Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Supporting information

Enantioselective Aza-Henry Reaction of Trifluoromethyl Ketimines

Catalyzed by Phase-Transfer Catalysts

.Xiaonan Wang, Yuan Gao, Zhonglin Wei, Jungang Cao, Dapeng Liang, Yingjie Lin, and Haifeng Duan

Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China

E-mail: linyj@jlu.edu.cn; Tel: 0431-85168398

Table of Contents

1.	General information	S2
2.	Starting materials	S2
3.	General procedure for Aza-Henry reaction of ketimines	with
	nitroalkanes and characterization of products 3a-3m S	2-57
4.	General procedure of nitroamines 3a to diamines 3n	and
	characterization of 3n	S7
5.	General procedure for the preparation of imidazoline-2-ones 3	o and
	characterization of 3o	S7
6.	NMR spectra of addition products 3a-3m and derivatives 3	n ,3 o
	S9-S31	
7.	HPLC traces of compounds 3a-3m and 3o S32	<u>2</u> -S45
8.	X-ray Crystallographic Date of compound 3o	S46
9.	References	S47

1. General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without purification. All solvents were obtained from commercial sources and were purified according to standard procedures. TLC was carried out on silica gel plates (HSGF 254), which were visualized with UV light and/or staining with phosphomolybdic acids solution. Purification of reaction products was carried out by column chromatography using silica gel (200-300 mesh). ¹H, ¹³C NMR, and ¹⁹F NMR spectra were recorded on a Varian Mercury-300BB (300 MHz), a Bruker NMR Spectrometer (400 MHz), or a Bruker NMR Spectrometer (500 MHz). All chemical shifts (δ) were given in ppm. Chemical shifts are relative to the resonance of the deuterated solvent as the internal standard (CDCl3, δ 7.26 ppm for proton NMR, δ 77.16 ppm for carbon NMR; DMSO-d6, δ 2.50 ppm for proton NMR, δ 39.52 ppm for carbon NMR). Date are presented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = double, t = triplet, q = quartet, m = multiplet), and coupling constant in hertz. Mass spectra were recorded on a Bruker Agilent 1290 MicrOTOF-Q II instrument. Melting points were measured on a melting points apparatus and were uncorrected. The enantioselectivity value determination was carried out using chiral HPLC (Waters) instrumentation with a Chiracel AD-H column and IA-3 column. Optical rotations were measured on a Shanghai ShenGuang SGW-2 polarimeter at λ = 589 nm. Optical rotations are reported as follows: $[\alpha]_D^{25}(c = g/100 \text{ mL, solvent})$.

2. Starting Materials.

2,2,2-trifluroacetophenone were prepared according to literature procedures.¹ All phase-transfer catalysts (**1a-1g**) were synthesized according to procedures reported previously²⁻⁴.

3. General Procedure for the Aza-Henry Reaction of Ketimines with Nitroalkanes and Characterization of Products 3a-3m.

Ketimines **2** (0.1 mmol) and catalyst **1d** (0.005 mmol, 5 mmol %) were dissolved in touluene (1 mL), and nitromethane (2.5mmol, 25 equiv) was added. Until the mixture was cooled to -20 $^{\circ}$ C, the base LiOH·H₂O was added freshly in one portion. The mixture was stirred sharply at -20 temperature until the reaction was judged to be completed by TLC. Then 5 mL sat. aq. NH₄Cl was added, and the mixture was stirred at room temperature. The aqueous layer was back-extracted (3×10 mL) with CH₂Cl₂. The combined organic layers were dried with Na₂SO₄, filtered and the solvent was removed in vacuo via evaporation. The crude product was purified by chromatography (PE/EA = 10:1).

tert-butyl (S)-(1,1,1-trifluoro-3-nitro-2-phenylpropan-2-yl) carbamate (3a)

White solid, 38.8 mg, 95% yield, **m. p.** = 84-85 $^{\circ}$ C, $[\alpha]_{D}^{25}$ = -16.8 (*c* = 0.1, CHCl₃).

The ee value was 95% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 214 nm, 1 mL/min, t_{major} = 9.76min, t_{minor} = 11.55 min).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.44 (s, 5H), 5.59 – 5.39 (m, 3H), 1.46 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 153.6, 132.6, 129.7, 129.0, 126.1, 123.9 (q, J = 286.0 Hz), 81.8, 73.1, 63.9 (q, J = 28.1 Hz), 28.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -74.97

HRMS (ESI) calculated for C₁₄H₁₇F₃N₂O₄ [M + Na]⁺: 357.1038, found 357.1033.

tert-butyl (S)-(2-(2-chlorophenyl)-1,1,1-trifluoro-3-nitropropan-2-yl)carbamate (3b)

White solid, 33.1 mg, 90% yield, **m. p.** = 72-74 $^{\circ}$ C, **[\alpha]**_D²⁵ = -14 (*c*=0.1, CHCl₃).

The ee value was 95% (Chiralpak IA-3, hexane/*i*-PrOH = 95:5, 214 nm, 1 mL/min, t_{major} = 12.56 min, t_{minor} = 11.39 min).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.57 – 7.51 (m, 1H), 7.49 – 7.42 (m, 1H), 7.40 – 7.31 (m, 2H), 6.01 (s, 1H), 5.58 – 5.21 (m, 2H), 1.39 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 152.8, 132.8, 132.5, 130.7, 129.2, 129.1, 127.5, 124.4 (q, *J* = 288.5 Hz), 81.4, 74.7, 64.3 (q, *J* = 29.1 Hz), 28.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -71.69.

HRMS (ESI) calculated for $C_{14}H_{16}CIF_3N_2O_4[M + Na]^+$: 391.0632, found 391.0643.

tert-butyl (S)-(2-(2-bromophenyl)-1,1,1-trifluoro-3-nitropropan-2-yl)carbamate (3c)

White solid, 37.1 mg, 91% yield, **m. p.** = 69-71°Ç [α]_D²⁵ = -14.8 (*c* =0.1, CHCl₃).

The ee value was 95% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 214 nm, 1 mL/min, t_{major} = 19.29 min, t_{minor} = 14.57 min).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.70 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.53 (d, *J* = 8.2 Hz, 1H), 7.43 – 7.36 (m, 1H), 7.28 – 7.23 (m, 1H), 6.13 (s, 1H), 5.63 – 4.94 (m, 2H), 1.41 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 152.5, 136.6, 130.7, 129.3, 129.2, 128.1, 124.4 (q, *J* = 289.4 Hz), 121.1, 81.3, 74.9, , 63.7 (q, *J* = 24.6 Hz), 28.0.

 ^{19}F NMR (376 MHz, CDCl₃) δ -70.94

HRMS (ESI) calculated for C₁₄H₁₆BrF₃N₂O₄ [M + Na]⁺: 435.0129, found 435.0138.

tert-butyl (S)-(1,1,1-trifluoro-2-(3-fluorophenyl)-3-nitropropan-2-yl)carbamate (3d)

Pale yellow solid, 32.3 mg, 92% yield, **m. p.** = 56-57°Ç [**α**]_D²⁵ = -7.6 (*c* =0.1, CHCl₃).

The ee value was 93% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 214 nm, 1 mL/min, t_{major} = 11.13 min, t_{minor} = 12.42 min).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.46 – 7.38 (m, 1H), 7.22 – 7.11 (m, 3H), 5.44 (dd, *J* = 19.3, 7.1 Hz, 3H), 1.46 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ162.9 (d, *J* = 247.4 Hz), 153.5, 135.1, 130.6 (d, *J* = 8.3 Hz), 123.6 (q, *J* = 286.0 Hz), 121.8, 116.9 (d, *J* = 21.1 Hz), 114.1 (d, *J* = 25.3 Hz), 82.2, 73.0, 63.7 (q, *J* = 29.6 Hz),

28.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -74.95, -110.87.

HRMS (ESI) calculated for C₁₄H₁₆F₄N₂O₄ [M + Na]⁺: 375.0912, found 375.0938.

tert-butyl (S)-(2-(3-chlorophenyl)-1,1,1-trifluoro-3-nitropropan-2-yl)carbamate (3e)

White solid, 34.9 mg, 95% yield, **m. p.** = 65-67°C [α]_D²⁵ = -15.6 (*c* =0.1, CHCl₃).

The ee value was 92% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 214 nm, 1 mL/min, t_{major} = 12.82 min, t_{minor} = 11.43 min).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.44 – 7.36 (m, 3H), 7.31 (d, *J* = 7.6 Hz, 1H), 5.50 – 5.39 (m, 3H), 1.46 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 153.5, 135.2, 134.6, 130.2, 130.0, 125.7(q, *J* = 238.6 Hz, 123.2, 123.0, 82.2, 73.0,63.7 (q, *J* = 28.0 Hz), 28.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -74.92.

HRMS (ESI) calculated for $C_{14}H_{16}CIF_3N_2O_4[M + Na]^+$: 391.0629, found 391.0643.

tert-butyl (S)-(1,1,1-trifluoro-2-(3-methoxyphenyl)-3-nitropropan-2-yl)carbamate (3f)

White solid, 32.7 mg, 90% yield, **m. p.** = 50-52 $^{\circ}$ C, **[a]**_D²⁵ = -5.2 (*c* =0.1, CHCl₃).

The ee value was 94% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 214 nm, 1 mL/min, t_{major} = 12.12 min, t_{minor} = 13.75 min).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.35 (t, *J* = 8.4 Hz, 1H), 7.02 – 6.92 (m, 3H), 5.56 – 5.37 (m, 3H), 3.81 (s, 3H), 1.46 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 159.9, 153.6, 134.1, 130.0, 122.4,116.4 (q, *J* = 367.6 Hz) , 112.9, 81.8, 73.1, 63.8 (q, *J* = 28.2 Hz), 55.4, 28.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -74.85.

HRMS (ESI) calculated for C₁₅H₁₉F₃N₂O₅[M + Na]⁺: 387.1139, found 387.1138.

tert-butyl (S)-(1,1,1-trifluoro-2-(4-fluorophenyl)-3-nitropropan-2-yl)carbamate (3g)

White solid, 34.1 mg, 97% yield, **m. p.** = 63-65 $^{\circ}$ C, **[\alpha]**_D²⁵ = -12 (*c* =0.1, CHCl₃).

The ee value was 93% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 214 nm, 1 mL/min, t_{major} = 9.09 min, t_{minor} = 11.73 min).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.42 (dd, *J* = 8.7, 4.9 Hz, 2H), 7.13 (t, *J* = 8.6 Hz, 2H), 5.47 (s, 2H), 5.40 (s, 1H), 1.46 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ163.24 (d, *J* = 250.5 Hz), 153.6,128.4, 128.3(d, *J* = 7.9 Hz), 123.7 (q, *J*

= 286.4 Hz), 116.1 (d, *J* = 22.0 Hz), 82.1, 73.1, 63.7 (q, *J* = 28.3 Hz)., 28.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -75.26, -111.37.

HRMS (ESI) calculated for $C_{14}H_{16}F_4N_2O_4$ [M + Na]⁺: 375.0932, found 375.0938.

tert-butyl (S)-(2-(4-bromophenyl)-1,1,1-trifluoro-3-nitropropan-2-yl)carbamate (3h)

White solid, 38.8 mg, 94% yield, **m. p.** = 70-72 °C, **[α]**_D²⁵ = -7.6 (*c* =0.1, CHCl₃).

The ee value was 92% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 214 nm, 1 mL/min, t_{major} = 9.41 min, t_{minor} = 11.83 min).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 8.8 Hz, 2H), 7.30 (d, *J* = 8.5 Hz, 2H), 5.42 (d, *J* = 23.5 Hz, 3H), 1.46 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 153.5, 132.2, 131.7, 129.9, 127.9, 124.3,123.6 (d, *J* = 285.7 Hz), 82.2, 72.9, 63.8 (q, *J* = 28.1 Hz)., 28.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -75.13.

HRMS (ESI) calculated for C₁₄H₁₆BrF₃N₂O₄ [M + Na]⁺: 435.0123, found 435.0138.

tert-butyl (S)-(1,1,1-trifluoro-3-nitro-2-(p-tolyl)propan-2-yl)carbamate (3i)

Pale yellow solid, 32.7 mg, 94% yield, **m. p.** = 75-77 °C, **[α]**_D²⁵ = -10.8 (*c* =0.1, CHCl₃)

The ee value was 95% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 214 nm, 1 mL/min, t_{major} = 7.71 min, t_{minor} = 8.72min).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.31 (d, *J* = 8.3 Hz, 2H), 7.24 (d, *J* = 8.3 Hz, 2H), 5.58 – 5.29 (m, 3H), 2.36 (s, 3H), 1.46 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 153.6, 139.8, 129.8, 129.5, 126.0, 125.6, 123.9 (q, *J* = 285.8 Hz) 81.7, 73.0, 63.8 (d, *J* = 28.3 Hz) 28.1, 21.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -75.18.

HRMS (ESI) calculated for $C_{15}H_{19}F_3N_2O_4$ [M + Na]⁺: 371.1180, found 371.1189.

tert-butyl (S)-(1,1,1-trifluoro-2-(4-methoxyphenyl)-3-nitropropan-2-yl)carbamate (3j)

Pale yellow solid, 32.7 mg, 98% yield, **m. p.** = 71-72 °C, **[α]**_D²⁵ = -17.2 (*c* =0.1, CHCl₃).

The ee value was 96% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 214 nm, 1 mL/min, t_{major} = 11.27 min, t_{minor} = 13.04 min).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.34 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 9.0 Hz, 2H), 5.56 – 5.34 (m,

3H), 3.82 (s, 3H), 1.46 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 160.4, 153.4, 127.5, 124.2, 123.9(q, *J* = 285.8 Hz), 114.4, 81.7, 73.02, 63.6 (q, *J* = 28.3 Hz), 55.3, 28.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -75.35.

HRMS (ESI) calculated for C₁₅H₁₉F₃N₂O₅ [M + Na]⁺: 387.1135, found 387.1138.

tert-butyl (S)-(1,1,1-trifluoro-2-(naphthalen-1-yl)-3-nitropropan-2-yl)carbamate (3k)

White solid, 34.5 mg, 90% yield, **m. p.** = 56-57 °C, **[α]**_D²⁵ = -6.4 (*c* =0.1, CHCl₃).

The ee value was 95% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 214 nm, 1 mL/min, t_{major} =28.38 min, t_{minor} = 21.45 min).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.68 (d, *J* = 8.7 Hz, 1H), 7.91 (d, *J* = 8.2 Hz, 2H), 7.60 – 7.45 (m, 4H), 6.20 (s, 1H), 5.66 – 5.05 (m, 2H), 1.26 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 152.8, 135.7, 134.7, 131.3, 130.6, 130.1, 127.1, 126.2,125.3 (q, *J* = 113.9 Hz), 123.7, 123.4, 81.3, 73.5,63.5 (q, *J* = 24.4 Hz),27.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -71.28.

HRMS (ESI) calculated for $C_{18}H_{19}F_3N_2O_4$ [M + Na]⁺: 407.1182, found 407.1189.

tert-butyl (S)-(1,1,1-trifluoro-2-(naphthalen-2-yl)-3-nitropropan-2-yl)carbamate (3I)

White solid, 34.5 mg, 90% yield, **m. p.** = 60-62 $^{\circ}$ C, $[\alpha]_{D}^{25}$ = -7.6 (*c* =0.1, CHCl₃).

The ee value was 93% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 214 nm, 1 mL/min, t_{major} = 16.50 min, t_{minor} = 12.14 min).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.95 – 7.82 (m, 4H), 7.59 – 7.51 (m, 3H), 5.71 – 5.50 (m, 3H), 1.46 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 153.7, 133.4, 132.9, 132.5, 130.0, 128.9, 128.5, 127.6, 127.4, 126.9, 124.6 (q, *J* = 325.0 Hz), 123.0, 122.6, 81.9, 73.3, 64.1 (q, *J* = 28.2 Hz)., 28.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -74.64.

HRMS (ESI) calculated for $C_{18}H_{19}F_3N_2O_4$ [M + Na]⁺: 407.1190, found 407.1189.

tert-butyl (1,1,1-trifluoro-3-nitro-2-phenylbutan-2-yl)carbamate (3m)

White solid, 27.1 mg, 78% yield, **m. p.** = 67-69°C, **[α]**_D²⁵ = -16.4 (*c* =0.1, CHCl₃).

The ee value was 91% (ChiralpakIA-3, hexane/*i*-PrOH= 98:2, 214nm, 1mL/min, Major-anti (t_{major} = 8.04 min, t_{minor} = 0.76 min), Major-syn (t_{major} = 5.84 min, t_{minor} = 6.87 min).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.40 (s, 5H), 6.10 (s, 1H), 5.28 (s, 1H), 1.71 (d, *J* = 6.8 Hz, 3H), 1.44 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 153.3, 129.4, 128.9, 127.7 (d, *J* = 164.5 Hz), 125.9, 123.1, 81.4, 73.7, 67.2 (q, *J* = 27.8 Hz), 28.1, 15.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.48, -74.94, -81.83

HRMS (ESI) calculated for $C_{15}H_{19}F_3N_2O_4 [M + Na]^+$: 371.1192, found 371.1189.

4. General procedure of nitroamines 3a to diamines 3n

NiCl₂ 6H2O (0.024 g, 0.1 mmol) and NaBH₄ (0.019 g, 0.5 mmol) were added to a cooled (0[°]C) solution of **3a** (0.033 g, 0.1 mmol) in methanol (1 mL), and the resulting mixture was stirred for 40 min. The solvent was evaporated at room temperature. Ammonia (15% aqueous solution; 1 mL) was added to the residue, and the mixture was extracted with CH_2Cl_2 (3×5 mL). The combined organic layer was washed with ammonia (15% aqueous solution; 1 mL), water (2 mL), dried with Na₂SO₄, and evaporated. The residue was purified by column chromatography (CH₂Cl₂/CH₃OH = 20/1) to afford product **3n** as a yellow solid.

tert-butyl (S)-(3-amino-1,1,1-trifluoro-2-phenylpropan-2-yl)carbamate (3n)

Yellow solid, 27.3 mg, 90% yield, **m. p.** = 77-78[°]C, **[α]**_D²⁵ = -18.4 (*c* =0.1, CHCl₃).

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.36 (dq, *J* = 14.9, 7.7 Hz, 6H), 2.95 (d, *J* = 13.8 Hz, 1H), 1.65 (s, 2H), 1.32 (s, 9H).

¹³**C NMR** (101 MHz, DMSO) δ 154.3, 137.2, 128.0, 126.5, 123.3 (q, *J* = 378.8 Hz), 79.2, 65.6 (q, *J* = 24.6 Hz), 48.5, 28.4.

¹⁹**F NMR** (376 MHz, DMSO) δ -67.46.

HRMS (ESI) calculated for $C_{14}H_{19}F_3N_2O_2 [M + H]^+$: 305.1469, found 305.1471.

5. General procedure for the preparation of imidazoline-2-ones 30

DBU (0.0003 mmmol) was added to a solution of **3o** (0.030 g, 0.01mmol) in toluene (1 mL). The mixture was heated for 12 h, the it was cooled to room temperature and concentrated under reduced pressure. The residue was purified by column chromatography (EA/CH₃OH = 20/1) to afford product **3o** as a white solid.

(S)-4-phenyl-4-(trifluoromethyl)imidazolidin-2-one (30)

White solid, 20.7 mg, 90% yield, **m. p.** = 220 $^{\circ}$ C, **[\alpha]**_D²⁵ = -37.2 (*c* =0.1, CHCl₃)

The ee value was 93% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 214 nm, 1 mL/min, t_{major} = 6.73 min, t_{minor} = 19.15 min).

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.30 (s, 1H), 7.53 – 7.35 (m, 5H), 6.78 (s, 1H), 4.01 (d, *J* = 10.4 Hz, 1H), 3.66 (d, *J* = 10.4 Hz, 1H).

¹³C NMR (101 MHz, DMSO) δ 161.7, 137.6, 129.2, 128.9, 127.2, 126.3 (q, J = 286.7 Hz),126.0 ,64.8

(q, J = 28.2 Hz), 48.1. ¹⁹F NMR (376 MHz, DMSO) δ -78.70. HRMS (ESI) calculated for C₁₀H₉F₃N₂O[M + H]⁺: 231.0741, found 231.0740.

6. NMR spectra of addition products 3a-3m and derivatives 3n,3o.

7. HPLC traces of compounds 3a-3m and 3o

	Description	Реак Name	(min)	Area µAU ^{se} Seo	% Area	μÂυ
1	W2489 ChA 214nm	Pee ak 1	10.606	4231417	49.34	256481
2	W2489 ChA 214nm	Peak 2	11.854	4344489	50.66	204185

	Channel Description	Peak Name	RT (min)	Area µ(ANUt\$e s)ec	% Area	Height µA∛©U)
1	W2489 ChA 214nm	Peak 1	11.394	297452	2.44	17246
2	W2489 ChA 214nm	Peak 2	12.568	11887034	97.56	536796

	Description	Name	(min)	µ A[™]‱è c	% Area	μAU
1	W2489 ChA 214nm	Pléák 1	13.715	302105	2.45	10334
2	W2489 ChA 214nm	P¶e2ak 2	18.026	12043656	97.55	292843

	Channel Description	Peak Name	RT (min)	Area پښکافخ¢¢	% Area	Height µA(W∰)
1	W2489 ChA 214nm	P <mark>léa</mark> k 1	11.134	817132	96.51	27567
2	W2489 ChA 214nm	峰 <mark>2</mark> Peak 2	12.421	29535	3.49	764

unanner.	WZ409 UN	A, Channe	Desc.: WZ	409 UNA ZI	ranm; Proces	sang weutoo

	Channel Description	Peak Name	RT (min)	Area µ(ALU5es)ec	% Area	Height µ(AAN)U
1	W2489 ChA 214nm	Peak 1	11.436	2481974	4.21	119959
2	W2489 ChA 214nm	Péak 2	12.822	56465135	95.79	2148842

	Channel Description	Peak Name	RT (min)	Area µ(AA∛U\$ecs)ec	% Area	Height µ(ANU)
1	W2489 ChA 214nm	峰1 Peak	12.122	27270142	97.11	1168057
2	W2489 ChA 214nm	Peak 2	13.757	812111	2.89	27788

	Channel Description	Peak Name	RT (min)	Area µ(ANU\$eos)ec	% Area	Height µ (AIU)
1	W2489 ChA 214nm	Þéa k 1	9.115	15943975	49.15	893568
2	W2489 ChA 214nm	Peak 2	11.819	16496193	50.85	559624

	Channel Description	Peak Name	RT (min) I	Area uA(Ulă,*see¢	% Area	Height µA्∛W⊉)
1	W2489 ChA 214nm	P ea k 1	9.094	36072437	96.85	1770972
2	W2489 ChA 214nm	Pelazk 2	11.732	1171988	3.15	69684

659043

49.81

	Channel Description	Peak Name	RT (min)	Area µA(U)t*sose)c	% Area	Height µA®∭)
1	W2489 ChA 214nm	eak 1	7.803	20975970	97.54	1403591
2	W2489 ChA 214nm	Péak 2	8.632	528924	2.46	20663

2

W2489 ChA 214nm

Peak

8.344

	Channel Description	Peak Name	RT (min)	Area µAk⊎*se§eo	% Area	Height 代合
1	W2489 ChA 214nm	Plejan <mark>k</mark> 1	11.197	8291232	50.08	399502
2	W2489 ChA 214nm	Peak 2	12.846	8263346	49.92	329242

		Channel Description	Peak Name	RT (min)	Area µA∰®e§èc	% Area	Height µA®®)
	1	W2489 ChA 214nm	Peak 1	11.277	28906989	97.97	1373016
	2	W2489 ChA 214nm	峰2 Peak 2	13.041	599464	2.03	24352

_						
	Channel Description	Peak Name	RT (min)	Area µA(tu∦*ssse)c	% Area	Height µAAU
1	W2489 ChA 214nm	Peak 1	21.177	77627010	49.73	1858211
2	W2489 ChA 214nm	Peak 2	27.826	78475011	50.27	1354802

	Channel Description	Peak Name	RT (min)	Area µANO®*sessèc	% Area	Height (@A)U
1	W2489 ChA 214nm	Peak 1	21.457	694822	2.39	15206
2	W2489 ChA 214nm	峰2 eak 2	28.384	28341510	97.61	456438

	Description	Name	(min)	Area μ(ANU≸es)ec	% Area	μÂΨΟ
1	W2489 ChA 214nm	Peak 1	12.004	81343793	49.36	2608047
2	W2489 ChA 214nm	Peak 2	16.558	83466500	50.64	2419335

		Channel Description	Peak Name	RT (min)	Area µ(ANUSeoSjeo	% Area	Height ⊬Aay
	1	W2489 ChA 214nm	l₿e ak 1	12.142	1230087	3.20	43041
	2	W2489 ChA 214nm	<mark>∲e</mark> ak 2	16.509	37197717	96.80	1153096

- Channel: W2489 ChA; Channel Desc.: W2489 ChA 214nm; Processing Method: 0

	Channel Description	Peak Name	RT (min)	Area µA∰sesed	% Area	Height µ(ANU)
1	W2489 ChA 214nm	Peak 1	5.846	265020	5.74	16683
2	W2489 ChA 214nm	Peak 2	6.870	75101	1.63	2461
3	W2489 ChA 214nm	Peak 3	7.693	34917	0.76	2631
4	W2489 ChA 214nm	峰4 Peak 4	8.046	4241448	91.88	208112

8. X-ray Crystallographic Date of compound 3o

Table Crystal data and structure refinen	nent for 30.
Identification code	1937396
Empirical formula	$C_2 H_{1.8} F_{0.6} N_{0.4} O_{0.2}$
Formula weight	46.04
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	P212121
a/Å	7.1385(9)
b/Å	7.5039(10)
c/Å	19.126(3)
α/°	90.00
β/°	90.00
γ/°	90.00
Volume/ų	1024.5(2)
Z	20
ρ _{calc} g/cm ³	1.492
µ/mm ⁻¹	0.135
F(000)	472.0
Crystal size/mm ³	? × ? × ?
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.26 to 52.84
Index ranges	$-8 \le h \le 8, -9 \le k \le 8, -14 \le l \le 23$
Reflections collected	5878
Independent reflections	2087 [R_{int} = 0.0518, R_{sigma} = 0.0692]
Data/restraints/parameters	2087/0/145
Goodness-of-fit on F ²	0.933
Final R indexes [I>=2σ (I)]	$R_1 = 0.0458$, $wR_2 = 0.0892$
Final R indexes [all data]	$R_1 = 0.0883$, $wR_2 = 0.1034$
Largest diff. peak/hole / e Å ⁻³	0.14/-0.17
Flack parameter	0.4(12)

Table Crystal data and structure refinement for 3c

9. References

- 1. M. Emilie, V. Anna Chiara, M. Michele, M. Andrea, Z. Paolo, B. Luca and F. Mariafrancesca, *Chem. Commun.*, 2015, **46**, 658-660.
- 2. W. Bin, L. Yuxin, S. Cong, W. Zhonglin, C. Jungang, L. Dapeng, L. Yingjie and D. Haifeng, *Org. Lett.*, 2015, **46**, 6432.
- K. M. Johnson, M. S. Rattley, F. Sladojevich, D. M. Barber, M. G. Nunez, A. M. Goldys and D. J. Dixon, Org. Lett., 2012, 14, 2492-2495.
- 4. B. Wang, T. Xu, L. Zhu, Y. Lan, J. Wang, N. Lu, Z. Wei, Y. Lin and H. Duan, *Org. Chem. Front.* , 2017, **4**, 1266-1271.