Enzymatic Triggering of C-ON bond Homolysis of Alkoxyamines.

Gérard Audran,^{*a**} Lionel Bosco,^{*a*} Paul Brémond,^{*b*} Natacha Jugniot,^{*c*} Sylvain R. A. Marque,^{*a**} Philippe Massot,^{*c*} Philippe Mellet,^{*c*,d*} Tataye Moussounda Moussounda Koumba,^{*a*} Elodie Parzy,^{*c*} Angélique Rivot,^{*c*} Eric Thiaudière,^{*c*} Pierre Voisin,^{*c*} Carina Wedl,^{*a*} and Toshihide Yamasaki^{*a*}

^a Aix Marseille Univ, CNRS, ICR, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20 (France)

^b Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France

^c Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS, Case 93, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux Cedex (France)

^d INSERM, 33076 Bordeaux Cedex (France)

Experimental section	<i>S</i> 2
NMR analysis	<i>S</i> 3
Intramolecular Hydrogen Bonding investigation in 8	<i>S</i> 36
pK _a measurements	<i>S</i> 37
Kinetic measurements	<i>S</i> 40
XRD	<i>S</i> 48
References	<i>S</i> 50

Scheme 1SI. Preparation of peptide 10

NMR Analysis

¹H NMR of 1

S3

³¹P NMR of 1

NMR of RS/SR-2

¹H NMR Spectrum (CDCl₃)

³¹P NMR Spectrum (CDCl₃)

¹³C {¹H} NMR Spectrum (CDCl₃)

NMR of *RR/SS-2*

¹H NMR Spectrum (CDCl₃)

³¹P NMR Spectrum (CDCl₃)

NMR of 6 ¹H NMR Spectrum (CDCl₃)

NMR of *RR/SS-7* ¹H NMR Spectrum (CDCl₃)

¹⁹F NMR Spectrum (CDCl₃)

NMR of RS/SR-7

¹H NMR Spectrum (CDCl₃)

¹⁹F NMR Spectrum (CDCl₃)

38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 fl(ppm)

¹³C {¹H} NMR Spectrum (CDCl₃)

NMR of *RR/SS*-8

¹H NMR Spectrum (CDCl₃)

¹³C {¹H} NMR Spectrum (CDCl₃)

³¹P NMR Spectrum (CDCl₃)

NMR of *RS/SR*-8

¹H NMR Spectrum (CDCl₃)

8 7 f1 (ppm)

³¹P NMR Spectrum (CDCl₃)

NMR of *RR/SS-9* ¹H NMR Spectrum (CDCl₃)

¹⁹F NMR Spectrum (CDCl₃)

-68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78 -79 -80 -81 -82 -83 f1 (ppm)

³¹P NMR Spectrum (CDCl₃)

¹³C {¹H} NMR Spectrum (CDCl₃)

S32

DEPT of 10.

¹H NMR of 11.

¹³C NMR of 11.

DEPT of 11

Intramolecular Hydrogen bond investigation in 8:

Diastereoisomers ratio RS/SR:RR/SS 1:2

Figure 1SI. ³¹P NMR of 1:2 mixture of RS/SR-8 and SS/RR-8 in various deuterated solvents

Table 1SI. ³¹P NMR chemical shift (δ_P in ppm) and difference in δ_P ($\Delta\delta_P$ in ppm) for *RR/SS*-8 and *RS/SR*-8 in various deuterated solvents

	3	õ _p	$\Delta \delta_p$
Solvant RMN	RS/SR	RR/SS	
DMSO- d_6	25.7	24.3	1.39
Acetone- d_6	26.0	24.6	1.41
Pyridine- <i>d</i> ₅	25.7	24.2	1.48
$DMF-d_7$	25.8	24.3	1.51
MeOH- d_4	26.3	24.8	1.52
Acetonitrile $-d_3$	261	24.5	1.60
Chloroforme- <i>d</i> ₃	25.9	24.2	1.74
Benzene- d_6	25.7	24.0	1.75

pKa measurements:

The dependence of the chemical shifts of alkoxyamine **2** - **8** upon protonation was investigated by means of ¹H NMR spectroscopy (Table 2SI). 0.02 M samples in a D₂O/CD₃OD (v/v 1:1) mixture of alkoxyamine were used. The values of pH* were adjusted with DCl or NaOD (0.2 M) and controlled by a Hanna Instruments HI-2211 pH-meter with SI Analyticsmicro-pH electrode N 6003 (o.d. 3 mm glass, 180 mm stem length) and converted into pH-values *via* the correlation pH = $0.929 \cdot pH^* + 0.42.^{11}H$ NMR spectra were recorded on a Bruker 400 MHz Advance spectrometer.

Table 2SI. pK_a values of **3** and **4**

Figure 2SI. pH versus δ_H for 4

Figure 3SI. pH versus δ_H for 7

Figure 4SI. pH versus $\delta_{\rm H}$ for the protonation of amino group in 8

Figure 5SI. pH versus $\delta_{\rm H}$ for the protonation of both the amino group and pyridyl moiety in 8

Figure 6SI. pH versus δ_H for the protonation of amino group in *RS/SR*-9

Figure 7SI. pH versus δ_H for the protonation of amino group in *RR/SS-9*

Kinetic measurements

EPR experiments were performed on X-band EMX machine (Bruker) equipped with temperature control unit. The values of k_d were measured by recording ESR spectra upon heating of 10⁻⁴ M solutions of alkoxyamines in the presence of oxygen as alkyl radical scavenger. Profiles of the relative concentration are obtained by integration of the EPR signal of **SG1** and the data are fitted linear in semi logarithmic coordinates with eq. 1

$$ln\frac{[C]_0-[C]}{[C]_0} = -k_d t \qquad \text{eq. 1}$$

The values of k_d are gathered in Table 3SI. Activation energies E_a are given by the Arrhenius equation (eq. 2) using the value of 2.4 10¹⁴ s⁻¹ as frequency factor A_0^2 and half-life time $t_{1/2}$ by eq. 3.

$$k_d = A_0 \times e^{\frac{E_a}{RT}} \qquad \text{eq. 2}$$

$$t_{1/2} = \frac{\ln 2}{k_d}$$

eq. 3

In all cases, error of les than 3% is reported when eq. 1 is used to determine k_d values.

Table 3SI.	Experimental	conditions	(temperature	Τ,	solvents,	pH)	and	experimental	rate	constants	$k_{\rm d}$ i	for	1, 2,
and 7-9. Er	rors on values	are less thar	n 1%.										

Structures	Conditions	<i>T</i> (°C)	$k_{\rm d} \ (\times \ 10^{-4} \ {\rm s}^{-1})$	
			RR/SS	RS/SR
1	<i>t</i> -BuPh	81		4.5
7	t-BuPh	130		243.0
		110	31.9	
7H+	<i>t</i> -BuPh + 2eq. TFA	70	3.2	0.9
8	<i>t</i> -BuPh	130		227.0
		120	110.0	
8H+	<i>t</i> -BuPh + 1eq. TFA	89		7.7
		81	5.0	

8H2+	<i>t</i> -BuPh + 2eq. TFA	90		13.7
		79	4.3	
	<i>t</i> -BuPh + 3eq. TFA	90		14.6
		81	5.1	
9	<i>t</i> -BuPh	70		1.0
		50	16.8	
2	<i>t</i> -BuPh	50		0.4
		80	26.6	
2H+	<i>t</i> -BuPh + 2eq. TFA	50		3.1
		80	154.0	
7	H2O/MeOH (1:1)	90		8.6
		71	3.0	
7H+	H ₂ O/MeOH (1:1) pH = 1.9	80	176.0	116.0
8	H2O/MeOH (1:1) pH = 10	90		14.0
		80	6.1	
8H+	H ₂ O/MeOH (1:1) pH = 6	90		55.9
		80	56.1	
8H2+	H2O/MeOH (1:1) pH = 1	60		48.5
		50	39.4	

70	6.1
	70

		50	3.2	
2	H2O/MeOH (1:1) pH = 10	50		1.0
		70	15.7	
2H+	H ₂ O/MeOH (1:1) pH = 6	50		7.6
		60	60.1	
		00	00.1	
2H+	H ₂ O HEPES pH 7.4	37		1.1
1	H ₂ O HEPES pH 7.4	37		0.2
+ Chymotrypsin	H ₂ O HEPES pH 7.4	37		0.83
1 + Subtilisin A	H ₂ O HEPES pH 7.4	37		1.04
1 + trypsin	H ₂ O HEPES pH 7.4	37		0.15
pancreatic elastase	H ₂ O HEPES pH 7.4	37		0.13

1

1 +

Figure 8SI. Alkoxyamine *RS/SR*-1 in tBuPh. (left) plot EPR area vs t and (right) plot $ln((C_0-C)/C)$ vs t

Figure 9SI. Alkoxyamine RS/SR-1 in HEPES

Figure 10SI. Alkoxyamine *RS/SR*-2 in tBuPh. (left) plot EPR area vs *t* and (right) plot ln((C₀-C)/C) vs *t*

Figure 11SI. Alkoxyamine *RS/SR*-2 in tBuPh + 2 TFA. (left) plot EPR area vs t and (right) plot $\ln((C_0-C)/C)$ vs t

Figure 12SI. Alkoxyamine *RS/SR*-2 in tBuPh pH = 6. (left) plot EPR area vs *t* and (right) plot $ln((C_0-C)/C)$ vs *t*

Figure 13SI. Alkoxyamine RS/SR-8 in tBuPh + 3TFA. (left) plot EPR area vs t and (right) plot $ln((C_0-C)/C)$ vs t

Figure 14SI. Alkoxyamine *RS/SR*-8 in tBuPh + 2TFA. (left) plot EPR area vs t and (right) plot $ln((C_0-C)/C)$ vs t

Figure 15SI. Alkoxyamine *RS/SR*-8 in tBuPh + 1TFA. (left) plot EPR area vs t and (right) plot $\ln((C_0-C)/C)$ vs t

Figure 16SI. Alkoxyamine *RR/SS*-8 in tBuPh + 3eqTFA. (left) plot EPR area vs t and (right) plot ln((C₀-C)/C) vs t

Figure 17SI. Alkoxyamine *RR/SS*-8 in tBuPh + 1eqTFA. (left) plot EPR area vs t and (right) plot ln((C₀-C)/C) vs t

Figure 18SI. Alkoxyamine *RS/SR*-9 in tBuPh. (left) plot EPR area vs *t* and (right) plot ln((C₀-C)/C) vs *t*

Figure 19SI. Alkoxyamine *RS/SR*-9 in MeOH/water. (left) plot EPR area vs t and (right) plot $ln((C_0-C)/C)$ vs t

Figure 20SI. Alkoxyamine *RR/SS*-9 in tBuPh. (left) plot EPR area vs *t* and (right) plot ln((C₀-C)/C) vs *t*

Figure 21SI. Alkoxyamine *RR/SS*-9 in MeOH/water. (left) plot EPR area vs *t* and (right) plot $ln((C_0-C)/C)$ vs *t*

Table 4SI. Statistical report and kinetic model for the activation of **1** in the presence of different enzymes displayed in Figure 2.

Model	kineticsfir	storder (User)			
Equation	y = A0 - A	A0*exp(-k1*x))+y0		
		Value	Standard Error	R^2	χ^2
1	A0	35.5	0.09	0.99	0.71
1	k1	2.0E-5	1.1E -7		
1	y0	2.4	0.1		
2H+	A0	52.1	0.21	0.99	0.945
2H+	k1	1.1E-4	8.2E-7		
2H+	y0	3.6	0.21		
1+Chymotripsin	A0	41.2	0.18	0.98	0.96
1+ Chymotripsin	k1	8.3E-5	6.6E-7		
1+ Chymotripsin	y0	-1.4	0.18		
1+PPE	A0	38.2	0.08	0.99	0.71
1+PPE	k1	1.3E-5	8.2E-8		
1+PPE	y0	3.5	0.09		
1+Subtilisin	A0	47.2	0.27	0.97	1.12
1+Subtilisin	k1	1.0E-4	9.2E-7		
1+Subtilisin	y0	1.0	0.28		
1+Trypsin	A0	28.6	0.07	0.98	0.52
1+Trypsin	k1	1.4E-5	8.2E-8		
1+Trypsin	y0	3.0	0.07		

XRD Analysis

Figure 22SI. ORTEP of *RR/SS-8*. Ellipsoïd at 50%. Crystallized with diethyl ether in fridge.

Figure 23SI. ORTEP of *RS/SR*-8. Ellipsoïd at 50%. Crystallized with diethyl ether in fridge.

Compound	<i>RR/SS-</i> 8	<i>RS/SR-</i> 8
Empirical formula	$C_{20}H_{38}N_3O_4P$	$C_{20}H_{38}N_3O_4P$
Formula weight	415.50	415.50
Temperature K	293(2)	293(2)
Wavelength Å	1.54184	1.54184
Crystal system	triclinic	monoclinic
Space group	P -1	$P 2_1/c$
Unit cell dimensions <i>a</i> Å	3.2786(6)	8.8282(6)
b Å	9.5213(6)	22.0666(14)
<i>c</i> Å	15.4265(6)	12.5309(6)
α°	75.673(4)	90.0
β°	76.438(4)	96.936(5)
γ°	71.300(5)	90.0
Volume Å ³	1232.76 (11)	2423.(2)
Z	2	4
Density (calcd.) Mg.m ⁻³	1.168	1.139
Abs. coefficient mm ⁻¹	1.256	1.228
F(000)	472	904
Crystal size mm ³	0.22	0.22
Θ range for data collection °	73.728	73.81
Index ranges	-10/11; -10/18; -17/18	-10/10; -26/26; -15/15
Reflections collected	7179	8051
Independent reflections	4718	4694
Completeness to θ %	66.97	98.99
Data / restraints / parameters	4038/0/273	3780/0/267
Goodness-of-fit on F^2	1.053	1.04
Final R indices $I > 2\sigma(I)$	0.0522	0.0477
Final R indices (all data)	0.0601	0.0584
Largest diff. peak / hole e.Å ⁻³	0.405/-0.315	0.182/-0.415
CCDC	1880849	1880850

Table 5SI. XRD data for *RR/SS*-8 and *RS/SR*-8.

References

¹ Krężel, A.; Bal, W. Formula for Correlating P K a Values Determined in D_2O and H_2O . *J. Inorg. Biochem.* **2004**, *98*, 161-166.

² Bagryanskaya, E. G.; Marque, S. R. A. RSC Polymer Chemistry Series, n°=19, Nitroxide Mediated Polymerization: From Fundamentals to Applications in Materials Sciences Gigmes, D., Ed., Royal Society of Chemistry, **2016**, chapter 2, 45-113