Supporting Information

Organocatalyzed Asymmetric Formal [3+2] Cycloaddition of Isocyanoacetates with *N*-Itaconimides: A Facile Access to Optically Active Spiropyrroline Succinimide Derivatives

Mei-Xin Zhao,*,† Qiang Liu,† Kun-Ming Yu,† Xiao-Li Zhao,‡ and Min Shi†,§

* Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, P. R. China

E-mail: mxzhao@ecust.edu.cn

[‡] Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China

§ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China

Table of Contents

1.	Optimization reaction conditions of Michael addition of α -phenyl isocyanoacetate 1a to N-		
	phenyl itaconimide 2a	S2	
2.	General Procedure for the Asymmetric Formal [3+2] Cycloaddition Reaction of		
	Isocyanoacetates 1 with N-Itaconimides 2 Catalyzed by 3e.		S4
3.	Synthetic Transformation of Product 4a		S11
4.	X-Ray crystal data of compound 4d		S13
5.	Copies of HPLC analysis spectra of compounds 4 and 6		S14
6.	Copies of NMR spectra for the compounds 4 and 6		S36

1. Optimization Reaction Conditions of Michael Addition of α-Phenyl Isocyanoacetate 1a to N-Phenyl Itaconimide 2a

Table S1. Catalysts screening^a

Ph	$\frac{NC}{CO_2Me} + \sqrt{N-1}$		at. 3 (20 mol%) MeO CH ₂ Cl ₂ , 10 °C	CN OC Ph 5a	
	$\begin{array}{c} OCH_3 \\ H \\ $		Me N NH NH NH NH X	3b: R = viny 3c: R = Et, 2 3d: R = Et, 2 3e: R = Et, 2	/l, X = 3,5-(CF ₃) ₂ ; X = 4-F; X = 4-CF ₃ ; X = 3,5-(CF ₃) ₂
	OCH ₃ N N N H H N H H N H H N H H N H H N H H N H H N H H N H H N H H N H H N H H N H	F ₃ C F ₃ C		:H ₃	
Entry	Cat.	<i>t</i> (h)	Yield $(\%)^b$	dr ^c	<i>ee</i> (%) ^{<i>d</i>}
1	3a	96	62	4.8:1	91
2	3b	96	59	2:1	53
3	3c	94	52	9:1	97
4	3d	90	61	10:1	97
5	3 e	90	63	10:1	99
6	3f	120	45	6.1:1	95
7	3g	90	58	6.5:1	-97

^{*a*} All reactions were carried out with *N*-phenyl itaconimide **2a** (0.10 mmol), isocyanoacetate **1a** (0.20 mmol) and cat. **3** (20 mol%) in CH₂Cl₂ (1.0 mL) at 10 °C. ^{*b*} Isolated yields. ^{*c*} Determined by ¹H NMR analysis of purified product. ^{*d*} Determined by chiral HPLC analysis.

Entry	solvent	<i>T</i> (°C)	<i>t</i> (h)	Yield (%)	$dr (\%)^b$	ee (%) ^c
1	CHCl ₃	10	90	60	9:1	99
2	DCE	10	90	54	9:1	99
3	TCE	10	90	57	3.3:1	99
4	THF	10	99	51	5:1	85
5	toluene	10	120	41	9:1	97
6	MeCN	10	96	66	1.7:1	31
7	CH_2Cl_2	r.t.	90	62	6:1	99
8	CH_2Cl_2	0	97	54	11:1	99
9^d	CH_2Cl_2	10	90	59	10:1	99
10 e	CH_2Cl_2	10	90	61	10:1	99
1 1 ^f	CH_2Cl_2	10	94	58	10:1	99
12 ^g	CH_2Cl_2	10	94	62	10:1	99
13 ^{<i>h</i>}	CH_2Cl_2	10	86	55	9:1	99
14 ^{<i>i</i>}	CH_2Cl_2	10	90	60	9.8:1	99
15 ^j	CH_2Cl_2	10	98	45	11.5:1	99

Table S2. Optimization of Reaction Conditions^a

^{*a*} Unless otherwise stated, all reactions were carried out with itaconimide **2a** (0.10 mmol), isocyanoacetate **1a** (0.20 mmol) and cat. **3e** (20 mol%) in CH₂Cl₂ (1.0 mL) at 10 °C. ^{*b*} Determined by ¹H NMR analysis of purified product. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} 0.5 ml of CH₂Cl₂ was used. ^{*e*} 2.0 ml of CH₂Cl₂ was used. ^{*f*} 30 mg of 3Å molecular sieves was added. ^{*g*} 30 mg of 4Å molecular sieves was added. ^{*h*} **2a**: **1a** = 1:3. ^{*i*} **2a**: **1a** = 1:1.2. ^{*j*} 10 mol% of catalyst.

2. General Procedure for the Asymmetric Formal [3+2] Cycloaddition Reaction of Isocyanoacetates 1 with *N*-Itaconimides 2 Catalyzed by 3e.

To a solution of isocyanoacetates **1** (0.20 mmol), *N*-itaconimides **2** (0.40 mmol) in 2.0 mL of CHCl₃ was added catalyst **3e** (20 mol%). The resulting mixture was stirred at 50 °C for 5-8 days until the reaction completed (monitored by TLC). After concentration, the residue was directly subjected to flash column chromatography on silica gel (petroleum ether/ethyl acetate = $2:1\sim3:1$ as eluent) to furnish the corresponding products **4**.

(2R,4R)-Methyl 6,8-dioxo-3,7-diphenyl-2,7-diazaspiro[4.4]non-1-ene-3-carboxylate (4a).

White solid; yield: 58.2 mg (80%); mp 217.3-218.5 °C; $[\alpha]_D^{20}$ -55.8 (*c* 1.00, CH₂Cl₂) (99% *ee*); the *ee* was determined by HPLC analysis with a Chiralpak AD-H column (75/25 hexane/*i*-PrOH; 0.8 mL/min; $\lambda = 230$ nm; $t_{major} = 42.30$ min; $t_{minor} = 54.86$

min); 9:1 *dr*; ¹H NMR (CDCl₃, 400 MHz) δ 7.70 (s, 1H), 7.53 (d, *J* = 7.2 Hz, 2H), 7.47 (d, *J* = 7.6 Hz, 2H), 7.43-7.37 (m, 3H), 7.35-7.29 (m, 3H), 3.76 (s, 3H), 3.70 (d, *J* = 13.6 Hz, 1H), 2.98 (d, *J* = 18.8 Hz, 1H), 2.64 (d, *J* = 18.4 Hz, 1H), 2.41 (d, *J* = 13.6 Hz, 1H); ¹³C NMR (d₆-DMSO, 100 MHz) δ 176.3, 174.5, 172.4, 166.4, 142.2, 132.5, 128.9, 128.63, 128.59, 127.8, 127.3, 125.8, 86.2, 60.9, 52.6, 45.2, 38.0; IR (Film) v 1714, 1499, 1448, 1387, 1265, 1191, 1127 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₁₉N₂O₄ 363.1339; Found 363.1340.

(2R,4R)-Methyl 3-(4-fluorophenyl)-6,8-dioxo-7-phenyl-2,7-diazaspiro[4.4]non-1-ene-3-carboxylate (4b).

White solid; yield 59.3 mg (78%); mp 219.5-220.6 °C; $[\alpha]_D^{20}$ -46.6 (*c* 1.00, CH₂Cl₂) (97% *ee*); the *ee* was determined by HPLC analysis with a Chiralpak AD-H column (75/25 hexane/*i*-PrOH; 0.8 mL/min; $\lambda = 230$ nm; $t_{maior} = 36.34$ min; $t_{minor} = 48.02$

min); 7:1 *dr*; ¹H NMR (d₆-DMSO, 400 MHz) δ 7.92 (s, 1H), 7.54-7.48 (m, 4H), 7.45-7.43 (m, 1H), 7.33 (d, J = 7.6 Hz, 2H), 7.23 (t, J = 8.8 Hz, 2H), 3.60 (s, 3H), 3.44 (d, J = 13.6 Hz, 1H), 3.10 (d, J = 18.4 Hz, 1H), 2.79 (d, J = 18.4 Hz, 1H), 2.42 (d, J = 14.0 Hz, 1H); ¹³C NMR (d₆-DMSO, 100 MHz) δ 176.3, 174.7, 172.5, 166.8, 161.8 (d, J = 243.0 Hz), 138.5 (d, J = 3.1 Hz), 132.6, 129.1, 128.8, 128.2 (d, J = 8.2 Hz), 127.4, 115.5 (d, J = 21.1 Hz), 85.7, 61.1, 52.8, 45.3, 38.1; ¹⁹F NMR (d₆-DMSO, 376 MHz) δ -113.7; IR (Film) v 1736, 1708, 1507, 1398, 1260, 1198, 1144, 1074, 1014 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₁₈FN₂O₄ 381.1245; Found 381.1245.

(2R,4R)-Methyl 3-(4-chlorophenyl)-6,8-dioxo-7-phenyl-2,7-diazaspiro[4.4]non-1-ene-3-carboxylate (4c).

White solid; yield 60.2 mg (76%); mp 234.0-234.8 °C; $[\alpha]_D^{20}$ -51.4 (*c* 1.00, CH₂Cl₂) S4 (98% ee); the ee was determined by HPLC analysis with a Chiralpak AD-H column (75/25 hexane/i-PrOH; 0.8 mL/min; $\lambda = 230$ nm; $t_{\text{major}} = 43.24$ min; $t_{\text{minor}} = 77.35$ min); 10:1 dr; ¹H NMR (d₆-DMSO, 400 MHz) δ 7.93 (s, 1H), 7.53-7.42 (m, 7H), 7.33 (d, J = 7.2 Hz, 2H), 3.60 (s, 3H), 3.44 (d, J = 14.0 Hz, 1H), 3.09 (d, J = 18.0 Hz, 1H), 2.79 (d, J = 18.4 Hz, 1H), 2.41 (d, J = 14.0 Hz, 1H); ¹³C NMR (d₆-DMSO, 100 MHz) δ 176.3, 174.6, 172.3, 167.0, 141.2, 132.8, 132.6, 129.1, 128.7, 128.0, 127.4, 85.8, 61.1, 52.8, 45.1, 38.0; IR (Film) v 1738, 1709, 1498, 1399, 1258, 1199, 1144, 1093, 1015 cm⁻¹; HRMS (ESI-TOF) m/z: [M-H]⁻ calcd for C₂₁H₁₆ClN₂O₄ 395.0804; Found 395.0801.

(2R,4R)-Methyl 3-(4-bromophenyl)-6,8-dioxo-7-phenyl-2,7-diazaspiro[4.4]non-1-ene-3-carboxylate (4d).

White solid; yield 72.3 mg (82%); mp 222.6-223.4 °C; $[\alpha]_D^{20}$ -49.0 (*c* 1.00, CH₂Cl₂) (98% ee); the ee was determined by HPLC analysis with a Chiralpak AD-H column (80/20 hexane/*i*-PrOH; 1.0 mL/min; $\lambda = 230$ nm; $t_{major} = 50.30$ min; $t_{minor} = 106.90$ min); 15:1 dr; ¹H NMR (d₆-DMSO, 400 MHz) δ 7.92 (s, 1H), 7.60 (d, J = 8.4 Hz, 2H), 7.51 (t, J = 7.6 Hz, 2H), 7.45-7.42 (m, 3H), 7.33 (d, J = 7.2 Hz, 2H), 3.60 (s, 3H), 3.43 (d, J = 14.0 Hz, 1H), 3.09 (d, J = 18.4 Hz, 1H), 2.78 (d, J = 18.4 Hz, 1H), 2.40 (d, J = 14.0 Hz, 1H); ¹³C NMR (d₆-DMSO, 100 MHz) δ 176.1, 174.5, 172.0, 166.9, 141.5, 132.5, 131.5, 128.9, 128.6, 128.2, 127.2, 121.2, 85.7, 61.0, 52.7, 44.9, 38.0; IR (Film) v 1735, 1713, 1499, 1384, 1257, 1190, 1068, 1014 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₁₈BrN₂O₄ 441.0444; Found 441.0442.

(2R,4R)-Methyl 6,8-dioxo-7-phenyl-3-(p-tolyl)-2,7-diazaspiro[4.4]non-1-ene-3-carboxylate (4e).

White solid; yield 50.4 mg (67%); mp 208.0-210.2 °C; $[\alpha]_D^{20}$ -50.2 (c 1.00, CH₂Cl₂) (97% ee); the ee was determined by HPLC analysis with a Chiralpak AD-H column $(5/1 \text{ hexane}/i\text{-PrOH}; 0.8 \text{ mL/min}; \lambda = 230 \text{ nm}; t_{\text{major}} = 70.58 \text{ min}; t_{\text{minor}} = 113.23 \text{ min});$

10:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ 7.68 (s, 1H), 7.46 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.29 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.29 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.29 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.29 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.29 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.29 (d, J = 7.6 Hz, 2H), 7.41-7.39 (m, 3H), 7.29 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.42 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.42 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.42 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.49 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.49 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.49 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.49 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.49 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.49 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.49 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.49 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.49 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.49 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.49 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.49 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.49 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.49 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.49 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.49 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.49 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.49 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.49 (d, J = 7.6 Hz, 2H), 7.42-7.39 (m, 3H), 7.42 (m, 3 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 3.74 (s, 3H), 3.64 (d, J = 13.6 Hz, 1H), 2.94 (d, J = 18.4 Hz, 1H), 2.61 (d, J = 18.8 Hz, 1H), 2.39 (d, J = 13.6 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (d₆-DMSO, 100 MHz) δ 176.3, 174.4, 172.5, 166.1, 139.3, 137.0, 132.5, 129.1, 128.9, 128.5, 127.2, 125.7, 86.0, 60.8, 52.4, 45.1, 38.1, 20.7; IR (Film) v 1740, 1710, 1499, 1456, 1399, 1301, 1257, 1197, 1143, 1078, 1022 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₂H₂₁N₂O₄ 377.1496; Found 377.1495.

(2R,4R)-Methyl 3-(4-methoxyphenyl)-6,8-dioxo-7-phenyl-2,7-diazaspiro[4.4]non-1-ene-3-carboxylate (4f).

White solid; yield 43.1 mg (55%); mp 191.6-193.4 °C; $[\alpha]_D^{20}$ -84.6 (*c* 1.00, CH₂Cl₂) (99% *ee*); the *ee* was determined by HPLC analysis with a Chiralpak AD-H column (80/20 hexane/*i*-PrOH; 0.8 mL/min; $\lambda = 230$ nm; $t_{major} = 70.94$ min; $t_{minor} = 116.18$

MeO (80/20 lickale/l-11011, 0.3 lill/lill), k = 250 lill, $t_{major} = 70.94$ lill), $t_{minor} = 110.13$ min); 5:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ 7.69 (s, 1H), 7.48-7.37 (m, 5H), 7.30 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H), 3.75 (s, 3H), 3.63 (d, J = 13.6 Hz, 1H), 2.96 (d, J = 19.2 Hz, 1H), 2.64 (d, J = 18.8 Hz, 1H), 2.40 (d, J = 13.2 Hz, 1H); ¹³C NMR (d₆-DMSO, 100 MHz) δ 175.4, 173.3, 172.5, 164.0, 159.5, 133.4, 131.5, 129.3, 129.0, 126.9, 126.3, 114.2, 86.2, 60.5, 55.4, 53.3, 46.4, 38.5; IR (Film) v 1738, 1710, 1511, 1500, 1398, 1300, 1255, 1185, 1143, 1034 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₂H₂₁N₂O₅ 393.1445; Found 393.1442.

(2R,4R)-Methyl 3-(3-fluorophenyl)-6,8-dioxo-7-phenyl-2,7-diazaspiro[4.4]non-1-ene-3-carboxylate (4g).

White solid; yield 54.7 mg (72%); mp 222.4-223.8 °C; $[\alpha]_D^{20}$ -52.8 (*c* 1.00, CH₂Cl₂) (98% *ee*); the *ee* was determined by HPLC analysis with a Chiralpak AD-H column (75/25 hexane/*i*-PrOH; 0.8 mL/min; λ = 230 nm; t_{maior} = 41.63 min; t_{minor} = 54.91

min); 6:1 *dr*; ¹H NMR (d₆-DMSO, 400 MHz) δ 7.93 (s, 1H), 7.50 (d, *J* = 7.6 Hz, 2H), 7.44 (d, *J* = 7.6 Hz, 2H), 7.33 (d, *J* = 7.6 Hz, 2H), 7.32 (s, 1H), 7.27-7.25 (m, 1H), 7.18 (td, *J* = 8.8, 2.0 Hz, 1H), 3.61 (s, 3H), 3.45 (d, *J* = 13.6 Hz, 1H), 3.11 (d, *J* = 18.4 Hz, 1H), 2.80 (d, *J* = 18.0 Hz, 1H), 2.43 (d, *J* = 13.6 Hz, 1H); ¹³C NMR (d₆-DMSO, 100 MHz) δ 176.1, 174.5, 172.0, 167.1, 162.1 (d, *J* = 234.5 Hz), 144.8 (d, *J* = 7.2 Hz), 132.5, 130.7 (d, *J* = 8.3 Hz), 128.9, 128.6, 127.2, 122.0 (d, *J* = 2.6 Hz), 114.7 (d, *J* = 20.7 Hz), 112.9 (d, *J* = 22.9 Hz), 85.7, 61.0, 52.7, 45.0, 37.9; ¹⁹F NMR (d₆-DMSO, 376 MHz) δ -111.5; IR (Film) v 1736, 1709, 1501, 1398, 1260, 1199, 1144, 1074, 1014 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₁₈FN₂O₄ 381.1245; Found 381.1245.

(2R,4R)-Methyl 3-(3-bromophenyl)-6,8-dioxo-7-phenyl-2,7-diazaspiro[4.4]non-1-ene-3-carboxylate (4h).

White solid; yield 71.4 mg (81%); mp 218.7-219.5 °C; $[\alpha]_D^{20}$ -42.6 (*c* 1.00, CH₂Cl₂) (97% *ee*); the *ee* was determined by HPLC analysis with a Chiralpak AD-H column (75/25 hexane/*i*-PrOH; 0.8 mL/min; $\lambda = 230$ nm; $t_{major} = 47.55$ min; $t_{minor} =$

61.12 min); 5:1 *dr*; ¹H NMR (CDCl₃, 400 MHz) δ 7.73 (t, J = 2.0 Hz, 1H), 7.70 (s, 1H), 7.51-7.45 (m, 4H), 7.44-7.42 (m, 1H), 7.32-7.28 (m, 3H), 3.77 (s, 3H), 3.72 (d, J = 13.2 Hz, 1H), 3.05 (d, J = 18.8 Hz, 1H), 2.69 (d, J = 18.4 Hz, 1H), 2.34 (d, J = 13.6 Hz, 1H); ¹³C NMR (d₆-DMSO, 100 MHz) δ 176.0, 174.5, 172.0, 167.2, 144.7, S6

132.5, 130.9, 130.8, 128.9, 128.62, 128.57, 127.2, 125.1, 121.9, 85.6, 61.0, 52.8, 44.9, 37.9; IR (Film) v 1738, 1713, 1490, 1447, 1384, 1257, 1189, 1069, 1014 cm⁻¹; HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{21}H_{18}BrN_2O_4$ 441.0444; Found 441.0455.

(2R,4R)-Methyl 6,8-dioxo-7-phenyl-3-(m-tolyl)-2,7-diazaspiro[4.4]non-1-ene-3-carboxylate (4i).

White solid; yield 51.1 mg (68%); mp 215.2-216.6 °C; $[\alpha]_D^{20}$ -55.4 (*c* 1.00, CH₂Cl₂) (95% *ee*); the *ee* was determined by HPLC analysis with a Chiralpak AD-H column (75/25 hexane/*i*-PrOH; 0.8 mL/min; $\lambda = 230$ nm; $t_{maior} = 37.53$ min; $t_{minor} = 45.49$

min); 6:1 *dr*; ¹H NMR (d₆-DMSO, 400 MHz) δ 7.89 (s, 1H), 7.53-7.49 (m, 2H), 7.45-7.43 (m, 1H), 7.33 (d, J = 7.6 Hz, 2H), 7.29-7.26 (m, 3H), 7.14-7.13 (m, 1H), 3.59 (s, 3H), 3.43 (d, J = 14.0 Hz, 1H), 3.09 (d, J = 18.4 Hz, 1H), 2.78 (d, J = 18.4 Hz, 1H), 2.41 (d, J = 14.0 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (d₆-DMSO, 100 MHz) δ 176.3, 174.5, 172.5, 166.2, 142.2, 137.8, 132.5, 128.9, 128.6, 128.5, 128.4, 127.2, 126.3, 122.9, 86.1, 60.9, 52.5, 45.1, 38.0, 21.3; IR (Film) v 1739, 1710, 1499, 1455, 1399, 1257, 1197, 1143, 1105, 1022 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₂H₂₁N₂O₄ 377.1496; Found 377.1492.

(2R,4R)-Benzyl 6,8-dioxo-3,7-diphenyl-2,7-diazaspiro[4.4]non-1-ene-3-carboxylate (4k).

White solid; yield 48.2 mg (55%); mp 204.8-205.5 °C; $[\alpha]_D^{20}$ -53.6 (*c* 1.00, CH₂Cl₂) (99% *ee*); the *ee* was determined by HPLC analysis with a Chiralpak AD-H column (75/25 hexane/*i*-PrOH; 0.8 mL/min; $\lambda = 230$ nm; $t_{major} = 97.45$ min; $t_{minor} = 82.61$

min); 20:1 *dr*; ¹H NMR (CDCl₃, 400 MHz) δ 7.71 (s, 1H), 7.51-7.47 (m, 4H), 7.43-7.40 (m, 1H), 7.38-7.30 (m, 6H), 7.26-7.24 (m, 2H), 7.19-7.16 (m, 2H), 5.24 (d, *J* = 12.4 Hz, 1H), 5.14 (d, *J* = 12.4 Hz, 1H), 3.69 (d, *J* = 13.2 Hz, 1H), 2.97 (d, *J* = 18.8 Hz, 1H), 2.63 (d, *J* = 18.4 Hz, 1H), 2.44 (d, *J* = 13.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 175.2, 173.1, 171.2, 164.0, 141.1, 135.4, 131.4, 129.2, 128.9, 128.7, 128.4, 128.2, 128.0, 127.8, 126.2, 125.7, 86.7, 67.5, 60.4, 46.0, 38.4; IR (Film) v 1728, 1705, 1621, 1500, 1454, 1446, 1397, 1252, 1212, 1189, 1144, 1024 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₇H₂₃N₂O₄ 439.1652; Found 439.1650.

(2R,4R)-tert-Butyl 6,8-dioxo-3,7-diphenyl-2,7-diazaspiro[4.4]non-1-ene-3-carboxylate (4l).

White solid; yield 53.3 mg (33%); mp 193.9-194.6 °C; $[\alpha]_D^{20}$ -60.6 (*c* 1.00, CH₂Cl₂) (96% *ee*); the *ee* was determined by HPLC analysis with a Chiralcel OD-H column (75/25 hexane/*i*-PrOH; 0.8 mL/min; $\lambda = 230$ nm; $t_{major} = 35.54$ min; $t_{minor} = 32.51$ min); 17:1 *dr*; ¹H NMR (CDCl₃, 400 MHz) δ 7.68 (s, 1H), 7.50-7.46 (m, 4H), 7.43-7.41 (m, 1H), 7.39-7.35 (m, 2H), 7.32-7.30 (m, 3H), 3.62 (d, *J* = 13.2 Hz, 1H), 2.92 (d, *J* = 19.2 Hz, 1H), 2.59 (d, *J* = 18.8 Hz, 1H), 2.39 (d, *J* = 13.6 Hz, 1H), 1.41 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ 175.3, 173.2, 170.2, 163.4, 141.8, 131.4, 129.1, 128.8, 128.5, 127.8, 126.2, 125.5, 87.2, 82.4, 60.2, 45.8, 38.5, 27.7; IR (Film) v 1711, 1500, 1447, 1395, 1298, 1261, 1202, 1189, 1165, 1142, 1058, 1031 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₄H₂₅N₂O₄ 405.1809; Found 405.1806.

(2R,4R)-Methyl 7-(4-fluorophenyl)-6,8-dioxo-3-phenyl-2,7-diazaspiro[4.4]non-1-ene-3-carboxylate (4n).

White solid; yield 50.2 mg (66%); mp 216.1-217.2 °C; $[\alpha]_D^{20}$ -43.6 (*c* 1.00, —F CH₂Cl₂) (99% *ee*); the *ee* was determined by HPLC analysis with a Chiralpak AD-H column (85/15 hexane/*i*-PrOH; 0.8 mL/min; $\lambda = 230$ nm; $t_{maior} = 103.10$

min; $t_{minor} = 124.80$ min); 10:1 dr; ¹H NMR (d₆-DMSO, 400 MHz) δ 7.89 (s, 1H), 7.47 (d, J = 7.6 Hz, 2H), 7.41-7.30 (m, 7H), 3.59 (s, 3H), 3.45 (d, J = 13.6 Hz, 1H), 3.08 (d, J = 18.4 Hz, 1H), 2.77 (d, J = 18.0 Hz, 1H), 2.41 (d, J = 13.6 Hz, 1H); ¹³C NMR (d₆-DMSO, 100 MHz) δ 176.1, 174.4, 172.3, 166.2, 161.5 (d, J = 243.9 Hz), 142.1, 129.3 (d, J = 8.9 Hz), 128.6 (d, J = 2.9 Hz), 128.5, 127.7, 125.7, 115.8 (d, J = 22.7 Hz), 86.1, 60.7, 52.4, 45.1, 37.9; ¹⁹F NMR (d₆-DMSO, 376 MHz) δ -113.0; IR (Film) v 1736, 1709, 1505, 1398, 1260, 1199, 1158, 1144, 1074, 1014 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₁₈FN₂O₄ 381.1245; Found 381.1243.

(2R,4R)-Methyl 7-(4-chlorophenyl)-6,8-dioxo-3-phenyl-2,7-diazaspiro[4.4]non-1-ene-3-carboxylate (40).

White solid; yield 60.3 mg (76%); mp 235.2-236.6 °C; $[\alpha]_D^{20}$ -35.2 (*c* 1.00, CH₂Cl₂) (99% *ee*); the *ee* was determined by HPLC analysis with a Chiralpak AD-H column (85/15 hexane/*i*-PrOH; 0.8 mL/min; $\lambda = 230$ nm; $t_{maior} = 103.76$

min; $t_{minor} = 128.10 \text{ min}$; 9:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ 7.68 (s, 1H), 7.53-7.51 (m, 2H), 7.45 (d, J = 8.8 Hz, 2H), 7.40-7.32 (m, 3H), 7.28 (d, J = 8.8 Hz, 2H), 3.76 (s, 3H), 3.69 (d, J = 13.6 Hz, 1H), 2.99 (d, J = 18.8 Hz, 1H), 2.64 (d, J = 18.8 Hz, 1H), 2.40 (d, J = 13.6 Hz, 1H); ¹³C NMR (d₆-DMSO, 100 MHz) δ 176.1, 174.3, 172.4, 166.3, 142.2, 133.1, 131.3, 129.0, 128.6, 127.8, 126.1, 125.8, 86.2, 60.9, 52.6, 45.2, 38.1; IR (Film) v 1738, 1710, 1490, 1399, 1258, 1199, 1144, 1093, 1075, 1015 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₁₈ClN₂O₄ 397.0950; Found 397.0949.

(2R,4R)-Methyl 7-(4-bromophenyl)-6,8-dioxo-3-phenyl-2,7-diazaspiro[4.4]non-1-ene-3-carboxylate (4p).

White solid; yield 64.4 mg (73%); mp 219.5-220.2 °C; $[\alpha]_D^{20}$ -27.2 (*c* 1.00, CH₂Cl₂) (>99% *ee*); the *ee* was determined by HPLC analysis with a Chiralpak AD-H column (75/25 hexane/*i*-PrOH; 0.8 mL/min; $\lambda = 230$ nm; $t_{maior} = 75.02$

min); 10:1 *dr*; ¹H NMR (d₆-DMSO, 400 MHz) δ 7.89 (s, 1H), 7.73 (d, *J* = 8.8 Hz, 2H), 7.47 (d, *J* = 7.6 Hz, 2H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.34-7.32 (m, 1H), 7.32 (d, *J* = 8.4 Hz, 2H), 3.59 (s, 3H), 3.45 (d, *J* = 13.6 Hz, 1H), 3.08 (d, *J* = 18.4 Hz, 1H), 2.76 (d, *J* = 18.4 Hz, 1H), 2.40 (d, *J* = 14.0 Hz, 1H); ¹³C NMR (d₆-DMSO, 100 MHz) δ 176.0, 174.3, 172.4, 166.3, 142.2, 132.0, 131.8, 129.3, 128.6, 127.8, 125.8, 121.5, 86.1, 60.9, 52.6, 45.2, 38.1; IR (Film) v 1738, 1712, 1490, 1446, 1384, 1257, 1191, 1142, 1068, 1013 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₁₈BrN₂O₄ 441.0444; Found 441.0442.

(2R,4R)-Methyl 6,8-dioxo-3-phenyl-7-(p-tolyl)-2,7-diazaspiro[4.4]non-1-ene-3-carboxylate (4q).

White solid; yield 54.1 mg (72%); mp 210.3-211.5 °C; $[\alpha]_D^{20}$ -54.6 (*c* 1.00, CH₂Cl₂) (94% *ee*); the *ee* was determined by HPLC analysis with a Chiralpak AD-H column (75/25 hexane/*i*-PrOH; 0.8 mL/min; $\lambda = 230$ nm; $t_{major} = 47.56$ min;

 $t_{\text{minor}} = 41.90 \text{ min}$; 5:1 dr; ¹H NMR (d₆-DMSO, 400 MHz) δ 7.90 (s, 1H), 7.47 (d, J = 7.2 Hz, 2H), 7.39 (t, J = 7.2 Hz, 2H), 7.34-7.27 (m, 3H), 7.20 (d, J = 8.4 Hz, 2H), 3.60 (s, 3H), 3.43 (d, J = 13.6 Hz, 1H), 3.06 (d, J = 18.0 Hz, 1H), 2.42 (d, J = 13.6 Hz, 1H); ¹³C NMR (d₆-DMSO, 100 MHz) δ 176.3, 174.5, 172.4, 166.4, 142.2, 138.1, 129.9, 129.4, 128.6, 127.8, 127.0, 125.8, 86.1, 60.8, 52.5, 45.1, 38.0, 20.8; IR (Film) v 1736, 1710, 1499, 1399, 1257, 1185, 1142, 1105, 1077, 1022 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₂H₂₁N₂O₄ 377.1496; Found 377.1493.

(2R,4R)-Methyl 7-(4-methoxyphenyl)-6,8-dioxo-3-phenyl-2,7-diazaspiro[4.4]non-1-ene-3-carboxylate (4r).

White solid; yield 55.8 mg (71%); mp 193.4-194.8 °C; $[\alpha]_D^{20}$ -79.2 (*c* 1.00, CH₂Cl₂) (96% *ee*); the *ee* was determined by HPLC analysis with a Chiralpak AD-H column (75/25 hexane/*i*-PrOH; 0.8 mL/min; $\lambda = 230$ nm; $t_{maior} = 67.41$

 1034 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₂H₂₁N₂O₅ 393.1445; Found 393.1443.

(2R,4R)-Methyl 7-(3-chlorophenyl)-6,8-dioxo-3-phenyl-2,7-diazaspiro[4.4]non-1-ene-3-carboxylate (4s).

White solid; yield 47.6 mg (60%); mp 192.2-193.0 °C; $[\alpha]_D^{20}$ -37.6 (*c* 1.00, CH₂Cl₂) (90% ee); the ee was determined by HPLC analysis with a Chiralpak AD-H column (75/25 hexane/*i*-PrOH; 0.8 mL/min; $\lambda = 230$ nm; $t_{major} = 34.33$ min; $t_{minor} = 41.99$ min); 3:1 dr; ¹H NMR (d₆-DMSO, 400 MHz, major isomer) δ 7.88 (s, 1H), 7.55 (d, J = 7.6 Hz, 2H), 7.48 (s, 1H),

White solid; yield 55.0 mg (70%); mp 190.6-191.2 °C; $[\alpha]_D^{20}$ -76.2 (c 1.00,

7.47 (d, J = 7.2 Hz, 2H), 7.41 (d, J = 7.6 Hz, 2H), 7.35-7.33 (m, 2H), 3.60 (s, 3H), 3.47 (d, J = 13.6 Hz, 1H), 3.10 (d, J = 18.4 Hz, 1H), 2.78 (d, J = 18.4 Hz, 1H), 2.40 (d, J = 14.0 Hz, 1H); ¹³C NMR (d₆-DMSO, 100 MHz) δ 176.0, 174.3, 172.4, 166.2, 142.2, 133.8, 133.0, 130.6, 128.6, 128.5, 127.8, 127.2, 126.1, 125.8, 86.2, 60.9, 52.6, 45.2, 38.1; IR (Film) v 1738, 1710, 1399, 1257, 1199, 1143, 1093, 1075, 1015 cm⁻¹; HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{21}H_{18}CIN_2O_4$ 397.0950; Found 397.0947.

(2R,4R)-Methyl 7-(3-methoxyphenyl)-6,8-dioxo-3-phenyl-2,7-diazaspiro[4.4]non-1-ene-3-carboxylate (4t).

CH₂Cl₂) (> 99% ee); the ee was determined by HPLC analysis with a Chiralpak AD-H column (75/25 hexane/*i*-PrOH; 0.8 mL/min; $\lambda = 230$ nm; $t_{\text{maior}} = 64.39$ min); 4:1 dr; ¹H NMR (d₆-DMSO, 400 MHz, major isomer) δ 7.90 (s, 1H), 7.47 (d, J = 8.8 Hz, 2H), 7.41 (d, J = 7.6 Hz, 2H), 7.40-7.38 (m, 1H), 7.33 (d, J = 7.2 Hz, 1H), 7.02 (dd, J = 8.4, 1.6 Hz, 1H), 6.92 (s, 1H), 6.91 (d, J = 6.8 Hz, 1H), 3.78 (s, 3H), 3.60 (s, 3H), 3.44 (d, *J* = 13.6 Hz, 1H), 3.08 (d, *J* = 18.0 Hz, 1H), 2.77 (d, *J* = 18.4 Hz, 1H), 3.78 (s, 3H), 3.60 (s, 3H), 3.44 (d, *J* = 13.6 Hz, 1H), 3.08 (d, *J* = 18.0 Hz, 1H), 3.78 (s, 3H), 3.60 (s, 3H), 3.44 (d, *J* = 13.6 Hz, 1H), 3.08 (d, *J* = 18.0 Hz, 1H), 3.78 (d, *J* = 18.4 Hz, 1H), 3.78 (s, 3H), 3.60 (s, 3H), 3.44 (s, J = 13.6 Hz, 1H), 3.08 (s, J = 18.0 Hz, 1H), 3.78 (s, J = 18.4 Hz, 1H), 3.8 Hz, 1H), 3.8 Hz, 1H), 3.8 Hz, 1Hz, 1H), 3.8 Hz, 1Hz, 1H), 3.8 H 1H), 2.41 (d, J = 14.0 Hz, 1H); ¹³C NMR (d₆-DMSO, 100 MHz) δ 176.2, 174.4, 172.5, 166.4, 159.6, 142.2, 133.6, 129.8, 128.6, 127.8, 125.8, 119.5, 114.2, 113.2, 86.2, 60.9, 55.5, 52.6, 45.2, 38.1; IR (Film) v 1738, 1711, 1603, 1588, 1492, 1454, 1391, 1284, 1257, 1196, 1132, 1042 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₂H₂₁N₂O₅ 393.1445; Found 393.1442.

(2R,4R)-Methyl 7-benzyl-6,8-dioxo-3-phenyl-2,7-diazaspiro[4.4]non-1-ene-3-carboxylate (4u).

White solid; yield 45.7 mg (60%); mp 226.5-227.8 °C; $[\alpha]_D^{20}$ -69.6 (c 1.00, CH₂Cl₂) (98% ee); the ee was determined by HPLC analysis with a Chiralpak AD-H column (75/25 hexane/*i*-PrOH; 0.8 mL/min; $\lambda = 230$ nm; $t_{major} = 28.64$ min; $t_{minor} = 36.35$

min); >20:1 dr; ¹H NMR (d₆-DMSO, 400 MHz, major isomer) δ 7.78 (s, 1H), 7.44 (d, J = 7.6 Hz, 2H), 7.39-7.36 S10 (m, 3H), 7.34 (d, J = 7.6 Hz, 2H), 7.31-7.28 (m, 1H), 7.27 (d, J = 8.0 Hz, 2H), 4.59 (s, 2H), 3.61 (s, 3H), 3.29 (d, J = 14.0 Hz, 1H), 3.03 (d, J = 18.4 Hz, 1H), 2.72 (d, J = 18.4 Hz, 1H), 2.40 (d, J = 14.0 Hz, 1H); ¹³C NMR (d₆-DMSO, 100 MHz) δ 176.9, 175.2, 172.4, 166.1, 142.1, 135.9, 128.62, 128.57, 127.8, 127.6, 127.5, 125.8, 86.2, 60.8, 52.6, 44.7, 42.1, 37.7; IR (Film) v 1762, 1740, 1702, 1494, 1432, 1396, 1345, 1261, 1171 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₂H₂₁N₂O₄ 377.1496; Found 377.1493.

Methyl (*R*)-2-isocyano-3-((*R*)-1-methyl-2,5-dioxopyrrolidin-3-yl)-2-phenylpropanoate (5b):

MeO₂C NC Phⁱ N-Me Light yellow oil; yield 40.8 mg (68%); $[\alpha]_D^{20}$ -62.0 (*c* 1.00, CH₂Cl₂) (96% *ee*); the *ee* was determined by HPLC analysis with a Chiralpak IC-H column (85/15 hexane/*i*-PrOH; 0.8 mL/min; $\lambda = 230$ nm; $t_{major} = 50.05$ min; $t_{minor} = 58.43$ min); 6:1 *dr*; ¹H NMR (CDCl₃,

400 MHz, major isomer) δ 7.59-7.53 (m, 2H), 7.47-7.43 (m, 3H), 3.82 (s, 3H), 3.20 (dd, J = 14.4, 3.2 Hz, 1H), 3.03-2.93 (m, 1H), 2.96 (s, 3H), 2.47 (dd, J = 18.4, 9.2 Hz, 1H), 2.34 (dd, J = 18.8, 10.4 Hz, 1H), 2.00 (dd, J = 18.4, 5.6 Hz, 1H); ¹³C NMR (d₆-DMSO, 100 MHz) δ 178.8, 176.4, 167.3, 162.0, 134.7, 129.4, 129.3, 124.9, 79.2, 69.8, 54.2, 36.6, 34.8, 24.5; IR (Film) v 2135, 1745, 1696, 1561, 1437, 1279, 1256, 1117 cm⁻¹; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₆H₁₆N₂NaO₄ 323.1002; Found 323.1005.

3. Synthetic Transformation of Product 4a

To the solution of **4a** (0.2 mmol, 72.4 mg) in dry THF (5 mL) was added BH₃·Me₂S (15 equiv.) dropwise at 0°C under argon. The resulting slurry was stirred at 65 °C for 6 h and then the solution was allowed to cool to room temperature and quenched with dilute HCl. After neutralized by sat. Na₂CO₃, the resulting mixture was extracted with CH₂Cl₂ for three times (3 × 15 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was dissolved in MeOH and refluxed for 2 h, concentrated, and then purified by column chromatography (PE:EA = 2:1) to obtain compound **6a** as major product.

((3R,5S)-3,7-Diphenyl-2,7-diazaspiro[4.4]nonan-3-yl)methanol (6a). Light yellow oil; yield 44.3 mg (72%); [α]_D²⁰ -20.6 (*c* 1.00, CH₂Cl₂) (99% *ee*); the *ee* was determined by HPLC analysis with a Chiralcel OD-H column (70/30 hexane/*i*-PrOH; 0.8 mL/min; λ = 254 nm; t_{major} = 10.94 min; t_{minor} = 15.72 min); >20:1 *dr*; ¹H NMR (CDCl₃, 400 MHz, major isomer) δ 7.43-7.36 (m, 4H), 7.30-7.28 (m, 1H), 7.23 (dd, *J* = 8.4, 7.6 Hz, 2H), 6.67 (t, *J* = 7.6 Hz, 1H), 6.54 (d, *J* = 7.6 Hz, 2H), 3.64 (d, *J* = 10.8 Hz, 1H), 3.51 (d, *J* = 10.4 Hz, 1H), 3.36 (d, *J* = 9.2 Hz, 1H), 3.32-3.26 (m, 3H), 3.07 (d, *J* = 10.4 Hz, 1H), 2.98 (d, *J* = 10.4 Hz, 1H), 2.32 (d, *J* = 13.2 Hz, 1H), 2.23-2.18 (m, 3H), 1.80 (t, *J* = 7.2 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 147.8, 145.4, 129.3, 128.6, 127.0, 125.8, 115.7, 111.5, 69.4, 68.9, 58.8, 56.7, 50.2, 47.2, 46.2, 37.4; IR (Film) v 3342, 1667, 1598, 1506, 1483, 1369, 1261, 1186, 1032 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₂₅N₂O 309.1967; Found 309.1990.

To the solution of **4a** (0.2 mmol, 72.4 mg) in dry THF (5 mL) was added BH₃·Me₂S (15 equiv.) dropwise at 0°C under argon. The resulting slurry was stirred at 65 °C for 12 h and then the solution was allowed to cool to room temperature and quenched with dilute HCl. After neutralized by sat. Na₂CO₃, the resulting mixture was extracted with CH₂Cl₂ for three times (3 × 15 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was dissolved in MeOH and refluxed for 12 h, concentrated, and then purified by column chromatography (PE:EA = 5:1) to obtain compound **6b** as major product.

(5S,8R)-8-(*Methoxymethyl*)-2,8-*diphenyl*-2,7-*diazaspiro*[4.4]*nonane* (**6b**). Light yellow oil; yield 38.6 mg (60%); [α]_D²⁰ -26.0 (*c* 1.00, CH₂Cl₂) (98% *ee*); the *ee* was determined by HPLC analysis with a Chiralcel OD-H column (95/5 hexane/*i*-PrOH; 0.8 mL/min; λ = 254 nm; t_{major} = 13.35 min; t_{minor} = 21.62 min); >20:1 *dr*; ¹H NMR (CDCl₃, 400 MHz, major isomer) δ 7.51 (d, *J* = 7.2 Hz, 2H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.26 (t, *J* = 7.6 Hz, 1H), 7.17 (t, *J* = 7.2 Hz, 2H), 6.62 (t, *J* = 7.2 Hz, 1H), 6.42 (d, *J* = 7.6 Hz, 2H), 3.49 (d, *J* = 9.6 Hz, 1H), 3.37 (d, *J* = 9.2 Hz, 1H), 3.34 (s, 3H), 3.33-3.31 (m, 2H), 3.03 (d, *J* = 11.2 Hz, 1H), 3.00 (d, *J* = 2.0 Hz, 1H), 2.89 (d, *J* = 11.2 Hz, 1H), 2.28-2.20 (m, 4H), 2.04 (td, *J* = 7.2, 2.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 147.9, 145.9, 129.2, 128.2, 126.7, 126.3, 115.5, 111.4, 79.2, 68.9, 59.3, 59.0, 57.3, 51.1, 47.3, 46.7, 37.1; IR (Film) v 3326, 1597, 1507, 1483, 1448, 1369, 1192, 1101 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₂₇N₂O 323.2123; Found 323.2159.

4. X-Ray Crystal Data of Compound 4d

Table 1. Crystal data and structure refinement for 4d (CCDC 1909456).

Empirical formula	C ₂₁ H ₁₇ BrN ₂ O ₄ , CHCl ₃	
Formula weight	560.64	
Temperature	293(2)	
Wavelength	1.54184 Å	
Crystal system	monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 13.3229(3) Å	$\alpha = 90^{\circ}$.
	b = 6.20240(10) Å	$\beta = 115.145(3)^{\circ}$
	c = 15.4655(4) Å	$\gamma = 90^{\circ}$.
Volume	1156.87(5) Å ³	
Ζ	2	
Density (calculated)	1.609 Mg/m ³	
Absorption coefficient	5.890 mm ⁻¹	
F(000)	564	
Crystal size	0.36 x 0.06 x 0.04 mm ³	
Theta range for data collection	5.7210 to 74.2650°	
Index ranges	-16<=h<=16, -7<=k<=7,	-19<=1<=19
Reflections collected	23138	
Independent reflections	4644 [R(int) = 0.0832]	
Data / restraints / parameters	4644 / 1 / 290	
Goodness-of-fit on F ²	1.093	
Final R indices [I>2sigma(I)]	R1 = 0.0424, $wR2 = 0.11$	12
R indices (all data) $R1 = 0.0443, wR2 = 0.1096$		96
Largest diff. peak and hole	1.232 and -0.737 e.Å ⁻³	

Figure S1. ORTEP plot of the X-ray crystal structure of 4d. Displacement ellipsoids are drawn at the 50% probability level.

5. Copies of HPLC Analysis Spectra of Compounds 4 and 6 4a (Table 3, entry 1) MeO₂C Nz

Racemic

3 42.297 257961.625 91.3461 22114764.000 4 91303.203 54.855 974.679 Tota1 289506.942 24209869.109 100.0000

0.3771

4b (Table 3, entry 2)

MeO₂C Na

Racemic

Tota1

Chiral

	Retention time	Height	Area	Area %
1	25.450	25559. 480	1265328.875	7.5667
2	31.948	5050.777	288406.844	1.7247
3	36. 343	212903. 250	14953531.000	89. 4229
4	48.020	2813.919	214988. 141	1.2856
Tota1		246327.427	16722254.859	100.0000

4c (Table 3, entry 3)

	Retention time	Height	Area	Area %	
1	30.810	247155. 516	19122664.000	34.8787	
2	39.478	251239.828	18701630.000	34. 1108	
3	43.777	92378.750	7314045.500	13.3404	
4	69.937	18377.641	7701996.000	14.0480	
Total		647722.551	54826131.000	100.0000	

279583.094

23813354.000

210229.016

26201973.859

90.8838

0.8023

100.0000

4 77.350 1332.742 Total 311975.218

43.237

4c (Table 3, entry 4)

S16

MeO₂C N O Br

Racemic

4e (Table 3, entry 5)

MeO₂C N O

Racemic

	Retention time	neight	Area	Area 70
1	49.135	24113.643	2201348.250	6. 3997
2	63.015	11307.252	1100530. 125	3. 1994
3	70. 580	259269.172	30690948.000	89. 2241
4	113. 232	1514. 536	404787.875	1.1768
Total		296204.603	34397614.250	100.0000

4f (Table 3, entry 6)

250

MeO₂C, N, O MeO

Racemic

	Retention time	Height	Area	Area %
1	52.810	165522.234	20433144.000	36.6597
2	66. 193	182782. 125	20122846.000	36. 1030
3	70.670	70889.852	8331564.500	14.9479
4	108.688	10906. 421	6849729.500	12.2893
Total		430100.632	55737284.000	100.0000

357845.659

60613805. 531

100.0000

Chiral

4g (Table 3, entry 7)

Tota1

^{2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 (}min)

	Retention time	Height	Area	Area %	
1	26.093	8630.867	382440.656	2.6099	
2	34.075	24123.441	1545509.375	10.5472	
3	41.628	169620. 938	12609702.000	86.0540	
4	54.912	1170. 117	115586. 492	0. 7888	
Tota1		203545.363	14653238. 523	100.0000	

4h (Table 3, entry 8)

Br

Racemic

	Retention time	Height	Area	Area %
1	27.358	414828. 125	27863978.000	60.6602
2	46.950	105195. 281	8939775.000	19.4620
3	55. 215	42863. 590	9130742.000	19.8777
Total		562886.996	45934495.000	100.0000

	Retention time	Height	Area	Area %
1	27.905	51925. 957	3149579.000	13.6200
2	47.552	220292.719	19629770.000	84. 8866
3	61.117	3168.851	345352.156	1. 4934
Total		275387. 526	23124701.156	100.0000

4i (Table 3, entry 9)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 (min)

	Retention time	Height	Area	Area %
1	21. 598	207805.156	8916301.000	57.5236
2	37.932	40555. 484	3268461.000	21.0865
3	44. 532	22156.643	3315491.000	21.3899
Total		270517.283	15500253.000	100.0000

1 21.637 103207.781 4119187.250 15. 5897 2 37.525 304082.438 21755050.000 82.3354 3 45.493 5264.083 548232.625 2.0749 Tota1 412554.302 26422469.875 100.0000

4k (Table 3, entry 11)

Chiral

⁴l (Table 3, entry 12)

tBuO₂C, N, O

Racemic

193452.533

23277014.469

100.0000

4n (Table 4, entry 1)

Tota1

	Retention time	Height	Area	Area %
1	74. 123	6637.056	422591.031	1.1706
2	75.127	17807.660	3295160.750	9.1281
3	103.095	156189.688	32121360.000	88.9814
4	124.795	31.638	4916.900	0.0136
Total	AND RECEIPTION CONT	192337.880	36098978.259	100.0000

40 (Table 4, entry 2)

4p (Table 4, entry 3)

	Retention time	Height	Area	Area %
1	49.723	52189. 402	7892572.500	16.0607
2	55.057	155581.625	33174672.000	67. 5077
3	74.790	31435. 391	8074849.500	16. 4316
Total		239206. 418	49142094.000	100.0000

4q (Table 4, entry 4)

MeO₂C, N O

Racemic

((min))

	Retention time	Height	Area	Area %
1	29.915	188730.719	9963227.000	48.9508
2	41.648	45588.941	5162542.500	25.3643
3	47.848	58550. 133	5227768.000	25.6848
Total		292869.793	20353537.500	100.0000

	Retention time	Height	Area	Area %
1	29.633	52466.211	3314411.250	12.8569
2	41.903	5492.313	624854.125	2.4239
3	47.563	304296.969	21839954.000	84.7192
Total		362255. 493	25779219.375	100.0000

4r (Table 4, entry 5)

Chiral

	Retention time	Height	Area	Area %
1	40.515	167938.953	14734355.000	45.8127
2	67.582	33420. 172	8751329.000	27.2100
3	99.182	39464. 215	8676457.000	26.9772
Total		240823.340	32162141.000	100.0000

Chiral

	Retention time	Height	Area	Area %
1	40.652	68961. 180	3889175. 500	16.2886
2	67.410	220405.609	19640948.000	82.2600
3	98.880	3163.151	346551.813	1.4514
Total		292529.940	23876675.313	100.0000

4s (Table 4, entry 6)

4t (Table 4, entry 7)

Chiral

4u (Table 4, entry 8)

MeO₂C N O

Racemic

5b (Table 4, entry 9)

60 40 20 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 (min)

	Retention time	Height	Area	Area %
1	45. 595	11344. 293	596353.125	3.1865
2	47.222	42212. 438	2691395.250	14.3809
3	50.053	170978.391	15157123.000	80. 9887
4	58. 427	3677.818	270242. 313	1. 4440
Tota1		228212.939	18715113.688	100.0000

6a (Scheme 3)

	Retention time	Height	Area	Area %	
1	7.988	305286.750	6135550. 500	80. 4896	
2	11.070	19773.064	729692.500	9. 5725	
3	15.025	21030.848	757538.750	9.9378	
Total		346090.662	7622781.750	100.0000	

	Retention time	Height	Area	Area %	
1	8.385	2149.348	58969. 551	0.6883	
2	10.938	190845.734	8447273.000	98.6023	
3	15.720	2144. 435	60775.102	0.7094	
Tota1		195139. 517	8567017.652	100.0000	

6b (Scheme 3)

6. Copies of NMR Spectra for the Compounds 4 and 6

 1 H NMR of **4b**

0.94

PPM

0.92

S40

S41

1 H NMR of **4**k

S50

S51

S52

¹³C NMR of **4r**

¹³C NMR of **4**t

S59

S60