Constructing bridged multifunctional calixarenes by intramolecular indole coupling

Boris Bolshchikov, Sergey Volkov, Daria Sokolova, Alexander Gorbunov, Alina Serebryannikova, Igor Gloriozov, Dmitry Cheshkov, Stanislav Bezzubov, Wen-Sheng Chung, Vladimir Kovalev and Ivan Vatsouro

Supplementary Information

Contents

Synthesis and characterization of novel compounds	2
Calculated energy profiles of the cyclization steps at bridging calixarenes 3–6, 13	
Calculated energy profile for the mutual rotation of indole parts in	
3,3'-dimethyl-2,2'-bisindole	31
Details of fluorescence titrations	
NMR spectra of novel compounds	
References	

Synthesis and characterization of novel compounds

General experimental methods: NMR spectra were acquired on Bruker Avance 400 and Avance 600 instruments at 25 °C if not stated otherwise, and chemical shifts are reported as ppm referenced to solvent signals. ESI mass spectra were obtained from a Thermo Scientific LTQ Orbitrap spectrometer. Chemicals received from commercial sources were used without further purification. Solvents were purified and dried according to standard procedures.

General procedure A (preparation of amides through activation of acids with $SOCl_2$): A solution of an acid-functionalized calixarene in a mixture of dry benzene and $SOCl_2$ was gently refluxed (oil bath) at stirring for 2 h. The excess $SOCl_2$ was removed *in vacuo*, and the residue was repeatedly re-evaporated with fresh dry benzene. The solid obtained was dissolved in dry THF, and the solution was added to an ice-cooled THF solution of L-tryptophan methyl ester hydrochloride or tryptamine, Et₃N, and water (in several cases) in THF. The stirring at cooling was continued for 1 h, and the mixture was allowed to stay overnight at room temperature. After removal of the solvent, CH_2Cl_2 was added, and the solution was washed with 2 M HCl, water, and dried. After removal of the solvent, the product was purified by column chromatography (CH₂Cl₂/ethanol, gradient) or by re-precipitation from CH₂Cl₂-solution by addition of hexane.

General procedure B (preparation of amides through activation of acids with DCC/HOSu): Dicyclohexylcarbodiimide (DCC) was added to a stirred solution/suspension of an acidfunctionalized calixarene and *N*-hydroxysuccinimide (HOSu) in dry CH₂Cl₂. The mixture was allowed to stay overnight at 0–5 °C. The solid formed was separated by filtration and washed twice with small portions of dry CH₂Cl₂. To the clear solution L-tryptophan methyl ester hydrochloride or tryptamine, and Et₃N were added and the mixture was stirred for 48 h at room temperature. The solution was washed with 2 M HCl, water, and dried. After removal of the solvent, the product was purified by column chromatography (CH₂Cl₂/ethanol, gradient).

General procedure C (intramolecular bridging of the indole-containing calixarenes): Trifluoroacetic acid (TFA) was degassed by sonication under argon for 15 min and added to an indole-containing calixarene. The resultant solution was allowed to stay at room temperature in a dark place for 48 h in a tightly closed flask flushed with argon. The red-colored solution was concentrated *in vacuo* at room temperature (in the cases of highly concentrated solutions this step was omitted), the resultant oil was diluted with CH_2Cl_2 and the solution was poured into ice. NaHCO₃ was added portion-wise to neutralize the remaining acid, that was accompanished with a change of the solution color from red to yellow. The organic phase was separated, washed with water, and dried by passing through the filtering paper. The solvent was removed *in vacuo* and the resultant solid was dissolved in 1,4-dioxane. 2,3-Dichloro-5,6-dicyano-*p*-benzoquinone (DDQ) was added and the mixture was stirred at room temperature for 4 h. The solvent was removed and the residue was dissolved in CH_2Cl_2 . The solution was repeatedly washed with fresh saturated NaHCO₃ (aq) until the aqueous phase turned colorless. The organic phase was washed with water and dried. After removal of the solvent, the product was purified by column chromatography (CH₂Cl₂/ethanol, gradient) or by re-crystallization from acetonitrile.

Calixarene amide **3** was prepared according to *General procedure A* from acid $\mathbf{1}^{[S1]}$ (0.35 g, 0.41 mmol), SOCl₂ (7 ml), dry benzene (6 ml), tryptamine (0.26 g, 1.64 mmol), Et₃N (0.23 ml, 1.65 mmol), THF (15 ml), and water (0.3 ml); purified by chromatography. Yield 0.37 g (79%), beige solid. M.p. 159–161 °C; ¹H NMR (600 MHz, CDCl₃): δ = 8.52 (bs, 2H; NH_{Ind}), 8.49 (t, 2H, ³*J*_{HH} = 5.9 Hz; C(O)NH), 7.65–7.62 (m, 2H; ArH_{Ind}), 7.34–7.32 (m, 2H; ArH_{Ind}), 7.14–7.10 (m, 2H; ArH_{Ind}), 7.06 (s, 4H; ArH), 7.05–7.02 (m, 2H; ArH_{Ind}), 6.89–6.87 (m, 2H; ArH_{Ind}), 6.48 (s, 4H; ArH),

4.77 (s, 4H; OCH₂CO), 4.32 (d, 4H, ${}^{2}J_{HH} = 13.1$ Hz; ArCH₂Ar), 3.75–3.68 (m, 4H; NCH₂), 3.63–3.58 (m, 4H; OCH₂), 3.19 (d, 4H, ${}^{2}J_{HH} = 13.1$ Hz; ArCH₂Ar), 3.18–3.13 (m, 4H; IndCH₂), 1.56–1.48 (m, 4H; OCH₂C<u>H₂</u>), 1.31 (s, 18H; C(CH₃)₃), 0.85 (s, 18H; C(CH₃)₃), 0.64 (6H, ${}^{3}J_{HH} = 7.4$ Hz; CH₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 171.02$ (C=O), 154.57, 150.65, 145.70, 145.13 (C_{Ar}), 136.31 (C_{Ar} Ind), 133.84, 131.64 (C_{Ar}), 127.44 (C_{Ar} Ind), 126.34, 124.88 (CH_{Ar}), 122.51, 121.39, 118.85, 118.31 (CH_{Ar} Ind), 112.61 (C_{Ar} Ind), 111.33 (CH_{Ar} Ind), 77.91, 74.30 (OCH₂), 41.97 (NCH₂), 34.01, 33.65 (C(CH₃)₃), 31.94 (ArCH₂Ar), 31.58, 31.06 (C(CH₃)₃), 25.43 (IndCH₂), 21.73 (OCH₂CH₂), 9.60 (CH₃) ppm; ESI-MS *m/z*: 1155.6903 [M+Na]⁺ for C₇₄H₉₂NaN₄O₆ (1155.6909).

Calixarene amide **4** was prepared according to *General procedure A* from acid **1**^[S1] (0.20 g, 0.24 mmol), SOCl₂ (4 ml), dry benzene (2 ml), L-tryptophan methyl ester hydrochloride (0.24 g, 0.96 mmol), Et₃N (0.40 ml, 2.88 mmol), and THF (15 ml); purified by re-precipitation. Yield 0.21 g (71%), white solid. M.p. 110–112 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.27 (bs, 2H; NH_{Ind}), 7.79 (2H, ³J_{HH} = 8.4 Hz, C(O)NH), 7.55– 7.51 (m, 2H; ArH_{Ind}), 7.36–7.31 (m, 2H; ArH_{Ind}), 7.20–7.13 (m, 2H; ArH_{Ind}), 7.09–7.03 (m, 2H; ArH_{Ind}), 6.97–6.93 (m, 2H; ArH_{Ind}), 6.81 (d, 2H,

 ${}^{4}J_{\text{HH}} = 2.5 \text{ Hz}; \text{ ArH}$), 6.79 (d, 2H, ${}^{4}J_{\text{HH}} = 2.5 \text{ Hz}; \text{ ArH}$), 6.63 (d, 2H, ${}^{4}J_{\text{HH}} = 2.4 \text{ Hz}; \text{ ArH}$), 6.61 (d, 2H, ${}^{4}J_{\text{HH}} = 2.4 \text{ Hz}; \text{ ArH}$), 5.06–4.99 (m, 2H; CHCO), 4.90 (d, 2H, ${}^{2}J_{\text{HH}} = 15.8 \text{ Hz}; \text{ OCH}_2\text{CO}$), 4.71 (d, 2H, ${}^{2}J_{\text{HH}} = 15.8 \text{ Hz}; \text{ OCH}_2\text{CO}$), 4.47 (d, 2H, ${}^{2}J_{\text{HH}} = 12.8 \text{ Hz}; \text{ ArCH}_2\text{Ar}$), 4.33 (d, 2H, ${}^{2}J_{\text{HH}} = 13.1 \text{ Hz}; \text{ ArCH}_2\text{Ar}$), 3.73–3.67 (m, 4H; OCH₂), 3.49 (s, 6H; OCH₃), 3.44 (dd, 2H, ${}^{2}J_{\text{HH}} = 14.5 \text{ Hz}; {}^{3}J_{\text{HH}} = 5.7 \text{ Hz}; \text{ IndCH}_2$), 3.37 (dd, 2H, ${}^{2}J_{\text{HH}} = 14.5 \text{ Hz}, {}^{3}J_{\text{HH}} = 6.4 \text{ Hz}; \text{ IndCH}_2$), 3.15

(d, 2H, ${}^{2}J_{\text{HH}} = 13.1 \text{ Hz}$; ArCH₂Ar), 3.02 (d, 2H, ${}^{2}J_{\text{HH}} = 12.8 \text{ Hz}$; ArCH₂Ar), 1.71–1.59 (m, 4H; OCH₂C<u>H₂</u>), 1.13 (s, 18H; C(CH₃)₃), 1.00 (18H; C(CH₃)₃), 0.67 (t, 6H, ${}^{3}J_{\text{HH}} = 7.4 \text{ Hz}$; CH₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 172.21$, 170.48 (C=O), 153.21, 152.34, 144.81, 144.60 (C_{Ar}), 135.99 (C_{Ar Ind}), 133.07, 132.74, 132.33 (C_{Ar}), 127.36 (C_{Ar Ind}), 125.86, 125.41, 125.01, 124.98 (CH_{Ar}), 123.08, 121.88, 119.37, 118.29, 111.23 (CH_{Ar Ind}), 110.09 (C_{Ar Ind}), 76.64, 73.31 (OCH₂), 52.93, 52.20 (NCH, OCH₃), 33.75, 33.69 (<u>C</u>(CH₃)₃), 31.77, 31.59 (ArCH₂Ar), 31.35, 31.27 (C(<u>CH₃)₃), 27.51 (IndCH₂), 22.56 (OCH₂<u>C</u>H₂), 9.78 (CH₃) ppm; ESI-MS *m/z*: 1271.7008 [M+Na]⁺ for C₇₈H₉₆NaN₄O₁₀ (1271.7019).</u>

Calixarene amide **5** was prepared according to *General procedure A* from acid $2^{[S2]}$ (0.16 g, 0.21 mmol), SOCl₂ (3 ml), dry benzene (2 ml), tryptamine (0.10 g, 0.63 mmol), Et₃N (0.088 ml, 0.63 mmol), and THF (15 ml); purified by chromatography. Yield 0.12 g (55%), beige solid. Alternatively, it was prepared according to *General procedure B* from acid $2^{[S2]}$ (0.420 g, 0.55 mmol), HOSu (0.253 g, 2.20 mmol), DCC (0.283 g, 1.37 mmol), tryptamine (0.220 g, 1.37 mmol), and CH₂Cl₂ (15 ml). Yield 0.42 g (73%), beige solid. M.p. 143–145 °C; ¹H NMR

(400 MHz, CDCl₃): $\delta = 8.78$ (t, 2H, ${}^{3}J_{\text{HH}} = 5.9$ Hz; C(O)NH), 7.63–7.57 (m, 2H; ArH_{Ind}), 7.27 (s, 2H, OH), 7.15–7.07 (m, 4H; ArH_{Ind}), 7.06–6.97 (m, 4H; ArH_{Ind}+NH_{Ind}), 6.94 (s, 4H; ArH), 6.83–6.80 (m, 2H; ArH_{Ind}), 6.78 (s, 4H; ArH), 4.28 (s, 4H; OCH₂CO), 3.88–3.81 (m, 4H; NCH₂), 3.41 (d, 4H, ${}^{2}J_{\text{HH}} = 13.2$ Hz; ArCH₂Ar), 3.07 (d, 4H, ${}^{2}J_{\text{HH}} = 13.2$ Hz; ArCH₂Ar), 3.05 (t, 4H, ${}^{3}J_{\text{HH}} = 6.2$ Hz; IndCH₂), 1.29 (s, 18H; C(CH₃)₃), 0.99 (s, 18H; C(CH₃)₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 168.12$ (C=O), 149.40, 148.38, 148.16, 142.61 (C_{Ar}), 136.63 (C_{Ar Ind}), 132.09 (C_{Ar}), 127.13 (C_{Ar Ind}), 126.80 (C_{Ar}), 125.98, 125.16 (CH_{Ar}), 122.39, 121.80, 119.15, 118.50 (CH_{Ar Ind}), 112.73 (C_{Ar Ind}), 111.47 (CH_{Ar Ind}), 74.45 (OCH₂), 39.00 (NCH₂), 34.02, 33.85 (C(CH₃)₃), 31.95 (ArCH₂Ar), 31.69, 30.90 (C(CH₃)₃), 25.67 (IndCH₂) ppm; ESI-MS *m*/*z*: 1071.5953 [M+Na]⁺ for C₆₈H₈₀NaN₄O₆ (1071.5970).

Calixarene amide $\boldsymbol{6}^{[S3]}$ was prepared according to *General procedure A* from acid $\mathbf{2}^{[S2]}$ (0.22 g, 0.29 mmol), SOCl₂ (4 ml), dry benzene (4 ml), L-tryptophan methyl ester hydrochloride (0.29 g, 1.16 mmol), Et₃N (0.48 ml, 3.48 mmol), water (0.3 ml), and THF (15 ml); purified by reprecipitation. Yield 0.11 g (33%), white solid. Alternatively, it was prepared according to *General procedure B* from acid $\mathbf{2}^{[S2]}$ (0.229 g, 0.30 mmol), HOSu (0.138 g, 1.20 mmol), DCC (0.155 g, 0.75 mmol), L tryptophan methyl ester hydrochloride (0.191 g, 0.75 mmol), Et₃N

(0.208 ml, 1.50 mmol), and CH_2Cl_2 (10 ml). Yield 0.24 g (69%), white solid. ¹H NMR

(400 MHz, CDCl₃): $\delta = 9.38$ (d, 2H, ${}^{3}J_{\text{HH}} = 7.8$ Hz; C(O)NH), 7.55 (s, 2H; OH), 7.42–7.38 (m, 2H; ArH_{Ind}), 7.16 (bs, 2H; NH_{Ind}), 7.19–7.09 (m, 4H; ArH_{Ind}), 7.05–6.98 (m, 2H; ArH_{Ind}), 7.03 (d, 2H, ${}^{4}J_{\text{HH}} = 2.4$ Hz; ArH), 6.94 (d, 2H, ${}^{4}J_{\text{HH}} = 2.4$ Hz; ArH), 6.82–6.79 (m, 2H; ArH_{Ind}), 6.77 (d, 2H, ${}^{4}J_{\text{HH}} = 2.5$ Hz; ArH), 6.75 (d, 2H, ${}^{4}J_{\text{HH}} = 2.5$ Hz; ArH), 5.13–5.06 (m, 2H; CHCO), 4.89 (d, 2H, ${}^{2}J_{\text{HH}} = 15.1$ Hz; OCH₂CO), 4.09 (d, 2H, ${}^{2}J_{\text{HH}} = 15.1$ Hz; OCH₂CO), 3.90 (d, 2H, ${}^{2}J_{\text{HH}} = 13.8$ Hz; ArCH₂Ar), 3.77 (d, 2H, ${}^{2}J_{\text{HH}} = 12.9$ Hz; ArCH₂Ar), 3.66 (s, 6H; OCH₃), 3.40–3.32 (m, 4H; IndCH₂), 3.35 (d, 2H, ${}^{2}J_{\text{HH}} = 13.8$ Hz; ArCH₂Ar), 2.76 (d, 2H, ${}^{2}J_{\text{HH}} = 12.9$ Hz; ArCH₂Ar), 1.32 (s, 18H; C(CH₃)₃), 0.96 (s, 18H; C(CH₃)₃) ppm.

Calixarene indolylindoline **7**. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.47$ (s, 1H; H⁵¹), 7.86–7.83 (m, 1H; H⁵³), 7.36–7.33 (m, 1H; H⁵), 7.32–7.29 (m, 1H; H⁵⁶), 7.20–7.17 (m, 1H; H⁵⁵), 7.17–7.14 (m, 1H; H⁵⁴), 7.16–7.12 (m, 1H; H⁷), 6.98–6.95 (m, 2H; H²⁵+H²⁷ or H⁶⁰+H⁶²), 6.95–6.93 (m, 2H; H⁶⁰+H⁶² or H²⁵+H²⁷), 6.88–6.85 (m, 1H; H⁶), 6.79 (d, 1H, ⁴*J*_{HH} = 2.5 Hz; H³⁷ or H³⁹), 6.78 (d, 1H, ⁴*J*_{HH} = 2.5 Hz; H³⁹ or H³⁷), 6.77 (d,

1H, ${}^{4}J_{\text{HH}} = 2.5$ Hz; H¹⁷ or H¹⁹), 6.76 (d, 1H, ${}^{4}J_{\text{HH}} = 2.5$ Hz; H¹⁹ or H¹⁷), 6.73–6.71 (m, 1H; H⁸), 5.04 (d, 1H, ${}^{3}J_{\text{HH}} = 8.5 \text{ Hz}; \text{H}^{2}$), 4.53 (d, 1H, ${}^{2}J_{\text{HH}} = 14.8 \text{ Hz}; \text{H}^{44}$), 4.41 (d, 1H, ${}^{2}J_{\text{HH}} = 12.5 \text{ Hz}; \text{H}^{35}$ or H^{58}), 4.36 (d, 1H, ${}^{2}J_{HH} = 15.1 \text{ Hz}$; H^{14}), 4.33 (d, 1H, ${}^{2}J_{HH} = 14.8 \text{ Hz}$; H^{44}), 4.31 (d, 1H, ${}^{2}J_{\text{HH}} = 12.1 \text{ Hz}; \text{ H}^{23} \text{ or } \text{H}^{70}$, 4.29 (d, 1H, ${}^{2}J_{\text{HH}} = 12.8 \text{ Hz}; \text{ H}^{35} \text{ or } \text{H}^{58}$), 4.29 (d, 1H, ${}^{2}J_{\text{HH}} = 12.6 \text{ Hz}$; H^{23} or H^{70}), 4.29 (d, 1H, ${}^{2}J_{HH} = 15.1$ Hz; H^{14}), 4.18 (bs, 1H; H^{1}), 4.15–4.09 (m, 1H; H^{47}), 4.04–3.94 (m, 2H; H^{32} or H^{67}), 3.90–3.79 (m, 2H; H^{67} or H^{32}), 3.68–3.59 (m, 2H; H^{11}), 3.55–3.50 (m, 1H; H^{3}), 3.48–3.39 (m, 2H; $H^{47}+H^{48}$), 3.25 (d, 1H, ${}^{2}J_{HH} = 12.8$ Hz; H^{35} or H^{58}), 3.20 (bd, 3H; $H^{23}+H^{70}+(H^{35}$ or H⁵⁸)), 3.12–3.07 (m, 1H; H⁴⁸), 2.40–2.25 (m, 2H; H¹⁰), 1.89–1.79 (m, 2H; H³³ or H⁶⁸), 1.69–1.56 (m, 2H; H⁶⁸ or H³³), 1.18 (s, 9H; H³¹ or H⁶⁶), 1.17 (s, 9H; H⁶⁶ or H³¹), 1.01 (s, 9H; H⁴³), 0.99 (s, 9H; H²²), 0.92 (3H, ${}^{3}J_{HH} = 7.6$ Hz; H³⁴ or H⁶⁹), 0.66 (t, 3H, ${}^{3}J_{HH} = 7.5$ Hz; H⁶⁹ or H³⁴) ppm; ${}^{13}C$ NMR $(150 \text{ MHz}, \text{CDCl}_3)$: $\delta = 170.09 (45), 169.71 (13), 151.66, 151.58 (29, 64), 150.24 (15), 150.02$ (41), 149.70 (9), 145.90 (38+18), 145.62 (26+61), 136.54 (50), 135.36 (57), 134.23, 134.15, 134.08, 132.81, 132.65, 132.62, 132.57 (16, 20, 24, 28, 36, 40, 59, 63), 129.34 (4), 128.50 (52), 128.20 (7), 125.67, 125.60, 125.55, 125.51 (17, 19, 37, 39), 125.50, 125.46 (25, 27, 60, 62), 124.49 (5), 122.24 (55), 119.88 (6), 119.71 (54), 119.16 (53), 110.93 (56), 109.47 (8), 108.78 (49), 77.32, 77.30 (32, 67), 74.28 (14), 74.27 (44), 60.33 (2), 48.47 (3), 40.88 (47), 36.50 (11), 33.97, 33.96 (30, 65), 33.85, 33.83 (21, 42), 33.08 (10), 31.48, 31.47 (31+66), 31.21, 31.19 (22, 43), 30.74, 30.56, 30.42, 30.30 (23, 35, 58, 70), 25.39 (48), 22.39, 22.16 (33, 68), 10.34, 10.00 (34, 69) ppm.

Bisindole-bridged calixarene **8** was prepared according to *General procedure C* from calixarene **3** (0.210 g, 0.186 mmol), TFA (18.6 ml), DDQ (0.046 g, 0.205 mmol), and 1,4-dioxane (20 ml); purified by chromatography. Yield 0.16 g (76%), beige solid. M.p. 228–230 °C (decomp.); ¹H NMR (600 MHz, CDCl₃): δ = 8.73 (s, 2H; NH_{Ind}), 7.87 (bs, 2H; C(O)NH), 7.73–7.70 (m, 2H; ArH_{Ind}), 7.49–7.45 (m,

2H; ArH_{Ind}), 7.27–7.23 (m, 2H; ArH_{Ind}), 7.18–7.15 (m, 2H; ArH_{Ind}), 6.96 (s, 4H; ArH), 6.47 (s, 4H; ArH), 4.22 (s, 4H; OCH₂CO), 4.13 (d, 4H, ${}^{2}J_{HH} = 12.8$ Hz; ArCH₂Ar), 3.77–3.72 (m, 4H; NCH₂), 3.46–3.42 (m, 4H; OCH₂), 3.26–3.22 (m, 4H; IndCH₂), 3.06 (d, 4H, ${}^{2}J_{HH} = 12.8$ Hz; ArCH₂Ar), 1.41–1.34 (m, 4H; OCH₂C<u>H₂</u>), 1.21 (s, 18H; C(CH₃)₃), 0.83 (s, 18H; C(CH₃)₃), 0.69 (t, 6H, ${}^{3}J_{HH} = 7.4$ Hz; CH₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 171.66$ (C=O), 150.76, 145.65, 144.84 (C_{Ar}), 136.29 (C_{Ar Ind}), 133.77, 132.22 (C_{Ar}), 127.92, 127.34 (C_{Ar Ind}), 126.00, 124.83 (CH_{Ar}), 122.75, 119.83, 118.81 (CH_{Ar Ind}), 111.82 (C_{Ar Ind}), 111.42 (CH_{Ar Ind}), 77.00, 74.07 (OCH₂), 39.78 (NCH₂), 33.91, 33.61 (<u>C</u>(CH₃)₃), 31.44 (C(<u>C</u>H₃)₃), 31.27 (ArCH₂Ar), 31.09 (C(<u>C</u>H₃)₃), 24.91 (IndCH₂), 21.98 (OCH₂<u>C</u>H₂), 10.03 (CH₃); ESI-MS *m/z*: 1153.6729 [M+Na]⁺ for C₇₄H₉₀NaN₄O₆ (1153.6753).

Bisindole-bridged calixarene **9** was prepared according to *General procedure C* from calixarene **5** (0.200 g, 0.191 mmol), TFA (19.1 ml), DDQ (0.047 g, 0.210 mmol), and 1,4-dioxane (20 ml); purified by crystallization. Yield 0.13 g (65%), beige solid. M.p. 258–260 °C (decomp.); ¹H NMR (400 MHz, CDCl₃): δ = 8.10 (s, 2H; NH_{Ind}), 7.79 (t, 2H, ³J_{HH} = 6.3 Hz; C(O)NH), 7.75–7.71 (m, 2H; ArH_{Ind}),

7.31–7.24 (m, 4H; ArH_{Ind}), 7.19–7.14 (m, 2H; ArH_{Ind}), 7.02 (s, 4H; ArH), 6.60 (s, 4H; ArH), 5.83 (s, 2H; OH), 4.32 (s, 4H; OCH₂CO), 3.75 (d, 4H, ${}^{2}J_{HH} = 13.4$ Hz; ArCH₂Ar), 3.70–3.62 (m, 4H; NCH₂), 3.20–3.14 (m, 4H; IndCH₂), 3.09 (d, 4H, ${}^{2}J_{HH} = 13.4$ Hz; ArCH₂Ar), 1.32 (s, 18H; C(CH₃)₃), 0.83 (s, 18H; C(CH₃)₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 168.56$ (C=O), 149.40, 149.01, 147.68, 142.79 (C_{Ar}), 136.11 (C_{Ar Ind}), 131.51 (C_{Ar}), 128.50 (C_{Ar Ind}), 128.26 (C_{Ar}), 126.47 (C_{Ar Ind}), 125.77, 125.39 (CH_{Ar}), 122.75, 119.97, 119.12 (CH_{Ar Ind}), 112.85 (C_{Ar Ind}), 111.36 (CH_{Ar Ind}), 74.30 (OCH₂), 40.11 (NCH₂), 33.90, 33.80 (<u>C</u>(CH₃)₃), 31.63 (C(<u>C</u>H₃)₃), 31.06 (ArCH₂Ar), 30.78 (C(<u>C</u>H₃)₃), 24.78 (IndCH₂) ppm; ESI-MS *m/z*: 1047.5964 [M+H]⁺ for C₆₈H₇₉N₄O₆ (1047.5994).

Bisindole-bridged calixarene **10** was prepared according to *General procedure C* from calixarene **6**^[S3] (0.100 g, 0.086 mmol), TFA (8.6 ml), DDQ (0.021 g, 0.095 mmol), and 1,4-dioxane (10 ml); purified by crystallization. Yield 0.065 g (65%), white solid. M.p. 253–255 °C (decomp.); ¹H NMR (600 MHz, CDCl₃): δ = 8.62 (s, 2H; NH_{Ind}), 7.87 (bs, 2H; C(O)NH), 7.72–7.69 (m, 2H; ArH_{Ind}), 7.23–7.15 (m,

6H; ArH_{Ind}), 7.07 (d, 2H, ${}^{4}J_{HH} = 2.3$ Hz; ArH), 6.96 (d, 2H, ${}^{4}J_{HH} = 2.3$ Hz; ArH), 6.62 (d, 2H, ${}^{4}J_{HH} = 2.3$ Hz; ArH), 6.54 (d, 2H, ${}^{4}J_{HH} = 2.3$ Hz; ArH), 5.79 (s, 2H; OH), 5.03–4.96 (m, 2H; CHCO), 4.37 (d, 2H, ${}^{2}J_{HH} = 14.4$ Hz; OCH₂CO), 4.19 (d, 2H, ${}^{2}J_{HH} = 14.4$ Hz; OCH₂CO), 4.02 (d, 2H, ${}^{2}J_{HH} = 13.3$ Hz; ArCH₂Ar), 3.65 (d, 2H, ${}^{2}J_{HH} = 13.6$ Hz; ArCH₂Ar), 3.64 (dd, 2H, ${}^{2}J_{HH} = 14.5$ Hz, ${}^{3}J_{HH} = 7.5$ Hz; IndCH₂), 3.48 (dd, 2H, ${}^{2}J_{HH} = 14.5$ Hz, ${}^{3}J_{HH} = 7.5$ Hz; IndCH₂), 3.48 (dd, 2H, ${}^{2}J_{HH} = 14.5$ Hz, ${}^{3}J_{HH} = 7.5$ Hz; IndCH₂), 3.48 (dd, 2H, ${}^{2}J_{HH} = 14.5$ Hz, ${}^{3}J_{HH} = 7.5$ Hz; IndCH₂), 3.48 (dd, 2H, ${}^{2}J_{HH} = 14.5$ Hz, ${}^{3}J_{HH} = 7.5$ Hz; IndCH₂), 3.48 (s, 18H; C(CH₃)₃) ppm; ${}^{13}C$ NMR (100 MHz, CDCl₃): $\delta = 172.67$, 168.08 (C=O), 149.52, 149.23, 147.36, 142.38 (C_{Ar}), 136.21 (C_{Ar Ind}), 131.43, 131.40, 128.24 (C_{Ar}), 128.07, 127.78 (C_{Ar Ind}), 127.36 (C_{Ar}), 126.13, 125.51, 125.41, 125.30 (CH₃), 52.19 (NCH), 33.86, 33.77 (C(CH₃)₃), 31.66 (C(CH₃)₃), 31.15, 31.00 (ArCH₂Ar), 30.79 (C(CH₃)₃), 27.01 (IndCH₂) ppm; ESI-MS *m/z*: 1163.6057 [M+H]⁺ for C₇₂H₈₃N₄O₁₀ (1163.6104).

Calixarene amide 13 was prepared according to *General procedure A* from acid 11^[S4] (0.187 g, 0.30 mmol), SOCl₂ (5 ml), dry benzene (5 ml), tryptamine (0.192 g, 1.20 mmol), Et₃N (0.334 ml, 2.40 mmol), water (0.2 ml), and THF (20 ml); purified by chromatography. Yield 0.215 g (79%), white solid. M.p. 117–119 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.13 (s, 2H; NH_{Ind}), 7.71–7.64 (m, 2H; ArH_{Ind}), 7.37–7.31 (m, 2H; ArH_{Ind}),

Calixarene amide 14 was prepared according to *General procedure A* from acid $12^{[S5]}$ (0.164 g, 0.25 mmol), SOCl₂ (2.5 ml), dry benzene (2.5 ml), tryptamine (0.320 g, 2.00 mmol), Et₃N (0.556 ml, 4.00 mmol), and THF (10 ml); the solid obtained after concentration of the reaction mixture was washed with washed with 2 M HCl, water, methanol. and dried. Yield 0.241 g (78%), white solid. M.p. 257–259 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 10.82 (bs, 4H; NH_{Ind}), 7.57–7.54 (m, 4H; ArH_{Ind}), 7.36–7.32 (m, 4H; ArH_{Ind}), 7.1–7.11 (m, 4H; ArH_{Ind}), 7.08–7.04 (m, 4H; ArH_{Ind}), 6.97 (d, 8H, ³*J*_{HH} = 7.5 Hz; ArH), 6.97–6.94 (m, 4H; ArH_{Ind}), 6.65 (t, 4H, ³*J*_{HH} = 5.9 Hz; NH), 6.57 (t, 4H, ³*J*_{HH} = 7.5 Hz;

ArH), 3.81 (s, 8H; ArCH₂Ar), 3.79 (s, 8H; OCH₂), 3.35–3.28 (m, 8H; NCH₂), 2.86–2.81 (m, 8H; IndCH₂) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 167.83$ (C=O), 154.85 (C_{Ar}), 136.29 (C_{Ar Ind}), 134.04 (C_{Ar}), 129.92 (CH_{Ar}), 127.25 (C_{Ar Ind}), 122.78 (CH_{Ar}), 122.62, 120.96, 118.27, 111.77 (CH_{Ar Ind}), 111.42 (C_{Ar Ind}), 69.76 (OCH₂), 48.61 (NCH₂), 36.07 (ArCH₂Ar), 25.07 (IndCH₂) ppm; ESI-MS *m*/*z*: 1225.5508 [M+H]⁺ for C₇₆H₇₃N₈O₈ (1225.5546).

Bisindole-bridged calixarene **15** was prepared according to *General procedure C* from calixarene **13** (0.073 g, 0.080 mmol), TFA (8 ml), DDQ (0.020 g, 0.088 mmol), and 1,4-dioxane (10 ml); purified by crystallization. Yield 0.053 g (73%), beige solid. M.p. 234–236 °C (decomp.); ¹H NMR (600 MHz, CDCl₃): δ = 8.66 (s, 2H; NH_{Ind}), 7.82–7.76 (m, 2H; ArH_{Ind}), 7.44–7.39 (m, 2H; ArH_{Ind}), 7.29–7.23 (m, 2H; ArH_{Ind}),

7.22–7.16 (m, 2H; ArH_{Ind}), 6.97 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.73 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.30 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.25 (bs, 2H; C(O)NH), 5.99 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 4.11 (s, 4H; OCH₂CO), 3.56–3.50 (m, 4H, OC<u>H₂CH₂</u>) 3.51 (d, 4H, ${}^{2}J_{HH} = 14.2$ Hz; ArCH₂Ar), 3.47–3.39 (m, 4H; NCH₂), 3.26 (d, 4H, ${}^{2}J_{HH} = 14.2$ Hz; ArCH₂Ar), 3.14 (t, 4H, ${}^{3}J_{HH} = 7.1$ Hz; IndCH₂), 1.77–1.65 (m, 4H; OCH₂C<u>H₂</u>), 0.91 (6H, ${}^{3}J_{HH} = 7.5$ Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.05$ (C=O), 156.92, 153.54 (C_{Ar}), 136.17 (C_{Ar Ind}), 133.94, 133.02 (C_{Ar}), 131.11, 130.50 (CH_{Ar}), 128.73, 125.98 (C_{Ar Ind}), 123.21, 122.68 (CH_{Ar Ind}), 120.09 (CH_{Ar}), 119.52 (CH_{Ar Ind}), 114.71 (C_{Ar Ind}), 111.56 (CH_{Ar Ind}), 73.32, 69.82 (OCH₂), 41.21 (NCH₂), 36.51 (ArCH₂Ar), 24.53 (IndCH₂), 23.57 (OCH₂CH₂), 10.19 (CH₃) ppm; ESI-MS *m/z*: 907.4398 [M+H]⁺ for C₅₈H₅₉N₄O₆₀ (907.4429).

Bisindole-bridged calixarene **16** was prepared according to *General procedure C* from calixarene **14** (0.076 g, 0.062 mmol), TFA (6.2 ml), DDQ (0.038 g, 0.167 mmol), and 1,4-dioxane (8 ml); the solid formed at the oxidation step was collected, washed with dioxane, and dried. Yield 0.051 g (67%), beige solid. M.p. > 300 °C; ¹H NMR (600 MHz, DMSO-*d*₆, 85 °C): δ = 11.15 (bs, 4H; NH_{Ind}), 7.72–7.68 (m, 4H; ArH_{Ind}), 7.42–7.38 (m, 4H; ArH_{Ind}), 7.18–7.11 (m, 8H;

ArH_{Ind}), 6.43 (d, 8H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.18 (t, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 5.74 (t, 4H, ${}^{3}J_{HH} = 5.8$ Hz; NH), 4.05(s, 8H; OCH₂), 3.41 (s, 8H; ArCH₂Ar), 3.40–3.35 (m, 8H; NCH₂), 3.09–3.05 (m, 8H; IndCH₂) ppm; 13 C NMR (100 MHz, DMSO-*d*₆): $\delta = 167.76$ (C=O), 153.63 (C_{Ar}), 136.09 (C_{Ar Ind}), 133.35 (C_{Ar}), 130.44 (CH_{Ar}), 128.32, 126.96 (C_{Ar Ind}), 121.94 (CH_{Ar}), 121.25, 119.00, 118.54, 112.53 (CH_{Ar Ind}), 111.66 (C_{Ar Ind}), 69.45 (OCH₂), 40.59 (NCH₂), 35.14 (ArCH₂Ar), 24.36 (IndCH₂) ppm; ESI-MS *m*/*z*: 1221.5192 [M+H]⁺ for C₇₆H₆₉N₈O₈ (1221.5233). Crystallographic data: space group C2/c, *a*(Å) = 30.104(3), *b*(Å) = 23.487(2), *c*(Å) = 26.090(4), β (°) = 121.5570(10), *V*(Å³) 15720(3), *Z* = 8, no. of collected/unique reflections 63317/15461, GOOF 1.034, R1 = 0.1640, wR2 = 0.3643, ρ_{max}/ρ_{min} (e/Å³) 0.834/–0.598, CCDC 1866294.

Calixarene dibenzyl ester **21**. Benzyl alcohol (2.99 ml, 28.9 mmol) was added to a stirred suspension of calixarene **20**^[S6] (1.56 g, 2.89 mmol) and *p*-toluenesulfonic acid monohydrate (0.110 g, 0.58 mmol) in toluene (60 ml). The reaction mixture was heated at 50 °C (oil bath) for 15 h. After cooling, the solvent was removed under reduced pressure, and the residue was purified by a short column chromatography (CH₂Cl₂)

followed by crystallization from diethyl ether. Yield 1.72 g (83%), white needles. M.p. 135– 137 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.54 (s, 2H; OH), 7.41–7.28 (m, 10H; ArH_{Ph}), 7.02 (d, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 6.88 (d, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 6.73 (t, 2H, ³*J*_{HH} = 7.5 Hz; ArH), 6.64 (t, 2H, ³*J*_{HH} = 7.5 Hz; ArH), 5.26 (s, 4H; CH₂Ph), 4.75 (s, 4H; CH₂CO), 4.45 (d, 4H, ²*J*_{HH} = 13.1 Hz; ArCH₂Ar), 3.36 (d, 4H, ²*J*_{HH} = 13.1 Hz; ArCH₂Ar) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 168.59 (C=O), 152.88, 152.23 (C_{Ar}), 135.06 (C_{Ar Ph}), 132.92 (C_{Ar}), 129.07 (CH_{Ar}), 128.50, 128.39 (CH_{Ar Ph}), 128.04 (C_{Ar}), 125.51, 119.03 (CH_{Ar}), 72.31 (OCH₂CO), 66.95 (CH₂Ph), 31.40 (ArCH₂Ar) ppm; ESI-MS *m*/*z*: 738.3081 [M+NH₄]⁺ for C₄₆H₄₄NO₈ (738.3067). Crystallographic data: space group P2₁/n, *a*(Å) = 10.1647(9), *b*(Å) = 17.2468(15), *c*(Å) = 20.8692(18), β (°) = 101.136(2), *V*(Å³) = 3589.7(5), *Z* = 4, no. of collected/unique reflections 26578/8662, GOOF 1.020, R1 = 0.0432, wR2 = 0.0905, ρ_{max}/ρ_{min} (e/Å³) 0.245/–0.219, CCDC 1866292.

Calixarene dibenzyl/diethyl ester **22**. A mixture of calixarene **21** (1.08 g, 1.50 mmol), Cs_2CO_3 (2.45 g, 7.50 mmol) and dry acetone (30 ml) was stirred at room temperature for 24 h. Ethyl bromoacetate (1.00 ml, 9.00 mmol) was added and the mixture was stirred at room temperature for 48 h. The solvent was removed under reduced pressure, 2 M HCl was added and the products were extracted by CH_2Cl_2 . The solution was washed with water, dried and concentrated. The residue was purified by

column chromatography (gradient from hexane to hexane/ethyl acetate 3:1), the productcontaining fractions were combined, concentrated, and the residue was dissolved in a minimum amount of CH₂Cl₂. Hexane was added and the solid formed was collected, washed with hexane, and dried. Yield 0.320 g (24%), white crystals. M.p. 150–152 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.43–7.30 (m, 10H; ArH_{Ph}), 7.12 (d, 4H, ³*J*_{HH} = 7.6 Hz; ArH), 7.07 (d, 4H, ³*J*_{HH} = 7.6 Hz; ArH), 6.70 (t, 2H, ³*J*_{HH} = 7.6 Hz; ArH), 6.55 (t, 2H, ³*J*_{HH} = 7.5 Hz; ArH), 5.18 (s, 4H; PhCH₂), 4.23 (q, 4H, ³*J*_{HH} = 7.2 Hz; OC<u>H</u>₂CH₃), 4.03 (s, 4H; OCH₂CO), 3.96 (s, 4H; OCH₂CO), 3.76 (bs, 8H; ArCH₂Ar), 1.31 (t, 6H, ³*J*_{HH} = 7.2 Hz; CH₃) ppm; ¹³C NMR (150 MHz, CDCl₃): δ = 169.54, 169.40 (C=O), 155.51, 155.30 (C_{Ar}), 135.32 (C_{Ar Ph}), 133.58, 133.52 (C_{Ar}), 130.40, 130.29 (CH_{Ar}), 128.59, 128.48, 128.44 (CH_{Ar Ph}), 123.00, 122.92 (CH_{Ar}), 69.50, 69.44 (O<u>C</u>H₂CO), 66.47 (PhCH₂), 60.72 (O<u>C</u>H₂CH₃), 35.65 (ArCH₂Ar), 14.14 (CH₃) ppm; ESI-MS *m/z*: 910.3799 [M+NH₄]⁺ for C₅₄H₅₆NO₁₂ (910.3803).

Calixarene diethyl ester **24**. A mixture of calixarene **23**^[S7] (3.18 g, 7.50 mmol) and K₂CO₃ (2.28 g, 16.52 mmol) in dry acetonitrile (150 ml) was stirred at reflux for 1 h and cooled. Ethyl 4-bromobutyrate (2.36 ml, 16.50 mmol) was added and the reaction mixture was stirred at reflux for 48 h. After cooling, the mixture was filtered, the solid was washed with CH₂Cl₂ and removed. The combined filtrates were concentrated under

reduced pressure, and the residue was dissolved in a minimum amount of CH₂Cl₂. Ethanol was added and the solution was heated to reflux shortly. The solid formed at cooling the solution was collected, washed with cold ethanol and dried. Yield 1.91 g (39%), white crystals. M.p. 159–161 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.09$ (s, 2H; OH), 8.95 (d, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 6.90 (d, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 6.74 (t, 2H, ³*J*_{HH} = 7.5 Hz; ArH), 6.65 (t, 2H, ³*J*_{HH} = 7.5 Hz; ArH), 4.25 (d, 4H, ²*J*_{HH} = 13.0 Hz; ArCH₂Ar), 4.17 (q, 4H, ³*J*_{HH} = 7.1 Hz; OCH₂CH₃), 4.09–4.03 (m, 4H; OCH₂CH₂), 3.38 (d, 4H, ²*J*_{HH} = 13.0 Hz; ArCH₂Ar), 2.93–2.86 (m, 4H; CH₂CO), 2.40–2.30 (m, 4H; CH₂CH₂), 1.25 (t, 6H, ³*J*_{HH} = 7.1 Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.29$ (C=O), 153.23, 151.46, 133.23 (C_{Ar}), 128.97, 128.44 (CH_{Ar}), 127.91 (C_{Ar}), 125.46, 119.02 (CH_{Ar}), 75.25 (OCH₂CH₂), 60.41 (OCH₂CH₃), 31.34 (ArCH₂Ar), 30.60 (CH₂CO), 25.42 (CH₂CH₂), 14.20 (CH₃) ppm; ESI-MS *m/z*: 670.3385 [M+NH₄]⁺ for C₄₀H₄₈NO₈ (670.3380).

Calixarene dibenzyl/diethyl ester **25**. A mixture of calixarene **24** (1.56 g, 2.40 mmol), Cs_2CO_3 (3.91 g, 12.00 mmol) and dry acetone (48 ml) was stirred at room temperature for 24 h. Benzyl bromoacetate (2.28 ml, 14.40 mmol) was added and the mixture was stirred at room temperature for 48 h. The solvent was removed under reduced pressure, 2 M HCl was added and the products were extracted by CH_2Cl_2 . The solution was washed with water, dried and concentrated. The product was purified by column chromatography (gradient from CH_2Cl_2 to CH_2Cl_2 /ethanol 100:1).

Yield 0.460 g (20%), yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.40-7.26$ (m, 10H; ArH_{Ph}), 7.05 (d, 8H, ³*J*_{HH} = 7.5 Hz; ArH), 6.78 (t, 2H, ³*J*_{HH} = 7.5 Hz; ArH), 6.61 (t, 2H, ³*J*_{HH} = 7.5 Hz; ArH), 5.00 (s, 4H; PhCH₂), 4.16 (q, 4H, ³*J*_{HH} = 7.2 Hz; OC<u>H</u>₂CH₃), 3.96 (d, 4H, ²*J*_{HH} = 15.3 Hz; ArCH₂Ar), 3.71 (d, 4H, ²*J*_{HH} = 15.3 Hz; ArCH₂Ar), 3.64–3.56 (m, 4H; OC<u>H</u>₂CH₂), 3.31 (s, 4H; OCH₂CO), 2.24–2.17 (m, 4H; CH₂C<u>H</u>₂CO), 1.77–1.66 (m, 4H; CH₂C<u>H</u>₂CH₂), 1.29 (t, 6H, ³*J*_{HH} = 7.2 Hz, CH₃) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 173.32$, 169.75 (C=O), 156.96, 154.97 (C_{Ar}), 135.51 (C_{Ar Ph}), 134.56, 133.83 (C_{Ar}), 130.35, 130.19 (CH_{Ar}), 128.45, 128.33, 128.25 (CH_{Ar Ph}), 122.92, 122.49 (CH_{Ar}), 70.04, 68.33 (OCH₂), 65.97 (PhCH₂), 60.23 (O<u>C</u>H₂CH₃), 37.39 (ArCH₂Ar), 30.46 (CH₂<u>C</u>H₂CO), 24.78 (CH₂<u>C</u>H₂CH₂), 14.26 (CH₃) ppm; ESI-MS *m*/*z*: 966.4448 [M+NH₄]⁺ for C₅₈H₆₄NO₁₂ (966.4429).

Calixarene ester/acid **26**. A mixture of calixarene **22** (0.205 g, 0.230 mmol), Pd/C (10%, 0.0245 g, 0.023 mmol), and THF (10 ml) was degassed with a vacuum pump and hydrogenated (1 atm) at vigorous stirring for 24 h. The catalyst was filtered off, and the filtrate was concentrated to dryness. The residue was washed with hexane. Yield 0.159 g (97%), white solid. M.p. 229–231 °C; ¹H NMR (400 MHz,

CDCl₃+CD₃OD): δ = 7.09 (d, 4H, ³*J*_{HH} = 7.6 Hz; ArH), 7.03 (d, 4H, ³*J*_{HH} = 7.6 Hz; ArH), 6.84 (t, 2H, ³*J*_{HH} = 7.6 Hz; ArH), 6.78 (t, 2H, ³*J*_{HH} = 7.6 Hz; ArH), 4.10 (d, 4H, ²*J*_{HH} = 16.2 Hz; ArCH₂Ar), 3.99 (q, 4H, ³*J*_{HH} = 7.1 Hz; OC<u>H</u>₂CH₃), 3.98 (s, 4H; OCH₂CO), 3.87 (d, 4H, ²*J*_{HH} = 16.2 Hz; ArCH₂Ar), 3.41 (s, 4H; OCH₂CO), 1.13 (t, 6H, ³*J*_{HH} = 7.1 Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃+CD₃OD): δ = 170.02, 169.83 (C=O), 154.94, 154.26, 134.10, 133.46 (C_{Ar}), 130.31, 129.79, 124.06, 123.90 (CH_{Ar}), 68.05, 67.15 (O<u>C</u>H₂CO), 60.38 (O<u>C</u>H₂CH₃), 37.21 (ArCH₂Ar), 13.68 (CH₃) ppm; ESI-MS *m/z*: 730.2883 [M+NH₄]⁺ for C₄₀H₄₄NO₁₂ (730.2864).

Calixarene ester/acid **27** was prepared as described for calixarene **26** from calixarene **26** (0.273 g, 0.288 mmol), Pd/C (10%, 0.0305 g, 0.0288 mmol), and THF (10 ml). Yield 0.212 g (96%), white solid. M.p. 196–198 °C; ¹H NMR (400 MHz, CDCl₃+CD₃OD): δ = 7.08 (d, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 7.02 (d, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 6.91 (t, 2H, ³*J*_{HH} = 7.5 Hz; ArH), 6.83 (t, 2H, ³*J*_{HH} = 7.5 Hz; ArH), 4.12 (q, 4H,

 ${}^{3}J_{\text{HH}} = 7.1 \text{ Hz}; \text{ OC}\underline{\text{H}}_{2}\text{C}\text{H}_{3}), 4.01 \text{ (s, 4H; OCH}_{2}\text{CO}), 3.89 \text{ (d, 4H, }{}^{2}J_{\text{HH}} = 16.5 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.84 \text{ (d, } 4\text{H, }{}^{2}J_{\text{HH}} = 16.5 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 3.58-3.52 \text{ (m, 4H; OC}\underline{\text{H}}_{2}\text{C}\text{H}_{2}), 2.01-1.94 \text{ (m, 4H; CH}_{2}\text{C}\underline{\text{H}}_{2}\text{CO}), 1.59-1.49 \text{ (m, 4H; CH}_{2}\text{C}\underline{\text{H}}_{2}\text{C}\text{H}_{2}), 1.27 \text{ (t, 6H, }{}^{3}J_{\text{HH}} = 7.1 \text{ Hz}; \text{ CH}_{3}) \text{ ppm; }{}^{13}\text{C} \text{ NMR} \text{ (100 MHz, } \text{CDC}\underline{\text{H}}_{3}\text{C}\text{D}): \delta = 173.64, 170.12 \text{ (C=O)}, 156.29, 153.78, 133.44, 133.41 \text{ (C}_{\text{Ar}}), 129.58, 129.14, 123.60, 123.54 \text{ (CH}_{\text{Ar}}), 68.89, 66.67 \text{ (OCH}_{2}), 60.17 \text{ (O}\underline{\text{C}}\underline{\text{H}}_{2}\text{C}\underline{\text{H}}_{3}), 37.57 \text{ (ArCH}_{2}\text{Ar}), 30.13 \text{ (CH}_{2}\underline{\text{C}}\underline{\text{H}}_{2}\text{CO}), 24.68 \text{ (CH}_{2}\underline{\text{C}}\underline{\text{H}}_{2}\text{C}\underline{\text{H}}_{2}), 14.05 \text{ (CH}_{3}) \text{ ppm; ESI-MS } m/z: 786.3509 \text{ [M+NH}_{4}]^{+} \text{ for } \text{C}_{44}\text{H}_{52}\text{NO}_{12} \text{ (786.3490)}.$

Calixcrown amide **28** was prepared according to *General* procedure A from acid **17**^[S4] (0.105 g, 0.15 mmol), SOCl₂ (2.5 ml), dry benzene (2.5 ml), tryptamine (0.096 g, 0.60 mmol), Et₃N (0.167 ml, 1.20 mmol), water (0.2 ml), and THF (10 ml); purified by re-precipitation. Yield 0.123 g (83%), white solid. M.p. 125–127 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.90 (bs, 2H; NH_{Ind}), 7.69–7.65 (m, 2H; ArH_{Ind}),

7.37–7.32 (m, 2H; ArH_{Ind}), 7.22–7.16 (m, 2H; ArH_{Ind}), 7.13 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 7.13–7.09 (m, 2H; ArH_{Ind}), 6.91 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.90 (bs, 2H; ArH_{Ind}), 6.74 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.50 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.26 (t, 2H, ${}^{3}J_{HH} = 6.1$ Hz; C(O)NH), 3.74 (d, 4H, ${}^{2}J_{HH} = 15.8$ Hz; ArCH₂Ar), 3.72 (s, 4H; CH₂CO), 3.64 (d, 4H, ${}^{2}J_{HH} = 15.8$ Hz; ArCH₂Ar), 3.58 (bs, 8H; OCH₂CH₂O), 3.54–3.49 (m, 4H; OCH₂CH₂O), 3.42–3.34 (m, 4H; NCH₂), 3.32–3.28 (m, 4H; OCH₂CH₂O), 3.00–2.94 (m, 4H; IndCH₂) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 168.96$ (C=O), 156.22, 154.86 (C_{Ar}), 136.30 (C_{Ar Ind}), 134.41, 133.48 (C_{Ar}), 130.43, 129.69 (CH_{Ar}), 127.51 (C_{Ar Ind}), 123.44, 122.85 (CH_{Ar}), 122.07, 121.85, 119.40, 118.79 (CH_{Ar Ind}), 113.15 (C_{Ar Ind}), 111.27 (CH_{Ar Ind}), 72.20, 70.71, 70.27, 69.94, 68.97 (OCH₂), 40.07 (NCH₂), 37.55 (ArCH₂Ar), 25.11 (IndCH₂) ppm; ESI-MS *m/z*: 1021.4123 [M+K]⁺ for C₆₀H₆₂KN₄O₉ (1021.4148).

Calixcrown amide **29** was prepared according to *General* procedure A from acid **18**^[S8] (0.111 g, 0.15 mmol), SOCl₂ (2.5 ml), dry benzene (2.5 ml), tryptamine (0.096 g, 0.60 mmol), Et₃N (0.167 ml, 1.20 mmol), water (0.2 ml), and THF (10 ml); purified by re-precipitation. Yield 0.129 g (84%), white solid. M.p. 119–121 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.89 (bs, 2H; NH_{Ind}), 7.69–7.64 (m, 2H; ArH_{Ind}), 7.37–7.33 (m, 2H; ArH_{Ind}), 7.23–7.17 (m, 2H; ArH_{Ind}), 7.14

(d, 4H, ${}^{3}J_{\text{HH}} = 7.5$ Hz; ArH), 7.13–7.08 (m, 2H; ArH_{Ind}), 6.90–6.88 (m, 2H; ArH_{Ind}), 6.86 (t, 2H, ${}^{3}J_{\text{HH}} = 7.5$ Hz; ArH), 6.69 (d, 4H, ${}^{3}J_{\text{HH}} = 7.5$ Hz; ArH), 6.42 (t, 2H, ${}^{3}J_{\text{HH}} = 5.7$ Hz; C(O)NH), 6.32 (t, 2H, ${}^{3}J_{\text{HH}} = 7.5$ Hz; ArH), 3.79 (s, 4H; CH₂CO), 3.75–3.70 (m, 12H; OCH₂CH₂O), 3.65 (d, 4H, ${}^{2}J_{\text{HH}} = 15.5$ Hz; ArCH₂Ar), 3.65–3.63 (m, 4H; OCH₂CH₂O), 3.63–3.59 (m, 4H; OCH₂CH₂O), 3.57–3.52 (m, 4H; NCH₂), 3.50 (d, 4H, ${}^{2}J_{\text{HH}} = 15.5$ Hz; ArCH₂Ar), 3.10–3.04 (m, 4H; IndCH₂) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 168.87$ (C=O), 156.84, 154.04 (C_{Ar}), 136.31 (C_{Ar Ind}), 134.27, 133.19 (C_{Ar}), 131.19, 130.31 (CH_{Ar}), 127.50 (C_{Ar Ind}), 123.14 (CH_{Ar}), 122.09, 121.84, 119.41, 118.70 (CH_{Ar Ind}), 113.01 (C_{Ar Ind}), 111.30 (CH_{Ar Ind}), 71.45, 71.26, 71.00, 70.90, 70.17, 70.11 (OCH₂), 40.21 (NCH₂), 36.93 (ArCH₂Ar), 25.23 (IndCH₂) ppm; ESI-MS m/z: 1044.5095 [M+NH₄]⁺ for C₆₂H₇₀N₅O₁₀ (1044.5117).

Triazolated calixarene amide **30** was prepared according to *General procedure A* from acid **19**^[S9] (0.063 g, 0.071 mmol), SOCl₂ (1 ml), dry benzene (1 ml), tryptamine (0.045 g, 0.281 mmol), Et₃N (0.078 ml, 0.561 mmol), and THF (3 ml); purified by chromatography. Yield 0.035 g (42%), white solid. M.p. 125–127 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.27 (s, 2H; NH_{Ind}), 7.69–7.65 (m, 2H; ArH_{Ind}), 7.45–7.36 (m, 6H; ArH_{Ph}), 7.36–7.27 (m, 6H; ArH_{Ph}+ArH_{Ind}), 7.21–7.15 (m, 2H; ArH_{Ind}), 7.12–7.07 (m, 2H; ArH_{Ind}), 6.89–6.87 (m, 2H; ArH_{Ind}), 6.68 (d, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 6.65 (d, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 6.61 (s, 2H; ArH_{Trz}), 6.59 (t, 2H,

 ${}^{3}J_{\text{HH}} = 5.9 \text{ Hz}; C(O)NH), 6.45 (t, 2H, {}^{3}J_{\text{HH}} = 7.5 \text{ Hz}; ArH), 6.04 (t, 2H, {}^{3}J_{\text{HH}} = 7.5 \text{ Hz}; ArH), 5.55 (s, 4H; NCH₂), 4.79 (s, 4H; OCH₂Trz), 3.55–3.47 (m, 4H; NCH₂CH₂), 3.43 (s, 4H, OCH₂CO), 3.42 (d, 4H, {}^{2}J_{\text{HH}} = 15.0 \text{ Hz}; ArCH₂Ar), 3.07 (d, 4H, {}^{2}J_{\text{HH}} = 15.0 \text{ Hz}; ArCH₂Ar), 3.04–2.98 (m, 4H; IndCH₂) ppm; {}^{13}C NMR (100 MHz, CDCl₃): <math>\delta = 168.82$ (C=O), 155.51, 154.02 (C_{Ar}), 144.29 (C_{Ar Trz}), 136.30 (C_{Ar Ind}), 134.94 (C_{Ar Ph}), 134.23, 133.23 (C_{Ar}), 130.83, 129.92 (CH_{Ar}), 129.06, 128.75, 127.95 (CH_{Ar Ph}), 127.47 (C_{Ar Ind}), 123.43 (CH_{Ar Trz}), 123.14, 122.71 (CH_{Ar}), 122.05, 121.85, 119.35, 118.73 (CH_{Ar Ind}), 113.07 (C_{Ar Ind}), 111.28 (CH_{Ar Ind}), 70.18 (OCH₂CO), 64.24 (OCH₂Trz), 53.93 (NCH₂Ph), 39.86 (NCH₂CH₂), 37.01 (ArCH₂Ar), 25.24 (IndCH₂) ppm; ESI-MS *m/z*: 1167.5271 [M+H]⁺ for C₇₂H₆₇N₁₀O₆ (1167.5245).

Calixarene ester/amide **31** was prepared according to *General procedure A* from acid **26** (0.110 g, 0.154 mmol), SOCl₂ (2 ml), dry benzene (2 ml), tryptamine (0.099 g, 0.616 mmol), Et₃N (0.171 ml, 1.232 mmol), and THF (10 ml); purified by chromatography. Yield 0.080 g (52%), white solid. M.p. 111–113 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.25 (s, 2H; NH_{Ind}), 7.68–7.64 (m, 2H; ArH_{Ind}), 7.36–7.61 (m, 2H; ArH_{Ind}), 7.21–7.16 (m, 2H; ArH_{Ind}), 7.14 (d, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 7.13–7.08 (m, 2H; ArH_{Ind}), 6.88–6.86 (m, 2H; ArH_{Ind}), 6.77 (t, 2H, ³*J*_{HH} = 7.5 Hz; ArH), 6.69

(d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.52 (t, 2H, ${}^{3}J_{HH} = 5.9$ Hz; C(O)NH), 6.31 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 4.20 (q, 4H, ${}^{3}J_{HH} = 7.2$ Hz; OC<u>H</u>₂CH₃), 3.93 (s, 4H; OCH₂CO), 3.85 (d, 4H, ${}^{2}J_{HH} = 14.7$ Hz; ArCH₂Ar), 3.75 (s, 4H; OCH₂CO), 3.63–3.55 (m, 4H; NCH₂), 3.47 (d, 4H, ${}^{2}J_{HH} = 14.7$ Hz; ArCH₂Ar), 3.12–3.16 (m, 4H; IndCH₂), 1.32 (t, 6H, ${}^{3}J_{HH} = 7.2$ Hz; CH₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 169.26$, 168.75 (C=O), 156.20, 154.13 (C_{Ar}), 136.33 (C_{Ar} Ind), 134.04, 133.23 (C_{Ar}), 131.17, 130.49 (CH_{Ar}), 127.48 (C_{Ar} Ind), 123.30 (CH_{Ar}), 122.09 (CH_{Ar} Ind), 121.87 (CH_{Ar}), 119.41, 118.64 (CH_{Ar} Ind), 112.94 (C_{Ar} Ind), 111.34 (CH_{Ar} Ind), 70.25, 69.20 (O<u>C</u>H₂CO), 60.79 (O<u>C</u>H₂CH₃), 40.17 (NCH₂), 36.45 (ArCH₂Ar), 25.24 (IndCH₂), 14.12 (CH₃) ppm; ESI-MS *m/z*: 1019.4218 [M+Na]⁺ for C₆₀H₆₀NaN₄O₁₀ (1019.4207).

Calixarene ester/amide **32** was prepared according to *General procedure A* from acid **27** (0.104 g, 0.135 mmol), SOCl₂ (2 ml), dry benzene (2 ml), tryptamine (0.086 g, 0.540 mmol), Et₃N (0.150 ml, 1.080 mmol), and THF (10 ml); purified by chromatography. Yield 0.074 g (52%), white solid. M.p. 90–92 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.32 (s, 2H; NH_{Ind}), 7.69–7.65 (m, 2H; ArH_{Ind}), 7.36–7.32 (m, 2H; ArH_{Ind}), 7.21–7.16 (m, 2H; ArH_{Ind}), 7.13–7.08 (m, 2H; ArH_{Ind}), 7.07 (d, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 6.87–6.84 (m, 2H; ArH_{Ind}), 6.81 (t, 2H, ³*J*_{HH} = 7.5 Hz; ArH), 6.70 (d, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 6.51 (t, 2H, ³*J*_{HH} = 5.9 Hz; C(O)NH), 6.36 (t, 2H,

 ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}; \text{ ArH}$, 4.20 (q, 4H, ${}^{3}J_{\text{HH}} = 7.1 \text{ Hz}; \text{ OC}\underline{\text{H}}_{2}\text{CH}_{3}$), 3.73 (s, 4H; OCH₂CO), 3.66–3.60 (m, 4H; OC<u>H</u>₂CH₂), 3.64 (d, 4H, ${}^{2}J_{\text{HH}} = 15.2 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}$), 3.59–3.52 (m, 4H; NCH₂), 3.50 (d, 4H, ${}^{3}J_{\text{HH}} = 15.2 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}$), 3.10–3.04 (m, 4H; IndCH₂), 2.33–2.27 (m, 4H; CH₂C<u>H</u>₂CO), 1.99–1.89 (m, 4H; CH₂C<u>H</u>₂CH₂), 1.32 (t, 6H, ${}^{3}J_{\text{HH}} = 7.1 \text{ Hz}; \text{ CH}_{3}$) ppm; ${}^{13}\text{C}$ NMR (100 MHz, CDCl₃): $\delta = 173.29$, 168.88 (C=O), 156.84, 154.00 (C_{Ar}), 136.29 (C_{Ar Ind}), 134.20, 133.27 (C_{Ar}), 130.95, 130.08 (CH_{Ar}), 127.45 (C_{Ar Ind}), 122.71 (CH_{Ar}), 122.01, 121.85 (CH_{Ar Ind}), 121.76 (CH_{Ar}), 119.33, 118.65 (CH_{Ar Ind}), 112.90 (C_{Ar Ind}), 111.28 (CH_{Ar Ind}), 70.08, 70.03 (OCH₂), 60.38 (O<u>C</u>H₂CH₃), 40.14 (NCH₂), 36.90 (ArCH₂Ar), 30.27 (CH₂CH₂CO), 25.22, 25.15 (CH₂CH₂CH₂, IndCH₂), 14.24 (CH₃) ppm; ESI-MS *m/z*: 1053.5033 [M+H]⁺ for C₆₄H₆₉N₄O₁₀ (1053.5014).

Bisindole-bridged calixcrown **33** was prepared according to *General procedure C* from calixarene **28** (0.059 g, 0.060 mmol), TFA (6 ml), DDQ (0.015 g, 0.066 mmol), and 1,4-dioxane (4 ml); purified by crystallization. Yield 0.036 g (60%), beige solid. M.p. > 300 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.27 (bs, 2H; NH_{Ind}), 7.89–7.84 (m, 2H; ArH_{Ind}), 7.46–7.41 (m, 2H; ArH_{Ind}), 7.32–7.27 (m, 2H; ArH_{Ind}), 7.27–

7.22 (m, 2H; ArH_{Ind}), 7.12 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.87 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.44 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.13 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 5.87 (t, 2H, ${}^{3}J_{HH} = 5.6$ Hz; C(O)NH), 4.11 (s, 4H; CH₂CO), 3.63 (d, 4H, ${}^{2}J_{HH} = 15.1$ Hz; ArCH₂Ar), 3.58–3.52 (m, 8H; OCH₂CH₂O), 3.50–3.46 (m, 8H; OCH₂CH₂O), 3.48 (d, 4H, ${}^{2}J_{HH} = 15.1$ Hz; ArCH₂Ar), 3.46–3.40 (m, 4H; NCH₂), 3.20–3.14 (m, 4H; IndCH₂) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 169.01$ (C=O), 156.05, 154.38 (C_{Ar}), 136.26 (C_{Ar Ind}), 134.20, 133.35 (C_{Ar}), 130.87, 130.59 (CH_{Ar}), 128.61, 126.23 (C_{Ar Ind}), 123.49, 123.12 (CH_{Ar}), 121.03, 120.05, 119.49 (CH_{Ar Ind}), 114.15 (C_{Ar Ind}), 111.53 (CH_{Ar Ind}), 70.93, 70.73, 70.50, 70.28, 70.17 (OCH₂), 41.05 (NCH₂), 37.02 (ArCH₂Ar), 24.44 (IndCH₂) ppm; ESI-MS *m*/*z*: 1019.3962 [M+K]⁺ for C₆₀H₆₀KN₄O₉ (1019.3992).

Bisindole-bridged calixcrown **34** was prepared according to *General procedure C* from calixarene **29** (0.061 g, 0.060 mmol), TFA (6 ml), DDQ (0.015 g, 0.066 mmol), and 1,4-dioxane (5 ml); purified by crystallization. Yield 0.036 g (60%), beige solid. M.p. 223–225 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.40 (bs, 2H; NH_{Ind}), 7.86–7.82 (m, 2H; ArH_{Ind}), 7.44–7.40 (m, 2H; ArH_{Ind}), 7.31–7.25 (m, 2H; ArH_{Ind}), 7.26–

7.21 (m, 2H; ArH_{Ind}), 7.10 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.82 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.35 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.04 (bs, 2H; C(O)NH), 6.01 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 4.14 (s, 4H; CH₂CO), 3.76–3.61 (m, 20H; OCH₂CH₂O), 3.54 (d, 4H, ${}^{2}J_{HH} = 14.5$ Hz; ArCH₂Ar), 3.51–3.43 (m, 4H; NCH₂), 3.34 (d, 4H, ${}^{2}J_{HH} = 14.5$ Hz; ArCH₂Ar), 3.23–3.16 (m, 4H; IndCH₂) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 169.01$ (C=O), 156.57, 153.63 (C_{Ar}), 136.19 (C_{Ar Ind}), 133.87, 133.01 (C_{Ar}), 131.17, 130.71 (CH_{Ar}), 128.67, 126.08 (C_{Ar Ind}), 123.15 (CH_{Ar}), 120.40, 120.04, 119.45 (CH_{Ar Ind}), 114.42 (C_{Ar Ind}), 111.60 (CH_{Ar Ind}), 71.70, 71.36, 71.34, 70.70, 70.35, 69.83 (OCH₂), 41.25 (NCH₂), 36.51 (ArCH₂Ar), 24.50 (IndCH₂) ppm; ESI-MS *m/z*: 1042.4927 [M+NH₄]⁺ for C₆₂H₆₈N₅O₁₀ (1042.4961).

Bisindole-bridged triazolated calixarene **35** was prepared according to *General procedure C* from calixarene **30** (0.035 g, 0.030 mmol), TFA (3 ml), DDQ (0.008 g, 0.035 mmol), and 1,4-dioxane (5 ml); purified by chromatography. Yield 0.029 g (84%), beige solid. M.p. 189– 191 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.87 (s, 2H; NH_{Ind}), 7.78–7.35 (m, 2H; ArH_{Ind}), 7.45–7.36 (m, 8H; ArH_{Ph}+ArH_{Ind}), 7.31–7.27 (m, 4H; ArH_{Ph}), 7.27–7.22 (m, 2H; ArH_{Ind}), 7.19–

7.13 (m, 2H; ArH_{Ind}), 6.79 (s, 2H; ArH_{Trz}), 6.59 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.27 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.08 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 5.97 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 5.95 (bs, 2H; C(O)NH), 5.51 (s, 4H; NCH₂), 4.75 (s, 4H; OCH₂Trz), 4.00 (s, 4H; OCH₂CO), 3.39–3.31 (m, 4H; NCH₂CH₂), 3.28 (d, 4H, ${}^{2}J_{HH} = 14.8$ Hz; ArCH₂Ar), 3.16 (d, 4H, ${}^{2}J_{HH} = 14.8$ Hz; ArCH₂Ar), 3.10–3.04 (m, 4H; IndCH₂) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 168.88$ (C=O), 155.26, 153.54 (C_{Ar}), 144.60 (C_{Ar Trz}), 136.16 (C_{Ar Ind}), 134.87 (C_{Ar Ph}), 134.27, 132.86 (C_{Ar}), 130.83, 130.33 (CH_{Ar}), 129.16, 128.85 (CH_{Ar Ph}), 128.62 (C_{Ar Ind}), 128.05 (CH_{Ar Ph}), 126.08 (C_{Ar Ind}), 111.55 (CH_{Ar Trz}), 123.16, 122.51 (CH_{Ar}), 121.21, 120.05, 119.45 (CH_{Ar Ind}), 114.28 (C_{Ar Ind}), 111.55 (CH_{Ar Ind}), 69.75 (OCH₂CO), 64.25 (OCH₂Trz), 54.03 (NCH₂Ph), 41.06 (NCH₂CH₂), 36.41 (ArCH₂Ar), 24.46 (IndCH₂) ppm; ESI-MS *m*/*z*: 1165.5103 [M+H]⁺ for C₇₂H₆₅N₁₀O₆ (1165.5089). Crystallographic data: space group P2₁/c, *a*(Å) = 16.5782(11), *b*(Å) = 28.2895(19), *c*(Å) = 17.3002(11), β (°) = 93.414(2), *V*(Å³) = 8099.2(9), *Z* = 4, no. of collected/unique reflections 69052/14960, GOOF 1.472, R1 = 0.1582, wR2 = 0.4204, ρ_{max}/ρ_{min} (e/Å³) 1.591/– 0.780, CCDC 1866293.

Bisindole-bridged calixarene ester **36** was prepared according to *General procedure C* from calixarene **31** (0.080 g, 0.080 mmol), TFA (8 ml), DDQ (0.020 g, 0.088 mmol), and 1,4-dioxane (8 ml); purified by chromatography. Yield 0.055 g (69%), beige solid. M.p. 190–192 °C; ¹H NMR (400 MHz, CDCl₃): δ = 9.16 (s, 2H; NH_{Ind}), 7.74–7.69 (m, 2H; ArH_{Ind}), 7.43–7.39 (m, 2H; ArH_{Ind}), 7.26–7.20 (m, 2H; ArH_{Ind}),

7.15–7.10 (m, 2H; ArH_{Ind}), 7.05 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.71 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.26 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.00 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 5.95 (bs, 2H; C(O)NH), 4.18 (q, 4H, ${}^{3}J_{HH} = 7.2$ Hz; OCH₂CH₃), 4.05 (s, 4H; OCH₂CONH), 3.72 (s, 4H; OCH₂CO₂), 3.65 (d, 4H, ${}^{2}J_{HH} = 14.6$ Hz; ArCH₂Ar), 3.40–3.32 (m, 4H; NCH₂), 3.19 (d, 4H, ${}^{2}J_{HH} = 14.6$ Hz; ArCH₂Ar), 3.12–3.05 (m, 4H; IndCH₂), 1.28 (t, 6H, ${}^{3}J_{HH} = 7.2$ Hz; CH₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 169.21$, 168.89 (C=O), 155.75, 153.91 (C_{Ar}), 136.18 (C_{Ar Ind}), 133.53, 133.16 (C_{Ar}), 130.88 (CH_{Ar}), 128.54, 126.16 (C_{Ar Ind}), 123.46, 123.01 (CH_{Ar}), 120.67, 119.92, 119.27 (CH_{Ar Ind}),

114.07 ($C_{Ar Ind}$), 111.70 ($CH_{Ar Ind}$), 69.77, 69.13 (OCH_2), 60.72 (OCH_2CH_3), 41.25 (NCH_2), 36.08 ($ArCH_2Ar$), 24.39 ($IndCH_2$), 14.12 (CH_3) ppm; ESI-MS *m*/*z*: 1012.4519 [$M+NH_4$]⁺ for $C_{60}H_{62}N_5O_{10}$ (1012.4497).

Bisindole-bridged calixarene ester **37** was prepared according to General procedure C from calixarene **32** (0.074 g, 0.070 mmol), TFA (7 ml), DDQ (0.018 g, 0.077 mmol), and 1,4-dioxane (10 ml); purified by chromatography. Yield 0.056 g (76%), beige solid. M.p. 132–134 °C (decomp.); ¹H NMR (400 MHz, CDCl₃): δ = 9.05 (s, 2H; NH_{Ind}), 7.75– 7.71 (m, 2H; ArH_{Ind}), 7.43–7.39 (m, 2H; ArH_{Ind}), 7.26–7.20 (m, 2H; ArH_{Ind}), 7.16–7.10 (m, 2H; ArH_{Ind}), 6.97 (d, 4H,

 ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}; \text{ ArH}$), 6.74 (t, 2H, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}; \text{ ArH}$), 6.26 (d, 4H, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}; \text{ ArH}$), 6.04 (bs, 2H; C(O)NH), 5.99 (t, 2H, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}; \text{ ArH}$), 4.19 (q, 4H, ${}^{3}J_{\text{HH}} = 7.2 \text{ Hz}; \text{ OCH}_2\text{CH}_3$), 4.06 (s, 4H; OCH₂CO), 3.61–3.55 (m, 4H; OC<u>H</u>₂CH₂), 3.45 (d, 4H, ${}^{2}J_{\text{HH}} = 14.5 \text{ Hz}; \text{ ArCH}_2\text{Ar}$), 3.41–3.33 (m, 4H; NCH₂), 3.21 (d, 4H, ${}^{2}J_{\text{HH}} = 14.5 \text{ Hz}; \text{ ArCH}_2\text{Ar}$), 3.13–3.06 (m, 4H; IndCH₂), 2.34–2.27 (m, 4H; CH₂C<u>H</u>₂CO), 2.04–1.94 (m, 4H; CH₂C<u>H</u>₂CH₂), 1.30 (t, 6H, ${}^{3}J_{\text{HH}} = 7.2 \text{ Hz}; \text{ CH}_3$) ppm; ${}^{13}\text{C}$ NMR (100 MHz, CDCl₃): $\delta = 173.31$, 168.97 (C=O), 156.49, 153.57 (C_{Ar}), 136.19 (C_{Ar Ind}), 133.73, 133.09 (C_{Ar}), 130.87, 130.50 (CH_{Ar}), 128.60, 126.14 (C_{Ar Ind}), 122.99, 122.70 (CH_{Ar}), 120.27, 119.91, 119.34 (CH_{Ar Ind}), 114.18 (C_{Ar Ind}), 111.63 (CH_{Ar Ind}), 70.11, 69.70 (OCH₂), 60.44 (O<u>C</u>H₂CH₃), 41.19 (NCH₂), 36.40 (ArCH₂Ar), 30.27 (CH₂CH₂CO), 25.48, 24.40 (CH₂CH₂CH₂, IndCH₂), 14.25 (CH₃) ppm; ESI-MS *m/z*: 1051.4866 [M+H]⁺ for C₆₄H₆₇N₄O₁₀ (1051.4857).

Bisindole-bridged calixarene acid **38**. To a stirred solution of calixarene **36** (0.055 g, 0.055 mmol) in THF (1 ml) and methanol (5 ml) a solution of K_2CO_3 (0.091 g, 0.66 mmol) in water (0.5 ml) was added. The mixture was stirred at reflux for 6 h, cooled, and the solvents evaporated. The residue was treated with 2 M HCl overnight. The solid formed was collected, washed with water and dried. Yield 0.048 g (93%),

yellow solid. M.p. > 300 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 12.4 (bs, 2H; OH), 11.4 (bs, 2H; NH_{Ind}), 7.74–7.67 (m, 2H; ArH_{Ind}), 7.40–7.33 (m, 2H; ArH_{Ind}), 7.20–7.10 (m, 4H; ArH_{Ind}), 7.07 (d, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 6.69 (t, 2H, ³*J*_{HH} = 7.5 Hz; ArH), 6.42 (d, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 6.17 (t, 2H, ³*J*_{HH} = 7.5 Hz; ArH), 5.94 (bs, 2H; C(O)NH), 4.08 (s, 4H; OCH₂CO), 3.98 (s, 4H; OCH₂CO), 3.79 (d, 4H, ²*J*_{HH} = 14.5 Hz; ArCH₂Ar), 3.46 (d, 4H, ²*J*_{HH} = 14.6 Hz; ArCH₂Ar), 3.41–3.34 (m, 4H; NCH₂), 3.11–3.02 (m, 4H; IndCH₂) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 170.76, 167.84 (C=O), 156.01, 154.21 (C_{Ar}), 136.16 (C_{Ar Ind}), 133.28, 133.11 (C_{Ar}), 130.40, 130.22 (CH_{Ar}),

128.32, 127.13 ($C_{Ar Ind}$), 122.95, 121.85 (CH_{Ar}), 120.58, 118.93, 118.60 ($CH_{Ar Ind}$), 112.37 ($C_{Ar Ind}$), 111.61 ($CH_{Ar Ind}$), 69.52, 69.12 (OCH_2), 40.33 (NCH_2), 35.53 ($ArCH_2Ar$), 24.48 (Ind CH_2) ppm; ESI-MS *m/z*: 961.3433 [M+Na]⁺ for $C_{56}H_{50}NaN_4O_{10}$ (961.3419).

Bisindole-bridged calixarene acid **39** was prepared as described for compound **38** from calixarene **37** (0.062 g, 0.059 mmol), K₂CO₃ (0.098 g, 0.71 mmol), THF (1 ml), methanol (5 ml), and water (0.5 ml). Yield 0.047 g (80%), beige solid. M.p. 228–230 °C (decomp.); ¹H NMR (400 MHz, DMSO- d_6): $\delta = 12.10$ (bs, 2H; OH) 11.40 (bs, 2H; NH_{Ind}), 7.73–7.67 (m, 2H; ArH_{Ind}), 7.40–7.35 (m, 2H; ArH_{Ind}), 7.19–

7.10 (m, 4H; ArH_{Ind}), 7.00 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.70 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.39 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.12 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 5.88 (bs, 2H; C(O)NH), 4.08 (s, 4H; OCH₂CO), 3.51 (d, 4H, ${}^{2}J_{HH} = 14.1$ Hz; ArCH₂Ar), 3.50–3.44 (m, 4H; OC<u>H₂CH₂</u>), 3.46 (d, 4H, ${}^{2}J_{HH} = 14.1$ Hz; ArCH₂Ar), 3.40–3.31 (m, 4H; NCH₂), 3.09–3.03 (m, 4H; IndCH₂), 2.24–2.17 (m, 4H; CH₂C<u>H₂CO</u>), 1.85–1.75 (4H; CH₂C<u>H₂CH₂</u>) ppm; 13 C NMR (100 MHz, DMSO-*d*₆): $\delta = 174.47$, 167.91 (C=O), 156.29, 153.94 (C_{Ar}), 136.14 (C_{Ar Ind}), 133.39, 133.26 (C_{Ar}), 130.38, 130.19 (CH_{Ar}), 128.32, 127.06 (C_{Ar Ind}), 122.21 (CH_{Ar}), 121.87 (CH_{Ar Ind}), 120.17 (CH_{Ar}). 118.94, 118.58 (CH_{Ar Ind}), 112.43 (C_{Ar Ind}), 111.63 (CH_{Ar Ind}), 70.12, 69.53 (OCH₂), 40.44 (NCH₂), 35.83 (ArCH₂Ar), 29.65 (CH₂CH₂CO), 25.19, 24.42 (CH₂CH₂CH₂, IndCH₂) ppm; ESI-MS *m/z*: 995.4244 [M+H]⁺ for C₆₀H₅₉N₄O₁₀ (995.4226).

Scheme S1. Preparation of carboxymethylated thiacalix[4]crown-ethers 44, 45.

Thiacalix[4]*arene ester* **41**. A mixture of thiacalix[4]*arene* **40**^[S10] (1.80 g, 3.63 mmol), K₂CO₃ (0.55 g, 4.00 mmol), and dry acetone (60 ml)) was stirred at room temperature for 15 h. Ethyl bromoacetate (4.80 ml, 43.29 mmol) was added, the mixture was stirred at reflux for 24 h and then cooled down to -18 °C. The solid was collected, washed with cold

acetone, and the acetone filtrates were removed. The solid was washed thoroughly with CH₂Cl₂, and the filtrate evaporated under reduced pressure. The residue was re-crystallized from acetone. Yield 1.06 g (44%), white crystals. M.p. 203–205 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.57 (d, 4H, ³*J*_{HH} = 7.7 Hz; ArH), 7.56 (s, 2H; OH), 6.79 (t, 2H, ³*J*_{HH} = 7.7 Hz; ArH), 6.78 (d, 4H, ³*J*_{HH} = 7.7 Hz; ArH), 6.49 (t, 2H, ³*J*_{HH} = 7.7 Hz; ArH), 5.23 (s, 4H; CH₂CO), 4.35 (q, 4H, ³*J*_{HH} = 7.1 Hz; OC<u>H</u>₂CH₃), 1.34 (t, 6H, ³*J*_{HH} = 7.1 Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 168.95 (C=O), 157.28, 156.77 (C_{Ar}), 136.65, 134.30 (CH_{Ar}), 129.89 (C_{Ar}), 125.52 (CH_{Ar}), 122.81 (C_{Ar}), 119.65 (CH_{Ar}), 70.28 (ArOCH₂), 61.31 (O<u>C</u>H₂CH₃), 14.19 (CH₃) ppm; ESI-MS *m/z*: 707.0288 [M+K]⁺ for C₃₂H₂₈KO₈S₄ (707.0299).

Thiacalixcrown ester **42**. A mixture of calixarene **41** (1.34 g, 2.00 mmol), tetraethylene glycol di(*p*-toluenesulfonate) (1.10 g, 2.20 mmol), Cs_2CO_3 (1.96 g, 6.00 mmol), and dry acetonitrile (115 ml) was stirred at 70 °C for 24 h and then cooled. The solid was filtered off, washed with acetonitrile and removed. The filtrate was concentrated under reduced

pressure, The residue was dissolved in CH₂Cl₂, washed with 2 M HCl, water, dried over MgSO₄, and the solvent was evaporated. The residue was purified by column chromatography (gradient from CH₂Cl₂ to CH₂Cl₂/ethanol 100:0.7) followed by re-crystallization from CH₂Cl₂/methanol. Yield 0.71 g (43%), white solid. M.p. 208–210 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.49 (d, 4H, ³*J*_{HH} = 7.7 Hz; ArH), 7.40 (d, 4H, ³*J*_{HH} = 7.7 Hz; ArH), 6.95 (t, 2H, ³*J*_{HH} = 7.7 Hz; ArH), 6.81 (t, 2H, ³*J*_{HH} = 7.7 Hz; ArH), 4.53 (s, 4H; CH₂CO), 4.11 (q, 4H, ³*J*_{HH} = 7.2 Hz; OC<u>H</u>₂CH₃), 4.10–4.06 (m, 4H; OC<u>H</u>₂CH₂O), 3.52–3.41 (m, 12H; OCH₂CH₂O), 1.20 (t, 6H, ³*J*_{HH} = 7.2 Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 168.32 (C=O), 159.94, 158.34 (C_{Ar}), 133.91, 133.29 (CH_{Ar}), 129.05, 128.67 (C_{Ar}), 123.72, 123.48 (CH_{Ar}), 71.08, 70.64, 70.18, 69.41, 66.70 (OCH₂), 60.62 (O<u>C</u>H₂CH₃), 14.08 (CH₃) ppm; ESI-MS *m/z*: 865.1231 [M+K]⁺ for C₄₀H₄₂KO₁₁S₄ (865.1242).

Thiacalixcrown ester **43** was prepared as described for calixarene **42** from calixarene **41** (0.39 g, 0.58 mmol), pentaethylene glycol di(*p*-toluenesulfonate) (0.35 g, 0.64 mmol), Cs_2CO_3 (0.57 g, 1.75 mmol), and dry acetonitrile (25 ml). The sample collected after the column chromatography was re-crystallized from acetonitrile. Yield

0.23 g (45%), white solid. M.p. 116–118 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.53 (d, 4H, ³*J*_{HH} = 7.7 Hz; ArH), 7.47 (d, 4H, ³*J*_{HH} = 7.7 Hz; ArH), 6.93 (t, 2H, ³*J*_{HH} = 7.7 Hz; ArH), 6.80 (t, 2H, ³*J*_{HH} = 7.7 Hz; ArH), 4.60 (s, 4H; CH₂CO), 4.20 (q, 4H, ³*J*_{HH} = 7.2 Hz; OC<u>H₂</u>CH₃), 4.19–4.15 (m, 4H; OC<u>H₂</u>CH₂O), 3.74–3.69 (m, 4H; OC<u>H₂</u>CH₂O), 3.69–3.65 (m, 8H; OCH₂CH₂O), 3.52–3.47 (m, 4H; OC<u>H₂</u>CH₂O), 1.28 (t, 6H, ³*J*_{HH} = 7.2 Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 168.32 (C=O), 160.97, 158.93 (C_{Ar}), 136.00, 134.74 (CH_{Ar}), 129.26, 128.39 (C_{Ar}), 123.75, 123.15 (CH_{Ar}), 71.36, 71.26, 71.20, 70.97, 70.45, 67.44 (OCH₂), 60.69 (O<u>C</u>H₂CH₃), 14.15 (CH₃) ppm; ESI-MS *m/z*: 888.2201 [M+NH₄]⁺ for C₄₂H₅₀NO₁₂S₄ (888.2210).

Thiacalixcrown acid **44**. A mixture of calixarene **42** (0.50 g, 0.61 mmol), NaOH (0.25 g, 6.25 mmol), THF (5 ml), ethanol (10 ml), and water (5 ml) was stirred at reflux for 24 h and then cooled. The solvents were removed under reduced pressure, the residue was dissolved in CH_2Cl_2 . The solution

was washed with 2 M HCl, water, dried, and the solvent was evaporated. Yield 0.38 g (82%), white solid. M.p. 284–286 °C; ¹H NMR (400 MHz, CDCl₃+CF₃CO₂D): δ = 7.50 (d, 4H, ³*J*_{HH} = 7.8 Hz; ArH), 7.46 (d, 4H, ³*J*_{HH} = 7.8 Hz; ArH), 7.10 (t 2H, ³*J*_{HH} = 7.8 Hz; ArH), 6.96 (t, 2H, ³*J*_{HH} = 7.8 Hz; ArH), 4.75 (s, 4H; CH₂CO), 4.31–4.27 (m, 4H; OC<u>H₂CH₂O), 3.76–3.72 (m, 4H; OC<u>H₂CH₂O), 3.72–3.69 (m, 4H; OCH₂CH₂O), 3.49–3.45 (m, 4H; OCH₂CH₂O) ppm; ¹³C NMR (100 MHz, CDCl₃+CF₃CO₂D): δ = 172.58 (C=O), 159.26, 155.74 (C_{Ar}), 134.10, 132.13 (CH_{Ar}), 130.08, 128.80 (C_{Ar}), 125.99, 125.86 (CH_{Ar}), 71.33, 70.15, 70.07, 69.58, 64.29 (OCH₂) ppm; ESI-MS *m/z*: 788.1319 [M+NH₄]⁺ for C₃₆H₃₈NO₁₁S₄ (788.1322).</u></u>

Thiacalixcrown acid **45** was prepared as described for calixarene **44** from calixarene **43** (0.22 g, 0.25 mmol), NaOH (0.10 g, 2.50 mmol), THF (2 ml), ethanol (4 ml), and water (2 ml). Yield 0.17 g (83%), white solid. M.p. 207–209 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.50 (d, 4H, ³*J*_{HH} = 7.7 Hz; ArH), 7.42 (d, 4H, ³*J*_{HH} = 7.7 Hz; ArH), 7.07 (t, 2H,

 ${}^{3}J_{\text{HH}} = 7.7 \text{ Hz}; \text{ ArH}$, 6.94 (t, 2H, ${}^{3}J_{\text{HH}} = 7.7 \text{ Hz}; \text{ ArH}$), 4.65 (s, 4H; CH₂CO), 4.18–1.12 (m, 4H; OCH₂CH₂O), 3.67 (s, 4H; OCH₂CH₂O), 3.61–3.54 (m, 8H; OCH₂CH₂O), 3.31–3.26 (m, 4H;

OCH₂CH₂O) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.35$ (C=O), 159.99, 156.09 (C_{Ar}), 133.59, 132.44 (CH_{Ar}), 129.19, 128.52 (C_{Ar}), 125.34, 124.94 (CH_{Ar}), 71.31, 71.06, 70.95, 70.79, 69.93, 65.08 (OCH₂) ppm; ESI-MS *m*/*z*: 832.1581 [M+NH₄]⁺ for C₃₈H₄₂NO₁₂S₄ (832.1584).

Thiacalixcrown amide **46** was prepared according to General procedure A from acid **44** (0.116 g, 0.15 mmol), SOCl₂ (2.5 ml), dry benzene (2.5 ml), tryptamine (0.096 g, 0.60 mmol), Et₃N (0.167 ml, 1.20 mmol), water (0.2 ml), and THF (10 ml); purified by re-precipitation. Yield 0.122 g (77%), white solid. M.p. 155–157 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.68–7.64 (m, 2H; ArH_{Ind}), 7.49 (d, 4H,

³ $J_{\rm HH}$ = 7.7 Hz; ArH), 7.47 (bs, 2H; NH_{Ind}), 7.26–7.22 (m, 2H; ArH_{Ind}), 7.20–7.15 (m, 2H; ArH_{Ind}), 7.14–7.09 (m, 2H; ArH_{Ind}), 7.06 (d, 4H, ³ $J_{\rm HH}$ = 7.7 Hz; ArH), 6.99 (t, 2H, ³ $J_{\rm HH}$ = 7.7 Hz; ArH), 6.71–6.68 (m, 2H; ArH_{Ind}), 6.57 (t, 2H, ³ $J_{\rm HH}$ = 5.5 Hz; C(O)NH), 6.26 (t, 2H, ³ $J_{\rm HH}$ = 7.7 Hz; ArH), 4.70 (s, 4H; CH₂CO), 4.07–4.02 (m, 4H; OCH₂CH₂O), 3.57–3.47 (m, 8H; OCH₂CH₂O), 3.25–3.20 (m, 4H; OC<u>H</u>₂CH₂O), 3.21–3.15 (m, 4H; NCH₂), 2.87–2.81 (m, 4H; IndCH₂) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 168.40 (C=O), 159.37, 157.26 (C_{Ar}), 136.20 (C_{Ar Ind}), 133.21, 132.00 (CH_{Ar}), 128.13, 127.22 (C_{Ar}), 127.21 (C_{Ar Ind}), 124.36, 124.19 (CH_{Ar}), 122.20, 122.13, 119.45, 118.90 (CH_{Ar Ind}), 112.45 (C_{Ar Ind}), 111.31 (CH_{Ar Ind}), 72.04, 70.84, 69.60, 68.39, 67.65 (OCH₂), 39.49 (NCH₂), 25.32 (IndCH₂) ppm; ESI-MS *m/z*: 1055.2809 [M+H]⁺ for C₅₆H₅₅N₄O₉S₄ (1055.2846).

Thiacalixcrown amide **47** was prepared according to *General procedure A* from acid **45** (0.122 g, 0.15 mmol), SOCl₂ (2.5 ml), dry benzene (2.5 ml), tryptamine (0.096 g, 0.60 mmol), Et₃N (0.167 ml, 1.20 mmol), water (0.2 ml), and THF (10 ml); purified by re-precipitation. Yield 0.100 g (62%), white solid. M.p. 123–125 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.67–7.62 (m, 2H; ArH_{Ind}), 7.59 (bs, 2H; NH_{Ind}), 7.51 (d, 4H, ³*J*_{HH} = 7.7 Hz; ArH), 7.27–7.24 (m, 2H; ArH_{Ind}),

7.20–7.15 (m, 2H; ArH_{Ind}), 7.14–7.09 (m, 2H; ArH_{Ind}), 7.10 (d, 4H, ${}^{3}J_{HH} = 7.7$ Hz; ArH), 6.99 (t, 2H, ${}^{3}J_{HH} = 7.7$ Hz; ArH), 6.78–6.76 (m, 2H; ArH_{Ind}), 6.55 (t, 2H, ${}^{3}J_{HH} = 5.4$ Hz; C(O)NH), 6.24 (t, 2H, ${}^{3}J_{HH} = 7.7$ Hz; ArH), 4.68 (s, 4H; CH₂CO), 4.11–4.06 (m, 4H; OCH₂CH₂O), 3.68 (bs, 4H; OCH₂CH₂O), 3.64–3.60 (m, 4H; OCH₂CH₂O), 3.53–3.49 (m, 4H; OCH₂CH₂O), 3.42–3.39 (m, 4H; OCH₂CH₂O), 3.32–3.25 (m, 4H; NCH₂), 2.94–2.88 (m, 4H; IndCH₂) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 168.42 (C=O), 160.46, 157.60 (C_{Ar}), 136.25 (C_{Ar Ind}), 134.19, 133.40 (CH_{Ar}), 128.40, 127.65 (C_{Ar}), 127.22 (C_{Ar Ind}), 124.26, 123.99 (CH_{Ar}), 122.17, 122.11, 119.44,

118.78 (CH_{Ar Ind}), 112.45 (C_{Ar Ind}), 111.34 (CH_{Ar Ind}), 71.03, 70.98, 70.97, 70.05, 69.82, 68.79 (OCH₂), 39.66 (NCH₂), 25.31 (IndCH₂) ppm; ESI-MS m/z: 1099.3077 [M+H]⁺ for C₅₈H₅₉N₄O₁₀S₄ (1099.3109).

Bisindole-bridged thiacalixcrown **48** was prepared according to *General procedure C* from calixarene **46** (0.075 g, 0.071 mmol), TFA (7 ml), DDQ (0.018 g, 0.078 mmol), and 1,4-dioxane (6 ml); purified by crystallization. Yield 0.041 g (55%), beige solid. M.p. > 300 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.29 (bs, 2H; NH_{Ind}), 7.77–7.72 (m, 2H; ArH_{Ind}), 7.50 (d, 4H, ³J_{HH} = 7.7 Hz; ArH), 7.46–7.42 (m, 2H; ArH_{Ind}),

7.31–7.26 (m, 2H; ArH_{Ind}), 7.27–7.21 (m, 2H; ArH_{Ind}), 6.95 (t, 2H, ${}^{3}J_{HH} = 7.7$ Hz; ArH), 6.91 (bd, 4H; ArH), 6.67 (t, 2H, ${}^{3}J_{HH} = 7.7$ Hz; ArH), 6.30 (bs, 2H; C(O)NH), 4.49 (s, 4H; CH₂CO), 4.08–4.02 (m, 4H; OCH₂CH₂O), 3.50 (bs, 8H; OCH₂CH₂O), 3.39–3.32 (m, 4H; NCH₂), 3.35–3.30 (m, 4H; OC<u>H</u>₂CH₂O), 2.92–2.85 (m, 4H; IndCH₂) ppm; 13 C NMR (100 MHz, CDCl₃+CD₃OD): $\delta = 168.67$ (C=O), 159.76, 157.59 (C_{Ar}), 136.16 (C_{Ar Ind}), 134.09, 132.58 (CH_{Ar}), 128.58, 127.64 (C_{Ar}), 127.48, 127.21 (C_{Ar Ind}), 124.16, 123.89 (CH_{Ar}), 122.31, 119.47, 118.20 (CH_{Ar Ind}), 111.98 (C_{Ar Ind}), 111.45 (CH_{Ar Ind}), 71.47, 70.61, 69.66, 68.50, 67.91 (OCH₂), 39.71 (NCH₂), 23.68 (IndCH₂) ppm; ESI-MS *m/z*: 1091.2213 [M+K]⁺ for C₅₆H₅₂KN₄O₉S₄ (1091.2249).

Bisindole-bridged thiacalixcrown **49** was prepared according to *General procedure C* from calixarene **47** (0.066 g, 0.06 mmol), TFA (6 ml), DDQ (0.015 g, 0.066 mmol), and 1,4-dioxane (5 ml); purified by crystallization. Yield 0.044 g (67%), beige solid. M.p. > 300 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.45 (bs, 2H; NH_{Ind}), 7.80–7.74 (m, 2H; ArH_{Ind}), 7.52 (d, 4H, ³J_{HH} = 7.7 Hz; ArH), 7.45–7.40 (m, 2H; ArH_{Ind}),

7.31–7.25 (m, 2H; ArH_{Ind}), 7.27–7.20 (m, 2H; ArH_{Ind}), 6.96 (t, 2H, ${}^{3}J_{HH} = 7.7$ Hz; ArH), 6.89 (d, 4H, ${}^{3}J_{HH} = 7.6$ Hz; ArH), 6.51 (t, 2H, ${}^{3}J_{HH} = 7.6$ Hz; ArH), 6.11 (bs, 2H; C(O)NH), 4.50 (s, 4H; CH₂CO), 4.11–4.05 (m, 4H; OCH₂CH₂O), 3.68–3.61 (m, 8H; OCH₂CH₂O), 3.61–3.57 (m, 4H; OCH₂CH₂O), 3.47–3.43 (m, 4H; OCH₂CH₂O), 3.41–3.34 (m, 4H; NCH₂), 3.00–2.94 (m, 4H; IndCH₂) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 168.46$ (C=O), 160.97, 158.02 (C_{Ar}), 136.22 (C_{Ar Ind}), 135.13, 134.36 (CH_{Ar}), 129.08, 128.11 (C_{Ar}), 128.04, 126.99 (C_{Ar Ind}), 124.32, 123.14 (CH_{Ar}), 122.97, 120.14, 118.94 (CH_{Ar Ind}), 113.52 (C_{Ar Ind}), 111.60 (CH_{Ar Ind}), 71.16, 71.07, 70.52,

70.13, 69.10 (OCH₂), 40.40 (NCH₂), 24.15 (IndCH₂) ppm; ESI-MS m/z: 1114.3184 [M+NH₄]⁺ for C₅₈H₆₀N₅O₁₀S₄ (1114.3218).

Triazolated calixcrown **51**. A mixture of propargylated calixcrown **50**^[S11] (0.069 g, 0.105 mmol), 3-(2-azidoethyl)indole^[S12] (0.045 g, 0.242 mmol), CuI·P(OEt)₃^[S13] (0.011 g, 0.031 mmol), and toluene (5 ml) was stirred at 75 °C for 7 h. After cooling, the solvent was removed under reduced pressure and the residue was dissolved in CH₂Cl₂. The solution was continuously (approx. 2 h) washed with 2 M HCl, water, then dried and

concentrated to almost dryness. Hexane was added and the solid formed was separated, washed with hexane and dried. Yield 0.097 g (90%), brownish solid. M.p. 127–129 °C; ¹H NMR (600 MHz, CDCl₃): δ = 8.10 (bs, 2H; NH_{Ind}), 7.62–7.59 (m, 2H; ArH_{Ind}), 7.38–7.35 (m, 2H; ArH_{Ind}), 7.23–7.18 (m, 2H; ArH_{Ind}), 7.14–7.09 (m, 2H; ArH_{Ind}), 7.03 (d, 4H, ³*J*_{HH} = 7.3 Hz; ArH), 6.95–6.93 (m, 2H; ArH_{Ind}), 6.88 (t, 2H, ³*J*_{HH} = 7.3 Hz; ArH), 6.67 (d, 4H, ³*J*_{HH} = 7.4 Hz; ArH), 6.30 (s, 2H; ArH_{Trz}), 6.13 (t, 2H, ³*J*_{HH} = 7.4 Hz; ArH), 4.67 (s, 4H; OCH₂Trz), 4.67–4.64 (m, 4H; NCH₂), 3.65 (d, 4H, ²*J*_{HH} = 16.0 Hz; ArCH₂Ar), 3.55–3.50 (m, 8H; OCH₂), 3.48 (d, 4H, ²*J*_{HH} = 16.0 Hz; ArCH₂Ar), 3.26–3.22 (m, 4H; OCH₂), 3.20–3.16 (m, 4H; OCH₂) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 155.70, 155.41 (C_{Ar} Ind), 123.67 (CH_{Ar} Trz), 123.11, 122.75 (CH_{Ar}), 122.24, 122.09 (CH_{Ar} Ind), 119.42, 118.32, 111.38 (CH_{Ar} Ind), 110.99 (C_{Ar} Ind), 72.19, 70.25, 70.11, 68.84 (OCH₂), 63.74 (OCH₂Trz), 50.25 (NCH₂), 37.70 (ArCH₂Ar), 26.46 (IndCH₂) ppm; ESI-MS *m/z*: 1048.5100 [M+NH₄]⁺ for C₆₂H₆₆N₉O₇ (1048.5085).

Calixarene amide **55** was prepared according to *General procedure B* from acid **52**^[S14] (0.425 g, 0.60 mmol), HOSu (0.138 g, 1.20 mmol), DCC (0.154 g, 0.75 mmol), tryptamine (0.120 g, 0.75 mmol), and CH₂Cl₂ (15 ml). Yield 0.440 g (86%), white solid. M.p. 134–136 °C; ¹H NMR (400 MHz, CDCl₃): δ = 9.97 (s, 1H; OH), 9.33 (t, 1H, ³*J*_{HH} = 5.8 Hz; C(O)NH), 9.32 (s, 2H, OH), 7.83 (bs, 1H; NH_{Ind}), 7.73–7.68 (m, 1H; ArH_{Ind}), 7.29–7.25 (m, 1H; ArH_{Ind}), 7.18–7.13 (m, 1H; ArH_{Ind}), 7.14–7.12 (m, 1H; ArH_{Ind}), 7.12–7.07 (m, 1H; ArH_{Ind}), 7.05 (d, 2H, ⁴*J*_{HH} = 2.4 Hz;

ArH), 7.05 (s, 2H; ArH), 7.04 (s, 2H; ArH), 7.00 (d, 2H, ${}^{4}J_{\text{HH}} = 2.4$ Hz; ArH), 4.56 (s, 2H; OCH₂CO), 4.12 (d, 2H, ${}^{2}J_{\text{HH}} = 13.9$ Hz; ArCH₂Ar), 4.11 (d, 2H, ${}^{2}J_{\text{HH}} = 13.2$ Hz; ArCH₂Ar), 3.92–3.85 (m, 2H; NCH₂), 3.44 (d, 2H, ${}^{2}J_{\text{HH}} = 13.9$ Hz; ArCH₂Ar), 3.40 (d, 2H, ${}^{2}J_{\text{HH}} = 13.2$ Hz;

ArCH₂Ar), 3.26–3.20 (m, 2H; IndCH₂), 1.21 (s, 27H; C(CH₃)₃), 1.15 (s, 9H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 167.89 (C=O), 149.05, 148.67, 147.99, 146.79, 144.12, 143.70 (C_{Ar}), 136.35 (C_{Ind}), 132.70, 128.16 (C_{Ar}), 127.53 (C_{Ind}), 127.24, 126.96 (C_{Ar}), 126.81, 125.99, 125.80, 125.77 (CH_{Ar}), 121.89, 121.86, 119.25, 118.79 (CH_{Ind}), 113.17 (C_{Ind}), 111.07 (CH_{Ind}), 75.49 (OCH₂), 39.76 (NCH₂), 34.24, 34.05, 33.91 (<u>C</u>(CH₃)₃), 32.82, 32.04 (ArCH₂Ar), 31.47, 31.38, 31.06 (C(<u>C</u>H₃)₃), 25.40 (IndCH₂) ppm; ESI-MS *m/z*: 849.5170 [M+H]⁺ for C₅₆H₆₉N₂O₅ (849.5201).

Calixarene amide **56**^[S15] was prepared according to *General procedure B* from acid **52**^[S14] (0.212 g, 0.30 mmol), HOSu (0.069 g, 0.60 mmol), DCC (0.077 g, 0.375 mmol), L-tryptophan methyl ester hydrochloride (0.095 g, 0.375 mmol), Et₃N (0.104 ml, 0.75 mmol), and CH₂Cl₂ (10 ml). Yield 0.180 g (66%), white solid. ¹H NMR (600 MHz, CDCl₃): δ = 9.95 (s, 1H; OH), 9.47 (s, 1H; OH), 9.42 (d, 1H, ³*J*_{HH} = 8.5 Hz; C(O)NH), 9.06 (s, 1H; OH), 7.89 (bs, 1H; NH_{Ind}), 7.66–7.63 (m, 1H; ArH_{Ind}), 7.26–7.24 (m, 1H; ArH_{Ind}), 7.16–7.13 (m, 1H; ArH_{Ind}), 7.15 (d, 1H, ⁴*J*_{HH} = 2.4 Hz; ArH), 7.08–

7.05 (m, 4H; ArH+ArH_{Ind}), 7.05 (d, 2H, ${}^{4}J_{HH} = 2.5$ Hz; ArH), 7.03 (d, 1H, ${}^{4}J_{HH} = 2.5$ Hz; ArH), 7.02 (d, 1H, ${}^{4}J_{HH} = 2.6$ Hz; ArH), 7.01 (d, 1H, ${}^{4}J_{HH} = 2.5$ Hz; ArH), 5.31–5.26 (m, 1H; CHCO), 4.64 (d, 1H, ${}^{2}J_{HH} = 14.7$ Hz; OCH₂CO), 4.20 (d, 1H, ${}^{2}J_{HH} = 13.8$ Hz; ArCH₂Ar), 4.18 (d, 1H, ${}^{2}J_{HH} = 13.4$ Hz; ArCH₂Ar), 4.11 (d, 1H, ${}^{2}J_{HH} = 13.8$ Hz; ArCH₂Ar), 4.18 (d, 1H, ${}^{2}J_{HH} = 13.4$ Hz; ArCH₂Ar), 4.11 (d, 1H, ${}^{2}J_{HH} = 13.8$ Hz; ArCH₂Ar), 4.01 (d, 1H, ${}^{2}J_{HH} = 13.1$ Hz; ArCH₂Ar), 3.83 (s, 3H; OCH₃), 3.60–3.55 (m, 1H; IndCH₂), 3.52–3.47 (m, 2H; IndCH₂+ArCH₂Ar), 3.47 (d, 1H, ${}^{2}J_{HH} = 13.4$ Hz; ArCH₂Ar), 3.44 (d, 1H, ${}^{2}J_{HH} = 13.8$ Hz; ArCH₂Ar), 3.20 (d, 1H, ${}^{2}J_{HH} = 13.1$ Hz; ArCH₂Ar), 1.26 (s, 9H; C(CH₃)₃), 1.24 (s, 9H; C(CH₃)₃), 1.23 (s, 9H; C(CH₃)₃), 1.17 (s, 9H; C(CH₃)₃) ppm.

Calixarene amide **57** was prepared according to *General procedure A* from acid **53**^[S16] (0.291 g, 0.35 mmol), SOCl₂ (3.5 ml), dry benzene (3.5 ml), tryptamine (0.112 g, 0.70 mmol), Et₃N (0.195 ml, 1.40 mmol), and THF (20 ml); purified by chromatography. Yield 0.290 g (85%), white solid. M.p. 123–125 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.70 (t, 1H, ³*J*_{HH} = 6.0 Hz; C(O)NH), 8.11 (bs, 1H; NH_{Ind}), 7.76–7.72 (m, 1H; ArH_{Ind}), 7.39–7.34 (m, 1H; ArH_{Ind}), 7.22–7.16 (m, 1H; ArH_{Ind}), 7.13–7.08 (m, 1H; ArH_{Ind}), 7.02 (s, 2H; ArH), 7.01 (s, 2H;

ArH), 6.55 (s, 4H; ArH), 4.84 (s, 2H; OCH₂CO), 4.37 (d, 2H, ${}^{2}J_{HH} = 12.5$ Hz; ArCH₂Ar), 4.36 (d, 2H, ${}^{2}J_{HH} = 13.0$ Hz; ArCH₂Ar), 3.93–3.86 (m, 2H; OCH₂), 3.83–3.75 (m, 2H; NCH₂), 3.76–3.70 (m, 4H; OCH₂), 3.25–3.19 (m, 2H; IndCH₂), 3.19 (d, 2H, ${}^{2}J_{HH} = 13.0$ Hz; ArCH₂Ar), 3.13 (d, 2H, ${}^{2}J_{HH} = 12.5$ Hz; ArCH₂Ar), 2.01–1.90 (m, 2H; OCH₂CH₂), 1.85–1.73 (m, 4H; OCH₂CH₂), 1.27 (s,

9H; C(CH₃)₃), 1.26 (s, 9H; C(CH₃)₃), 0.90 (s, 18H; C(CH₃)₃), 0.88 (t, 6H, ${}^{3}J_{HH} = 7.5$ Hz; CH₃), 0.87 (t, 3H, ${}^{3}J_{HH} = 7.5$ Hz; CH₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 171.25$ (C=O), 154.31, 153.76, 152.02, 145.11, 144.81, 144.52 (C_{Ar}), 136.25 (C_{Ind}), 135.11, 133.50, 132.51, 131.93 (C_{Ar}), 127.57 (C_{Ind}), 126.09, 125.35, 125.00, 124.48 (CH_{Ar}), 122.03, 121.75, 119.43, 118.99 (CH_{Ind}), 113.67 (C_{Ind}), 111.07 (CH_{Ind}), 77.53, 76.21, 74.30 (OCH₂), 40.74 (NCH₂), 33.98, 33.93, 33.66 (C(CH₃)₃), 31.68 (ArCH₂Ar), 31.62, 31.56 (C(CH₃)₃), 31.37 (ArCH₂Ar), 31.19 (C(CH₃)₃), 25.86 (IndCH₂), 23.04, 22.80 (OCH₂CH₂), 10.12, 10.02 (CH₃) ppm; ESI-MS *m/z*: 997.6408 [M+Na]⁺ for C₆₅H₈₆NaN₂O₅ (997.6429).

Calixarene amide **58** was prepared according to *General procedure A* from acid **53**^[S16] (0.35 g, 0.42 mmol), SOCl₂ (4.2 ml), dry benzene (4.2 ml), L-tryptophan methyl ester hydrochloride (0.214 g, 0.84 mmol), Et₃N (0.35 ml, 2.52 mmol), water (0.2 ml), and THF (24 ml); purified by chromatography. Yield 0.29 g (67%), white solid. M.p. 125–127 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.96 (bs, 1H; NH_{Ind}), 7.64 (d, 1H, ³*J*_{HH} = 7.9 Hz; C(O)NH), 7.58–7.54 (m, 1H; ArH_{Ind}), 7.36–7.32 (m, 1H; ArH_{Ind}), 7.21–7.15 (m, 1H; ArH_{Ind}), 7.10–7.04 (m, 1H; ArH_{Ind}), 6.96–6.94

(m, 1H; ArH_{Ind}), 6.89 (d, 2H, ${}^{4}J_{HH} = 2.6$ Hz; ArH), 6.86 (d, 1H, ${}^{4}J_{HH} = 2.5$ Hz; ArH), 6.80 (d, 1H, ${}^{4}J_{\rm HH} = 2.5$ Hz; ArH), 6.67 (bs, 2H; ArH), 6.59 (d, 1H, ${}^{4}J_{\rm HH} = 2.5$ Hz; ArH), 6.54 (d, 1H, ${}^{4}J_{\text{HH}} = 2.5 \text{ Hz}; \text{ ArH}$, 5.05–4.99 (m, 1H; CHCO), 4.58 (d, 1H, ${}^{2}J_{\text{HH}} = 15.7 \text{ Hz}; \text{ OCH}_{2}\text{CO}$), 4.57 (d, 1H, ${}^{2}J_{\text{HH}} = 15.7$ Hz; OCH₂CO), 4.37 (d, 1H, ${}^{2}J_{\text{HH}} = 12.5$ Hz; ArCH₂Ar), 4.37 (d, 1H, ${}^{2}J_{\text{HH}} = 12.4$ Hz; ArCH₂Ar), 4.27 (d, 1H, ${}^{2}J_{HH} = 12.8$ Hz; ArCH₂Ar), 4.26 (d, 1H, ${}^{2}J_{HH} = 12.7$ Hz; ArCH₂Ar), 3.94– 3.76 (m, 4H; OCH₂), 3.73–3.67 (m, 2H; OCH₂), 3.67 (s, 3H; OCH₃), 3.50–3.34 (m, 2H; IndCH₂), 3.11 (d, 2H, ${}^{2}J_{HH} = 12.4$ Hz; ArCH₂Ar), 3.09 (d, 1H, ${}^{2}J_{HH} = 12.8$ Hz; ArCH₂Ar), 2.90 (d, 1H, $^{2}J_{\text{HH}} = 12.7 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}), 1.99-1.82 \text{ (m, 6H; OCH}_{2}\text{CH}_{2}), 1.18 \text{ (s, 9H; C(CH}_{3})_{3}), 1.17 \text{ (s, 9H; } 1.17 \text{ (s, 9H; C(CH}_{3})_{3}), 1.17 \text{ (s, 9H; } 1.18 \text{ (s, 9H; C(CH}_{3})_{3}), 1.17 \text{ (s, 9H; } 1.18 \text{ (s, 9H; C(CH}_{3})_{3}), 1.17 \text{ (s, 9H; } 1.18 \text{ (s, 9H; C(CH}_{3})_{3}), 1.17 \text{ (s, 9H; } 1.18 \text{ (s, 9H; C(CH}_{3})_{3}), 1.17 \text{ (s, 9H; } 1.18 \text{ (s, 9H; C(CH}_{3})_{3}), 1.17 \text{ (s, 9H; } 1.18 \text{ (s, 9$ $C(CH_3)_3$, 1.00 (s, 9H; $C(CH_3)_3$), 0.99 (t, 3H, ${}^{3}J_{HH} = 7.4$ Hz; CH_3), 0.96 (s, 9H; $C(CH_3)_3$), 0.87 (t, 3H, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}; \text{ CH}_{3}$, 0.83 (t, 3H, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}; \text{ CH}_{3}$) ppm; ${}^{13}\text{C}$ NMR (100 MHz, CDCl₃): $\delta =$ 171.85, 170.08 (C=O), 153.59, 153.56, 153.12, 152.90, 144.54, 144.53, 144.49, 144.20 (C_{Ar}), 136.07 (C_{Ind}), 134.51, 134.49, 133.98, 133.90, 133.04, 133.02, 131.56, 131.47 (C_{Ar}), 127.54 (C_{Ind}), 125.48, 125.42, 125.33, 125.04, 125.03, 124.65, 124.64 (CH_{Ar}), 122.68, 122.16, 119.70, 118.60, 111.10 (CH_{Ind}), 110.69 (C_{Ind}), 77.07, 76.61, 76.53, 74.33 (OCH₂), 53.04 (NCH), 52.24 (OCH₃), 33.90, 33.89, 33.72, 33.67 (<u>C</u>(CH₃)₃), 31.54, 31.53 (C(<u>C</u>H₃)₃), 31.39 (ArCH₂Ar), 31.31, 31.29 (C(CH₃)₃), 31.22, 31.21 (ArCH₂Ar), 27.91 (IndCH₂), 23.35, 23.13, 23.07 (OCH₂CH₂), 10.48, 10.01 (CH₃) ppm; ESI-MS m/z: 1055.6466 [M+Na]⁺ for C₆₇H₈₈NaN₂O₇ (1055.6484).

Calixarene amide **59** was prepared according to *General procedure A* from acid **54**^[S17] (1.00 g, 1.04 mmol), SOCl₂ (15 ml), dry benzene (5 ml), tryptamine (0.48 g, 3.00 mmol), Et₃N (0.50 ml, 3.60 mmol), and THF (28 ml); purified by chromatography. Yield 0.75 g (65%), white solid. M.p. 100–105 °C (decomp.); ¹H NMR (400 MHz, CDCl₃): δ = 8.47 (t, 1H, ³*J*_{HH} = 6.1 Hz; C(O)NH), 8.45 (bs, 1H; NH_{Ind}), 7.70–7.66 (m, 1H; ArH_{Ind}), 7.36–7.32 (m, 1H; ArH_{Ind}), 7.18–7.13 (m, 2H; ArH_{Ind}), 7.10–7.06 (m, 1H; ArH_{Ind}), 6.85 (s, 4H; ArH), 6.73 (s, 2H; ArH), 6.60 (s, 2H; ArH), 4.85 (d,

2H, ${}^{2}J_{\text{HH}} = 15.8 \text{ Hz}$; OC<u>H</u>₂CO₂CH₂), 4.71 (d, 2H, ${}^{2}J_{\text{HH}} = 12.8 \text{ Hz}$; ArCH₂Ar), 4.69 (d, 2H, ${}^{2}J_{\text{HH}} = 15.8 \text{ Hz}$; OC<u>H</u>₂CO₂CH₂), 4.65 (s, 2H; OCH₂CO), 4.63 (d, 2H, ${}^{2}J_{\text{HH}} = 13.1 \text{ Hz}$; ArCH₂Ar), 4.51 (s, 2H; OCH₂CO), 4.19 (q, 2H, ${}^{3}J_{\text{HH}} = 7.1 \text{ Hz}$; OC<u>H</u>₂CH₃), 4.05–3.85 (m, 4H; OC<u>H</u>₂CH₃), 3.76–3.69 (m, 2H; NCH₂), 3.21 (d, 2H, ${}^{2}J_{\text{HH}} = 13.1 \text{ Hz}$; ArCH₂Ar), 3.20 (d, 2H, ${}^{2}J_{\text{HH}} = 13.1 \text{ Hz}$; ArCH₂Ar), 3.14–3.09 (2H; IndCH₂), 1.23 (t, 3H, ${}^{3}J_{\text{HH}} = 7.1 \text{ Hz}$; OCH₂C<u>H</u>₃), 1.13 (s, 18H; C(CH₃)₃), 1.07 (t, 6H, ${}^{3}J_{\text{HH}} = 7.1 \text{ Hz}$; OCH₂C<u>H</u>₃), 1.04 (s, 9H; C(CH₃)₃), 0.95 (s, 9H; C(CH₃)₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 170.45$, 170.33, 170.08 (C=O), 152.86, 152.68, 152.32, 145.53, 145.50, 145.22 (C_{Ar}), 136.29 (C_{Ind}), 133.68, 133.51, 132.88, 132.25 (C_{Ar}). 127.50 (C_{Ind}), 125.68, 125.58, 125.47, 125.40 (CH_{Ar}), 121.92, 121.73, 119.07, 118.80 (CH_{Ind}), 113.59 (C_{Ind}), 111.06 (CH_{Ind}), 74.58, 71.35 (OCH₂), 60.62, 60.60 (O<u>C</u>H₂CH₃), 39.96 (NCH₂), 33.87, 33.80, 33.69 (<u>C</u>(CH₃)₃), 31.96, 31.42 (ArCH₂Ar), 31.37, 31.26, 31.23 (C(<u>C</u>H₃)₃), 25.56 (IndCH₂), 14.06, 13.94 (CH₃) ppm; ESI-MS *m/z*: 1129.6109 [M+Na]⁺ for C₆₈H₈₆NaN₂O₁₁ (1129.6124).

Calixarene amide 60 was prepared according to *General procedure A* from acid 54^[S17] (0.20 g, 0.21 mmol), SOCl₂ (2 ml), dry benzene (2 ml), L-tryptophan methyl ester hydrochloride (0.11 g, 0.42 mmol), Et₃N (0.175 ml, 1.26 mmol), water (0.3 ml), and THF (15 ml); purified by reprecipitation. Yield 0.21 g (87%), white solid. M.p. 98–100 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.51 (bs, 1H; NH_{Ind}), 8.17 (d, 1H, ³*J*_{HH} = 8.1 Hz; C(O)NH), 7.65–7.61 (m, 1H; ArH_{Ind}), 7.33–7.29 (m, 1H; ArH_{Ind}), 7.21–7.19 (m, 1H; ArH_{Ind}), 7.17–7.12 (m, 1H; ArH_{Ind}), 7.10–7.05 (m, 1H; ArH_{Ind}),

6.98–6.94 (m, 4H; ArH), 6.62–6.59 (m, 2H; ArH), 6.43 (d, 1H, ${}^{4}J_{HH} = 2.6$ Hz; ArH), 6.42 (d, 1H, ${}^{4}J_{HH} = 2.6$ Hz; ArH), 5.04–4.98 (m, 1H; CHCO), 4.95 (d, 1H, ${}^{2}J_{HH} = 16.0$ Hz; OCH₂CO₂CH₂), 4.91 (d, 1H, ${}^{2}J_{HH} = 15.7$ Hz; OCH₂CO₂CH₂), 4.84 (d, 1H, ${}^{2}J_{HH} = 16.0$ Hz; OCH₂CO₂CH₂), 4.73 (d, 1H, ${}^{2}J_{HH} = 15.7$ Hz; OCH₂CO₂CH₂), 4.71 (d, 1H, ${}^{2}J_{HH} = 12.9$ Hz; ArCH₂Ar), 4.70 (d, 1H, ${}^{2}J_{HH} = 12.6$ Hz; ArCH₂Ar), 4.66 (d, 1H, ${}^{2}J_{HH} = 12.9$ Hz; ArCH₂Ar), 4.63 (d, 1H, ${}^{2}J_{HH} = 13.4$ Hz; ArCH₂Ar), 4.55 (s, 2H; OCH₂CO), 4.47 (s, 2H; OCH₂CO), 4.26 (q, 2H, ${}^{3}J_{HH} = 7.2$ Hz; OCH₂CH₃), 4.02–3.78 (m, 4H; OCH₂CH₃), 3.67 (s, 3H; OCH₃), 3.49–3.44 (d, 2H; IndCH₂), 3.19 (d, 1H, ${}^{2}J_{HH} = 12.9$ Hz; ArCH₂Ar), 3.16 (d, 1H, ${}^{2}J_{HH} = 12.9$ Hz;

ArCH₂Ar), 3.12 (d, 1H, ${}^{2}J_{HH} = 13.4$ Hz; ArCH₂Ar), 1.30 (t, 3H, ${}^{3}J_{HH} = 7.1$ Hz; OCH₂C<u>H</u>₃), 1.23 (s, 9H, C(CH₃)₃), 1.22 (s, 9H; C(CH₃)₃), 1.06 (t, 3H, ${}^{3}J_{HH} = 7.2$ Hz; OCH₂C<u>H</u>₃), 1.03 (t, 3H, ${}^{3}J_{HH} = 7.2$ Hz; OCH₂C<u>H</u>₃), 0.95 (s, 9H; C(CH₃)₃), 0.82 (s, 9H; C(CH₃)₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 172.13$, 170.92, 170.63, 170.12, 169.68 (C=O), 153.08, 153.00, 152.46, 152.03, 145.49, 145.47, 145.31, 144.92 (C_Ar), 136.09 (C_{Ind}), 134.50, 134.39, 134.33, 132.33, 132.16, 131.51 (C_Ar), 127.57 (C_{Ind}), 125.87, 125.83, 125.79, 125.72, 125.18, 125.10, 125.07 (CH_Ar), 122.99, 121.81, 119.27, 118.65 (CH_{Ind}), 111.09 (C_{Ind}), 111.03 (CH_{Ind}), 74.50, 71.62, 70.77, 70.73 (OCH₂), 60.65, 60.37, 60.35 (O<u>C</u>H₂CH₃), 52.82, 52.10 (NCH, OCH₃), 33.95, 33.71, 33.57 (<u>C</u>(CH₃)₃), 32.06, 31.98 (ArCH₂Ar), 31.51 (C(<u>C</u>H₃)₃), 31.42, 31.35 (ArCH₂Ar), 31.15, 31.11 (C(<u>C</u>H₃)₃), 27.27 (IndCH₂), 14.17, 13.92 (CH₃) ppm; ESI-MS *m/z*: 602.2966 [M+H+K]²⁺ for C₇₀H₈₉KN₂O₁₃ (602.2995).

Biscalixarene **61** was prepared according to *General procedure C* from calixarene **55** (0.200 g, 0.236 mmol), TFA (0.24 ml), DDQ (0.030 g, 0.130 mmol), and 1,4-dioxane (14 ml); purified by chromatography. Yield 0.025 g (13%), white solid. M.p. 173–175 °C (decomp.); ¹H NMR (400 MHz, CDCl₃): δ = 10.53 (bs, 2H; NH_{Ind}), 10.10 (s, 2H; OH), 9.87 (t, 2H, ³J_{HH} = 6.4 Hz; C(O)NH), 9.43 (s, 4H; OH), 7.70–7.67 (m, 2H; ArH_{Ind}), 7.63–7.59 (m, 2H; ArH_{Ind}), 7.17–7.12 (m, 2H; ArH_{Ind}), 7.13–7.08 (m, 2H; ArH_{Ind}), 7.08 (s, 4H; ArH), 7.07 (d, 4H, ⁴J_{HH} = 2.5 Hz; ArH), 7.07 (s, 4H; ArH), 7.02 (d, 4H, ⁴J_{HH} = 2.5 Hz; ArH), 4.68 (s, 4H; OCH₂CO), 4.24 (d, 4H, ²J_{HH} = 13.9 Hz; ArCH₂Ar), 4.15 (d, 4H, ²J_{HH} = 13.4 Hz; ArCH₂Ar), 3.93–3.85 (m, 4H; NCH₂), 3.51–3.45 (m, 4H; IndCH₂), 3.47 (d, 4H, ²J_{HH} = 13.9 Hz; ArCH₂Ar), 3.45 (d, 4H, ²J_{HH} = 13.4 Hz; ArCH₂Ar), 1.24 (s,

18H; C(CH₃)₃), 1.22 (s, 36H; C(CH₃)₃), 1.17 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.44$ (C=O), 149.22, 148.72, 147.94, 146.81, 144.24, 143.84 (C_{Ar}), 136.93 (C_{Ind}), 132.79 (C_{Ar}), 128.42 (C_{Ind}), 128.25 (C_{Ar}), 127.72 (C_{Ind}), 127.25, 127.12 (C_{Ar}), 126.88, 126.06, 125.90, 125.89 (CH_{Ar}), 122.18, 119.37, 118.06, 111.75 (CH_{Ind}), 110.11 (C_{Ind}), 75.45 (OCH₂), 41.17 (NCH₂), 34.29, 34.09, 33.94 (C(CH₃)₃), 32.88, 32.12 (ArCH₂Ar), 31.48, 31.42, 31.09 (C(CH₃)₃), 25.42 (IndCH₂) ppm; ESI-MS *m/z*: 1718.9957 [M+Na]⁺ for C₁₁₂H₁₃₄NaN₄O₁₀ (1719.0026).

Biscalixarene **62** was prepared according to *General procedure C* from calixarene **56**^[S15] (0.200 g, 0.221 mmol), TFA (0.22 ml), DDQ (0.028 g, 0.122 mmol), and 1,4-dioxane (14 ml); purified by chromatography. Yield 0.095 g (48%), white solid. ¹H NMR (600 MHz, CDCl₃): $\delta = 10.47$ (bs, 2H; NH_{Ind}), 9.94 (s, 2H; OH), 9.58 (d, 2H, ³*J*_{HH} = 8.9 Hz; C(O)NH), 9.37 (s, 2H; OH), 9.00 (s, 2H; OH), 7.75–7.72 (m, 2H; ArH_{Ind}), 7.29–7.25 (m, 2H; ArH_{Ind}), 7.07–6.99 (m, 18H; ArH_{Ind}+ArH), 6.94 (d, 2H, ⁴*J*_{HH} = 2.4 Hz; ArH), 5.50–5.45 (m, 2H; CHCO), 4.61 (d, 2H, ²*J*_{HH} = 14.7 Hz; OCH₂CO), 4.37 (d, 2H, ²*J*_{HH} = 14.7 Hz; OCH₂CO), 4.16 (d, 2H, ²*J*_{HH} = 14.0 Hz; ArCH₂Ar), 4.14 (d, 2H, ²*J*_{HH} = 13.3 Hz; ArCH₂Ar), 4.09 (d, 2H, ²*J*_{HH} = 13.3 Hz; ArCH₂Ar), 3.92 (d, 2H, ²*J*_{HH} = 13.3 Hz; ArCH₂Ar),

3.77–3.72 (m, 2H; IndCH₂), 3.63 (s, 6H; OCH₃), 3.48–3.44 (m, 2H; IndCH₂), 3.47 (d, 2H, ${}^{2}J_{HH} = 13.3$ Hz; ArCH₂Ar), 3.39 (d, 2H, ${}^{2}J_{HH} = 14.0$ Hz; ArCH₂Ar), 3.26 (d, 2H, ${}^{2}J_{HH} = 14.0$ Hz; ArCH₂Ar), 3.19 (d, 2H, ${}^{2}J_{HH} = 13.3$ Hz; ArCH₂Ar), 1.26 (s, 18H; C(CH₃)₃), 1.23 (s, 18H; C(CH₃)₃), 1.22 (s, 18H; C(CH₃)₃), 1.15 (s, 18H; C(CH₃)₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 172.71$, 168.14 (C=O), 149.07, 148.26, 148.25, 147.82, 146.95, 144.00, 143.72, 143.32 (C_{Ar}), 136.30 (C_{Ind}), 133.09, 132.28, 128.93, 128.73, 128.17 (C_{Ar}), 127.87 (C_{Ind}), 127.61 (C_{Ar}), 127.14 (CH_{Ar}), 126.88, 126.87 (C_{Ar}), 126.66 (C_{Ind}), 126.38, 126.22, 125.82, 125.81, 125.76, 125.75, 125.64 (CH_{Ar}), 122.07, 119.54, 118.77, 111.56 (CH_{Ind}), 108.89 (C_{Ind}), 75.05 (OCH₂), 52.77 (NCH), 52.75 (OCH₃), 34.25, 34.10, 33.92, 33.89 (C(CH₃)₃), 32.86, 32.69, 32.11, 31.97 (ArCH₂Ar), 31.50, 31.49, 31.45, 31.07 (C(CH₃)₃), 27.48 (IndCH₂) ppm; ESI-MS *m/z*: 1850.9814 [M+K]⁺ for C₁₁₆H₁₃₈KN₄O₁₄ (1850.9875).

Calculated energy profiles of the cyclization steps at bridging calixarenes 3–6, 13

Figure S1. Calculated structures, energies and energy differences for: $3 \cdot H^+$ (left), the transition state (middle), and the respective protonated indolylindoline (right); *tert*-butyl groups are omitted to facilitate calculations.

Figure S2. Calculated structures, energies and energy differences for: $4 \cdot H^+$ (left), the transition state (middle), and the respective protonated indolylindoline (right); *tert*-butyl groups are omitted to facilitate calculations.

Figure S3. Calculated structures, energies and energy differences for: $5 \cdot H^+$ (left), the transition state (middle), and the respective protonated indolylindoline (right); *tert*-butyl groups are omitted to facilitate calculations.

Figure S4. Calculated structures, energies and energy differences for: $\mathbf{6} \cdot \mathbf{H}^+$ (left), the transition state (middle), and the respective protonated indolylindoline (right); *tert*-butyl groups are omitted to facilitate calculations.

Figure S5. Calculated structures, energies and energy differences for: $13 \cdot H^+$ (left), the transition state (middle), and the respective protonated indolylindoline (right).

Calculated energy profile for the mutual rotation of indole parts in 3,3'-dimethyl-2,2'-bisindole

Figure S6. Relative energies for the mutual rotation of indole parts of 3,3'-dimethyl-2,2'-bisindole plotted against the dihedral angle between the two indole planes; the combined plot of six intrinsic reaction coordinate computations for the three transition states of the rotation; DFT B3LYP/def2-SVP.

Details of fluorescence titrations

All fluorescence measurements were carried out at 25 °C in acetonitrile (HPLC grade) in a quartz cell (path length 10 mm, $c_L = 1 \times 10^{-5}$ M) by using Fluorat-02-Panorama spectrofluorometer. Commercially available tetrabutylammonium chloride, bromide, iodide, hydrogen sulfate, nitrate, dihydrogen phosphate, acetate and benzoate were used at the titrations of the hosts with the anions, while sodium, potassium, rubidium and cesium tetraphenylborates were used at the titrations of the hosts with cations. Calixarenes containing non-bridged indole units were excited at 286 nm, and the bridged hosts were excited at 308 nm. The titrant solution was gradually added to the host solution to obtain 20–30 fluorescence spectra in each case. For qualitative purposes, the raw data were analyzed by nonlinear regression modeling using least-squares method.

NMR spectra of novel compounds

Figure S7. ¹H NMR spectrum of calixarene **3** (600 MHz, CDCl₃).

Figure S8. ¹³C NMR spectrum (APT) of calixarene **3** (100 MHz, CDCl₃).

Figure S9. ¹H NMR spectrum of calixarene **4** (400 MHz, CDCl₃).

Figure S10. ¹³C NMR spectrum (APT) of calixarene 4 (100 MHz, CDCl₃).

Figure S11. ¹H NMR spectrum of calixarene 5 (400 MHz, CDCl₃).

Figure S12. ¹³C NMR spectrum (APT) of calixarene **5** (100 MHz, CDCl₃).

Figure S13. ¹H NMR spectrum of calixarene 7 (600 MHz, CDCl₃).

Figure S14. ¹³C NMR spectrum of calixarene 7 (150 MHz, CDCl₃).

Figure S15. ¹H NMR spectrum of calixarene 8 (600 MHz, CDCl₃).

Figure S16. ¹³C NMR spectrum (APT) of calixarene 8 (100 MHz, CDCl₃).

Figure S17. ¹H NMR spectrum of calixarene 9 (400 MHz, CDCl₃).

Figure S18. ¹³C NMR spectrum (APT) of calixarene 9 (100 MHz, CDCl₃).

Figure S19. ¹H NMR spectrum of calixarene 10 (600 MHz, CDCl₃).

Figure S20. ¹³C NMR spectrum (APT) of calixarene 10 (100 MHz, CDCl₃).

Figure S21. ¹H NMR spectrum of calixarene 13 (400 MHz, CDCl₃).

Figure S22. ¹³C NMR spectrum (APT) of calixarene 13 (100 MHz, CDCl₃).

Figure S23. ¹H NMR spectrum of calixarene **14** (600 MHz, DMSO-*d*₆).

Figure S24. ¹³C NMR spectrum of calixarene **14** (100 MHz, DMSO- d_6).

Figure S25. ¹H NMR spectrum of calixarene 15 (400 MHz, CDCl₃).

Figure S26. ¹³C NMR spectrum (APT) of calixarene 15 (100 MHz, CDCl₃).

Figure S27. ¹H NMR spectrum of calixarene 16 (600 MHz, DMSO-*d*₆, 85 °C).

Figure S28. ¹³C NMR spectrum of calixarene **16** (100 MHz, DMSO- d_6).

Figure S29. ¹H NMR spectrum of calixarene 21 (400 MHz, CDCl₃).

Figure S30. ¹³C NMR spectrum of calixarene 21 (100 MHz, CDCl₃).

Figure S31. ¹H NMR spectrum of calixarene 22 (400 MHz, CDCl₃).

Figure S32. ¹³C NMR spectrum of calixarene 22 (150 MHz, CDCl₃).

Figure S33. ¹H NMR spectrum of calixarene 24 (400 MHz, CDCl₃).

Figure S34. ¹³C NMR spectrum (APT) of calixarene 24 (100 MHz, CDCl₃).

Figure S35. ¹H NMR spectrum of calixarene 25 (400 MHz, CDCl₃).

Figure S36. ¹³C NMR spectrum of calixarene 25 (150 MHz, CDCl₃).

Figure S37. ¹H NMR spectrum of calixarene **26** (400 MHz, CDCl₃+CD₃OD).

Figure S38. ¹³C NMR spectrum of calixarene **26** (100 MHz, CDCl₃+CD₃OD).

Figure S39. ¹H NMR spectrum of calixarene **27** (400 MHz, CDCl₃+CD₃OD).

Figure S40. ¹³C NMR spectrum of calixarene 27 (100 MHz, CDCl₃+CD₃OD).

Figure S41. ¹H NMR spectrum of calixarene 28 (400 MHz, CDCl₃).

Figure S42. ¹³C NMR spectrum (APT) of calixarene 28 (100 MHz, CDCl₃).

Figure S43. ¹H NMR spectrum of calixarene 29 (400 MHz, CDCl₃).

Figure S44. ¹³C NMR spectrum (APT) of calixarene 29 (100 MHz, CDCl₃).

Figure S45. ¹H NMR spectrum of calixarene **30** (400 MHz, CDCl₃).

Figure S46. ¹³C NMR spectrum (APT) of calixarene **30** (100 MHz, CDCl₃).

Figure S47. 1 H NMR spectrum of calixarene 31 (400 MHz, CDCl₃).

Figure S48. ¹³C NMR spectrum (APT) of calixarene 31 (100 MHz, CDCl₃).

Figure S49. ¹H NMR spectrum of calixarene 32 (400 MHz, CDCl₃).

Figure S50. ¹³C NMR spectrum (APT) of calixarene 32 (100 MHz, CDCl₃).

Figure S51. ¹H NMR spectrum of calixarene 33 (400 MHz, CDCl₃).

Figure S52. ¹³C NMR spectrum (APT) of calixarene 33 (100 MHz, CDCl₃).

Figure S53. ¹H NMR spectrum of calixarene 34 (400 MHz, CDCl₃).

Figure S54. ¹³C NMR spectrum (APT) of calixarene 34 (100 MHz, CDCl₃).

Figure S55. ¹H NMR spectrum of calixarene 35 (400 MHz, CDCl₃).

Figure S56. ¹³C NMR spectrum (APT) of calixarene 35 (100 MHz, CDCl₃).

Figure S57. ¹H NMR spectrum of calixarene **36** (400 MHz, CDCl₃).

Figure S58. ¹³C NMR spectrum (APT) of calixarene 36 (100 MHz, CDCl₃).

Figure S59. ¹H NMR spectrum of calixarene 37 (400 MHz, CDCl₃).

Figure S60. 13 C NMR spectrum (APT) of calixarene 37 (100 MHz, CDCl₃).

Figure S61. ¹H NMR spectrum of calixarene **38** (400 MHz, DMSO-*d*₆).

Figure S62. ¹³C NMR spectrum (APT) of calixarene 38 (100 MHz, DMSO-*d*₆).

Figure S63. ¹H NMR spectrum of calixarene **39** (400 MHz, DMSO-*d*₆).

Figure S64. ¹³C NMR spectrum (APT) of calizarene **39** (100 MHz, DMSO- d_6).

Figure S65. ¹H NMR spectrum of calixarene 41 (400 MHz, CDCl₃).

Figure S66. ¹³C NMR spectrum (APT) of calixarene **41** (100 MHz, CDCl₃).

Figure S67. ¹H NMR spectrum of calixarene 42 (400 MHz, CDCl₃).

Figure S68. ¹³C NMR spectrum (APT) of calixarene 42 (100 MHz, CDCl₃).

Figure S69. ¹H NMR spectrum of calixarene 43 (400 MHz, CDCl₃).

Figure S70. ¹³C NMR spectrum (APT) of calixarene 43 (100 MHz, CDCl₃).

Figure S71. ¹H NMR spectrum of calixarene **44** (400 MHz, CDCl₃+CF₃CO₂D).

Figure S72. ¹³C NMR spectrum (APT) of calixarene **44** (100 MHz, CDCl₃+CF₃CO₂D).

Figure S73. ¹H NMR spectrum of calixarene 45 (400 MHz, CDCl₃).

Figure S74. ¹³C NMR spectrum (APT) of calixarene 45 (100 MHz, CDCl₃).

Figure S75. ¹H NMR spectrum of calixarene 46 (400 MHz, CDCl₃).

Figure S76. ¹³C NMR spectrum (APT) of calixarene 46 (100 MHz, CDCl₃).

Figure S77. ¹H NMR spectrum of calixarene 47 (400 MHz, CDCl₃).

Figure S78. ¹³C NMR spectrum (APT) of calixarene 47 (100 MHz, CDCl₃).

Figure S79. ¹H NMR spectrum of calixarene 48 (400 MHz, CDCl₃).

Figure S80. ¹³C NMR spectrum (APT) of calixarene 48 (100 MHz, CDCl₃+CD₃OD).

Figure S81. ¹H NMR spectrum of calixarene 49 (400 MHz, CDCl₃).

Figure S82. ¹³C NMR spectrum (APT) of calixarene 49 (100 MHz, CDCl₃).

Figure S83. ¹H NMR spectrum of calixarene 51 (600 MHz, CDCl₃).

Figure S84. ¹³C NMR spectrum (APT) of calixarene 51 (100 MHz, CDCl₃).

Figure S85. ¹H NMR spectrum of calixarene 55 (400 MHz, CDCl₃).

Figure S86. ¹³C NMR spectrum (APT) of calixarene 55 (100 MHz, CDCl₃).

Figure S87. ¹H NMR spectrum of calixarene 57 (400 MHz, CDCl₃).

Figure S88. ¹³C NMR spectrum (APT) of calixarene 57 (100 MHz, CDCl₃).

Figure S89. ¹H NMR spectrum of calixarene 58 (400 MHz, CDCl₃).

Figure S90. ¹³C NMR spectrum (APT) of calixarene 58 (100 MHz, CDCl₃).

Figure S91. ¹H NMR spectrum of calixarene 59 (400 MHz, CDCl₃).

Figure S92. ¹³C NMR spectrum (APT) of calixarene 59 (100 MHz, CDCl₃).

Figure S93. ¹H NMR spectrum of calixarene 60 (400 MHz, CDCl₃).

Figure S94. ¹³C NMR spectrum (APT) of calixarene 60 (100 MHz, CDCl₃).

Figure S95. ¹H NMR spectrum of calixarene 61 (400 MHz, CDCl₃).

Figure S96. ¹³C NMR spectrum (APT) of calixarene 61 (100 MHz, CDCl₃).

Figure S97. ¹H NMR spectrum of calixarene 62 (600 MHz, CDCl₃).

Figure S98. ¹³C NMR spectrum (APT) of calixarene 62 (100 MHz, CDCl₃).

References

- S1. H. Murakami, S. Shinkai, Tetrahedron Lett. 1993, 34, 4237–4240.
- S2. E. M. Collins, M. A. McKervey, E. Madigan, M. B. Moran, M. Owens, G. Ferguson, S. J. Harris, J. Chem. Soc., Perkin Trans. 1 1991, 3137–3142.
- S3. G.-y. Qing, Y.-b. He, F. Wang, H.-j. Qin, C.-g. Hu, X. Yang, Eur. J. Org. Chem. 2007, 1768–1778.
- S4. S. K. Kim, S. H. Lee, J. Y. Lee, J. Y. Lee, R. A. Bartsch, J. S. Kim, J. Am. Chem. Soc. 2004, 126, 16499–16506.
- S5. H. Choi, J. H. Lee, J. H. Jung, RSC Adv. 2015, 5, 20066–20072.
- S6. A. Sirit, E. Kocabas, S. Memon, A. Karakucuk, M. Yilmaz, *Supramol. Chem.* **2005**, *17*, 251–256.
- S7. C. D. Gutsche, L.-G. Lin, Tetrahedron 1986, 42, 1633–1640.
- S8. J. Guillon, J.-M. Léger, P. Sonnet, C. Jarry, M. Robba, J. Org. Chem. 2000, 65, 8283–8289.
- S9. M. Sakovich, D. Sokolova, A. Gorbunov, K. Puchnin, S. Bezzubov, V. Kovalev, I. Vatsouro, manuscript in preparation.
- S10. Y. Higuchi, M. Narita, T. Niimi, N. Ogawa, F. Hamada, H. Kumagai, N. Iki, S. Miyano, C. Kabuto, *Tetrahedron* 2000, 56, 4659–4666.
- S11. K.-C. Chang, I.-H. Su, A. Senthilvelan, W.-S. Chung, Org. Lett. 2007, 9, 3363–3366.
- S12. R.-B. Yan, F. Yang, Y. Wu, L.-H. Zhang, X.-S. Ye, *Tetrahedron Lett.* 2005, 46, 8993–8995.
- S13. Y. Nishizawa, Bull. Chem. Soc. Jpn. 1961, 34, 1170–1178.
- S14. S. Memon, M. Yilmaz, Sep. Sci. Technol. 2000, 35, 457–467.
- S15. C. Gaeta, M. De Rosa, M. Fruilo, A. Soriente, P. Neri, *Tetrahedron: Asymm.* 2005, 16, 2333–2340.
- S16. A. Mattiuzzi, I. Jabin, C. Mangeney, C. Roux, O. Reinaud, L. Santos, J.-F. Bergamini, P. Hapiot, C. Lagrost, *Nature Commun.* 2012, *3*, 1130.
- S17. F. J. Steemers, W. Verboom, D. N. Reinhoudt, E. B. van der Tal, J. W. Verhoeven, J. Am. Chem. Soc. 1995, 117, 9408–9414.