Electronic supplementary information

Optimization of the synthesis of quinoline-based neutral cyclometalated iridium complexes *via* microwave irradiation: Design of light-harvesting and emitting complexes using bulky quinolines

Carlos A. Echeverry-Gonzalez,^a Carlos E. Puerto-Galvis,^a Carlos H. Borca,^b Martín A. Mosquera,^c Andrés F. Luis-Robles,^a and Vladimir V. Kouznetsov *^a

^a Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará, Km 2 vía refugio, Piedecuesta, A.A. 681011, Colombia.

^b School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia, 30332, United States

^c Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States

Content

1.	Optim	ization of MW methodology	3				
2.	2. Experimental section						
2.1.	2.1. Quinoline ligands						
2.2.	2.2. General synthetic procedure for neutral cyclometalated iridium complexes						
2.3.	2.3. ¹ H and ¹³ C NMR of the synthesized complexes						
2	.3.1.	Complex 4a	6				
2	.3.2.	Complex 4ab	7				
2.3.3.		Complex 4b	8				
2.3.4.		Complex 4c	9				
2.3.5.		Complex 4d	10				
2.3.6.		Complex 4e					
2.3.7.		Complex 4f					
2.3.8.		Complex 4g					
2.3.9.		Complex 4h					
2	.3.10.	Complex 4i	15				
2.4.	The	eoretical and Photophysical characterization of complexes 4g-i	16				
2	.4.1.	Solvatochromic study	16				
2	.4.2.	Optimized structures	17				
2.4.3.		Transition excited states	18				
3.	3. Relative quantum yields						
4.	References						

1. Optimization of MW methodology

Fig S1. Optimization of methodology for the synthesis of neutral cyclometalated iridium complexes: **A.** Pressure vs Temperature graph as a result of irradiating with MW the mixtures of the respective solvents with water (3:1); **B.** Photographic record of each step in the synthesis of complex **4** using 2-methoxyethanol and ethylene glycol.

2. Experimental section

General. The synthesis of neutral cyclometalated iridium complexes was performed using a Biotage^{*} initiatior Microwave Synthesizer. All reagents and solvents were used as purchased. All air-sensitive reactions were carried out under argon atmosphere. Flash chromatography was performed using silica gel (Merck, Kieselgel 60, 230-240 mesh or Scharlau 60, 230-240 mesh). Analytical thin layer chromatography (TLC) was performed using aluminum coated Merck Kieselgel60 F254 plates. NMR spectra were recorded on a Bruker Avance 400 (¹H: 400 MHz; ¹³C: 100 MHz) spectrometer at 298 K using partially deuterated solvents as internal standards. Coupling constants (J) are denoted in Hz and chemical shifts (δ) in ppm. Multiplicities are denoted as follows: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad. UV-Vis spectra were recorded on a Genesys 10s spectrophotometer using toluene, dichloromethane, acetonitrile and dimethylformamide as solvents. Emission spectra were recorded on a Photon Technology International spectrophotometer using dichloromethane and acetonitrile as solvents. Matrix Assisted Laser Desorption Ionization (coupled to a Time-Of-Flight analyzer) experiments (MALDI-TOF) were recorded on a HP1100MSD spectrometer and a Bruker REFLEX spectrometer respectively.

2.1. Quinoline ligands

C^N ligands based on quinoline derivatives were synthesized according to literature reports. Spectroscopic data for chemistry validation were performed by NMR as can be seen in Table S1.

Ligand	Structure	Characterization	Reference
1b		White solid (138.0 mg, 31%). ¹ H NMR (400 MHz, CDCl ₃) δ: 8.22 – 8.15 (m, 4H), 7.92 (dd, <i>J</i> = 8.6, 0.9 Hz, 1H), 7.59 – 7.44 (m, 5H) ppm.	1
1c	F N N	White solid (180.6 mg, 44%). ¹ H NMR (400 MHz, CDCl ₃) δ: 8.27 – 8.17 (m, 4H), 7.91 (d, <i>J</i> = 8.6 Hz, 1H), 7.86 (dd, <i>J</i> = 8.1, 1.5 Hz, 1H), 7.76 (m, 1H), 7.59 – 7.47 (m, 4H) ppm.	1
1d		White solid (282.0 mg, 50%). ¹ H NMR (400 MHz, CDCl ₃) δ: 8.28 (d, J = 8.5 Hz, 1H), 8.25 – 8.20 (m, 2H), 7.94 (d, J = 8.4 Hz, 1H), 7.86 (s, 1H), 7.79 – 7.75 (m, 1H), 7.62 – 7.47 (m, 9H) ppm	2
1e		Yellow solid (300.0 mg, 60%). ¹ H NMR (400 MHz, CDCl ₃) δ : 8.50 (dd, J = 7.8, 1.6 Hz, 1H), 8.10 (d, J = 8.9 Hz, 1H), 7.61 (dd, J = 8.9, 2.3 Hz, 1H), 7.56 (t, J = 6.8 Hz, 3H), 7.44 (d, J =2.3 Hz, 1H), 7.40- 7.35 (m, 1H), 7.29 (dd, J = 7.6, 1.7 Hz, 2H), 7.18 (t, J = 7.5 Hz, 1H), 6.98 (d, J = 7.7 Hz, 1H), 5.09 (s, 2H) ppm. ¹³ C NMR (100 MHz, CDCl ₃) δ : 157.4, 149.2, 146.6, 143.1, 134.3, 132.2, 132.1, 131.3, 130.3, 129.3 (2), 129.1 (2), 129.0, 127.9, 125.8, 125.1, 123.8, 123.3, 122.7, 117.3, 66.7 ppm	
1f		Yellow solid (250.0 mg, 72%). ¹ H NMR (400 MHz, CDCl ₃) δ: δ 8.23– 8.18 (m, 2H), 7.91 (dd, J = 7.4, 6.1 Hz, 2H), 7.74 (d, J = 7.4 Hz, 2H), 6.62–6.46 (m, 10H), 2.50 (s, 3H) ppm.	3
1g		Yellow solid (482.5 mg, 94%). ¹ H NMR (400 MHz, CDCl ₃) δ: 8.15 – 8.10 (m, 2H), 8.02 (d, <i>J</i> = 9.1 Hz, 1H), 7.94 (dd, <i>J</i> = 8.7, 0.8 Hz, 1H), 7.78 (d, <i>J</i> = 8.6 Hz, 1H), 7.55 – 7.49 (m, 3H), 7.47 – 7.41 (m, 1H), 7.36 – 7.28 (m, 5H), 7.20 – 7.15 (m, 4H), 7.12 – 7.07 (m, 2H) ppm. ¹³ C NMR (100 MHz, CDCl ₃) δ: 155.6, 147.5, 145.9, 135.5, 130.5, 129.5, 129.0, 128.8, 128.2, 127.4, 127.3, 124.8, 123.5, 119.3, 118.1 ppm.	
1h		Beige solid (173 mg, 50%) Uv-vis λ_{max} ($\epsilon/M^{-1}cm^{-1}$, DCM): 331 (12000), 264 (50000) nm. ¹ H NMR (400 MHz, CDCl ₃) δ : 8.69 – 8.66 (m, 1H), 8.44 (dd, <i>J</i> = 8.5, 1.8 Hz, 1H), 8.24 (d, <i>J</i> = 8.5 Hz, 1H), 8.05 – 7.90 (m, 4H), 7.72 – 7.71 (m, 1H), 7.66 – 7.53 (m, 8H), 2.53 (s, 3H) ppm.	4
1i		Beige solid (154 mg, 44%). Uv-vis λ_{max} ($\epsilon/M^{-1}cm^{-1}$, DCM): 333 (9900), 263 (43000) nm. ¹ H NMR (400 MHz, CDCl ₃) δ : 8.68 – 8.63 (m, 1H), 8.42 (dd, <i>J</i> = 8.6, 1.8 Hz, 1H), 8.32 (ddd, <i>J</i> = 9.0, 5.6, Hz, 1H), 8.06 – 7.97 (m, 3H), 7.97 – 7.89 (m, 1H), 7.67 – 7.50 (m, 9H) ppm.	4

Table S1. C^N ligands obtained through conventional protocols

2.2. General synthetic procedure for neutral cyclometalated iridium complexes

The synthesis of neutral cyclometalated iridium complexes was performed in two steps via MW irradiation. Step 1: $IrCl_3 \cdot xH_2O$ (50 mg, 0.17 mmol), C^N ligand (57.2 mg, 0.37 mmol), Solvent: H_2O (1.4 mL) were irradiated by MW for 30 minutes (Temperature: 190 °C; range of pressure: 18 – 20 bar; High power). Then, the colored product (dimer) was centrifuged (15 min at 4000 rpm) and risen three times with diethyl ether to remove unreacted quinoline derivative. Step 2: Dimer (1 eq.), acetylacetone (6 eq.), sodium carbonate (15 eq.) and solvent (6 mL/eq.) were irradiated by MW for 30 minutes (Temperature: 130 °C; range of pressure: 4 – 5 bar; High power). Then, 2-Methoxyethanol was evaporated to reduced pressure and the reaction crude was purified by SiO₂ chromatography using dichloromethane as mobile phase.

2.3. ¹H and ¹³C NMR of the synthesized complexes

2.3.1. Complex 4a

Fig S2. ¹H and ¹³C NMR spectra (CDCl₃) of complex 4a.

Fig S3. ¹H and ¹³C NMR spectra (CDCl₃) of complex 4ab.

2.3.3. Complex 4b

Fig S4. ^1H and ^{13}C NMR spectra (CDCl_3) of complex 4b.

Fig S5. ¹H and ¹³C NMR spectra (CDCl₃) of complex 4c.

Fig S6. 1 H and 13 C NMR spectra (CDCl₃) of complex 4d.

2.3.6. Complex 4e

Fig S7. ¹H and ¹³C NMR spectra (CDCl₃) of complex 4e.

Fig S8. ^1H and ^{13}C NMR spectra (CDCl_3) of complex 4f.

Fig S9. ¹H and ¹³C NMR spectra (CDCl₃) of complex 4g.

Fig S10. ¹H and ¹³C NMR spectra (CDCl₃) of complex 4h.

Fig S11. ¹H and ¹³C NMR spectra (CDCl₃) of complex 4i.

2.4. Theoretical and Photophysical characterization of complexes 4g-i

2.4.1. Solvatochromic study

The absorption spectra for complexes **4g-i** at a concentration of 1×10^{-5} M in toluene, chloroform, dichloromethane, dimethylformamide, acetonitrile and methanol are showed in Fig S12 and data are summarized in Table S2.

Fig S12. Absorption spectra for complexes 4g-i.

Table S2. Photophysical characteristics of the new iridium complexes in different solvents.

Solvent	Solvent	4g λ ^{Abs} /nm	4h λ /nm	4i λ /nm
	$\mathbf{E}_{\mathbf{T}}^{a}$	(ε, M ^{−1} cm ⁻¹)	(ε, M ^{−1} cm⁻¹)	(ε, M ^{−1} cm ⁻¹)
Toluene	22.0	312(79900), 377(29000),	315(80700), 372(40600),	316(70800), 374(32200),
	55.5	416(25600), 492(10700)	452(9400), 528(3600)	456(8300), 544(2700)
Chloroform	20.1	306(83600), 369(30800),	310(83600), 367(30800),	311(83600), 367(30800),
	39.1	414(24400), 487(12000)	438(24400), 517(12000)	447(24400), 532(12000)
Dichloromethane	41.1	305(83600), 369(30800),	309(82100), 367(44100),	309(75900), 366(36300),
	41.1	414(24400), 482(12000)	313(35000) 313(35000) 313(35000) 313(35000) 313(35000) 303(35000) 303(35000) 303(35000) 303(35000) 303(75900) 366(3 3000) 439(8700) 508(3100) 446(7700) 520(3 520(300) 303(357000) 303(357000) 303	
Dimethylformamide	12.0	308(73800), 372(26500),	313(73500), 369(38600),	313(68700), 370(32200),
	45.0	413(21000), 487(9700)	438(7800), 520(3200)	447(7700), 532(2800)
Acetonitrile	46.0	303(76200), 364(27800),	306(66400), 363(35700),	307(57000), 362(28500),
	46.0 411(20800), 478(10700) 433(74		433(7400), 502(3200)	430(6700), 514(2600)
Methanol 303(83600), 362(30800),		307(83600), 363(30800),	307(83600), 363(30800),	
	55.5	409(24400), 472(12000)	424(24400), 501(12000)	428(24400), 513(12000)

^a Reichardt-Dimroth solvent functions (Kcal/mol).⁵

This solvatochromic study is an important tool to evaluate charge distribution in both ground and excited states, as well as to study Franck-Codon phenomena.^{5,6} Among the empirical correlations of the absorption band positions for complexes **4g-i**, we explore a measure of the ionizing power of the solvents E_T (Reichardt-Dimroth solvent functions). E_T is defined by equation 1:

$$E_T = h c \bar{\nu} N$$
 (1)

where h is the Planck's constant, c the velocity of light, N the Avogadro's number, and $\bar{\nu}$ denotes the frequency of the absorption maximum.⁶ Fig S13A-D shows the relationship between the position of the absorption bands in cm⁻¹ with E_T for **4g**.

Fig S13. Solvent shifts of absorption band positions of **4g** with respect to the ionizing power of the solvents (E_T): **A.** Transition band around 482 nm; **B.** Transition band around 414 nm; **C.** Transition band around 369 nm; and **D.** Transition band around 305 nm according to Table S2.

2.4.2. Optimized structures

The optimized structures of **4g-i** were performed using B3LYP methods with the 6-31G(d) basis set for light atoms and LanL2DZ basis set for Ir atom.

Fig S14. Optimized structure of the complexes 4g-i

2.4.3. Transition excited states

Transition excited states calculated using TD-DFT are shown in Table S3. The highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO) energy values, and their spatial distributions for **4g-i** are also compiled in Table S3.

Table S3. Transition e	excited states calculated	l for the new complex	es using TD-DFT

Complex	HOMO topology	LUMO topology	HOMO /eV	LUMO /eV	States	Composition	Character	E/eV[nm]	f	
					S1	H→L [98%]	MLCT	1.79[690]	0.012	
						H-1→L+1 [97%]	MLCT/LLCT/			
			-4.2(5)	-1.6(9)	\$3		ILCT	2.04[608]	0.068	
	بالأر					H→L [0.74%]	MLCT			
						H-4→L+1 [62%]	MLCT/ILCT			
4ø	x 🍝 X '	n 19 19 19 19 19 19 19 19 19 19 19 19 19			57	H-3→L+1 [31%]	ILCT/MLCT	2.80[443]	0.038	
-2					07	H-2→L [4%]	ILCT		0.000	
						H-1→L+3 [1%]	LLCT			
					S10	H-3→L+1 [11%]	ILCT	2.92[425]	0.214	
						H-2→L [78%]	ILCT		_	
					S11	H-2→L+1 [65%]	ILCT	2.94[421]	0.127	
						H-3→L [18%]	ILCT/MLCT			
					51	H-1→L [95%]	MLCT/LLCT	1.72[721]	0.024	
					S3	H→L+1 [95%]	MLCT/ILCT	1.82[681]	0.025	
						H-1→L [3%]	MLCT/LLCT	0.50(100)		
					\$5	H-2→L [94%]	ILCI	2.58[480]	0.015	
	6	200 - 20 - 20 - 20 - 20 - 20 - 20 - 20			S8	H-1→L+3 [47%]	MLCT/LLCT	2.67[464]	0.015	
						H-1→L+4 [43%]				
	1 3 2 4 C C C C C C C C C C C C C C C C C C				60	H-4→L+1 [8%]	MLCT/ILCT	2.69[460]	0.022	
4h			-4.2(2)	-1.8(0)	59	H-3→L+1 [70%]	MLCT		0.033	
				-		H→L+2 [12%]	MLCT/ILCT			
	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				S10	⊓-4→L [9%]		2.70[459]		
						L 2_1 [200/]	MLCT		0 0 2 2	
									0.022	
						H→L+3 [10%]				
					S11		MICT	2.76[450]	0.063	
						□-3→L+1 [10%]				
					C1			1 65[751]	0.018	
				-	51		MICT/IICT	1.05[751]	0.018	
					\$3	H-1-1 [6%]	MICT/LICT	1.72[720]	0.026	
	0				-	\$5	H-2→L [94%]	ШСТ	2 43[503]	0.017
					-		H-4→I+1 [15%]	MICT/IICT	2.43[303]	0.017
			-4.4(9)	-2.1(7)	S8	H-3→I+1 [68%]	MICT/IICT/	2.63[471]		
						113 7212 [00/0]	ILCT		0.032	
						H→L+2 [13%]	MLCT/ILCT			
4i					S9	H-4→L [16%]	MLCT/ILCT	2.66[467]		
						H-3→L [53%]	MLCT/ILCT		0.015	
						H-1→L+3 [45%]	MLCT/LLCT	2.68[463]	0.019	
						H-1→L+4 [26%]	MLCT/ILCT			
						H→L+2 [24%]	MLCT/ILCT			
						H-3→L+1 [11%]	MLCT/LLCT/			
					S11	11.4.51.52 [400/]	ILCT	2.69[421]	0.048	
						H-1→L+3 [18%]				
						H→L+2 [58%]	MLCT/ILCT			

3. Relative quantum yields

The relative quantum yields (ϕ_{PL}) were measured in degassed solution of dichloromethane, or acetonitrile for the reference $[Ru(bpy)_3](PF_6)_2$, with an excitation wavelength of 420 nm using a comparative method (eq. 2):^{7,8}

$$\phi_{PL} = \phi_{PL}^{std} \frac{IA^{std}\eta^2}{I^{std}A\eta_{std}^2}$$
(2)

Where I and I^{std} are the areas under the emission curves of the complexes and standard, respectively. A and A^{std} are the respective absorbances of the sample and standard at the excitation wavelengths, and n^2 and n^2_{std} are the refractive indices of solvents used for the sample and standard, respectively. [Ru(bpy)₃](PF₆)₂ in acetonitrile ($\phi_{PL}^{std} = 0.062$).

4. References

- 1 Y. Liu, Y. Hu, Z. Cao, X. Zhan, W. Luo, Q. Liu and C. Guo, *Adv. Synth. Catal.*, 2018, **360**, 2691–2695.
- 2 A. G. Osborne, Spectrochim. Acta Part A Mol. Spectrosc., 1983, **39**, 477–485.
- 3 W. Ahmed, S. Zhang, X. Yu, Y. Yamamoto and M. Bao, *Green Chem.*, 2018, **20**, 261–265.
- 4 S. Anvar, I. Mohammadpoor-Baltork, S. Tangestaninejad, M. Moghadam, V. Mirkhani, A. R. Khosropour and R. Kia, *RSC Adv.*, 2012, **2**, 8713–8720.
- 5 A. P. Wilde and R. J. Watts, *J. Phys. Chem.*, 1991, **95**, 622–629.
- 6 M. S. Tunuli, M. A. Rauf and others, *J. Photochem.*, 1984, **24**, 411–413.
- 7 A. T. R. Williams, S. A. Winfield and J. N. Miller, *Analyst*, 1983, **108**, 1067–1071.
- 8 S. Fery-Forgues and D. Lavabre, J. Chem. Educ., 1999, 76, 1260.