Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Supporting Information

Platinum(II)-catalyzed dehydrative C3-benzylation of electrondeficient indoles with benzyl alcohols

Hidemasa Hikawa*, Yuuki Matsuura, Shoko Kikkawa, and Isao Azumaya*

Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan hidemasa.hikawa@phar.toho-u.ac.jp and isao.azumaya@phar.toho-u.ac.jp

1. Table of contents	S1	
2. Kinetic solvent isotope effect (KSIE) (Scheme S1 and Figure S1-2).	S2	
3. Hammett study (Scheme S2).	S3	
4. Control experiments (Scheme S3).	S4	
5. Scale-up experiment (Scheme S4).	S5	
6. Copies of ¹ H and ¹³ C NMR spectra of all compounds		

Scheme S1. Rates on the dehydrative coupling with stoichiometric amounts of water.

A mixture of 5-nitroindole **1a** (165 mg, 1 mmol), $PtCl_2(PhCN)_2$ (23 mg, 0.05 mmol), benzhydrole **2a** (221 mg, 1.2 mmol), and H₂O or D₂O (1 mmol) in 1,2-dichloroethane (4 mL) was heated at 60 °C under air. After the reaction mixture was cooled, 1,3,5-trimethoxybenzene (168 mg, 1 mmol, internal standard) was added to the reaction mixture, which was extracted with EtOAc. The organic layer was concentrated in vacuo. The residue was analyzed by ¹H-NMR spectroscopy.

Figure S1. Comparison of reaction rates in the presence of H_2O and D_2O .

	0	0								In [2a]/[2a] ₀		[2a]/[[2a]/[2a] ₀	
In [2a]/[2a] ₀	-0.2 -0.4				V	= -0.2	0_20	Time (h	י) ו	H ₂ O	D ₂ C	H ₂ O	D ₂ O	
	-0.6				• • •	R ² =	= 0.97		1	-0.00837	-0.00837	0.991667	0.99167	
	-1						The second s		2	-0.21278	-0.08701	0.808333	0.91667	
	-1.2 -1.4	H_2O v = -0.3501x + 0.4							3	-0.64436	-0.2877	0.525	0.75	
	-1.6			R ²	= 0.99				4	-0.93735	-0.51083	0.391666	0.6	
	-2		2	2					5	-1.38629	-0.85567	0.25	0.425	
		1	2	3 Time	4 e (h)	5	Ь		6	-1.69647	-1.1499	0.18333	0.31667	

Figure S2. Isotope effect measured for the reactions.

KSIE $(k_{H_2O}/k_{D_2O}) = 0.3501/0.2353 = 1.5$

Scheme S2. Hammett study [see: (a) Wang, D. *et al. Org. Chem. Front.* 2019, *6*, 62-69. (b) Echavarren,
A. M. *et al. ACS Catal.* 2018, *8*, 2166-2172. (c) M. Szostak, *J. Org. Chem.* 2017, *82*, 6528-6540. (d) Q.
Song, *Org. Lett.* 2016, *18*, 4088-4091.]

A mixture of benzhydryl alcohols **2X** (1 mmol), benzhydrol (**2a**) (186 mg, 1 mmol), 5-nitroindole (**1a**) (165 mg, 1 mmol), $PtCl_2(PhCN)_2$ (23.6 mg, 0.05 mmol) in 1,2-dichloroethane (4 mL) was heated at 90 °C for 5 h in a sealed tube under air. After cooling, the reaction mixture was poured into water and extracted with EtOAc. The organic layer was analyzed by ¹H-NMR spectroscopy.

	σρ	$\log(k_{\rm X}/k_{\rm H})$
OMe	-0.27	0.8
Me	-0.17	0.51
Н	0	0
F	0.06	-0.051
Cl	0.23	-0.66

 $\log(\text{conversion X/conversion H}) = \log(0.89/1) = -0.051$

Scheme S3: a ¹H NMR study

$$\begin{array}{c} O_2 N \\ \hline \\ 1a \end{array} \xrightarrow{N} \\ H \end{array} \xrightarrow{PtCl_2(PhCN)_2 (1 equiv)}{CDCl_3, 60 \ ^\circ C} \\ 15 min \text{ or } 5 \text{ h} \end{array} \xrightarrow{1a-Pt(II) \text{ complex}}$$

A mixture of 5-nitroindole **1a** (8.4 mg, 0.05 mmol), bis(benzonitrile)dichloroplatinum(II) (13.3 mg, 0.05 mmol) and CDCl₃ (4 mL) was heated at 60 °C under air. After cooling, the reaction mixture was analyzed by ¹H-NMR spectroscopy.

Scheme S4. Scale-up experiment.

A mixture of 5-nitroindole **1a** (1.14 g, 7 mmol), bis(benzonitrile)dichloroplatinum(II) (33 mg, 0.07 mmol), benzhydrol **2a** (1.55 g, 8.4 mmol) and water (126 mg, 7 mmol) in 1,2-dichloroethane (28 mL) was heated at 60 °C for 36 h under air. After cooling, *n*-hexane was added to the reaction mixture. The precipitate was filtered to give desired product **3a** as yellow solid (2.12 g, 92%).

3-Benzhydryl-5-nitro-1*H*-indole **3a**

3-Benzhydryl-4-nitro-1*H*-indole **3b**

3-Benzhydryl-6-nitro-1*H*-indole **3**c

3-Benzhydryl-7-nitro-1*H*-indole **3d**

3-Benzhydryl-1*H*-indole-5-carboxylic acid **3e**

3-Benzhydryl-1*H*-indole-6-carboxylic acid **3f**

3-Benzhydryl-1*H*-indole-7-carboxylic aci **3g**

3-Benzhydryl-1*H*-indole-5-carbonitrile **3h**

3-Benzhydryl-5-chloro-1*H*-indole **3i**

3-Benzhydryl-1*H*-indole-2-carboxylic acid **3**j

3-Benzhydryl-1-methyl-2-phenyl-1*H*-indole **3**k

S16

3-[Bis(4-methoxyphenyl)methyl]-5-nitro-1*H*-indole 31

3-[Bis(4-chlorophenyl)methyl]-5-nitro-1*H*-indole **3m**

3-[Bis(4-fluorophenyl)methyl]-5-nitro-1*H*-indole **3n**

3-[(4-Methoxyphenyl)(phenyl)methyl]-5-nitro-1*H*-indole 30

5-Nitro-3-[phenyl(*p*-tolyl)methyl]-1*H*-indole **3p**

3-[(4-Chlorophenyl)(phenyl)methyl]-5-nitro-1*H*-indole **3q**

5-Nitro-3-{phenyl[3-(trifluoromethyl)phenyl]methyl}-1*H*-indole **3r**

3-[1-(4-Methoxyphenyl)ethyl]-5-nitro-1*H*-indole **3s**

5-Nitro-3-(1-phenylethyl)-1*H*-indole **3t**

0.1

abundance

150.0

50.0

30.0

40.0

36.708-

20.0 10.0

22.320-

120.0 110.0 100.0 90.0 80.0 70.0 60.0

(*E*)-3-(1,3-Diphenylallyl)-5-nitro-1*H*-indole **3u**

5-Nitro-3-trityl-1*H*-indole **3v**

