797029	-0.37987	0	5.367857	0.77683	-0.31598
0	-1.77382	0.061854	-2.08533	0	-1.88553	0.035292	-2.134
Н	-1.54427	-0.72581	-2.60128	Н	-1.47668	0.897366	-2.31344
0	0.818144	3.871644	-0.04436	0	0.821773	3.869895	-0.04606
0	-6.14039	-0.88113	0.338926	0	-6.12664	-0.90112	0.415787
0	5.935244	-2.07941	1.608597	0	5.892104	-2.10473	1.633653
Н	6.169821	-2.63929	2.358904	Н	6.101275	-2.66649	2.390038
0	-2.25557	-2.61383	-0.51741	0	-2.23891	-2.60195	-0.47095
Ν	4.055402	-1.12261	-0.39527	Ν	4.040758	-1.13669	-0.39679
С	1.290775	2.598711	-0.15837	С	1.291951	2.596797	-0.16932
С	0.633589	0.248801	-0.36139	С	0.624999	0.249794	-0.42908
С	0.292703	1.600091	-0.25331	С	0.29619	1.603433	-0.30825
С	1.978344	-0.11181	-0.3637	С	1.968803	-0.11715	-0.4028
С	4.285005	0.244328	-0.34105	С	4.275902	0.226579	-0.31487
С	2.943396	0.879417	-0.2742	С	2.934809	0.868321	-0.27286
С	-1.62964	-0.28827	-0.72756	С	-1.65654	-0.27205	-0.78476
С	2.638117	2.236206	-0.18093	С	2.637698	2.225864	-0.16361
Н	3.438812	2.962191	-0.11998	Н	3.442118	2.944074	-0.06944
С	-4.33689	0.403384	-0.02666	С	-4.3342	0.39392	0.042388
С	-3.97169	-0.99095	-0.1434	С	-3.97246	-0.99413	-0.13312
С	2.628784	-1.47545	-0.4564	С	2.614173	-1.48172	-0.50558
Н	2.410979	-1.93139	-1.43616	Н	2.421441	-1.91332	-1.50107
С	-1.94583	0.987376	0.096018	С	-1.93539	0.983101	0.091419
С	-2.61305	-1.44989	-0.42261	С	-2.61741	-1.44521	-0.44557

С	-3.34958	1.515859	-0.22832	С	-3.35633	1.516768	-0.14536
Н	-3.57225	2.389493	0.389802	Н	-3.5534	2.358668	0.523335
Н	-3.33826	1.847386	-1.27046	Н	-3.40291	1.902672	-1.16768
С	5.144525	-2.04486	-0.65041	С	5.131435	-2.06243	-0.63509
Н	5.998415	-1.42378	-0.93673	Н	5.993788	-1.44527	-0.90407
Н	4.890775	-2.69874	-1.49688	Н	4.888953	-2.71207	-1.48764
С	-5.11067	-1.72666	0.089742	С	-5.10336	-1.7378	0.111146
С	-5.6586	0.409415	0.269826	С	-5.64687	0.389957	0.378228
Н	-6.38373	1.186274	0.453568	Н	-6.36464	1.160079	0.612563
С	5.56237	-2.92129	0.531779	С	5.522838	-2.94313	0.552696
Н	4.746297	-3.60075	0.817284	Н	4.694362	-3.6116	0.827776
Н	6.403046	-3.54954	0.190992	Н	6.360183	-3.58193	0.223617
С	2.164289	-2.44437	0.642072	С	2.112561	-2.47266	0.55581
Н	2.60384	-3.4361	0.505432	Н	2.556817	-3.46135	0.41267
Н	1.077314	-2.5485	0.601333	Н	1.02773	-2.57544	0.473981
Н	2.45286	-2.06462	1.626057	Н	2.366318	-2.11459	1.557474
С	-1.98636	1.559117	2.433054	С	-1.81821	1.576759	2.418928
Н	-1.45958	2.486308	2.18661	Н	-1.32696	2.509448	2.12453
Н	-1.574	1.141543	3.352901	Н	-1.32587	1.17136	3.304016
Н	-3.05215	1.768811	2.586823	Н	-2.87105	1.770767	2.656745
С	-5.38576	-3.1852	0.119955	С	-5.37818	-3.19646	0.097431
Н	-5.76434	-3.49168	1.101453	Н	-5.75039	-3.53279	1.071481
Н	-4.4611	-3.7225	-0.09229	Н	-4.45418	-3.7263	-0.13537
Н	-6.1425	-3.45713	-0.62449	Н	-6.13884	-3.44625	-0.65082
С	1.774115	4.919421	0.034035	С	1.780519	4.910935	0.087148
Н	1.199383	5.843166	0.112902	Н	1.207819	5.835457	0.170624
Н	2.403373	4.958286	-0.86363	Н	2.437089	4.967549	-0.7896
Н	2.416956	4.814421	0.916956	Н	2.394805	4.78043	0.986537

Table S6. Optimized coordinates of compound 5 at B3LYP/6-31++G(d,p) level in methanol

Atom	Х	Y	Z	Atom	Х	Y	Z
0	-0.026	-0.984	-0.128	С	-2.294	1.966	-0.237
0	1.094	-0.157	-1.993	С	-3.536	1.343	-0.101
Н	1.061	-1.04	-2.402	Н	-4.461	1.906	-0.08
0	2.231	-2.429	-0.12	С	-3.547	-0.048	0.023
0	-2.323	-2.801	1.413	С	-4.691	-0.959	0.204
Н	-1.354	-2.872	1.367	С	-2.764	-2.28	0.173
0	5.726	0.141	0.118	С	-2.399	-0.819	-0.003
0	1.217	0.848	1.401	С	-1.16	-0.207	-0.135
0	-2.095	3.302	-0.359	С	5.477	-2.272	0.257
0	-5.877	-0.723	0.275	Н	6.218	-2.486	-0.522
0	0.085	1.848	-0.377	Н	4.684	-3.02	0.21
0	-4.205	-2.244	0.283	Н	5.984	-2.348	1.226

С	1.139	-0.329	-0.601	С	1.337	1.992	2.257
С	2.36	-1.217	-0.234	Н	1.08	1.64	3.257
С	3.605	-0.468	-0.148	Н	0.642	2.782	1.959
С	4.889	-0.922	0.072	Н	2.362	2.378	2.265
С	4.981	1.289	-0.066	С	-3.245	4.151	-0.343
Н	5.537	2.213	-0.043	Н	-3.915	3.923	-1.179
С	3.675	0.975	-0.239	Н	-2.861	5.167	-0.447
С	2.469	1.834	-0.487	Н	-3.791	4.059	0.603
Н	2.329	2.011	-1.558	С	-2.385	-3.188	-0.991
Н	2.549	2.812	-0.005	Н	-2.766	-4.195	-0.802
С	1.23	1.088	0.023	Н	-1.296	-3.229	-1.089
С	-1.107	1.186	-0.248	Н	-2.806	-2.812	-1.927

Figure S1. ¹H NMR spectrum of canescone A (1) in pyridine-*d*₅.

Figure S2. ¹³C NMR spectrum of canescone A (1) in pyridine- d_5 .

Figure S3. DEPT-135° spectrum of canescone A (1) in pyridine- d_5 .

Figure S4. COSY spectrum of canescone A (1) in pyridine- d_5 .

Figure S5. HSQC spectrum of canescone A (1) in pyridine- d_5 .

Figure S6. HMBC spectrum of canescone A (1) in pyridine- d_5 .

Figure S7. NOESY spectrum of canescone A (1) in pyridine- d_5 .

Figure S9. ¹H NMR spectrum of canescone B (2) in pyridine-*d*₅.

Figure S10. ¹³C NMR spectrum of canescone B (2) in pyridine-*d*₅.

Figure S11. DEPT-135° spectrum of canescone B (2) in pyridine- d_5 .

Figure S12. HSQC spectrum of canescone B (2) in pyridine-d₅.

Figure S13. COSY spectrum of canescone B (2) in pyridine- d_5 .

Figure S14. HMBC spectrum of canescone B (2) in pyridine-*d*₅.

Figure S15. NOESY spectrum of canescone B (2) in pyridine-*d*₅.

Figure S16. (+) ESI-MS spectrum of canescone B (2).

Figure S17. ¹H NMR spectrum of canescone C (3) in DMSO-*d*₆.

Figure S18. ¹³C NMR spectrum of canescone C (3) in DMSO-*d*₆.

Figure S19. DEPT-135° spectrum of canescone C (3) in DMSO-d₆.

Figure S20. HSQC spectrum of canescone C (3) in DMSO-d₆.

Figure S21. COSY spectrum of canescone C (3) in DMSO-*d*₆.

Figure S22. HMBC spectrum of canescone C (3) in DMSO- d_6 .

Figure S23. NOESY spectrum of canescone C (3) in DMSO- d_6 .

Figure S25. ¹H NMR spectrum of canescone D (4) in DMSO- d_6 .

Figure S26. ¹³C NMR spectrum of canescone D (4) in DMSO- d_6 .

Figure S27. DEPT-135° spectrum of canescone D (4) in DMSO-*d*₆.

Figure S28. HSQC spectrum of canescone D (4) in DMSO-*d*₆.

Figure S29. HMBC spectrum of canescone D (4) in DMSO- d_6 .

Figure S30. (+) ESI-MS spectrum of canescone D (4).

Figure S31. ¹H NMR spectrum of canescone E (5) in DMSO- d_6 .

Figure S32. ¹³C NMR spectrum of canescone E (5) in DMSO- d_6 .

Figure S33. DEPT-135° spectrum of canescone E (5) in DMSO- d_6 .

Figure S34. HSQC spectrum of canescone E (5) in DMSO- d_6 .

Figure S35. COSY spectrum of canescone E (5) in DMSO- d_6 .

Figure S37. Comparison of calculated and experimental ECD spectra of 5.

Figure S38. ¹H NMR spectrum of the mixture of 4 and 5 in DMSO- d_6 .

Figure S39. ¹³C NMR spectrum of the mixture of 4 and 5 in DMSO- d_6 .

Figure S 40. DEPT-135° spectrum of the mixture of 4 and 5 in DMSO-*d*₆.

Figure S41. HSQC spectrum of the mixture of 4 and 5 in DMSO-*d*₆.

Figure S42. HMBC spectrum of the mixture of 4 and 5 in DMSO- d_6 .

Figure S43. The enlargement view of annotated amino acids. Low-energy binding conformations of (+)-3 (A) and (-)-3 (B) bound to PTP1B enzyme generated by virtual ligand docking. Purple and green lines indicate hydrogen bonds and π - π interactions, respectively.