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Figure S50. GC spectrum of 3 without cavitand 1 36
General Information and experimental procedure

All commercially available chemicals were purchased from TCI, Alfa aesar, Energy chemicals,
Macklin and used without further purification. Dry solvents directly purchased from Energy
chemical and transferred via dry syringe. NMR solvents were obtained from Cambridge Isotope
Laboratories, Inc. 'H NMR, and COSY NMR spectra were recorded at 600 MHz on a Bruker DRX-
600 spectrometer at the reported temperatures. Chemical shifts are reported in ppm using the
residual solvent peaks as reference: D,O 6 = 4.79 ppm ('H NMR); CD;0D 6 = 3.34 ppm ('H

NMR). GC analyses were performed by SHIMADZU Nexis GC 2030 gas chromatography.

Experimental procedures: In a vial, a solution of the guest (50 mM in MeOH, 14 pL) was added
and methanol was removed by reduced pressure. Cavitand 1 in D,O (1.4 mM, 0.5 mL) was added to
the vial in order to get a host-guest ratio 1:1. The final mixture was sonicated for 6 h and analyzed

by '"H NMR spectroscopy.

Ad Calculation:

Ad (ppm) = the chemical shift of bound (ppm)-the chemical shift of free (ppm)

Cavitand 1 was synthesized according to reported procedure in literature.!-3

Synthesis of monepoxides 4c-f

mCPBA,DCM O —
AN P

t, 1h

n=7(2d) n=7(ad)
n =8 (2e) n =8 (de)
n =9 (2f) n =9 (4f)



General experiment : To a stirred solution of dienes (2d-f, 6 mmol) in DCM (10 ml), was added

m-chloroperbenzoic acid (m-CPBA) (3 mmol) and the resulting mixture stirred for 2 h. Then

quenched with NaHCOj3,q) (10 mL) and extracted with EtOAc (2 x 10 mL). The combined organic

layers was dried over Na,SQOy, filtered and concentrated under reduced pressure. The resultant crude
was further purified column chromotography (Si0,, EtOAc/ hexane, 1:19) to give 4c¢-f as a

colourless oil.

2-(non-8-en-1-yl)oxirane (4d)*: 'H NMR (CDCl;3, 600 MHz): 6 5.84-5.79 (m, 1H), 4.99 (d, /= 18
Hz, 1H), 4.93 (d,J= 6 Hz, 1H), 2.92-2.89 (m, 1H), 2.74 (t, J = 6 Hz, 1H), 2.46 (dd,J= 6 Hz, J= 6
Hz, 1H), 2.04 (m, 2H), 1.54-1.52 (m, 2H), 1.47-1.43 (m, 2H), 1.40-1.28 (m, 8H). 3C NMR (CDCl,

150 MHz): & 139.2, 114.2, 52.4,47.1, 33.8, 32.5, 29.4, 29.0, 28.9, 25.9.

2-(dec-9-en-1-yl)oxirane (4e)> °: 'H NMR (CDCl;, 600 MHz): & 5.83-5.78 (m, 1H), 4.99 (d, J = 18
Hz, 1H), 4.92 (d, /= 6 Hz, 1H), 2.91-2.88 (m, 1H), 2.74 (t, J = 6 Hz, 1H), 2.46-2.45 (m, 1H), 2.06-
2.02 (m, 2H), 1.54-1.51 (m, 2H), 1.48-1.41 (m, 2H), 1.40-1.32 (m, 4H), 1.32-1.27 (m, 6H). 13C

NMR (CDCIl3, 150 MHz): 6 139.2, 114.1, 52.4, 47.1, 33.8, 32.5, 29.5, 29.4, 29.3, 29.1, 28.9, 26.0.

2-(undec-10-en-1-yl)oxirane (4f): '"H NMR (CDCls, 600 MHz): & 5.86-5.76 (m, 1H), 4.99 (d, J=
24 Hz, 1H), 4.93 (d, J = 18 Hz, 1H), 2.92-2.89 (m, 1H), 2.75 (t, J = 6 Hz, 1H), 2.48-2.45 (m, 1H),
2.04 (m, 2H), 1.53-1.49 (m, 2H), 1.39-1.30 (m, 4 H), 1.28 (m, 8H). 3C NMR (CDCls, 150 MHz): §

139.3,114.2,52.5,47.2,33.9, 32.6, 29.6, 29.6, 29.5, 29.2, 29.0, 26.1.

Synthesis of Bromohydrin (Cyp): 2-(oct-7-en-1-yl)oxirane (300 mg, 1.94 mmol) was added to a
solution of LiBr (540 mg, 6.21 mmol), CuBr, (693 mg, 3.10 mmol) in dry THF (20 mL) at room
temperature. The resultant mixture was stirred for 4 h at room temperature. Then quenched with
NH4Cl(4q) (10 mL) and extracted with ethyl acetate (2 x 10 mL). The combined organic layer dried

over Na,SQ,, filtered and concentrated under reduced pressure. The resultant crude was further
5



purified by column chromatography (SiO,, EtOAc/ hexane, 1:18) to provided bromohydrin as
colorless oil. "TH NMR (CDCl;, 600 MHz):  5.83-5.78 (m, 1H), 4.99 (d, J = 18 Hz, 1H), 4.93 (d, J
= 12 Hz, 1H), 3.78-3.77 (m, 1H), 2.10 (d, J = 6 Hz, 1H), 2.06-2.02 (m, 2H), 1.57-1.53 (m, 2H),
1.48-1.43 (m, 1H), 1.40-1.30 (m, 7H). 3C NMR (CDCl;, 150 MHz): & 139.1, 114.3, 71.1, 40.7,

35.1,33.7,29.3, 28.9, 28.8, 25.6.

1,6-di(oxiran-2-yl)hexane (diepoxide)’: Synthesized by using reported procedure. 'H NMR
(CDCl;, 600 MHz): 6 2.91-2.88 (m, 1H), 2.73 (t, ] = 6 Hz, 1H), 2.45 (dd, J =3 Hz, ] = 5 Hz, 1H),

1.64-1.27 (m, 6H). 3C NMR (CDCl;, 150 MHz): 6 52.3,47.1, 32.4, 29.3, 25.9.

Approximate upfield shifts (—Ad) experienced by nuclei in cavitands 1

Figure S1. Approximate upfield shifts (—Ad) experienced by nuclei in cavitand 1.



'H and 3C NMR spectra of authentic compounds
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Figure S2. 'H NMR of 4d (CDCls, 600 MHz)
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Figure S3. *C NMR of 4d (CDCl,, 150 MHz)
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Binding and conformation studies in cavitand 1
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Figure S12. Stacked full "H NMR spectra of a,m-dienes (2a-g) binding in cavitand 1.
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a deca-1,9-diene (C;g)

Free Bound

Ad

(ppm) | (ppm)

(ppm)

J—
-

2,9 5.73 3.82

-1.91

3.8 2.01 -0.32

9//

-2.33

4,7 1.30 -1.08

-2.38

5,6 1.28 -1.19

2.47

Figure S14. Cartoon conformation and relative chemical shifts of 2¢ in 1. The average Ao value for

each methylene is recorded on the structure.
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Figure S15. Full 'H NMR spectrum of 1,4-di(prop-1-en-2-yl)benzene (3) in 1.
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8 1,4-di(prop-1-en-2-yl)benzene (3)

2 H
HsC / H7 Free | Bound Ao
(ppm) | (ppm) | (ppm)

CHy2) | 221 22 0.01
ﬁ HE 509 | 501 | 008

H’ 5.4 501 | 039
wHe | 745 | 597 | 1.48
H4E | 745 | 501 | 244

H! 5.4 139 | -4.01
CHy1) | 2.16 | -231 | -4.47

H2 509 | 031 | -4.78

Figure S16. Cartoon conformation and relative chemical shifts of 3 in 1. The average Ad value for
each methylene is recorded on the structure.
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Figure S17. Full stacked spectra of 3 in 1 (400 MHz, D,0) at low temperature (1) 10 °C; (2) 5 °C.

Mono functionalization reaction of a,w-dienes 2c¢-g (Cy¢-C14) and aromatic-1,4-substituted
diene 3 by epoxidation with NBS
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f1 (ppm)
Figure S18. Stacked full 'H NMR spectra 2a in 1. Reaction progress were recorded after addition
of NBS (14 uL, 50 mM in DMSO-d) and stirred at 50 °C : (1) after 3 h under sonication at 25 °C,
DMSO-dsused as co-solvent; (2) sample 1, NBS (14 pL, 50 mM in DMSO-dg), 12 h; (3) sample 2,
K,;CO;3 (7 pL in D,0O), 12 h. The product mon-epoxide (Cg) could be more soluble in water
(hydrophilic), therefore most time product stay in water.
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Figure S19. Stacked full "H NMR spectra 2b in 1. Reaction progress were recorded after addition
of NBS (14 uL, 50 mM in DMSO-d) and stirred at 50 °C : (1) after 3 h under sonication at 25 °C,
DMSO-dsused as co-solvent; (2) sample 1, NBS (14 uL, 50 mM in DMSO-dj), 12 h; (3) sample 2,
K,CO; (7 puL in D,O), 12 h. The product mon-epoxide (Cg) could be more soluble in water

(hydrophilic), therefore most time product stay in water.
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Figure S20. Stacked full "H NMR spectra 2¢ in 1. Reaction progress were recorded after addition of
NBS (14 pL, 50 mM in DMSO-dg) and stirred at 50 °C : (1) after 3 h under sonication at 25 °C,
DMSO-dsused as co-solvent; (2) sample 1, NBS (14 uL, 50 mM in DMSO-dj), 12 h; (3) sample 2,
K,CO; (7 uL in D,0O), 12 h; (4) spectra of authentic C;o monoepoxide.
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Figure S21. Stacked full '"H NMR spectra 2d in cavitand 1. Reaction progress were recorded after
addition of NBS (14 pL, 50 mM in DMSO-dj) and stirred at 50 °C: (1) after 3 h under sonication at
25 °C, DMSO-d; used as co-solvent; (2) sample 1, NBS (14 pL, 50 mM in DMSO-d6), 12 h; (3)
sample 2, K,CO; (7 puL in D,0), 12 h; (4) spectra of authentic C;; monoepoxide.
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Figure S22. Stacked full "H NMR spectra 2e in cavitand 1. Reaction progress were recorded after
addition of NBS (14 pL, 50 mM in DMSO-dy) and stirred at 50 °C: (1) after 3 h under sonication at
25 °C, DMSO-dg used as co-solvent; (2) sample 1, NBS (14 pL, 50 mM in DMSO-dg), 12 h; (3)
sample 2, K,CO; (7 uL in D,0), 12 h; (4) spectra of authentic C;, monoepoxide.
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Figure S23. Stacked full 'H NMR spectra 2f in cavitand 1. Reaction progress were recorded after
addition of NBS (14 uL, 50 mM in DMSO-dj) and stirred at 50 °C: (1) after 3 h under sonication at
25 °C, DMSO-ds used as co-solvent; (2) sample 1, NBS (14 uL, 50 mM in DMSO-dy), 2 h; (3)
sample 2, 4h; (4) K,CO; (7 uL in D,0), 4 h; (4) spectra of authentic C;3 monoepoxide.
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Figure S24. Stacked full '"H NMR spectra 2g in cavitand 1. Reaction progress were recorded after
addition of NBS (14 pL, 50 mM in DMSO-dj) and stirred at 50 °C: (1) after 3 h under sonication at
25 °C, DMSO-d; used as co-solvent; (2) sample 1, NBS (14 uL, 50 mM in DMSO-dy), 2 h; (3)
sample 2, 4h; (4) K,CO; (7 uL in D,0), 4 h; (4) spectra of authentic C;4 monoepoxide.
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Mono epoxide conformational study and stability
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Figure S25. Partial COSY NMR spectrum of 2-(dec-9-en-1-yl)oxirane 4e (C;;) in 1.

2-(dec-9-en-1-yl)oxirane (C,,)
Free Bound A
(ppm) (ppm) | (ppm)
1 2.61 2.61 0
2 2.29 2.28 0.01
3 1.48 0.89 -0.59
4 1.38 0.41 -0.97
5 1.30 0.11 -1.19
6 1.30 -0.63 -1.93
7 1.30 -1.54 -2.84
8 1.30 -2.05 -3.35
9 1.40 -2.57 -3.97
10 2.02 -1.89 -3.91
11 5.7
12 4.97

Figure S26. Cartoon conformation and relative chemical shifts of 2-(dec-9-en-1-yl)oxirane 4e (C;,)
in 1. The average Ad value for each methylene is recorded on the structure.
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Figure S27. Partial COSY NMR spectrum of 2-(undec-10-en-1-yl)oxirane 4f (C;3)in cavitand 1.

2-(undec-10-en-1-yl)oxirane (C13)
Free Bound Ad
(ppm) (ppm) (ppm)
1 2.79 2.79 0
2 2.74 2.70 -0.04
3 1.36 1.07 -0.29
4 1.27 0.72 -0.55
5 1.27 0.17 -1.10
6 1.27 -0.30 -1.57
7 1.27 -0.84 -2.11
8 1.27 -1.67 -2.94
9 1.44 -2.09 -3.53
10 1.51 -2.51 -4.02
11 2.04 -1.72 -3.76
12 5.81
13 4.9

Figure S28. Cartoon conformation and relative chemical shifts of 2-(undec-10-en-1-yl)oxirane 4f
(Cy3) in cavitand 1. The average A0 value for each methylene is recorded on the structure.
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Confirmation of bromohydrin intermediate formation in cavitand 1 with NBS
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Figure S29. Stacked Full 'H NMR spectrum to confirm bromohydrin intermediate; (1) authentic
bromohydrin in cavitand 1; (2) 2¢ in cavitand 1, after addition of NBS (1 equiv.) and stirred at 50
°C for 12 h.
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Figure S30. Partial "H NMR spectra of 2¢-f. Spectra recorded after reaction with 0.2 equiv. excess
of NBS; Stirred for 6 hours. (1) C;( diene; (2) Cy; diene; (3) Cy, diene; (4) Cy3 diene
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Figure S31. Stacked full spectrum of cavitand 1 with cycloheptane (1:1) host-guest ratio. (1)
cavitand 1 with guest cycloheptane (1:1); (2) spectrum 1, with 1 eq. of NBS and stirred for 12 h at
50 °C.

Relative yield calculations of mono epoxidation with a,m-dienes

Dimethyl sulfone was used as water soluble internal standard (NMR chemical shift for six protons =
3.15 ppm). Concentration of the internal standard (IS) was always used 1.4 mM. The reaction
substrates (2¢-f) (1.4 mM), and cavitand 1 (1.4 mM) was added and sonicated for 3 h to ensure
complete complexation. After complexation, internal standard (IS) was added and recorded the 'H
NMR spectroscopy. Integration of IS and bound guest peaks (2¢c-f) was checked before the reaction.
Again, the integration of IS and product nuclei was checked after reaction with sequencial addition

DMSO-d; at given temperature and time.

% of yield was calculated by following equation using selective known peak integration.

) Integration number of after reaction for 2 protons
% of yield = - , x 100
Integration number of before reaction for 2 protons
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Figure S32. Full 'H NMR spectra of 4¢ with internal standard for quantifying the yield.

Spectrum A is before reaction; Spectrum B is after reaction.
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Figure S33. Full '"H NMR spectra of 4d with internal standard for quantifying the yield.

Spectrum A is before reaction; Spectrum B is after reaction.
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Figure S34. Full "H NMR spectra of 4e with internal standard for quantifying the yield.
Spectrum A is before reaction; Spectrum B is after reaction.
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Figure S35. Full 'H NMR spectra of 4f with internal standard for quantifying the yield.

Spectrum A is before reaction; Spectrum B is after reaction.
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Reactivity of 1,4-disubstituted aromatic diene in 1 with NBS
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Figure S36. Stacked full "H NMR spectra 3 in cavitand 1. Reaction progress were recorded after
addition of NBS (14 pL, 50 mM in DMSO-dj) and stirred at 50 °C: (1) after 1 h under sonication at
25 °C, DMSO-ds used as co-solvent; (2) sample 1, NBS (14 pL, 50 mM in DMSO-dy), 2 h; (3)
sample 2, 4h; (4) K,CO; (7 uL in D,0), 4 h; (4) spectra of authentic monoepoxide.
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Figure S37. Full stacked 'H NMR spectra of 3. (1) binding of 3 in 1 (2:1); (2) after reaction with
NBS (1 eq), K,CO; (0.5 equiv). (3) sample 2, long time stirred at rt for 8 h; (4) authentic aldehyde
6.
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Relative yield calculations of mono-functionalization of aromatic-1,2-substituted diene (3)

Dimethyl sulfone was used as water soluble internal standard (NMR chemical shift for six protons =
3.15 ppm). Concentration of the internal standard (IS) was always used 1.4 mM. The reaction
substrate 3 (1.4 mM), and cavitand 1 (2.8 mM) was added and sonicated for 3 h to ensure complete
complexation. After complexation, internal standard (IS) was added and recorded the 'H NMR
spectroscopy. Integration of IS and bound guest peaks (5) was checked before the reaction. Again,
the integration of IS and product nuclei was checked after reaction with sequencial addition DMSO-

dgs at given temperature and time.
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Figure S38. Full 'H NMR spectra of 3 with internal standard for quantifying the yield.

Spectrum A is before reaction; Spectrum B is after reaction.

Control experiments without cavitand 1 for a,m-diene (C;g)

General procedure: A solution of 2¢ in DMSO (1.4 mM, 18 pL) was mixed with 0.5 mL of
D,0/acetonitrile mixture (25% of Acetonitrile-d;, v/v) and stirred at 50 °C. Reaction progress was
monitored using NMR spectroscopy. The product distribution was checked by gas

chromatography.
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Figure S39. Stacked full 'H NMR spectra of 2¢ without cavitand 1. (1) 1 h (2) 2 h; (3) 3 h; (4) 4 h;
(5) 5 h; (6) 6 h; (7) 7 h; (h) 8 h; (8) 9 h (9) authentic mono epoxide 4c; (10) authetic diepoxide (Cy).
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Figure S40. Full expanded 'H NMR spectrum of 2¢ without cavitand 1 after 2 h. (1) Monoepoxide;
(2) Diepoxide (Cyp). Can’t differentiate mono, di-epoxide (C o) and starting compound diene (Cyy).
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Mono epoxide
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Peak# Ret. Time Area Height Conc. Area%
1 4.85 20544 13222 18.213 18.213
P 5.368 40970 28507 36.32 36.32
3 6.605 51287 36076 45.467 45.467
Total 112801 77806 100 100

Figure S41. GC spectrum of reaction mixture after 2 h.
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1 4.849 17901 11193 18.507 18.507
2 5.368 33878 23183 35.025 35.025
3 6.605 44948 31276 46.469 46.469
Total 96727 65651 100 100

Figure S42. GC spectrum of reaction mixture after 12 h.
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Diene 2c (C,)
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Figure S43. GC spectrum of authentic a,w-diene 2¢ (Cy).
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Figure S44. GC spectrum of authentic mono-epoxide (Cy).
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Fugure S45. GC spectrum of authentic di-epoxide (Cjy).

Control experiments for formation of epoxide and aldehyde in cavitand 1 with NBS using

aromatic 1,4-disubstitued diene
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Figure S46. Stacked full "H NMR spectra. (1) Mixtures of epoxide 5 and aldehyde 6. (2) Pure
aldehyde 6. Blue arrows indicates monoepoxide proton peaks.
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Figure S47. GC spectrum of of mixtures aldehyde 6 and epoxide 5.
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Figure S48. GC spectrum of aldehyde 6.
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Figure S49. GC spectrum of reaction mixture in cavitand 1 using 3. After reaction the NMR tube
solution was extracted with EtOAc and checked GC.

Control experiments without cavitand 1 for 1,4-disubsituted aroamtic diene (3)

General procedure: A solution of 3 in DMSO (1.4 mM, 18 plL) was mixed with 0.5 mL of
D,0/acetonitrile mixture (25% of Acetonitrile-ds, v/v) and stirred at 50 °C. Reaction progress was

monitored using NMR spectroscopy. The product distribution was checked by gas chromatography.

Mono aldehyde (6)

Diene (3)
z“mu‘:.:m“‘f%n"” Di-aldehyde
2 N
0]
Peak# Ret. Time Area Height Conc. Area%
1 4.845 13298 8806 19.878 19.878
A 5.995 24884 17907 37.196 37.196
3 6.704 2796 2099 4.18 4.18
4 7.506 25921 17858 38.746 38.746
Total 66899 46669 100 100

35



Figure S50. GC spectrum of 3 without cavitand 1. Reaction with NBS (1 Equiv.), stirred for 12 h
and the stirred with K,COj(,q) for 12 h. Then, the reaction mixture was exracted with EtOAc and
checked for GC to know the ratio.
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