Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Supporting Information

Pd/P/dba-Promoted Cascade Annulations to Fused Medium-sized Sulfoximine Polyheterocycles

Xiaoyan Chen, Hao Zhou, and Zhiyuan Chen*

Key Laboratory of Functional Small Organic Molecules, Ministry of Education, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022 (P. R. China). E-mail: zchen@jxnu.edu.cn

Content

- 1. General remarks (S2).
- 2. General procedure for the synthesis of bridged heterocycles **3-22** (S3-S15).
- 3. General procedure for the oxidation reaction of bridged heterocycles 3a (S16).
- 4. General procedure for the bromination of bridged heterocycles **3a** (S17).
- 5. ¹H and ¹³C NMR spectra of all new compounds (S18-S47).

- 6. X-ray ORTEP illustration of compound **3a** (S48-S49).
- 7. X-ray ORTEP illustration of compound **24** (S50-S51).

1. General remarks.

Unless otherwise noted, commercial reagents were purchased from commercial suppliers and were used as received. All solvents were dried and distilled according to standard procedures before use. The Flash column chromatography was performed using silica gel (60 Å pore size, 32-63 μ m, standard grade). Analytical thin-layer chromatography (TLC) was performed using glass plates pre-coated with 0.25 mm 230-400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Organic solutions were concentrated on rotary evaporators at ~20 Torr (house vacuum) at 25-35 °C. Nuclear magnetic resonance (NMR) spectra were recorded in parts per million (ppm) from internal trimethylsilane (TMS) on the δ scale. High resolution mass spectrometry (HRMS) spectra analysis was performed by electrospray ionization (ESI-micrOTOF).

2. General procedure for the synthesis of bridged heterocycles 3-22.

To a screw capped schlenk tube equipped with a stir bar was charged with *ortho*bromo-*N*H-sulfoximine **1** (0.30 mmol), aryl iodide **2** (0.36 mmol), Pd(dba)₂ (10 mol %), (*p*-FC₆H₄)₃P (20 mol %), Norbornadiene (3.0 equiv.), Cs₂CO₃ (2.1 equiv.), and dry MeCN (4.5 mL). The reaction was purged with N₂, and then heated to 85-105 °C at oil bath for about 12 h. The reaction was monitored by TLC. Upon completion, the reaction was allowed to cool to room temperature, diluted with ethyl acetate (5.0 mL), then filtered through a short pad of silica. The solid residue was washed with ethyl acetate (~10 mL) unless otherwise noted. Concentration of the filtrate under reduced pressure provided the crude product, which was purified by silica gel column chromatography (petroleum ether/ethyl acetate = $10:1 \sim 2:1$, v/v) to afford the desired compounds **3-22**.

(1S,4R)-9-Methyl-1,4,4*a*,14*b*-tetrahydro-9 λ^4 -1,4methanotribenzo[*c*,*e*,*g*][1,2]thiazocine-13-carboxylate 9-oxide (**3a**).

Yield: 81%, 92 mg; yellow solid, mp: 198-200 °C. Eluent: ethyl acetate/petroleum ether = 1 : 3. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 1H), 7.51 (d, *J* = 8.1 Hz, 1H), 7.24-7.20 (m, 3H), 7.05-7.01(m, 1H), 6.71 (d, *J* = 8.1 Hz, 1H), 6.38 (d, *J* = 3.9 Hz, 2H), 4.08 (d, *J* = 9.7 Hz, 1H), 3.73 (s, 3H), 3.44 (s, 3H), 3.29 (d, *J* = 9.6 Hz, 1H), 3.20 (s, 2H), 2.01 (d, *J* = 8.5 Hz, 1H), 1.80 (d, *J* = 8.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 151.2, 143.5, 140.1, 139.4, 138.9, 136.5, 132.9, 128.0, 127.8, 127.6, 126.4, 125.3, 124.9, 123.9, 51.9, 46.9, 46.2, 46.1,45.8, 45.0. HRMS (ESI) calculated for C₂₂H₂₂NO₃S [M+H]⁺: 380.1315, found: 380.1319.

Methyl(1*S*,4*R*)-9-phenyl-1,4,4*a*,14*b*-tetrahydro-9 λ ⁴-1,4methanotribenzo[*c*,*e*,*g*][1,2]thiazocine-13-carboxylate 9-oxide (**3b**).

Yield: 75%, 99 mg; white solid, mp: 227-228 °C. Eluent: ethyl acetate/petroleum ether = 1 : 3. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 2H), 7.86 (s, 1H), 7.78-7.63 (m, 4H), 7.26 (d, *J* = 6.4 Hz, 1H), 7.20 (t, *J* = 7.5 Hz, 1H), 7.09 (d, *J* = 8.2 Hz, 1H), 6.80 (t, *J* = 7.5 Hz, 1H), 6.50 (d, *J* = 14.1 Hz, 2H), 6.23 (d, *J* = 7.9 Hz, 1H), 4.61 (d, *J* = 9.6 Hz, 1H), 3.82 (s, 3H), 3.47 (d, *J* = 9.6 Hz, 1H), 3.32 (d, *J* = 9.2 Hz, 2H), 2.17 (d, *J* = 8.5 Hz, 1H), 1.91 (d, *J* = 8.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 152.0, 143.7, 139.8, 139.7, 139.5, 139.3, 138.6, 137.3, 133.8, 132.2, 128.6, 127.9, 126.5, 126.4, 126.2, 125.9, 125.2, 124.5, 51.8, 47.5, 46.7, 45.9, 45.8, 45.6. HRMS (ESI) calculated for C₂₇H₂₄NO₃S [M+H]⁺: 442.1471, found: 442.1475.

Methyl(1*S*,4*R*)-12-fluoro-9-methyl-1,4,4*a*,14*b*-tetrahydro-9 λ ⁴-1,4-methanotribenzo[*c*,*e*,*g*][1,2]thiazocine-13-carboxylate 9-oxide (**4a**).

Yield: 60%, 71.5 mg; white solid, mp: 213-214 °C. Eluent: ethyl acetate/petroleum ether = 1 : 3. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 6.5 Hz, 1H), 7.33-7.27 (m, 3H), 7.15 (s, 1H), 6.51 6.45 (m, 3H), 4.16 (d, *J* = 8.4 Hz, 1H), 3.83 (s, 3H), 3.51 (s, 3H), 3.27-3.25 (m, 3H), 2.04 (s, 1H), 1.87 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.1 (d, *J* = 4.0 Hz), 160.7 (d, ¹*J* = 257 Hz), 152.6, 143.6, 139.9, 139.0, 136.1, 135.2, 133.0, 129.7, 127.5, 126.6, 123.8, 113.6 (d, ²*J* = 22 Hz), 112.8 (d, ²*J* = 9.8 Hz), 52.0, 46.5, 46.12, 46.1, 45.8, 45.7, 45.0. HRMS (ESI) calculated for C₂₂H₂₁FNO₃S [M+H]⁺: 398.1221, found: 398.1228.

Methyl(1*S*,4*R*)-12-fluoro-9-phenyl-1,4,4*a*,14*b*-tetrahydro-9 λ^4 -1,4-methanotribenzo[*c*,*e*,*g*][1,2]thiazocine-13-carboxylate 9-oxide (**4b**).

Yield: 64%, 88 mg; white solid, mp: 220-221 °C. Eluent: ethyl acetate/petroleum ether = 1 : 3. ¹H NMR (400 MHz, CDCl₃) δ 8.14-8.19 (m, 2H), 7.78-7.69 (m, 4H), 7.28-7.22 (m, 2H), 6.88-6.78 (m, 2H), 6.54-6.46 (m, 2H), 6.25 (d, *J* = 7.8 Hz, 1H), 4.58 (d, *J* = 9.6 Hz, 1H), 3.85 (s, 3H), 3.41 (d, *J* = 9.6 Hz, 1H), 3.31 (s, 2H), 2.13 (d, *J* = 8.6 Hz, 1H), 1.90 (d, *J* = 8.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 160.6 (d, ¹*J* = 256 Hz), 153.5, 143.8, 139.9, 139.3, 138.9, 137.1, 134.6, 134.0, 132.4, 130.5, 129.1, 126.5, 126.0, 125.2, 114.2 (d, ²*J* = 22 Hz), 112.5 (d, ²*J* = 21 Hz), 52.0, 47.7, 46.6, 45.8, 45.6, 45.2. HRMS (ESI) calculated for C₂₇H₂₃FNO₃S [M+H]⁺: 460.1377, found: 460.1367.

Methyl(1*S*,4*R*)-12-chloro-9-methyl-1,4,4*a*,14*b*-tetrahydro-9 λ^4 -1,4-methanotribenzo[*c*,*e*,*g*][1,2]thiazocine-13-carboxylate 9-oxide (**5a**).

Yield: 82%, 102 mg; white solid, mp: 209-210 °C. Eluent: ethyl acetate/petroleum ether = 1 : 3. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.37-7.31 (m, 3H), 7.17 (d, J = 6.7 Hz, 1H), 6.81 (s, 1H), 6.45 (s, 2H), 4.15 (d, J = 12.0 Hz, 1H), 3.83 (s, 3H), 3.52 (s, 3H), 3.28-3.22 (m, 3H), 2.02 (d, J = 8.1 Hz, 1H), 1.86 (d, J = 7.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 150.9, 143.3, 139.8, 139.1, 137.9, 136.1, 133.1, 131.8, 129.8, 127.9, 127.5, 126.7, 123.8, 52.1, 46.4, 46.3, 46.1, 45.9, 45.7, 45.0. HRMS (ESI) calculated for C₂₂H₂₀ClNO₃S [M+H]⁺: 414.1025, found: 414.1038.

Methyl(1S,4R)-12-chloro-9-phenyl-1,4,4*a*,14*b*-tetrahydro-9 λ^4 -1,4methanotribenzo[*c*,*e*,*g*][1,2]thiazocine-13-carboxylate 9-oxide (**5b**).

Yield: 71%, 101 mg; white solid, mp: 233-234 °C. Eluent: ethyl acetate/petroleum ether = 1 : 3. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 2H), 7.78-7.71 (m, 4H), 7.28-7.22 (m, 2H), 7.11 (s, 1H), 6.88-6.84 (m, 1H), 6.53 (m, 1H), 6.48-6.45 (m, 1H), 6.26 (d, *J* = 7.9 Hz, 1H), 4.60 (d, *J* = 9.7 Hz, 1H), 3.85 (s, 3H), 3.40 (d, *J* = 9.7 Hz, 1H), 3.31 (d, *J* = 10.1 Hz, 2H), 2.10 (d, *J* = 8.6 Hz, 1H), 1.90 (d, *J* = 8.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 151.7, 143.6, 140.0, 139.2, 138.8, 137.3, 137.1, 134.0, 132.4, 131.8, 130.6, 129.4, 128.5, 126.4, 126.2, 125.2, 123.3, 52.1, 47.5, 46.8, 45.8, 45.6, 45.4. HRMS(ESI) calculated for C₂₇H₂₃ClNO₃S [M+H]⁺: 476.1082, found: 476.1082.

((1S,4R)-9-Methyl-13-(trifluoromethyl)-1,4,4*a*,14*b*-tetrahydro-9 λ^4 -1,4-methanotribenzo[*c*,*e*,*g*][1,2]thiazocine 9-oxide (6).

Yield: 71%, 83 mg; white solid, mp: 209-210 °C. Eluent: ethyl acetate/petroleum ether = 1 : 3. ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.26 (m, 4H), 7.13 (t, *J* = 7.4 Hz, 2H), 6.81 (d, *J* = 8.1 Hz, 1H), 6.45 (s, 2H), 4.18 (d, *J* = 9.6 Hz, 1H), 3.51 (s, 3H), 3.38 (d, *J* = 9.6 Hz, 1H), 3.29 (s, 1H), 3.22 (s, 1H), 2.03 (d, *J* = 8.4 Hz, 1H), 1.87 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 149.4, 143.3, 140.1, 140.0, 139.0, 136.4, 132.9, 127.5, 126.6, 125.5, 125.0, 123.9, 123.4 (q, *J* = 258.0 Hz), 123.3, 123.2, 46.9, 46.1, 46.2, 45.9, 45.6, 45.0. HRMS (ESI) calculated for C₂₁H₁₉F₃NOS [M+H]⁺: 390.1134, found: 390.1142.

 $1-((1S,4R)-9-Methyl-9-oxido-1,4,4a,14b-tetrahydro-9\lambda^4-1,4$ methanotribenzo[*c*,*e*,*g*][1,2] thiazocin-13-yl)ethan-1-one (7).

Yield: 63%, 69 mg; white solid, mp: 230-231 °C. Eluent: ethyl acetate/petroleum ether = 1 : 3. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 1.5 Hz, 1H), 7.51-7.49 (m, 1H), 7.33-7.27 (m, 3H), 7.13-7.09 (m, 1H), 6.79 (d, *J* = 8.1 Hz, 1H), 6.46-6.45 (m, 2H), 4.18 (d, *J* = 9.6 Hz, 1H), 3.52 (s, 3H), 3.37 (d, *J* = 9.7 Hz, 1H), 3.28 (s, 2H), 2.45 (s, 3H), 2.08 (d, *J* = 8.6 Hz, 1H), 1.88 (d, *J* = 8.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 151.6, 143.5, 140.1, 139.5, 139.0, 136.5, 132.9, 132.4, 127.6, 127.3, 126.5, 126.4, 125.3, 123.8, 46.9, 46.2, 46.1, 45.9, 45.8, 45.1, 26.4. HRMS (ESI) calculated for C₂₂H₂₂NO₂S [M+H]⁺: 364.1366, found: 364.1361.

(1S,4R)-9-Methyl-12-nitro-1,4,4*a*,14*b*-tetrahydro-9 λ^4 -1,4methanotribenzo[*c*,*e*,*g*][1,2]thiazocine 9-oxide (**8**).

Yield: 67%, 73 mg; yellow solid, mp: 207-210 °C. Eluent: ethyl acetate/petroleum ether = 1 : 3. ¹H NMR (400 MHz, CDCl₃) δ 7.69-7.66 (m, 1H), 7.56 (d, *J* = 2.4 Hz, 1H), 7.36-7.31 (m, 3H), 7.20-7.14 (m, 2H), 6.47 (s, 2H), 4.23 (d, *J* = 8.0 Hz, 1H), 3.56 (s, 3H), 3.41 (d, *J* = 10.0 Hz, 1H), 3.30 (s, 1H), 3.22 (s, 1H), 2.03 (d, *J* = 8.0 Hz, 1H), 1.88 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 148.1, 147.3, 146.4, 142.9, 139.8, 139.1, 136.2, 133.0, 127.5, 126.9, 126.7, 124.2, 120.1, 118.3, 47.5, 46.2, 46.1, 46.0, 45.6, 44.9. HRMS (ESI) calculated for C₂₀H₁₉N₂O₃S [M+H]⁺: 367.1111, found: 367.1110.

(1S,4R)-9-Methyl-1,4,4*a*,14*b*-tetrahydro-9 λ^4 -1,4-methanotribenzo[*c*,*e*,*g*][1,2]thiazocine-13-carbonitrile 9-oxide (**9**).

Yield: 43%, 45 mg; white solid, mp: 218-219 °C. Eluent: ethyl acetate/petroleum ether = 1 : 3. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (t, *J* = 7.5 Hz, 1H), 7.31 (t, 3H), 7.18-7.13 (m, 2H), 6.78 (d, *J* = 8.1 Hz, 1H), 6.45 (s, 2H), 4.19 (d, *J* = 9.6 Hz, 1H), 3.52 (s, 3H), 3.34-3.29 (m, 2H), 3.17 (s, 1H), 2.00 (d, *J* = 8.6 Hz, 1H), 1.87 (d, *J* = 8.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 151.3, 143.2, 140.8, 139.8, 139.2, 136.2, 133.1, 130.5, 130.4, 127.5, 126.7, 126.2, 123.8, 119.6, 106.4, 46.6, 46.2, 46.1, 45.9, 45.6, 45.1. HRMS (ESI) calculated for C₂₁H₁₉N₂OS [M+H]⁺: 347.1213, found: 347.1232.

Ethyl(1*S*,4*R*)-9-methyl-1,4,4*a*,14*b*-tetrahydro-9 λ ⁴-1,4-

methanotribenzo[*c*,*e*,*g*][1,2]thia-zocine-13-carboxylate 9-oxide (10a).

Yield: 63%, 74 mg; white solid, mp: 174-173 °C. Eluent: ethyl acetate/petroleum ether = 1 : 3. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 1H), 7.51 (m, 1H), 7.25-7.19 (m, 3H), 7.05-7.02 (m, 1H), 6.70 (d, *J* = 8.2 Hz, 1H), 6.39-6.36 (m, 2H), 4.19 (q, *J* = 7.1 Hz, 2H), 4.10-4.08 (m, 1H), 3.43 (s, 3H), 3.29 (d, *J* = 9.7 Hz, 1H), 3.20 (s, 2H), 2.02 (d, *J* = 8.6 Hz, 1H), 1.79 (d, *J* = 8.6 Hz, 1H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 151.1, 143.5, 140.1, 139.3, 138.9, 136.6, 132.8, 127.9, 127.8, 127.6, 126.3, 125.3, 125.2, 123.9, 60.6, 46.9, 46.2, 46.1, 45.9, 45.7, 45.0, 14.3. HRMS (ESI) calculated for C₂₃H₂₄NO₃S [M+H]⁺: 394.1471, found: 394.1470.

Ethyl(1*S*,4*R*)-9-phenyl-1,4,4*a*,14*b*-tetrahydro-9 λ^4 -1,4methanotribenzo[*c*,*e*,*g*][1,2]thiazocine-13-carboxylate 9-oxide (**10b**).

Yield: 65%, 89 mg; white solid, mp: 176-177 °C. Eluent: ethyl acetate/petroleum ether =1: 3. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 2H), 7.87 (s, 1H), 7.78-7.63 (m, 4H), 7.27 (d, *J* = 6.3 Hz, 1H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.09 (d, *J* = 8.2 Hz, 1H), 6.80 (t, *J* = 7.6 Hz, 1H), 6.54-6.47 (m, 2H), 6.23 (d, *J* = 7.9 Hz, 1H), 4.60 (d, *J* = 9.7 Hz, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 3.47 (d, *J* = 9.7 Hz, 1H), 3.34-3.42 (m, 2H), 2.18 (d, *J* = 8.6 Hz, 1H), 1.91 (d, *J* = 8.6 Hz, 1H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 151.8, 143.9, 139.8, 139.5, 139.4, 138.5, 137.3, 133.8, 132.2, 130.6, 128.7, 127.8, 126.5, 126.1, 125.8, 125.2, 124.8, 60.6, 47.5, 46.7, 45.8, 45.6, 14.4. HRMS(ESI) calculated for C₂₈H₂₆NO₃S [M+H]⁺: 456.1628, found: 456.1626.

Methyl(1S,4R)-9,12-dimethyl-1,4,4a,14b-tetrahydro-9 λ^4 -1,4methanotribenzo[c,e,g][1,2]thiazocine-13-carboxylate 9-oxide (**11**).

Yield: 72%, 85 mg; white solid, mp: 223-224 °C. Eluent: ethyl acetate/petroleum ether =1: 3. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (s, 1H), 7.36-7.29 (m, 3H), 7.12 (t, *J* = 6.2 Hz, 1H), 6.60 (s, 1H), 6.44 (s, 2H), 4.15 (d, *J* = 8.0 Hz, 1H), 3.79 (s, 3H), 3.51 (s, 3H), 3.31 (d, *J* = 9.7 Hz, 1H), 3.26 (d, *J* = 9.8 Hz, 2H), 2.36 (s, 3H), 2.06 (d, *J* = 8.4 Hz, 1H), 1.85 (d, *J* = 8.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 150.1, 143.7, 140.1, 138.9, 138.8, 136.5, 136.1, 132.8, 129.1, 128.6, 127.5, 126.4, 124.0, 123.9, 51.5, 46.4, 46.3, 46.0, 45.9, 45.7, 45.1, 21.4. HRMS (ESI) calculated for C₂₃H₂₄NO₃S [M+H]⁺: 394.1471, found: 394.1462.

(1S,4R)-12-Methoxy-9-methyl-1,4,4*a*,14*b*-tetrahydro-9 λ^4 -1,4methanotribenzo[*c*,*e*,*g*][1,2]thiazocine 9-oxide (**12**).

Yield: 69%, 73 mg; white solid, mp: 186-189 °C. Eluent: ethyl acetate/petroleum ether =1: 4. ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.26 (m, 3H), 7.13-7.09 (m, 1H), 6.91 (d, *J* = 8.4 Hz, 1H), 6.46-6.44 (m, 1H), 6.41-6.35 (m, 3H), 4.09 (d, *J* = 9.5 Hz, 1H), 3.64 (s, 3H), 3.48 (s, 3H), 3.32 (d, *J* = 9.5 Hz, 1H), 3.26 (s, 1H), 3.17 (s, 1H), 2.03 (d, *J* = 8.4 Hz, 1H), 1.79 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 147.1, 144.0, 140.3, 138.6, 136.8, 132.5, 131.2, 127.4, 126.4, 126.2, 124.3, 111.3, 108.6, 55.2, 46.3, 46.2, 46.0, 45.7, 45.6, 44.9. HRMS (ESI) calculated for C₂₁H₂₂NO₂S [M+H]⁺: 352.1366, found: 352.1360.

Ethyl(1S,4R)-12-acetamido-9-methyl-1,4,4a,14b-tetrahydro- $9\lambda^4$ -1,4-methanotribenzo[c,e,g][1,2]thiazocine-13-carboxylate 9-oxide (**13a**).

Yield: 79%, 107 mg; white solid, mp: 283-284 °C. Eluent: ethyl acetate/petroleum ether =1: 3. ¹H NMR (400 MHz, CDCl₃) δ 10.83 (s, 1H), 8.06 (s, 1H), 7.61 (s, 1H), 7.25-7.05 (m, 3H), 7.05-7.03 (m, 1H), 6.39-6.34 (m, 2H), 4.20-4.16 (m, 2H), 4.05 (d, J = 9.5 Hz, 1H), 3.45 (s, 3H), 3.26 (d, J = 9.6 Hz, 1H), 3.20 (s, 1H), 3.13 (s, 1H), 2.05 (s, 3H), 1.94 (d, J = 8.4 Hz, 1H), 1.77 (d, J = 8.4 Hz, 1H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 168.2, 152.5, 143.3, 140.3, 140.0, 138.8, 136.8, 133.5, 132.7, 128.3, 127.5, 126.5, 124.3, 116.9, 110.1, 61.0, 46.4, 46.2, 46.0, 45.7, 45.5, 44.9, 25.5, 14.2. HRMS (ESI) calculated for C₂₅H₂₇N₂O₄S [M+H]⁺: 451.1686, found: 451.1684.

Methyl(1S,4R)-12-acetamido-9-phenyl-1,4,4a,14b-tetrahydro-9 λ^4 -1,4methanotribenzo[c,e,g][1,2]thiazocine-13-carboxylate 9-oxide (**13b**).

Yield: 75%, 115 mg; white solid, mp: 273-274 °C. Eluent: ethyl acetate/petroleum ether =1: 3. ¹H NMR (400 MHz, CDCl₃) δ 10.94 (s, 1H), 8.50 (s, 2H), 7.81 (s, 1H), 7.74 (d, *J* = 5.0 Hz, 3H), 7.27-7.23 (m, 2H), 6.83 (t, *J* = 7.5 Hz, 1H), 6.53-6.46 (m, 2H), 6.29 (d, *J* = 7.8 Hz, 1H), 4.57 (d, *J* = 9.6 Hz, 1H), 4.33-4.28 (m, 2H), 3.44 (d, *J* = 9.6 Hz, 1H), 3.30 (d, *J* = 16.4 Hz, 2H), 2.17 (s, 3H), 2.10 (d, *J* = 8.4 Hz, 1H), 1.88 (d, *J* = 8.4 Hz, 1H), 1.70 (s, 1H), 1.38 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 168.3, 153.3, 143.7, 140.2, 139.8, 139.3,139.2, 137.5, 133.8, 132.8, 132.1,130.7,129.4, 129.2, 126.3, 126.0, 125.5, 117.6, 109.8, 61.0, 47.4, 46.6, 45.6, 45.5, 45.3, 25.5, 14.2. HRMS (ESI) calculated for C₃₀H₂₉N₂O₄S [M+H]⁺: 513.1843, found: 513.1849.

(1S,4R)-9-Methyl-12-(trifluoromethyl)-1,4,4*a*,14*b*-tetrahydro-9 λ^4 -1,4-methanotribenzo[*c*,*e*,*g*][1,2]thiazocine 9-oxide (14).

Yield: 44%, 51 mg; yellow solid, mp: 146-147 °C. Eluent: ethyl acetate/petroleum ether =1: 3. ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.18 (m, 3H), 7.05 (m, 2H), 6.97 (d, J = 8.2 Hz, 1H), 6.90 (s, 1H), 6.38-6.36 (m, 2H), 4.11 (d, J = 9.7 Hz, 1H), 3.43 (s, 3H), 3.31 (d, J = 9.8 Hz, 1H), 3.20 (s, 1H), 3.12 (s, 1H), 1.95 (d, J = 8.5 Hz, 1H), 1.77 (d, J = 8.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 143.5, 143.2, 140.0, 138.9, 136.4, 132.8, 132.7, 127.4, 126.6, 126.5 (q, J = 262 Hz), 125.4, 124.1, 122.7, 121.9, 119.9, 47.1, 46.1, 46.1, 45.9, 45.6, 44.9, 29.7. HRMS (ESI) calculated for C₂₁H₁₉F₃NOS [M+H]⁺: 390.1134, found: 390.1137.

Methyl(1S,4R)-9-methyl-1,4,4a,14b-tetrahydro-9 λ^4 -1,4methanotribenzo[c,e,g][1,2]thiazocine-12-carboxylate 9-oxide (**15**).

Yield: 46%, 52 mg; white solid, mp: 190-189 °C. Eluent: ethyl acetate/petroleum ether =1: 3. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.0 Hz, 1H), 7.40 (s, 1H), 7.31 (d, *J* = 5.9 Hz, 2H), 7.27 (d, *J* = 3.8 Hz, 1H), 7.10 (d, *J* = 8.0 Hz, 2H), 6.46-6.44 (m, 2H), 4.18 (d, *J* = 9.7 Hz, 1H), 3.81 (s, 3H), 3.52 (s, 3H), 3.42 (d, *J* = 9.7 Hz, 1H), 3.25 (d, *J* = 22.9 Hz, 2H), 2.04 (d, *J* = 8.4 Hz, 1H), 1.85 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 146.3, 145.4, 143.2, 140.1, 138.8, 136.7, 132.7, 128.2, 127.5, 126.5, 126.2, 126.1, 124.6, 124.3, 51.9, 47.5, 46.2, 45.9, 45.6, 44.9. HRMS (ESI) calculated for C₂₂H₂₂NO₃S [M+H]⁺: 380.1315, found: 380.1308.

Ethyl(1*S*,4*R*)-9-methyl-1,4,4*a*,14*b*-tetrahydro-9 λ ⁴-1,4methanotribenzo[*c*,*e*,*g*][1,2]thiazocine-12-carboxylate 9-oxide (**16**).

Yield 65%, 77 mg; white solid, mp: 169-170 °C. Eluent: ethyl acetate/petroleum ether =1: 3. ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.48 (m, 1H), 7.40 (d, *J* = 1.7 Hz, 1H), 7.32-7.28 (m, 3H), 7.12-7.09 (m, 2H), 6.47 -6.43 (m, 2H), 4.29-4.25 (m, 2H), 4.18 (d, *J* = 9.7 Hz, 1H), 3.52 (s, 3H), 3.41 (d, *J* = 9.7 Hz, 1H), 3.27 (s, 1H), 3.21 (s, 1H), 2.04 (d, *J* = 8.5 Hz, 1H), 1.85 (d, *J* = 8.5 Hz, 1H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 146.3, 145.2, 143.2, 140.1, 138.8, 136.7, 132.6, 128.6, 127.5, 126.5, 126.2, 126.0, 124.5, 124.3, 60.7, 47.4, 46.2, 45.94, 45.92, 45.6, 44.9, 14.3. HRMS (ESI) calculated for C₂₃H₂₄NO₃S [M+H]⁺: 394.1472, found: 394.1470.

Methyl(1*S*,4*R*)-9-ethyl-6-methyl-1,4,4*a*,14*b*-tetrahydro-9 λ^4 -1,4methanotribenzo[*c*,*e*,*g*][1,2]thiazocine-13-carboxylate 9-oxide (**17**).

Yield: 82%, 100 mg; white solid, mp: 168-169 °C. Eluent: ethyl acetate/petroleum ether =1: 3. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.57 (d, *J* = 8.1 Hz, 1H), 7.10-7.07 (m, 2H), 6.87 (d, *J* = 7.9 Hz, 1H), 6.73 (d, *J* = 8.2 Hz, 1H), 6.44 (s, 2H), 4.23 (d, *J* = 9.6 Hz, 1H), 3.81 (s, 3H), 3.75-3.63 (m, 1H), 3.54-3.48 (m, 1H), 3.35 (d, *J* = 9.6 Hz, 1H), 3.26 (s, 2H), 2.25 (s, 3H), 2.08 (d, *J* = 8.5 Hz, 1H), 1.86 (d, *J* = 8.4 Hz, 1H), 1.67 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 151.9, 143.9, 143.0, 139.9, 139.2, 139.1, 132.5, 128.2, 128.0, 127.9, 126.8, 125.8, 124.4, 123.5, 51.8, 50.7, 46.6, 46.5, 45.9, 45.8, 21.7, 7.4. HRMS (ESI) calculated for C₂₄H₂₅NO₃S [M+H]⁺: 408.1628, found: 408.1635.

Ethyl(1*S*,4*R*)-9-Ethyl-6-methyl-1,4,4*a*,14*b*-tetrahydro-9 λ^4 -1,4methanotribenzo[*c*,*e*,*g*][1,2]thiazocine-13-carboxylate 9-oxide (**18**).

Yield: 47%, 59.3 mg; white solid, mp: 166-167 °C. Eluent: ethyl acetate/petroleum ether = 1: 3. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.59-7.56 (m, 1H), 7.09 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 7.9 Hz, 1H), 6.72 (d, J = 8.2 Hz, 1H), 6.44 (s, 2H), 4.28-4.21 (m, 3H), 3.73-3.66 (m, 1H), 3.54-3.49 (m, 1H), 3.35 (d, J = 9.7 Hz, 1H), 3.27 (s, 2H), 2.26 (s, 3H), 2.08 (d, J = 8.5 Hz, 1H), 1.86 (d, J = 8.4 Hz, 1H), 1.67 (t, J = 7.2 Hz, 3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 151.8, 143.9, 143.0, 139.9, 139.1, 132.5, 128.2, 128.0, 127.8, 126.7, 125.7, 124.8, 123.5, 60.6, 50.7, 46.6, 46.5, 46.0, 45.8, 45.8, 21.7, 14.3, 7.5. HRMS (ESI) calculated for C₂₅H₂₈NO₃S [M+H]⁺: 422.1784, found: 422.1779.

(1S,4R)-9-ethyl-6-methyl-1,4,4*a*,14*b*-tetrahydro-9 λ^4 -1,4methanotribenzo[*c*,*e*,*g*][1,2]thiazocine-13-carbonitrile 9-oxide (**19**).

Yield: 60%, 67 mg; white solid, mp: 183-184 °C. Eluent: ethyl acetate/petroleum ether =1: 3. ¹H NMR (400 MHz, CDCl₃) δ 7.33 (s, 1H), 7.17-7.14 (m, 1H), 7.09 (d, *J* = 8.4 Hz, 2H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.74 (d, *J* = 8.1 Hz, 1H), 6.44 (q, *J* = 5.5 Hz, 2H), 4.25 (d, *J* = 9.7 Hz, 1H), 3.75-3.66 (m, 1H), 3.55-3.11 (m, 1H), 3.32-3.28 (m, 2H), 3.16 (s, 1H), 2.30 (s, 3H), 1.99 (d, *J* = 8.6 Hz, 1H), 1.86 (d, *J* = 8.6 Hz, 1H), 1.66 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 152.0, 143.6, 143.4, 140.5, 139.5, 139.4, 132.1, 130.7, 130.3, 128.1, 127.0, 126.7, 123.4, 119.9, 105.8, 50.8, 46.6, 46.3, 46.0, 45.7, 45.6, 21.7, 7.5. HRMS (ESI) calculated for C₂₃H₂₃N₂OS [M+H]⁺: 375.1526, found: 375.1497.

Methyl(1*S*,4*R*)-12-chloro-9-ethyl-6-methyl-1,4,4*a*,14*b*-tetrahydro-9 λ ⁴-1,4-methanotribenzo[*c*,*e*,*g*][1,2]thiazocine-13-carboxylate 9-oxide (**20**).

Yield: 65%, 86 mg; white solid, mp: 205-206 °C. Eluent: ethyl acetate/petroleum ether =1: 3. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (s, 1H), 7.12-7.07 (m, 2H), 6.93 (d, *J* = 8.0 Hz, 1H), 6.77 (s, 1H), 6.43 (s, 2H), 4.23 (d, *J* = 9.6 Hz, 1H), 3.84 (s, 3H), 3.74-3.68 (m, 1H), 3.55-3.50 (m, 1H), 3.27 (d, *J* = 8.3 Hz, 2H), 3.22 (s, 1H), 2.29 (s, 3H), 2.01 (d, *J* = 8.5 Hz, 1H), 1.85 (d, *J* = 8.5 Hz, 1H), 1.66 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 151.7, 143.7, 143.3, 139.5 139.4, 137.7, 132.1, 131.7, 130.0, 128.2, 128.1, 127.1, 123.4, 123.2, 52.1, 50.8, 46.7, 46.1, 45.9, 45.8, 21.7, 7.5.

HRMS (ESI) calculated for $C_{24}H_{25}CINO_3S$ [M+H]⁺: 442.1238, found: 442.1234.

Methyl(1*S*,4*R*)-9-ethyl-12-fluoro-6-methyl-1,4,4*a*,14*b*-tetrahydro-9 λ ⁴-1,4-methanotribenzo[*c*,*e*,*g*][1,2]thiazocine-13-carboxylate 9-oxide (**21**).

Yield: 85%, 108 mg; white solid, mp: 171-172 °C. Eluent: ethyl acetate/petroleum ether = 1 : 3. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.3 Hz, 1H), 7.12-7.07 (m, 2H), 6.92 (d, *J* = 7.9 Hz, 1H), 6.46 (d, *J* = 12.2 Hz, 3H), 4.22 (d, *J* = 9.6 Hz, 1H), 3.84 (s, 3H), 3.73-3.68 (m, 1H), 3.55-3.50 (m, 1H), 3.26 (t, *J* = 10.2 Hz, 3H), 2.28 (s, 3H), 2.04 (d, *J* = 8.5 Hz, 1H), 1.86 (d, *J* = 8.5 Hz, 1H), 1.65 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 160.7 (d, ¹*J* = 257 Hz), 153.5, 143.9, 143.3, 139.7, 139.3, 135.0, 132.1, 129.8, 128.2, 126.9, 123.4, 113.9 (d, ²*J* = 22 Hz), 112.3 (d, ²*J* = 19 Hz), 52.0, 50.8, 46.9, 45.9, 45.8, 45.8, 45.7, 21.7, 7.5. HRMS (ESI) calculated for C₂₄H₂₅FNO₃S [M+H]⁺: 426.1534, found: 426.1510.

Methyl(1*S*,4*R*)-9-ethyl-6,12-dimethyl-1,4,4*a*,14*b*-tetrahydro-9 λ ⁴-1,4methanotribenzo[*c*,*e*,*g*][1,2]thiazocine-13-carboxylate 9-oxide (**22**).

Yield: 71%, 90 mg; white solid, mp: 207-208 °C. Eluent: ethyl acetate/petroleum ether = 1 : 3. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.11-7.09 (m, 2H), 6.88 (d, J = 8.0 Hz, 1H), 6.56 (s, 1H), 6.43 (s, 2H), 4.21 (d, J = 9.6 Hz, 1H), 3.80 (s, 3H), 3.73-3.26 (m, 1H), 3.54-3.49 (m, 1H), 3.30-3.24 (m, 3H), 2.36 (s, 3H), 2.27 (s, 3H), 2.05 (d, J = 8.4 Hz, 1H), 1.84 (d, J = 8.4 Hz, 1H), 1.66 (t, J = 7.3 Hz, 3H). ¹³C NMR

(100 MHz, CDCl₃) δ 168.2, 150.8, 144.1, 142.9, 139.8, 139.1, 138.7, 135.9, 132.5, 129.3, 129.0, 128.1, 126.7, 123.6, 123.5, 51.5, 50.8, 46.8, 46.0, 45.9, 45.8, 45.7, 21.7, 21.3, 7.6. **HRMS (ESI)** calculated for C₂₅H₂₇NO₃S [M+H]⁺: 422.1785, found: 422.1770.

Methyl-6,9-dimethyl-1,4,4*a*,14*b*-tetrahydro-9 λ^4 -1,4methanotribenzo[*c*,*e*,*g*][1,2]thiazocine-13-carboxylate 9-oxide (**23**).

Yield 66%, 78 mg; white solid; mp: 199-200 °C. Eluent: ethyl acetate/petroleum ether =1: 2. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.60-7.58 (m, 1H), 7.16 (d, *J* = 8.2 Hz, 1H), 7.07 (s, 1H), 6.88 (d, *J* = 8.0 Hz, 1H), 6.78 (d, *J* = 8.0 Hz, 1H), 6.47-6.41 (m,2H), 4.11 (d, *J* = 9.6 Hz, 1H), 3.81 (s, 3H), 3.48 (s, 3H), 3.35 (d, *J* = 9.6 Hz, 1H), 3.27 (s, 2H), 2.26 (s, 3H), 2.07 (d, *J* = 8.4 Hz, 1H), 1.87 (d, *J* = 8.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 151.4, 143.4, 143.3, 140.1, 139.5, 138.7, 133.7, 128.2, 128.0, 127.9, 126.9, 125.3, 124.8, 124.1, 51.8, 46.8, 46.2, 46.1, 45.8, 45.7, 45.1, 21.7. HRMS (ESI) calculated for C₂₃H₂₄NO₃S [M+H]⁺: 394.1471, found: 394.1473.

Methyl-6-chloro-9-methyl-1,4,4*a*,14*b*-tetrahydro-9 λ^4 -1,4-methanotribenzo[*c*,*e*,*g*][1,2] thiazocine-13-carboxylate 9-oxide (**24**)

Yield 52%, 65 mg; white solid; mp: 200-201 °C. Eluent: ethyl acetate/petroleum ether =1: 2. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.27-7.24 (m, 2H), 7.08 (d, *J* = 8.4 Hz, 1H), 6.79 (d, *J* = 8.2 Hz, 1H), 6.48-6.42 (m, 2H), 4.12 (d, *J* = 9.6 Hz, 1H), 3.83 (s, 3H), 3.50 (s, 3H), 3.36 (d, *J* = 9.6 Hz, 1H), 3.26 (d, *J* = 16.0Hz, 2H), 2.04 (d, *J* = 8.8Hz, 1H), 1.89 (d, *J* = 8.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 150.8, 145.8, 140.3, 139.1, 138.9, 138.7, 135.2, 128.2, 127.9, 127.9, 126.5, 125.3, 125.3, 51.9, 47.0, 46.3, 46.1, 46.0, 45.7, 45.2. HRMS (ESI) calculated for C₂₂H₂₁ClNO₃S [M+H]⁺: 414.0925, found:414.0927.

3. General procedure for the oxidation reaction of bridged heterocycles 3a.

To a stirred solution of **3a** (75.8 mg, 0.20 mmol) in DCM (3.0 mL) at 0 °C was added *m*-chloroperbenzoic acid (98.7 mg, 0.40 mmol), and the resulting light yellow solution was kept stirring for 12 h at room temperature. After diluting with DCM, the reaction was quenched with 1 M aq. KOH solution. The water layer was extracted with DCM and the combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography (PE/EA = 4:1) to give compound **26** as a yellow solid.

Methyl(2*S*,13*R*)-7-methyl-1*a*,2,2*a*,12*b*,13,13*a*-hexahydro-7 λ^4 -2,13methanobenzo[*c*]benzo[*g*]oxireno[2',3':4,5]benzo[1,2-*e*][1,2]thiazocine-11carboxylate 7-oxide (**26**)

Yield: 71%, 55.8 mg; yellow solid, mp: 186-187 °C. Eluent: ethyl acetate/petroleum ether = 1 : 5. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 1.2 Hz, 1H), 7.88-7.86 (m, 2H), 7.59 (d, J = 8.4 Hz, 1H), 7.22-7.18 (m, 1H), 7.11-7.07 (m, 1H), 6.58 (d, J = 7.9 Hz, 1H), 4.12 (d, J = 9.2 Hz, 1H), 3.99 (d, J = 9.2 Hz, 1H), 3.90 (s, 3H), 3.53-3.52 (m, 1H), 3.41-3.40 (m, 1H), 3.09 (s, 3H), 3.03 (s, 1H), 2.62 (s, 1H), 1.62-1.58 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 152.8, 140.3, 139.5, 136.8, 133.5, 132.6, 130.6, 130.1, 129.4, 128.5, 127.3, 124.9, 52.8, 52.1, 51.7, 46.4, 46.1, 45.4, 44.8, 42.3, 23.9. HRMS (ESI) calculated for C₂₂H₂₂NO₄S [M+H]⁺: 396.1264, found: 396.1241.

4. General procedure for the bromination of bridged heterocycles 3a.

Bromine (119.8 mg, 0.75 mmol) in DCM (3.0 mL) was added to a solution of compound **3a** (57.0 mg, 0.15 mmol) in DCM (3.0 mL) at 0 °C. The reaction was kept stirring for 3 h at room temperature and then quenched with Na₂S₂O₃ solution. The reaction was extracted with DCM. The aqueous layer was washed with DCM and brine, dried over anhydrous MgSO₄, and solvent was removed under reduced pressure. The obtained residue was purified by column chromatography (PE/EA = 3:1) to give product **24** (50.7 mg, 55% yield) as a white solid.

Methyl(1*S*,4*R*)-8-bromo-9-methyl-1,4,4*a*,14*b*-tetrahydro-9 λ ⁴-1,4methanotribenzo[*c*,*e*,*g*][1,2]thiazocine-13-carboxylate 9-oxide (**27**)

Yield: 54%, 49 mg; white solid, mp: 157-158 °C. Eluent: ethyl acetate/petroleum ether =1: 4. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 1.7 Hz, 1H), 7.64 (d, J = 1.3 Hz, 1H), 7.39-7.33 (m, 2H), 7.19 (t, J = 8.5 Hz, 2H), 4.67 (t, J = 3.8 Hz, 1H), 4.58 (d, J = 9.8 Hz, 1H), 4.29 (s, 1H), 4.19 (d, J = 9.9 Hz, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 3.00-2.97 (m, 2H), 2.46 (d, J = 11.2 Hz, 1H), 2.31 (d, J = 10.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 149.7, 140.0, 138.9, 135.4, 133.1, 131.8, 127.4, 126.4, 126.3, 125.3, 123.5, 122.0, 59.7, 59.5, 52.2, 51.2, 49.5, 48.0, 45.4, 34.5. HRMS (ESI) calculated for C₂₂H₂₁Br₃NO₃S [M+H]⁺: 615.8714, found: 615.8720.

5. ¹H and ¹³C NMR spectra of all new compounds (S23-S51)

¹H NMR spectrum (400 MHz, CDCl₃) of 3a

¹³C NMR spectrum (100 MHz, CDCl₃) of 3a

¹H NMR spectrum (400 MHz, CDCl₃) of 3b

¹³C NMR spectrum (100 MHz, CDCl₃) of 3b

¹H NMR spectrum (400 MHz, CDCl₃) of 4a

¹³C NMR spectrum (100 MHz, CDCl₃) of 4a

¹H NMR spectrum (400 MHz, CDCl₃) of 4b

¹³C NMR spectrum (100 MHz, CDCl₃) of 4b

¹H NMR spectrum (400 MHz, CDCl₃) of 5a

¹³C NMR spectrum (100 MHz, CDCl₃) of 5a

¹H NMR spectrum (400 MHz, CDCl₃) of 5b

¹³C NMR spectrum (100 MHz, CDCl₃) of 5b

¹H NMR spectrum (400 MHz, CDCl₃) of 6

¹³C NMR spectrum (100 MHz, CDCl₃) of 6

¹H NMR spectrum (400 MHz, CDCl₃) of 7

¹³C NMR spectrum (100 MHz, CDCl₃) of 7

¹H NMR spectrum (400 MHz, CDCl₃) of 8

¹³C NMR spectrum (100 MHz, CDCl₃) of 8

¹³C NMR spectrum (100 MHz, CDCl₃) of 9

¹H NMR spectrum (400 MHz, CDCl₃) of 10b

¹H NMR spectrum (400 MHz, CDCl₃) of 12

¹³C NMR spectrum (100 MHz, CDCl₃) of 13a

¹H NMR spectrum (400 MHz, CDCl₃) of 13b

¹³C NMR spectrum (100 MHz, CDCl₃) of 14

¹³C NMR spectrum (100 MHz, CDCl₃) of 15

¹³C NMR spectrum (100 MHz, CDCl₃) of 17

¹H NMR spectrum (400 MHz, CDCl₃) of 18

¹³C NMR spectrum (100 MHz, CDCl₃) of 18

¹H NMR spectrum (400 MHz, CDCl₃) of 19

¹³C NMR spectrum (100 MHz, CDCl₃) of 19

¹H NMR spectrum (400 MHz, CDCl₃) of 20

¹³C NMR spectrum (100 MHz, CDCl₃) of 20

¹H NMR spectrum (400 MHz, CDCl₃) of 21

¹³CNMR spectrum (100 MHz, CDCl₃) of 21

S65

¹³C NMR spectrum (100 MHz, CDCl₃) of 23

¹H NMR spectrum (400 MHz, CDCl₃) of 24

¹³C NMR spectrum (100 MHz, CDCl₃) of 24

¹H NMR spectrum (400 MHz, CDCl₃) of 26

¹³C NMR spectrum (100 MHz, CDCl₃) of 26

¹H NMR spectrum (400 MHz, CDCl₃) of 27

¹³C NMR spectrum (100 MHz, CDCl₃) of 27

6. X-ray ORTEP illustration of compound 3a.

3a

Crystal data and structure refinement for compound **3a**.

Bond precision:	C-C = 0.0032 A	Wavelength=0.71073		
Cell:	a=19.5977(12) alpha=90	b=8.1238(4 beta=90.18) 2(5)	c=23.2996(12) gamma=90
Temperature:	293 K			
	Calculated	F	Reported	
Volume	3709.5(3)	3	3709.5(3)	
Space group	C 2/C	C 2/c		
Hall group	-C 2yc	-C 2yc		
Moiety formula	C22 H21 N O3 S	?	, ,	
Sum formula	C22 H21 N O3 S	C	22 H21 N	03 S
Mr	379.46	3	379.46	
Dx,g cm-3	1.359	1	.359	
Z	8	8	3	
Mu (mm-1)	0.197	C	.197	
F000	1600.0	1	600.0	
F000'	1601.67			
h,k,lmax	23,9,28	2	23,9,28	
Nref	3474	3	319	
Tmin, Tmax	0.958,0.965	C	0.765,1.0	00
Tmin'	0.958			
Correction method= # Reported T Limits: Tmin=0.765 Tmax=1.000 AbsCorr = MULTI-SCAN				
Data completeness= 0.955 Theta(max) = 25.593				
R(reflections) = 0.0412(2988) wR2(reflections) = 0.1121(3319)				
S = 1.007	Npar=	244		

7. X-ray ORTEP illustration of compound **27** (**S46-S47**).

27

Crystal data and structure refinement for compound 24.

Bond precision: C-C = 0.0213 A Wavelength=0.71073 b=11.3055(13) Cell: a=8.1990(7) c=14.2419(11) alpha=100.441(8) beta=100.282(7) gamma=91.136(8) Temperature: 293 K Calculated Reported Volume 1275.6(2)1275.6(2)P -1 Space group P -1 -P 1 -P 1 Hall group Moiety formula C22 H20 Br3 N O3 S, C H2 Cl2 ? Sum formula C23 H22 Br3 Cl2 N O3 S C23 H22 Br3 Cl2 N O3 S Mr 703.08 703.10 Dx,g cm-3 1.831 1.831 Z 2 2 5.062 Mu (mm-1) 5.062 F000 692.0 692.0 F000' 691.42 h,k,lmax 9,13,16 9,13,16 Nref 4541 4471 Tmin, Tmax 0.026,1.000 0.341,0.402 Tmin' 0.316 Correction method= # Reported T Limits: Tmin=0.026 Tmax=1.000 AbsCorr = MULTI-SCAN Data completeness= 0.985 Theta(max)= 25.098 R(reflections) = 0.1666(2341) wR2(reflections) = 0.3351(4471) S = 1.094Npar= 299