# **Supporting Information**

# **Conjugated Oligomers with Alternating Heterocycles from a Single Monomer: Synthesis and Demonstration of Electroluminescence**

Sara Urrego-Riveros,<sup>a,b</sup> Matthias Bremer,<sup>c</sup> Jonas Hoffmann,<sup>a,b,d</sup> Anne Heitmann,<sup>a,b</sup> Thibault Reynaldo,<sup>d</sup> Janek Buhl,<sup>c</sup> Paul J. Gates,<sup>e</sup> Frank D. Sönnichsen,<sup>f</sup> Muriel Hissler,<sup>d</sup> Martina Gerken,<sup>c</sup> Anne Staubitz<sup>a,b†</sup>

<sup>a.</sup> Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Str.7, 28359 Bremen, Germany.

<sup>b.</sup> University of Bremen, MAPEX Center for Materials and Processes, Bibliothekstr.1, 28359 Bremen, Germany

<sup>c.</sup> Institute of Electrical Engineering and Information Technology, University of Kiel, Kaiserstr.2, 24143 Kiel, Germany.

<sup>d.</sup> Institut des Sciences Chimiques de Rennes, UMR 6226, CNRS-Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France.

e. School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK

<sup>f.</sup> Otto-Diels-Institute for Organic Chemistry, University of Kiel, Otto-Hahn-Platz 4, 24098 Kiel, Germany

<sup>+</sup>E-Mail: staubitz@uni-bremen.de

## **Table of Contents**

| General Considerations       | 2  |
|------------------------------|----|
| Syntheses                    | 10 |
| Reaction Monitoring          |    |
| OLED-like Device Fabrication |    |
| NMR Spectra                  | 45 |
| DFT Calculations             | 61 |
| Literature                   | 75 |
|                              |    |

# **General Considerations**

## Abbreviations

| aq     | aqueous                                             |
|--------|-----------------------------------------------------|
| ATR    | attenuated total reflectance                        |
| br     | broad (IR)                                          |
| calcd. | calculated                                          |
| δ      | chemical shift in parts per million                 |
| COSY   | correlated spectroscopy                             |
| DCM    | dichloromethane                                     |
| DSC    | differential scanning calorimetry                   |
| DIPA   | <i>N,N</i> -di <i>iso</i> propylamine               |
| DMF    | <i>N,N</i> -dimethylformamide                       |
| Ð      | dispersity                                          |
| DEPT   | distortionless enhancement by polarization transfer |
| d      | doublet (NMR)                                       |
| EI     | electron impact                                     |
| ESI    | electrospray ionization                             |
| EtOAc  | ethyl acetate                                       |
| ε      | extinction coefficient                              |
| GPC    | gel permeation chromatography                       |
| GB     | glovebox                                            |
| НМВС   | heteronuclear multiple bond coherence               |

| HSQC             | heteronuclear single quantum coherence                                       |  |  |  |
|------------------|------------------------------------------------------------------------------|--|--|--|
| НОМО             | highest occupied molecular orbital                                           |  |  |  |
| HR-MS            | high resolution mass spectrometry                                            |  |  |  |
| ITO              | indium tin oxide                                                             |  |  |  |
| IR               | infrared spectroscopy                                                        |  |  |  |
| <i>I</i> PrOBpin | isopropyl pinacol boronic ester                                              |  |  |  |
| LUMO             | lowest unoccupied molecular orbital                                          |  |  |  |
| MALDI-TOF MS     | matrix-assisted laser desorption ionization time-of-flight mass spectrometry |  |  |  |
| $\lambda_{max}$  | maximum absorption wavelength                                                |  |  |  |
| m                | medium (IR)                                                                  |  |  |  |
| mp               | melting point                                                                |  |  |  |
| МеОН             | methanol                                                                     |  |  |  |
| MeOTf            | methyl trifluoromethanesulfonate                                             |  |  |  |
| m                | multiplet (NMR)                                                              |  |  |  |
| <i>n</i> BuLi    | <i>n</i> -butyllithium                                                       |  |  |  |
| NICS             | nuclear independent chemical shift                                           |  |  |  |
| NMR              | nuclear magnetic resonance                                                   |  |  |  |
| ppm              | parts per million                                                            |  |  |  |
| Ph               | phenyl group                                                                 |  |  |  |
| PL               | photoluminescence                                                            |  |  |  |
| $\lambda_{PL}$   | photoluminescence emission wavelength                                        |  |  |  |

| PEDOT:PSS      | poly(3,4-ethylenedioxythiophene) with polystyrene sulfonate |
|----------------|-------------------------------------------------------------|
| D              | dispersity                                                  |
| OLED           | Organic light emitting diode                                |
| RI             | refraction index detector (GPC)                             |
| R              | resolution (mass spectrometry)                              |
| R <sub>f</sub> | retention factor                                            |
| S              | singlet (NMR)                                               |
| SPS            | solvent purification system                                 |
| S              | strong (IR)                                                 |
| THF            | tetrahydrofuran                                             |
| TMS            | tetramethylsilane                                           |
| TLC            | thin layer chromatography                                   |
| TGA            | thermogravimetric analysis                                  |
| TD-DFT         | time dependent density functional theory                    |
| t              | triplet (NMR)                                               |
| Uv-vis         | ultraviolet visible spectroscopy                            |
| w              | weak (IR)                                                   |

### **Chemicals and Solvents**

All reactions were carried out using standard Schlenk techniques under a dry, inert nitrogen or argon atmosphere unless noted otherwise. Some reactions were performed in a nitrogen filled glovebox from Inert, Innovative Technology, Inc. Company (< 0.1 ppm O<sub>2</sub> and < 0.1 ppm H<sub>2</sub>O). All dry solvents were taken from the solvent purification system (SPS), degassed by freeze-

pump-thaw cycles and stored under a nitrogen atmosphere unless noted otherwise. All chemicals were commercially available and were used without further purification unless noted otherwise.

| Reagent                           | Supplier             | Purity                                    | Comments          |  |
|-----------------------------------|----------------------|-------------------------------------------|-------------------|--|
| Aluminum                          | Kurt J. Lesker       | 99.99%                                    |                   |  |
| Acetonitrile                      | Sigma Aldrich        | ≥ 99.8%                                   |                   |  |
| Ammonium chloride                 | Carl Roth            | ≥ 99.5%                                   |                   |  |
| 2-Bromophenol                     | ABCR                 | 98%                                       |                   |  |
| 2-Bromopyridine-3-ol              | Alfa Aesar           | 99%                                       |                   |  |
| <i>n</i> BuLi                     | Acros Organics       | N. A.                                     | 2.5 M or 1.6 M in |  |
|                                   |                      |                                           | hexanes           |  |
| Carbon tetrabromide               | Sigma Aldrich        | 99%                                       |                   |  |
| <i>n</i> -Bromohexane             | ABCR                 | 97%                                       | Degassed prior to |  |
|                                   |                      |                                           | use               |  |
| Celite (SiO <sub>2</sub> )        | Macherey Nagel       |                                           |                   |  |
| Cesium fluoride                   | ABCR                 | 99.9% (metal                              |                   |  |
|                                   |                      | basis)                                    |                   |  |
| DIPA                              | Sigma Aldrich        | ≥ 99.5%                                   | Degassed prior to |  |
|                                   |                      |                                           | use               |  |
| (SnMe <sub>3</sub> ) <sub>2</sub> | ABCR GmbH            | 99%                                       |                   |  |
| 3-n-Hexylthiophene                | TCI                  | > 98%                                     |                   |  |
| Iodine                            | Applichem            | Pure Ph. Eur.                             |                   |  |
| Iodohexane                        | Acros Organics Inc.  | 98                                        |                   |  |
| <i>I</i> PrOBpin                  | Hoffman-La Roche     | >95%                                      | Degassed prior to |  |
|                                   |                      |                                           | use               |  |
| ITO                               | Präzisons-Glas-Optik | Conductivity:                             | 170 Ω, film       |  |
|                                   | GmbH                 | thickness = 110 nm, Glass substrate       |                   |  |
|                                   |                      | thickness = $1.1 \text{ mm}, \eta = 1.95$ |                   |  |
| LiF                               | Sigma Aldrich        | 99.99%                                    |                   |  |
| NIS                               |                      |                                           |                   |  |
| Magnesium sulfate                 | Grüssing             | 99%                                       |                   |  |

| MeOTf                                             | Chempur       | 96%           |                     |
|---------------------------------------------------|---------------|---------------|---------------------|
| Potassium carbonate                               | VWR Chemicals | ≥ 99.5%       |                     |
| PEDOT:PSS                                         | Sigma Aldrich | 2.8 wt %      | Low- conductive     |
|                                                   |               | dispersion in | grade               |
|                                                   |               | water         |                     |
| [Pd(PPh <sub>3</sub> ) <sub>4</sub> ]             | TCI           | > 97%         | Stored in a freezer |
|                                                   |               |               | in a GB             |
| [Pd(P( <i>t</i> Bu) <sub>3</sub> ) <sub>2</sub> ] | TCI           | > 98%         | Stored in a freezer |
|                                                   |               |               | in a GB             |
| [Pd(dppf)Cl <sub>2</sub> ]                        | Sigma Aldrich | n.a.          |                     |
| Silver nitrate                                    | ABCR GmbH     | 99%           |                     |
| Sodium carbonate                                  | VWR Chemicals | N.a.          | ACS, Reag. Ph. Eur. |
| Sodium hydrogen carbonate                         | VWR Chemicals | N.a.          | ACS, Reag. Ph. Eur. |
| Sodium chloride                                   | Grüssing      | 99%           | ACS, Reag. Ph. Eur  |
| Sodium sulfate                                    | VWR Chemicals | N.a.          | ACS, Reag. Ph. Eur  |
| Sodium thiosulfate                                | Grüssing      | 97%           |                     |
| Tetrabutylammonium                                | Sigma Aldrich | ≥ 99.0%       |                     |
| hexa-fluorophosphate.                             |               |               |                     |
| 1,3,5-trimetoxybenzene                            | ABCR          | 98%           |                     |

**Table SI- 1**. List of suppliers and of the purity of the chemicals used in this work.

| Solvent                       | Comments                                     |
|-------------------------------|----------------------------------------------|
| Acetic acid                   | Alfa Aesar, 99+%                             |
| Chloroform                    | VWR Chemicals; ACS, Reag. Ph. Eur.           |
| Chloroform deuterated         | Eurisotop                                    |
| Dichloromethane               | VWR Chemicals; for HPLC; dry from the SPS    |
| Diethyl ether                 | VWR Chemicals; for HPLC; dry, distilled from |
|                               | sodium / benzophenone                        |
| <i>N,N</i> -Dimethylformamide | Extra dry from Acros Organics; 99.8%         |
| Ethyl acetate                 | VWR Chemicals; ACS, Reag. Ph. Eur.           |
| <i>n</i> -Hexane              | VWR Chemicals; ACS, Reag. Ph. Eur.           |
| Hydrochloric acid             | VWR Chemicals; ACS, Reag. Ph. Eur            |
| Methanol                      | VWR Chemicals; ACS, Reag. Ph. Eur.           |
| Tetrahydrofuran               | VWR Chemicals; for HPLC; dry from the SPS    |
|                               | and degassed                                 |
| Toluene                       | VWR Chemicals; for HPLC; dry, from the SPS   |
|                               | and degassed                                 |

 Table SI- 2. List of suppliers and purity of used solvents.

### Analyses

<sup>1</sup>H NMR, <sup>13</sup>C{<sup>1</sup>H} NMR, <sup>11</sup>B{<sup>1</sup>H} NMR and <sup>119</sup>Sn{<sup>1</sup>H} NMR spectra were recorded on a Bruker Avance Neo 500 (for isolated compounds and reaction monitoring experiments) All <sup>1</sup>H NMR and <sup>13</sup>C{<sup>1</sup>H} NMR were referenced against the solvent residual proton signals (<sup>1</sup>H), or the solvent itself (<sup>13</sup>C). <sup>119</sup>Sn{<sup>1</sup>H} NMR spectra were calculated based on the <sup>1</sup>H NMR spectrum of TMS. <sup>11</sup>B{<sup>1</sup>H} NMR spectra were referenced against BF<sub>3</sub>·Et<sub>2</sub>O in CDCl<sub>3</sub>. All chemical shifts  $\delta$  are given in parts per million (ppm) and all coupling constants *J* in Hz. The exact elucidation of the compounds was proved by <sup>1</sup>H, <sup>13</sup>C DEPT and two-dimensional NMR spectroscopy such as <sup>1</sup>H COSY, <sup>13</sup>C{<sup>1</sup>H} HSQC or <sup>1</sup>H/<sup>13</sup>C{<sup>1</sup>H} HMBC when possible.

Electron impact (EI) ionization mass spectra were recorded on the double focusing mass spectrometer MAT 95+ or MAT 8200 from FINNIGAN mat. Samples were measured by direct inlet or indirect inlet method with a source temperature of 200° C. The ionization energy of the electron impact ionization was 70 eV. All signals were reported with the quotient from mass to charge m/z. Accurate masses were determined via the peak-matching method. The resolution

(R) of the peak-matching performance was 10 000. The calculated isotopic distribution for each ion agreed with experimental values.

High-resolution accurate-mass electrospray ionization (ESI) spectra were recorded on a Bruker Daltonics microTOF II mass spectrometer. High resolution accurate-mass MALDI mass spectra and MALDI MS analysis of the oligomers **O1** and **O2** were recorded on a Brucker Daltonics ultrafleXtreme TOF/TOF mass spectrometer using graphite as the matrix.

IR spectra were recorded on a NICOLET Thermo IS10 SCIENTIFIC IR spectrometer with a diamond-ATR-unit. The resolution was  $4 \text{ cm}^{-1}$ . Relative intensities of the IR bands were described by s = strong, m = medium or w = weak.

All melting points were measured with a BÜCHI Melting Point M-560 using a heating ramp of 5 K / min.

Thin layer chromatography (TLC) was carried out on aluminum plates coated with silica gel 60 F<sub>254</sub> with a layer thickness of 0.2 mm from Fluka or Macherey-Nagel. All bands were detected by using a fluorescent lamp (254 nm and 366 nm). Column chromatography was carried out by using the column machine PuriFlash 4250 from Interchim. Silica gel columns of the type PF-15SiHP-F0012, PF-15SiHP-F0025, PF-50SiHP-JP-F0080, PF-50SiHP-JP-F0120, and PF-50SiHP-JP-F0220 were used. The injection of the sample was made via dry load. The column material of the dry load was Celite 503 from Macherey-Nagel.

The molecular weight and molecular weight distribution of all synthesized polymers were determined using a PSS GPC/SEC system 1260/1290. The system was equipped with three PSS-SDV high combination columns (styrene-divinylbenzene copolymer network) with a molecular range from 100-3000 kDa, a refractive index detector (SECurity RID Article Nr. 404-0106), a diode array detector (SECurity DAD Article Nr. 404-0110), a viscometer detector (DVD 1260 Article Nr. 404-0025) and a Light Scattering Detector with 3D spectra option (SECcurity Multichrom SLD 1000 Article Nr. 404-0196). The columns where heated at 35 °C with a column thermostat (SECcurity TCC6000). THF (HPLC grade without stabilizer) was used as an eluent. The measurements were recorded at 35° C under an eluent flow of 1 mL/min. The apparatus was calibrated using polystyrene standards (PSS) under a conventional calibration.

The electrochemical studies were carried out under argon using an Eco Chemie Autolab PGSTAT 30 potentiostat for cyclic voltammetry with the three-electrode configuration: the working electrode was a platinum disk; the reference electrode was a saturated calomel electrode and the counter-electrode was a platinum wire. All potentials were

internally referenced to the ferrocene / ferrocenium couple. For the measurements, concentrations of  $10^{-3}$  M of the electroactive species were used in freshly distilled and degassed dichloromethane and 0.2 M tetrabutylammonium hexafluorophosphate as the electrolyte.

Uv-vis measurements were recorded on a Jasco spectrometer model V-630, with dichloromethane as a solvent. Extinction coefficients were deduced from Uv-vis spectra measured at six different concentrations for each oligomer. The concentration was calculated based on the molecular weights calculated by MALDI measurements.

The solid state Uv-vis spectra of **O2** were recorded with a resolution of 0.1 nm on a UV-2700vfrom Shimadzu with a double monochromator.

Fluorescence measurements were recorded on a Photon Technology International spectrometer with a lamp power supply LPS-220B, Motor Driver MD-5020 and 1 Photomultiplier 814. Dichloromethane was used as a solvent.

TGA measurements were performed on a Mettler Toledo DSC 3/TGA + STAR system using aluminum crucibles and under a flow of nitrogen of 20 mL/min with a temperature ramp of 10 K/min.

DSC measurements were performed on a Mettler Toledo DSC 3+ STAR system using aluminum pans, under nitrogen atmosphere and a temperature ramp of 10 K/min.

#### **Microwave Apparatus**

All microwave irradiation reactions were carried out on a Biotage® Initiator+ SP Wave synthesis system, with continuous irradiation power from 0 to 300 W. All reactions were carried out in 5 or 20 mL oven-dried Biotage microwave vials sealed with an aluminum/Teflon® crimp top, which can be exposed to a maximum of 250 °C and 20 bar internal pressure. The reaction temperature was measured by an IR sensor on the outer surface of the process vial.

#### **Characterizations of the OLED-type devices**

The I-V characterization of the OLEDs was performed with Keithley 2400 Source measurement unit, a calibrated photodiode and an Avantes AvaSpec-2048 USB spectrometer.

The absorption spectra of the OLED-type devices were recorded on a PerkinElmer Lambda 650 spectrometer and. the photoluminescence spectra were recorded on an Avantes AvaSpec-2048 USB spectrometer.

## **Syntheses**

# (3-Hexyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)thiophen-2yl)trimethylstannane (7)



This procedure was adapted from the literature.<sup>[1]</sup>

In a GB, a solution of 2-(4-hexyl-5-iodothiophen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (848 mg, 2.02 mmol), [Pd(PPh<sub>3</sub>)<sub>4</sub>] (120 mg, 0.10 mmol, 5 mol%,) and (SnMe<sub>3</sub>)<sub>2</sub> (737 mg, 2.24 mmol) in toluene (5 mL) was transferred in a microwave vial. The mixture was heated to 120 °C in a microwave apparatus for 30 min. After allowing the mixture to cool to ambient temperature, water (10 mL) was added to the reaction mixture and it was extracted with DCM (3 x 15 mL) and washed with brine (2 x 10 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and the solvent was removed *in vacuo*. The residue was diluted in *n*-hexane (10 mL) and filtered over celite. The volatiles were removed *in vacuo* to afford an orange oil in a yield of 850 mg (92%, 1.86 mmol).

<sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta = 7.61$  (s, 1H, c), 2.62 (dd, <sup>3</sup>*J* = 10.6, 5.0 Hz, 2H, e), 1.67 – 1.54 (m, 2H, f), 1.32 – 1.28 (m, 18H,g/h/i/l), 0.94 – 0.83 (m, 3H, j), 0.37 (s, 9H, m) ppm. <sup>13</sup>C{<sup>1</sup>H} **NMR** (126 MHz, CDCl<sub>3</sub>)  $\delta = 152.3$  (b), 141.2 (a), 138.9 (c), 83.9 (k), 32.3 (f), 31.9 (e), 32.2, 31.7, 29.5, 22.7 (g/h/i/l), 24.9 (k), 14.2 (j), -7.9 (l) ppm.<sup>1</sup> <sup>119</sup>Sn{<sup>1</sup>H} **NMR** (187 MHz, CDCl<sub>3</sub>):  $\delta = -35.70$  ppm. <sup>118</sup>F<sup>1</sup>H} **NMR** (160 MHz, CDCl<sub>3</sub>):  $\delta = 28.71$  ppm. **IR (ATR):**  $\nu = 2977$  (w), 2926 (m), 1526 (m), 1123 (m), 1369 (m), 1322 (s), 1267 (m), 1142 (s), 982 (m), 853 (s), 771 (s), 6.65 (s), 529 (s) cm<sup>-1</sup>.

**HR-MS** (EI, C<sub>19</sub>H<sub>35</sub>BO<sub>2</sub><sup>119</sup>SnS): *m*/*z* calcd. 458.14725, found 458.14685 (R = 10000).

 $<sup>^{1}</sup>$  Carbon d was could not be identified, because of the quadrupole moment from the adjacent boron atom.

**MS** (EI, 70 eV, direct inlet, 200 °C): *m*/*z* (% relative intensity) = 458.2 (4) [M]<sup>+</sup>, 443 (100) [M-CH<sub>3</sub>]<sup>+</sup>.

### 4-Bromo-2-*n*-hexylthiophene (11)

$$\begin{array}{c} e & f & g & h & i & j \\ CH_2CH_2CH_2CH_2CH_2CH_2CH_3 \\ Br & d & S & a \end{array}$$

This procedure was adapted from the literature.<sup>[2]</sup>

In a Schlenk flask, a solution of 3-*n*-hexylthiophene (5.01 g, 29.2 mmol) in THF (40 mL) was cooled to -78 °C and *n*BuLi (22.3 mL, 1.6 M in hexanes, 35.7 mmol) was added dropwise over 20 min. The solution was stirred for 3 h and this temperature. A solution of CBr<sub>4</sub> (11.8 g, 35.6 mmol) in THF (16 mL) was added with a syringe pump (rate = 1 mL / min) to the orange-brown suspension and the reaction was allowed to reach ambient temperature (ca. 20 °C) and it was stirred for 16 h. The reaction was quenched with water (100 mL) and the mixture was extracted with DCM (4 x 100 mL) and brine (2 x 50 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and the solvent was removed *in vacuo.* The product was purified by Kugelrohr distillation (70 °C , 9.0 x 10<sup>-2</sup> mbar) to afford a yellow oil in a yield of 5.35 g (74%, 21.7 mmol).

<sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$  = 6.88 (d, <sup>3</sup>*J* = 1.7 Hz, 1H, c), 6.80 (dt, <sup>3</sup>*J* = 1.7, 0.9 Hz, 1H, a), 2.57 - 2.51 (m, 2H, e), 1.60 - 1.53 (m, 2H, f), 1.35 - 1.26 (m, 6H, g/h/i), 0.89 (dd, <sup>3</sup>*J* = 9.3, 4.5 Hz, 3H, j).

<sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>): δ = 142.8 (d), 129.9 (c), 120.2 (a), 110.4 (b), 29.1 (f), 29.05 (e), 30.5, 27.7, 21.5 (g/h/i), 12.9 (j).

**IR (ATR):**  $\nu = 2955$  (m), 2925 (s),2855 (s), 1760 (w), 1539 (w), 1457 (m), 1412 (m), 1194 (w), 1275 (w), 1126 (m), 982 (m), 921 (w), 829 (s), 727 (s), 640 (m), 577 (w), 456 (w) cm<sup>-1</sup>. **HR-MS** (EI, C<sub>10</sub>H<sub>15</sub><sup>79</sup>BrS): m/z calcd. 246.0081, found 246.0078 (R = 10000).

**MS** (EI, 70 eV, direct inlet, 200 °C): *m/z* (% relative intensity) = 245.9 (22) [M]<sup>+</sup>, 248.0 (34) [M+2]<sup>+</sup>, 177.9 (100) [M+2-C<sub>5</sub>H<sub>11</sub>]<sup>+</sup>, 175.9 (77) [M-C<sub>5</sub>H<sub>11</sub>]<sup>+</sup>.

# 2-(5-Bromo-3-*n*-hexylthiophene-2-yl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane (12)



This procedure was adapted from the literature.<sup>[3]</sup>

In a Schlenk flask, a solution of DIPA (1.04 g, 10.3 mmol) in THF (33 mL) was cooled to -78 °C and *n*BuLi (4.0 mL, 2.6 M in hexanes, 10.3 mmol) was added dropwise over 20 min. The mixture was warmed to 0 °C over the course of 30 min, cooled to -78°C and stirred for 5 min. A solution of **4** (2.54 g, 10.3 mmol) in THF (33 mL) was added with a syringe pump over the course of 20 min (rate = 0.5mL / min) and the mixture was stirred for 1 h at this temperature. A solution of *I*PrOBPin (1.82 g, 9.78 mmol) in THF (5 mL) was added with a syringe pump (rate = 1 mL / min) to the orange-green suspension. The reaction mixture was allowed to reach ambient temperature and was stirred for further 16 h. Afterwards the reaction was quenched with methanol (100 mL) and all volatiles were removed *in vacuo*. The residue was diluted in DCM (50 mL) and washed with water (2 x 100 mL), brine (2 x 100 mL) and dried over MgSO<sub>4</sub>. After filtration, the volatiles were removed *in vacuo* and the mixture was purified by flash chromatography (*n*-hexane : EtOAc, 9: 1; R<sub>f</sub> = 0.20) to afford an orange oil in a yield of 3.23 g (86%, 8.83 mmol).

<sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>): δ = 6.94 (s, 1H, b), 2.85 - 2.77 (m, 2H, e), 1.59 - 1.50 (m, 2H, f), 1.33 - 1.27 (m, 18H, g/h/i/l), 0.88 (dd,  ${}^{3}J$  = 9.5, 4.5 Hz, 3H, j) ppm.

<sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>): δ = 155.1(c), 133.0 (b), 118.01 (a), 83.6 (k), 31.4 (f), 30.2 (e), 28.7, 24.6 , 22.5 (g/h/i), 31.5 (l), 14.0 (j) ppm.<sup>2</sup>

**<sup>11</sup>B{<sup>1</sup>H} NMR** (160 MHz, CDCl<sub>3</sub>): δ =28.40 ppm.

**IR** (ATR):  $\tilde{v} = 2978$  (w), 2956 (w),2926 (m), 2857 (w), 1755 (w), 1534 (m), 1427 (s), 1370 (m), 1336 (s), 1304 (s),1270 (m), 1140 (s), 1097(w),1040 (s), 957 (m), 853 (s), 668 (w), 645 (m), 578 (m), 520 (w) cm<sup>-1</sup>.

**HR-MS** (EI,  $C_{18}H_{27}^{11}B^{79}BrO_2S$ ): m/z calcd. 373.1006, found 373.1006 (R = 10000).

<sup>&</sup>lt;sup>2</sup> Carbon d could not be identified because of the quadrupole moment from the adjacent boron atom.

**MS** (EI, 70 eV, direct inlet, 200 °C): *m/z* (% relative intensity) = 373.10 (17) [M]<sup>+</sup>, 259.19 (100) [M-C<sub>8</sub>H<sub>19</sub>]<sup>+</sup>.

# (4-Hexyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)thiophen-2yl)trimethylstannane (13)



In a GB, a solution of **5** (752 mg, 2.02 mmol),  $[Pd(PPh_3)_4]$  (116 mg, 0.10 mmol, 5 mol%,) and  $(SnMe_3)_2$  (661 mg, 2.02 mmol) in toluene (5 mL) was transferred in a microwave vial. The mixture was heated to 120 °C in a microwave apparatus for 30 min. After allowing the mixture to cool to ambient temperature, water (10 mL) was added to the reaction mixture and it was extracted with DCM (3 x 15 mL) and brine (2 x 10 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and the solvent was removed *in vacuo*. The residue was diluted in *n*-hexane (10 mL) and filtered over celite. The volatiles were removed *in vacuo* to afford an orange oil in a yield of 830 mg (89%, 1.80 mmol).

<sup>1</sup> **H NMR** (500 MHz, CDCl<sub>3</sub>): δ = 7.09 (s, 1H, a), 2.92 – 2.87 (m, 2H, e), 1.64 – 1.53 (m, 2H, f), 1.37 – 1.28 (m, 18H, g/h/i/l), 0.89 (t,  ${}^{3}J$  = 7.0 Hz, 3H, j), 0.35 (s, 9H, m) ppm.

<sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 155.6 (c), 145.3 (a), 138.6 (b), 83.6 (i), 32.1 (f), 29.3 (e), 31.8, 30.1, 22.8, 24.63 (l), 14.28 (j), -8.19(m) ppm.<sup>3</sup>

<sup>119</sup>Sn{<sup>1</sup>H} NMR (187 MHz, CDCl<sub>3</sub>): δ = -28.40 ppm.

<sup>11</sup>B{<sup>1</sup>H} NMR (160 MHz, CDCl<sub>3</sub>): δ =28.91 ppm.

**IR** (ATR):  $\tilde{\nu} = 2977(w)$ , 2956(w),2924(m), 2856,(w), 1523 (w), 1425 (s), 1370 (m), 1327 (s), 1270 (m), 1192(w), 1141 (s),1041 (m), 953 (w), 855 (m), 770(s), 695 (m), 647 (m), 531 (s), 512 (m) cm<sup>-1</sup>.

**ESI-MS** ([M+Na], C<sub>19</sub>H<sub>35</sub><sup>11</sup>BO<sub>2</sub>Na<sup>119</sup>SnS): *m/z*= Calcd. 481.1374 ; found 481.1370.

<sup>&</sup>lt;sup>3</sup> It was not possible to identify carbon d because the quadrupole moment of the adjacent boron atom.

### 1-Bromo-2-(n-hexyloxy)benzene (15)



This procedure was adapted from the literature.<sup>[4]</sup>

To a solution of 2-bromophenol (2.80 g, 16.2 mmol) in acetonitrile (50 mL),  $K_2CO_3$  (4.47 g, 32.4 mmol) and *n*-iodohexane (3.11 mL, 17.3 mmol) were added. The reaction mixture was stirred at 60 °C for 6 h and for 12 h at 20 °C. The reaction mixture was poured into water (70 mL). The aqueous phase was extracted with EtOAc (3 x 70 mL). The organic phase was washed with water (70 mL) and brine (70 mL). It was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and the filtrate concentrated under reduced pressure. The crude product was purified by column chromatography (*n*-pentane : EtOAc, 50 : 1;  $R_f$  =0.75) to afford a colorless oil in a yield of 3.92 g (94%, 15.2 mmol).

<sup>1</sup>**H** NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  =7.53 (dd, <sup>3</sup>*J* = 7.9 Hz, <sup>4</sup>*J* = 1.6 Hz, 1H, a), 7.23 (ddd, <sup>3</sup>*J* = 8.2, 7.9 Hz, <sup>4</sup>*J* = 1.6 Hz 1H, c), 6.88 (dd, <sup>3</sup>*J* = 8.2 Hz, <sup>4</sup>*J* = 1.6 Hz, d), 6,84 – 6.79 (m, 1H, b), 4.02 (t, <sup>3</sup>*J* = 6.5 Hz, 2H, g), 1.87 – 1.80 (m, 2H, h), 1.51 (ddd, <sup>3</sup>*J* = 15.2, 7.2 Hz, <sup>4</sup>*J* = 4.7 Hz, 2H, i), 1.39 - 1.33 (m, 4H, j/k), 0.96 – 0.89 (m, 3H, I) ppm.

<sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 155.9 (e), 133.7 (a), 128.8 (c), 122.0 (b), 113.07(d), 112.7 (f), 69.6 (g), 29.5 (h), 26.1 (i), 31.9, 23.0 (j/k), 14.4 (l) ppm.

**IR** (ATR):  $\tilde{\nu} = 2928$  (w), 1586 (w), 1466 (m), 1442 (m), 1275 (s), 1246 (s), 1126 (w), 1050 (s), 1030 (s), 743 (s), 665 (m) cm<sup>-1</sup>.

**HR-MS** (EI, C<sub>12</sub>H<sub>16</sub>O<sup>79</sup>Br): *m/z* calcd. 256.04573, found. 256.04554 (R = 10000).

**MS** (EI, 70 eV, indirect inlet, 200 °C): *m*/*z* (% relative intensity) = 256 (100) [M]<sup>+</sup>.

#### 1-Bromo-2-(*n*-hexyloxy)-5-iodobenzene (16)



This procedure was adapted from the literature.<sup>[5]</sup>

A mixture of  $I_2$  (3.39 g, 13.3 mmol) and AgNO<sub>3</sub> (1.73 g, 10.3 mmol) was gently blended in an agate mortar for 1 min, and then **10** (2.62 g, 17.3 mmol) was added. The resulting

homogeneous mixture was additionally ground for 10 min, and then after a 2-min break, the grinding was continued for an additional 1 or 1.5 h, until the mixture had a light yellow bright color. The resulting mixture was extracted with diethyl ether (2 x 100 mL), dried over MgSO<sub>4</sub> and filtered. The volatiles were removed *in vacuo*. The product was purified by Kugelrohr distillation (140 °C,  $2.7 \times 10^{-1}$  mbar) to afford a yellow solid in a yield of 3.13 g (80%, 8.15 mmol).

<sup>1</sup> **H NMR** (500 MHz, CDCl<sub>3</sub>): δ =7.82 (d,  ${}^{4}J$  = 2.2 Hz, 1H, c), 7.51 (dd,  ${}^{3}J$  = 8.6 Hz,  ${}^{4}J$  = 2.2 Hz, 1H, e), 6.63 (d,  ${}^{3}J$  = 8.6 Hz, 1H, f), 3.99 (t,  ${}^{3}J$  = 6.5 Hz, 2H, g), 1.90 – 1.76 (m, 2H, h), 1.57 – 1.40 (m, 2H, i), 1.38 – 1.29 (m, 4H, j/k), 0.91 (t,  ${}^{3}J$  = 6.7 Hz, 3H, l) ppm. <sup>13</sup>C{<sup>1</sup>H} **NMR** (126 MHz, CDCl<sub>3</sub>) δ = 155.6 (a), 140.9 (c), 137.1 (e), 114.9 (f), 113.5 (b), 82.1 (d), 69.3 (g), 31.0, 22.5 (j/k), 28.9 (h), 25.6 (i), 14.0 (l) ppm. **IR** (ATR):  $\tilde{v}$  =2925 (m), 2855 (m), 1573 (w), 1462 (s), 1377 (m), 1282(s), 1246 (s), 1152 (w), 1043 (s), 1014 (w), 813 (w), 799 (m), 687 (m), 629 (m), 544 (m) cm<sup>-1</sup>. **HR-MS** (EI, C<sub>12</sub>H<sub>16</sub>O<sup>79</sup>BrI): *m/z* calcd. 381.9422, found 381.9429 (R = 10000). **MS** (EI, 70 eV, direct inlet, 200 °C): *m/z* (% relative intensity) =381.9 (55) [M]<sup>+</sup>, 384.9 (9) [M+2]<sup>+</sup>, 297.8 (100) [M-C<sub>6</sub>H<sub>13</sub>]<sup>+</sup>.

### 2-Bromo-6-iodo-3-pyridinol (18)

This procedure was adapted from the literature.<sup>[6]</sup>

2-Bromopyridine-3-ol (5.00 g, 28.7 mmol) and  $K_2CO_3$  (7.90 g, 57.5 mmol) were dissolved in water (66 mL) and  $I_2$  (7.51 g, 29.6 mmol) was added. The reaction was stirred at 21 °Cfor 3 d. Excess iodine was reduced by addition of solid NaHSO<sub>3</sub>. The pH of the solution was adjusted to -5-6 using glacial acetic acid. A solid formed during the process and was collected by filtration and dried in vacuo to afford a light gray solid in a yield of 8.03 g (93%, 26.8 mmol).

**mp**: 161.2 °C.

<sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>): δ =5.50 (OH), 7.0 (d, <sup>3</sup>*J* = 8.2Hz, 1H, a), 7.57 (d, <sup>3</sup>*J* = 8.2Hz, 1H, b) ppm.

<sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 150.0 (e), 135.3 (d), 129.9 (c), 125.2 (a), 102.5 (b) ppm.

**IR** (ATR):  $\tilde{v} = 3343.3$  (br), 1654.0 (w), 1548 (m), 1462.2 (m), 1383.3 (s), 1287.9 (s), 1226 (s), 1132 (w), 1065 (s), 826.4 (m) cm<sup>-1</sup>.

**HR-MS** (EI, C<sub>15</sub>H<sub>3</sub>O<sup>79</sup>BrI): *m*/*z* calcd. 298.84344, found. 288.84344 (R = 10000).

**MS** (EI, 70 eV, direct inlet, 200 °C, C<sub>5</sub>H<sub>3</sub>O<sup>79</sup>BrI): *m*/*z* (% relative intensity) = (299) (100) [M]<sup>+</sup>.

#### 2-Bromo-3-(hexyloxy)-6-iodopyridine (8)



This procedure was adapted from the literature.<sup>[7]</sup>

To a solution of **18** (4.43 g, 14.8 mmol) in DMF (15 mL),  $K_2CO_3$  (2.24 g, 16.2 mmol) was added, and the mixture was stirred for 30 min at 20 °C. To this mixture, *n*-bromohexane (9.26 g, 56.2 mmol) was added. The reaction mixture was stirred for 1.5 h at 100 °C. The reaction mixture was poured into ice water (70 mL) and extracted with EtOAc (3 x 70 mL). The organic phase was dried over MgSO<sub>4</sub>, filtered, and the volatiles were removed *in vacuo*. The product was purified by Kugelrohr distillation heating at 100 °C at 3.4 x 10<sup>-1</sup> mbar to afford a yellow oil in a yield of 3.96 g (70%, 10.3 mmol).

<sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>): δ =7.56 (d, <sup>3</sup>*J* = 8.3 Hz, 1H, a), 6.81 (d, <sup>3</sup>*J* = 8.3 Hz, 1H, b), 4.00 (t, <sup>3</sup>*J* = 6.4 Hz, 4H, f), 1.96 – 1.71 (m, 4H, g), 1.57 – 1.28 (m, 6H, h/i/j), 0.97 – 0.88 (m, 3H, k) ppm.

<sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 152.9 (c) , 134.0 (a), 121.4 (d), 101.7 (e), 69.6 (f), 28.6(g), 31.3, 25.4, 22.4 (h/i/j), 13.9 (k) ppm.

**IR** (ATR):  $\tilde{v} = 2928$  (w), 2857 (w), 1559 (w), 1417 (s), 1383 (m), 1347 (w), 1284 (s), 1228 (m), 1136 (w), 931 (w), 817 (m), 623 (m) cm<sup>-1</sup>.

HR-MS (EI, C<sub>11</sub>H<sub>15</sub>NO<sup>79</sup>BrI): *m/z* calcd. 382.9380, found 382.9382 (R = 10000).

**MS** (EI, 70 eV, direct inlet, 200 °C): m/z (% relative intensity) = 382:9 (43) [M]<sup>+</sup>, 385.9 (17) [C<sub>11</sub>H<sub>15</sub>N<sup>81</sup>BrI]<sup>+</sup>, 298.8 (100) [M-C<sub>6</sub>H<sub>13</sub>]<sup>+</sup>.

# 2-(5-(4-Bromo-3-(hexyloxy)phenyl)-3-hexylthiophen-2-yl)-4,4,5,5tetramethyl-1,3,2-dioxaborolane (5)



In a GB, a mixture of **16** (444 mg, 1.16 mmol), **13** (500 mg, 1.09 mmol) and  $[Pd(PPh_3)_4]$  (31 mg, 26 µmol, 2 mol%) in dry DMF (5 mL) was prepared in a microwave vial. The mixture was heated to 100 °C in a microwave apparatus for12 h. After allowing the mixture to cool to ambient temperature (ca. 20 °C), water (5 mL) was added and the mixture was extracted with DCM (3 x 10 mL). The organic phase was washed with brine (3 x 5 mL) before drying the organic phase over MgSO<sub>4</sub>. After filtration, the volatiles were removed *in vacuo*. The mixture was purified by flash chromatography (*n*-hexane : EtOAc; 70 :3 0; R<sub>f</sub>: 0.20) to afford an orange oil in a yield of 421 mg (70%, 0.77 mmol).

<sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$  =7.82 (d, <sup>3</sup>*J* = 2.3 Hz, 1H, n), 7.49 (dd, <sup>3</sup>*J* = 8.6, 2.3 Hz, 1H, r), 7.12 (s, 1H, b), 6.86 (d, <sup>3</sup>*J* = 8.6 Hz, 1H, q), 4.04 (t, <sup>3</sup>*J* = 6.5 Hz, 2H, s), 2.90 – 2.80 (m, 2H, e), 1.84 (dt, <sup>3</sup>*J* = 14.3, 6.5 Hz, 2H, t), 1.60 (dt, <sup>3</sup>*J* = 7.5, 15.0 Hz, 2H, f), 1.53 – 1.48 (m, 2H, u), 1.39 - 1.22 (m, 22H, g/h/i/l/v/w), 0.97 – 0.86 (m, 6H, j/x) ppm.

<sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  = 155.9 (c), 155.3 (p), 148.2 (m), 130.9 (n), 128.6 (a), 126.2 (b), 126.2 (r), 113.3 (o), 112.7 (q), 83.7 (k), 69.5 (s), 31.6 (f), 30.6 (e), 29.1 (t), 25.9 (u), 31.8, 29.2, 24.9, 22.8 (g/h/i/l/v/w), 14.3, 14.2 (j/x) ppm.<sup>4</sup>

<sup>11</sup>B{<sup>1</sup>H} NMR (160 MHz, CDCl<sub>3</sub>): δ = 28.88 ppm.

**IR** (ATR):  $\tilde{\nu} = 2954$  (m), 2926 (m), 2857 (m), 1599(w), 1540 (m), 1501 (w), 1451 (s), 1371(m), 1338 (s), 1287 (s),1254 (s),1141 (s), 1047 (s), 958 (w), 855 (s), 807 (m), 669 (w), 609 (m), 579 (w) cm<sup>-1</sup>.

**ESI-MS**([M+Na], C<sub>28</sub>H<sub>42</sub><sup>11</sup>B<sup>79</sup>BrNaO<sub>3</sub>S<sub>2</sub>): *m*/*z*= calc. 571.2024, found = 571.2028 (R = 10000).

<sup>&</sup>lt;sup>4</sup> It was not possible to identify carbon d because the quadrupole moment of the adjacent boron atom.

# 2-Bromo-6-(4-*n*-hexyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)thiophen-2-yl)-3-(*n*-hexyloxy)pyridine (6)



In a GB, a mixture of **19** (418 mg, 1.09 mmol), **13** (500 mg, 1.09 mmol) and [Pd(PPh<sub>3</sub>)<sub>4</sub>] (25 g, 22  $\mu$ mol, 2 mol%) in dry DMF (6 mL) was prepared in a microwave vial. The mixture was heated to 130 °C in a microwave apparatus for 6 h. After allowing the mixture to cool to ambient temperature (ca. 20 °C), water (5 mL) was added and extracted with DCM (3 x 10 mL). The organic phase was washed with brine (3 x5 mL) before drying over MgSO<sub>4</sub>. After filtration, the volatiles were removed *in vacuo*. The crude mixture was purified with flash chromatography (*n*-hexane : EtOAc, 70 : 30, R<sub>f</sub> = 0.25) to afford an orange oil in a yield of 423 mg (70%, 770  $\mu$ mol).

<sup>1</sup>**H** NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.48$  (d, <sup>3</sup>*J* = 8.4 Hz, 1H, d), 7.47 (s, 1H, m), 7.09 (d, <sup>3</sup>*J* = 8.4 Hz, 1H, c), 4.04 (t, <sup>3</sup>*J* = 6.5 Hz2H, f), 2.87 – 2.82 (m, 2H, p), 1.89 – 1.81 (m, 2H, g), 1.61 – 1.58 (m, 2H, h), 1.54 – 1.48 (m, 2H, q), 1.38 – 1.35 (m, 2H, r), 1.35 – 1.31 (m, 18H, j, s/t/w), 1.31 – 1.29 (m, 2H, i), 0.91 – 0.90 (m, 3H, u), 0.88 (t, <sup>3</sup>*J* = 6.9 Hz, 3H, k) ppm.

<sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  = 155.7 (n), 151.4 (b), 147.6 (l), 145.3 (e), 132.7 (a), 127.9 (m), 120.31 (c), 119.3 (d), 83.8 (v), 69.8 (f), 31.8 (i), 31.8 (r), 31.6 (h), 30.6 (p), 29.1 (g), 29.1/22.75/22.70 (j/s/t), 25.73 (q), 24.94 (w), 14.27 (k), 14.15 (u) ppm.<sup>5</sup>

<sup>11</sup>B{<sup>1</sup>H} NMR (160 MHz, CDCl<sub>3</sub>): δ =29.25 ppm.

**IR** (ATR):  $\tilde{\nu}$  = 2955 (m), 2925 (m), 2856 (m), 1526 (w), 1459 (s), 1426 (m), 1371 (m), 1337(s), 1305 (m), 1270 (m),1141 (s),1045 (m), 959 (w), 854 (s), 830 (m), 668 (w), 647 (m), 578 (w), 517 (w) cm<sup>-1</sup>.

**ESI-MS** ([M+Na], C<sub>27</sub>H<sub>41</sub>BBrNaO<sub>3</sub>S<sub>2</sub>): *m/z*= calcd. 572.1963 found 572.1981.

<sup>&</sup>lt;sup>5</sup>It was not possible to identify carbon o because the quadrupole moment of the adjacent boron atom.

### Poly(1,4-(3-hexyl)-thiophene-2,6-(3-hexyloxy)-phenylene) 01



#### Selection of the catalyst

In a Schlenk flask, **5** (69 mg, 13 µmol) was dissolved in THF (2 mL). A suspension of  $[Pd(tBu_3P)_2]$  or  $[Pd(dppf)Cl_2]$  5 mol%, CsF (11 mg, 7 µmol) in degassed water (0.5 mL) and THF (1.5 mL) were added. The mixture was heated at 60 °C for 24 h under a nitrogen atmosphere. The crude mixture was quenched with a solution of HCl in methanol (1 M, 1 mL) to afford a sticky yellow oil. Water was added (5 mL) and the mixture was extracted with DCM (3 x 5 mL). The organic phase was washed with brine (3 x 5 mL) before being dried over MgSO<sub>4</sub>. After filtration, the volatiles were removed *in vacuo*. The crude product was purified by Soxhlet extraction. First, MeOH (50 mL) was used as solvent and the system was heated at 100 °C for 8 h. After oligomers and small molecules were removed, the solvent was changed to chloroform and the system was heated at 80 °C for 4 h.

| Catalyst                                        | Mass catalyst<br>(mg) | M <sub>n</sub> (kDa) | Ð    |
|-------------------------------------------------|-----------------------|----------------------|------|
| [Pd( <i>t</i> Bu <sub>3</sub> P) <sub>2</sub> ] | 3                     | 5.8                  | 1.35 |
| [Pd(dppf)Cl <sub>2</sub> ]                      | 5                     | 2.4                  | 1.34 |

**Table SI- 3.** GPC measurement results from the selection of the catalyst for the oligomerization of the monomer **5**. THF was used as eluent in a concentration of 1 mg/mL, at a flow rate of 1 mL/min. Calibrated against polystyrene standards using a conventional calibration method.

#### Oligomer synthesis

In a Schlenk flask, **5** (300 mg, 550  $\mu$ mol) was dissolved in THF (2 mL). A suspension of [Pd(*t*Bu<sub>3</sub>P)<sub>2</sub>] (28 mg, 55  $\mu$ mol, 5 mol%), CsF (86 mg, 567  $\mu$ mol) in degassed water (0.5 mL) and THF (1.5 mL) were added. The mixture was heated at 60 °C for 24 h under a nitrogen atmosphere. The crude mixture was quenched with a solution of HCl in methanol (1 M, 1 mL) to afford a sticky yellow oil. Water was added (5 mL) and the mixture was extracted with DCM

(3 x 10 mL). The organic phase was washed with brine (3 x 5 mL) before being dried over MgSO<sub>4</sub>. After filtration, the volatiles were removed *in vacuo*. The crude product was purified by Soxhlet extraction. First, MeOH (200 mL) was used as solvent and the system was heated at 100 °C for 8 h. After oligomers and small molecules were removed, the solvent was changed to chloroform and the system was heated at 80 °C for 4 h. The volatiles were removed *in vacuo* to afford a sticky orange oil in a yield of 87.3 mg (46%).

<sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>): δ = δ 7.59 (d, <sup>3</sup>*J* = 2.1 Hz, 1H, l), 7.55 – 7.52 (m, 1H, p), 7.12 (m, 1H, c), 6.97 – 6.92(m, 1H, o), 4.02 – 3.94 (m, 2H, q), 2.54 – 2.48 (m, 2H, e), 1.76 – 1.67 (m, 2H, r), 1.65 – 1.57 (m, 2H, f), 1.43 – 1.34 (m, 4H, g/s), 1.33 – 1.18 (m, 8H,h/i/t/u ), 0.89 – 0.78 (m, 4H, j/v) ppm.

<sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>): δ =156.4 (n), 143.7 (d), 142.4 (a), 141.6 (b), 132.1 (k), 128.9 (p), 125.7 (o), 123.8 (c), 112.8 (l), 69.0 (q), 30.8 (f), 29.5 (e), 29.2 (r), 31.9 29.4, 25.8, 22.8 (g/h/i/s/t/u), 14.2 (j/v).

**IR** (ATR):  $\tilde{v} = 2922$  (m), 2854 (m),1599(w), 1491 (m), 1464 (s), 1377 (w), 1248 (s), 1141 (m), 1016 (bm), 802(s), 724 (w) cm<sup>-1</sup>.

**λ**<sub>max</sub> (**DCM**) = 318 nm.

 $\epsilon$  (DCM) = 8.13 x 10<sup>3</sup> L mol<sup>-1</sup> cm<sup>-1</sup>. The extinction factor was calculated from solutions of O1, using the molecular weight calculated by GPC (1560 g/mol), in DCM with concentration / Absorption: 1.15  $\mu$ M / 0.013, 2.31  $\mu$ M / 0.021, 4.62  $\mu$ M / 0.043, 6.92  $\mu$ M / 0.060, 9.23  $\mu$ M / 0.080 and 11.5  $\mu$ M / 0.097.

**λ<sub>PL</sub> (DCM)** = 432 nm.

M<sub>n</sub> (GPC, conventional method) = 1.56 kDa.

**Đ =** 1.12.

**MALDI (graphite):** *m*/*z* = 1451

**DP** (based on  $M_n$  from GPC measurements) = 4.

**DP** (based on MALDI measurements) = 4.

Proposed structure with end groups based on MALDI analysis:





**Figure SI- 1.** GPC measurement result of **O1** using THF as eluent in a concentration of 1 mg/mL, at a flow rate of 1 mL/min. Calibrated against polystyrene standards using a conventional calibration method. Signals from the refraction index (RI) and Uv-vis detectors are shown.



Figure SI- 2. MALDI (graphite) spectra of O1, with the mass of the repeating unit indicated in the picture.



**Figure SI- 3**. Excitation and photoluminescence spectra ( $\lambda_{exc}$  = 340 nm) of a solution of **O1** in DCM (6.34 x 10<sup>-6</sup> M).



**Figure SI- 4.** Cyclic voltagram of a solution of **O1** ( $1 \times 10^{-3}$  M) using Bu<sub>4</sub>NPF<sub>6</sub> as electrolyte in DCM (0.2 M).



Figure SI- 5. TGA curve of O1. Heating rate 10 K/min, Al crucible, under a nitrogen gas flow of 20 mL/min.



**Figure SI- 6.** DSC curve of **O1** Heating rate 10 K/min, Al crucible, 20 mL/min nitrogen gas, 3 cycles (-90 to +90 °C).



**Figure SI- 7.** DSC curve of **O1** Heating rate 10 K/min, Al crucible, 20 mL/min nitrogen gas, cycle 3 of 3 (-90 to +90 °C).

### Poly(2,6-(3-n-hexyloxy)-pyridine-1,4-(3-n-hexyl)-thiophene) 02



Selection of the catalyst

In a Schlenk flask, **6** (55 mg, 10 µmol) was dissolved in THF (2 mL). A suspension of  $[Pd(tBu_3P)_2]$  or  $[Pd(dppf)Cl_2]$  5 mol%, CsF (20 mg, 13 µmol) in degassed water (0.5 mL) and THF (1.5 mL) were added. The mixture was heated at 60 °C for 24 h under a nitrogen atmosphere. The crude mixture was quenched with a solution of HCl in methanol (1 M, 1 mL) to afford a sticky yellow oil. Water was added (5 mL) and the mixture was extracted with DCM (3 x 5 mL). The organic phase was washed with brine (3 x 5 mL) before being dried over MgSO<sub>4</sub>. After filtration, the volatiles were removed *in vacuo*. The crude product was purified by Soxhlet extraction. First, MeOH (100 mL) was used as solvent and the system was heated at 100 °C for 8 h. After oligomers and small molecules were removed, the solvent was changed to chloroform and the system was heated at 80 °C for 4 h.

| Catalyst                                        | Mass catalyst<br>(mg)) | Mn (kDa) | Ð    |
|-------------------------------------------------|------------------------|----------|------|
| [Pd( <i>t</i> Bu <sub>3</sub> P) <sub>2</sub> ] | 2                      | 2.3      | 1.35 |
| [Pd(dppf)Cl <sub>2</sub> ]                      | 3                      | 2.3      | 1.48 |

**Table SI- 4.** GPC measurement results from the selection of the catalyst for the oligomerization of the monomer **6**. THF was used as eluent in a concentration of 1 mg/mL, at a flow rate of 1 mL/min. Calibrated against polystyrene standards using a conventional calibration method.

#### Oligomer synthesis

In a Schlenk flask, **6** (300 mg, 546  $\mu$ mol) was dissolved in THF (2 mL). A suspension of [Pd(*t*Bu<sub>3</sub>P)<sub>2</sub>] (14 mg, 27  $\mu$ mmol, 5 mol%), CsF (108 mg, 710  $\mu$ mol) in degassed water (0.5 mL) and THF (1.5 mL) were added. The mixture was heated at 50 °C for 24 h under a nitrogen

atmosphere. The crude mixture was quenched with a solution of HCl in methanol (1 mL, 1 mmol, 1 M) to afford a greenish yellow solid. Water was added (5 mL) and the reaction mixture was extracted with DCM (3 x 10 mL) The organic phase was washed with brine (3 x 5 mL) before being dried over MgSO<sub>4</sub>. After filtration, the volatiles were removed *in vacuo*. The crude product was purified by Soxhlet extraction. First MeOH (200 mL) was used as solvent and the system was heated at 100 °C for 8 h. After oligomers and small molecules were removed, the solvent was changed to chloroform (100 mL) and the system was heated at 80 °C for 4 h. The volatiles were removed *in vacuo* from the receiver flask to afford a greenish, fluorescent solid in a yield of 131 mg (70%).

<sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$ = 7.51 (d,<sup>3</sup>*J* = 8.4 Hz, 1H,c), 7.47 (s, 1H, m), 7.24 (d, <sup>3</sup>*J* = 8.4 Hz, 1H, d), 4.13 – 3.94 (m, 2H, f), 3.11 – 2.99 (m, 2H, p), 1.94 – 1.81 (m, 2H, g), 1.80 – 1.67 (m, 2H, q), 1.58 – 1.41 (m, 4H, h/r), 1.41 – 1.14 (m, 12H, s/l/j), 0.88 – 0.70 (m, 6H, k/t) ppm. <sup>13</sup>C{<sup>1</sup>H} **NMR** (126 MHz, CDCl<sub>3</sub>): 151.2 (b), 145.0 (e), 144.7 (l), 132.6 (a), 127.1 (c), 120.3 (d), 118.6 (m), 69.4 (f), 31.5 (q), 30.5 (p), 29.0 (g), 25.6 (h/r), 22.6, 29.5, 31.7, 31.9 (i/j/s/t), 14.0 (k/u) ppm.

**IR** (ATR):  $\tilde{v} = 2921$  (m), 2851 (m), 1565 (w), 1435 (s), 1379 (w), 1272 (m), 1130(m), 1071 (w), 816(m) cm<sup>-1</sup>.

**λ**<sub>max</sub> (**DCM**) = 390 nm.

**λ<sub>PL</sub> (DCM)** = 442 nm.

 $\epsilon$  (DCM) = 7.10 x 10<sup>4</sup> L mol<sup>-1</sup> cm<sup>-1</sup>. The extinction factor was calculated from solutions of O2, using the molecular weight calculated by GPC (5390 g/mol), in DCM with concentration / Absorption : 0.13  $\mu$ M / 0.014, 0.27  $\mu$ M / 0.023, 0.54  $\mu$ M / 0.043, 0.81  $\mu$ M / 0.064, 1.09  $\mu$ M / 0.087 and 1.36  $\mu$ M / 0.096.

**λ**<sub>max</sub> (solid state) = 300 nm.

 $M_n$  (GPC, conventional method) = 5.39 kDa.

**Đ =** 1.83.

**MALDI (graphite)**= *m/z*: 2059.

**DP** (based on GPC measurements) = 16.

**DP** (based on MALDI measurements) = 6.

Proposed structure with end groups based on MALDI analysis



**Figure SI- 8.** GPC measurement result of **O2** using THF as eluent in a concentration of 1 mg/mL, at a flow rate of 1 mL/min. Calibrated against polystyrene standards using a conventional calibration method. Signals from the RI and Uv-vis detectors are shown.



Figure SI- 9. MALDI (graphite) spectrorgam of O2. With the mass of the repeating unit indicated in the picture.



**Figure SI- 10.** Excitation and photoluminescence spectra ( $\lambda_{exc}$  = 340 nm) of a solution of **O2** in DCM (1.13 x 10<sup>-5</sup> M).



Figure SI- 11. Solid state absorption (blue) and reflection spectra (black) of O2.

With the reflectance spectrum it is possible to determine if the polymer has an indirect or direct bad gap.

The expression proposed by Tauc, Davis and Mott it is used to calculate the band gap:<sup>[8]</sup>

$$(h\nu\alpha)^{1/n} = A\left(h\nu - E_q\right) \quad (1)$$

where: *h*: Planck's constant, v: frequency of vibration,  $\alpha$ : absorption coefficient, E<sub>g</sub>: band gap, A: proportional constant. The value of n denotes the nature of the sample transition. The most common ones are: n =  $\frac{1}{2}$  for direct allowed transition and n = 2 for indirect allowed transition.

The absorption coefficient  $\alpha$  is proportional to the diffuse reflectance (F(R $\infty$ )) and the Tauc function (eq. 1) is converted into the Kubelka-Munk function (2). <sup>[9]</sup>

$$(h\nu F(R\infty))^{1/n} = A\left(h\nu - E_g\right) \quad (2)$$

Using expression 2, the Tauc graph was plotted using  $n = \frac{1}{2}$  and n = 2. The x intercept of the tangent from the point of inflection of the curve from the plot denotes the band gap  $E_g$ . It is expected that the nearest band gap calculated with this plot with the one obtained from the Uv-vis spectra, predicts which type of transition the material has.



**Figure SI- 12.** Tauc plot of **O2** with  $n = \frac{1}{2}$  for direct transition.



**Figure SI- 13.** Tauc plot of **O2** with n = 2 for an indirect transition.

Conclusion : **O2** showed an indirect allowed transition.



**Figure SI- 14.** Cyclic voltagram of a solution of **O2**  $(1 \times 10^{-3} \text{ M})$  using Bu<sub>4</sub>NPF<sub>6</sub> as electrolyte in DCM (0.2 M).



Temperature

Figure SI- 15. TGA curve of O2. Heating rate 10 K/min, Al crucible, flow of 20 mL/min nitrogen gas.



Figure SI- 16. DSC curve of O2 Heating rate 10 K/min, Al crucible, flow of 20 mL/min nitrogen gas, 3 cycles (-150 to +250 °C).



Figure SI- 17. DSC curve of O2 Heating rate 10 K/min, Al crucible, flow of 20 mL/min nitrogen gas, cycle 3 of 3 (-150 to +250 °C).

## **Reaction Monitoring**

## Poly(1,4-(3-n-hexyl)-thiophene-2,6-(3-n-hexyloxy)-phenylene) 01

In a Schlenk tube, a solution of **5** (103 mg, 180  $\mu$ mol) and 1,3,5-trimetoxybenzene (33.8 mg, 200  $\mu$ mol, used as internal standard) in THF (1 mL) was prepared and heated for 2 min at 60 °C. A first sample (0.2 mL) was taken out of from the reaction mixture (t<sub>0</sub>). Immediately after, a suspension of [Pd(*t*Bu<sub>3</sub>P)<sub>2</sub>] (4.6 mg, 9  $\mu$ mol, 5 mol%), CsF (37 mg, 243  $\mu$ mol), water (0.5 mL) and THF (stabilizer free, 1.5 mL) was added. After 1 h, 3 h, 6 h, 12 h and 24 h reaction time, a sample was taken out of the reaction mixture.

Every sample was quenched with a solution of HCl in MeOH (2,0 mL, 2 mmol, 1 M), then water (1 mL) was added and the mixture was extracted with DCM (2 x 3 mL). The organic phase was dried over MgSO<sub>4</sub> and filtered over a "mini column" (glass pipet filled with Celite. See Figure SI-18). The solution was split in two flasks and the solvents were removed *in vacuo*. Half of the sample was dissolved in THF for GPC analysis and the second one in CDCl<sub>3</sub> for <sup>1</sup>H NMR spectroscopic analysis.



Figure SI- 18. Picture from the filtration with the `mini column' based on a glass pipet filled with Celite® and silica.



**Figure SI- 19.** <sup>1</sup>H NMR spectra (recorded at 300 K, 500 MHz in CDCl<sub>3</sub>) of the reaction monitoring for the polymerization of **5** to produce **01**, 1,3,5-trimetoxybenzene was used as standard. The conversion was based on the amount of compound **19** (product of the quenching of **5** with HCl/MeOH 1M).

| Time (h) | % conversion | M <sub>n</sub> (kDa) | M <sub>w</sub> (kDa) | Ð    |
|----------|--------------|----------------------|----------------------|------|
| 0        | 0.0          | 0.44                 | 0.44                 | 1.01 |
| 1        | 15.0         | 0.99                 | 1.06                 | 1.07 |
| 3        | 16.4         | 1.00                 | 1.09                 | 1.08 |
| 8        | 40.5         | 1.50                 | 1.65                 | 1.10 |
| 12       | 37.4         | 1.50                 | 1.68                 | 1.12 |
| 24       | 91.6         | 1.58                 | 2.60                 | 1.65 |

**Table SI- 5.** Results from the reaction monitoring of **O1** : % conversion obtained from the <sup>1</sup>H NMR spectra (Figure SI-19);  $M_n$ ,  $M_w$  and  $\tilde{D}$  obtained from GPC measurements. The conversion was based on the amount of compound **19** (product of the quenching of **5** with HCl/MeOH 1M).



The growth behavior of **O1** was observable in the Uv-vis/elugram 2D-plot of the GPC samples (Figure SI-20). The spectra were recorded using the Win-GPC<sup>©</sup> software from the company PSS.

**Figure SI- 20.** Uv-vis spectra/ elugram 2D plots from the GPC measurements of the reaction monitoring of **O1**. The intensity (Z) of the yellow color is related to the concentration of internal standard, monomer and polymer in each sample.

The conversion of the monomer using the Uv-vis/ elution 2D-plot was based in the intensity (Z value) from the area corresponding to the monomer. The results of the time, % conversion (with respect disapparence of the monomer),  $M_n$ ,  $M_w$  and  $\tilde{D}$  for the polymerization of **5** are summarized in the Table SI-4.

| Time (h) | % conversion | M <sub>n</sub> (Da) | M <sub>w</sub> (Da) | Ð    |
|----------|--------------|---------------------|---------------------|------|
| 0        | 0.0          | 0.44                | 0.44                | 1.01 |
| 1        | 36.7         | 0.99                | 1.06                | 1.07 |
| 3        | 48.7         | 1.00                | 1.09                | 1.08 |
| 8        | 51.3         | 1.50                | 1.65                | 1.10 |
| 12       | 62.0         | 1.50                | 1.68                | 1.12 |
| 24       | 100.0        | 1.58                | 2.60                | 1.65 |

**Table SI- 6.** Results from the reaction monitoring study of **O1** : % conversion obtained from the Uv-vis/ elugram 2D- plot (Figure SI-20);  $M_n$ ,  $M_w$  and D obtained from GPC measurements.



**Figure SI- 21.** Plots of % conversion vs. time. Calculated by the two detectors (<sup>1</sup>H and 2D-plots GPC) for the polymerization of **5** with 5 mol% of  $[Pd(tBu_3P)_2]$ , 1.2 eq. CsF in THF at 50 °C. The conversion was defined as amount of compound **19** consumed observed by the <sup>1</sup>H NMR spectra and 2D-GPC plots.


**Figure SI- 22.** Plot of the % conversion calculated by <sup>1</sup>H NMR spectra vs.  $M_n$  and D for the polymerization of **5** with 5 mol% of [Pd( $tBu_3P_2$ ], 1.2 eq. CsF in THF at 50 °C. The conversion was defined as amount of compound **19** consumed observed by the <sup>1</sup>H NMR spectra.



**Figure SI- 23.** Plot of % conversion calculated by 2D-GPC plot vs.  $M_n$  and D for the polymerization of **5** with 5 mol% of  $[Pd(tBu_3P)_2]$ , 1.2 eq. CsF in THF at 50 °C. The conversion was defined as amount of compound **19** consumed observed by the 2D-GPC plots.

#### Poly(2,6-(3-n-hexyloxy)-pyridine-1,4-(3-n-hexyl)-thiophene) 02

In a Schlenk tube, a solution of **6** (173 mg, 315  $\mu$ mol) and 1,3,5-trimethoxybenzene (52.2 mg, 310  $\mu$ mol, used as internal standard) in THF (1 mL) was prepared and heated for 2 min at 60 °C. A first sample (0.2 mL) was taken out of the reaction mixture (t<sub>0</sub>). Immediately after, a suspension of [Pd(*t*Bu<sub>3</sub>P)<sub>2</sub>] (7.9 mg, 15  $\mu$ mol, 5 mol%), CsF (61 mg, 401  $\mu$ mol), water (0.5 mL) and THF (stabilizer free, 1.5 mL) was added. After 1 h, 3 h, 6 h, 12 h and 24 h of reaction, a sample was taken from the reaction mixture.

Every sample was quenched with a solution of HCl in MeOH (2.0 mL, 2 mmol, 1 M), then water (1 mL) was added and the mixture was extracted with DCM (2 x 3mL). The organic phase was dried over MgSO<sub>4</sub> and filtered over a 'mini column' (glass pipet filled with Celite® and silica. See Figure SI-18). The solution was split in two flasks and the solvents were removed *in vacuo*. Half of the sample was dissolved in THF for GPC analysis and the second one in CDCl<sub>3</sub> for <sup>1</sup>H NMR spectral analysis.



**Figure SI- 24.** <sup>1</sup>H NMR spectra (recorded at 300 K, 500 MHz in CDCl<sub>3</sub>) of the reaction monitoring for the polymerization of **6** to produce **02**, 1,3,5-trimetoxybenzene was used as standard. The conversion was based on the amount of compound **20** (product from the quenching of **6** in HCl/MeOH 1M).

| Time (h) | % conversion | M <sub>n</sub> (Da) | M <sub>w</sub> (Da) | Ð    |
|----------|--------------|---------------------|---------------------|------|
| 0        | 0.0          | 441.3               | 457.7               | 1.04 |
| 1        | 34.6         | 1051.9              | 1144.8              | 1.09 |
| 6        | 52.2         | 1423.1              | 1706.1              | 1.20 |
| 9        | 60.0         | 1404.8              | 1703.1              | 1.21 |
| 19       | 66.7         | 1290.3              | 1500.9              | 1.16 |
| 27       | 100.0        | 1454.0              | 1770.1              | 1.22 |

**Table SI- 7.** Results from the reaction monitoring study of **O2**: % conversion obtained from the <sup>1</sup>H NMR spectra (Figure SI-24); Mn, Mw and Đ obtained from GPC measurements. The conversion was based on the amount of compound **20** (product from the quenching of **6** in HCl/MeOH 1M).

The growth behavior of **O2** was observable in the Uv-vis/elugram 2D-plot of the GPC samples (Figure SI-25). The spectra were recorded using the Win-GPC<sup>©</sup> software from the company PSS.





**Figure SI- 25**. Uv-vis spectra/ elugram 2D plots from the GPC measurements of the reaction monitoring of **O2**. The intensity (Z) of the yellow color is related to the concentration of internal standard, monomer and polymer in each sample.

The conversion of the monomer using the Uv-vis/ elution 2D-plot was based in the intensity (Z value) from the area corresponding to the monomer. The results of the time, % conversion (with respect disapparence of the monomer),  $M_n$ ,  $M_w$  and D for the polymerization of **6** are summarized in the Table SI-6.

| Time (h) | % conversion | Mn (Da) | M <sub>w</sub> (Da) | Ð    |
|----------|--------------|---------|---------------------|------|
| 0        | 0.0          | 0.44    | 0.46                | 1.04 |
| 0.33     | 34.3         | 0.45    | 0.49                | 1.09 |
| 1        | 40.4         | 1.05    | 1.14                | 1.09 |
| 6        | 48.3         | 1.42    | 1.71                | 1.20 |
| 9        | 65.0         | 1.40    | 1.70                | 1.21 |
| 19       | 68.1         | 1.29    | 1.50                | 1.16 |
| 27       | 100.0        | 1.45    | 1.77                | 1.22 |

**Table SI- 8.** Results from the reaction monitoring study of **O2**: % conversion obtained from the Uv-vis/ elugram 2D-plot (Figure SI-25);  $M_n$ ,  $M_w$  and  $\tilde{D}$  obtained from GPC measurements.



**Figure SI- 26.** Plot of the % conversion calculated by 2D-GPC plot vs Mn and Đ for the polymerization of **6** with 5 mol% of [Pd(t-Bu3P)2], 1.2 eq. CsF in THF at 50 °C. The conversion was calculated relative to compound **20** (product from the quenching process with HCl/MeOH) based on the 2D-GPC plots.

## **OLED-like Device Fabrication**

ITO coated glass substrates were cleaned in an ultrasonic bath of acetone and isopropanol each for 15 min. Afterwards they were dried under a nitrogen stream, heated to 160 °C for 10 min and then cleaned with an oxygen plasma with 300 W for 3 min. 200  $\mu$ L of a PEDOT: PSS water suspension were spin-coated onto the substrates (3500 rpm for 60 s). The samples were then transferred into a glovebox and annealed at 150 °C for 5 min. Afterwards, they were cooled down to 50 °C over the period of 2 h. A solution of the oligomers (**O1** or **O2**) in chloroform was prepared with a concentration of 10 mg/mL. 180  $\mu$ L of the polymer solutions respectively were spin coated (500 rpm for 5 s, and 1000 rpm for 60 s) on the PEDOT:PSS layer and the samples were annealed at 70 °C for 2 h. Finally, a layer of LiF (1 nm) and Al (200 nm) were deposited by thermal evaporation.





**Figure SI- 27.** Description of the OLED fabrication. a) Glass/ITO cleaning with acetone and isopropanol. b) Drying process of the glass/ITO. c) Glass/ITO cleaning with an oxygen plasma. d) Spin coating of a PEDOT:PSS solution over the glass/ITO. e) Annealing of the system (glass/ITO/PEDOT:PSS) inside a GB. f) Spin coating of a solution of the oligomers (**01** or **02**) in chloroform. g) Thermal evaporation of LiF and Al layers. h) OLED Encapsulation.



Figure SI- 28. Current density - voltage - luminance curves of the OLED-type devices with **O1** and **O2** as emissive layer.



**Figure SI- 29.** Photo of the electroluminescence of the OLED-type device using **O2** as emissive layer. Exposure time: 1 s, which was visible to the human eye.

| Dovice | Vola | EQE <sup>b</sup>   | CE <sup>b</sup>    | PE⁵                | CIE Color   | Maximal brightness (cd/m <sup>2</sup> ) |
|--------|------|--------------------|--------------------|--------------------|-------------|-----------------------------------------|
| Device | (V)  | (%)                | (cd/A)             | (lm/W)             | coordinates | (@ mA/cm <sup>2</sup> )                 |
| 01     | 7.7  | 3.4e <sup>-4</sup> | 4.7e <sup>-4</sup> | 1.5e <sup>-4</sup> | 0.351,0.385 | 3.1 (@ 750 mA/cm <sup>2</sup> )         |
| 02     | 10.7 | 2.6e <sup>-4</sup> | 2.6e <sup>-4</sup> | 0.8e <sup>-4</sup> | 0.379,0.381 | 2.1 (@ 650 mA/cm <sup>2</sup> )         |

 $^{\rm a}$  Voltage recorded at luminance of 1 cd/m2, b EQE, CE and PE recorded at 500 mA/cm^2

**Table SI- 9.** Electroluminescent performance of the OLED-type devices.

## **NMR Spectra**

(3-Hexyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)thiophen-2yl)trimethylstannane (7)



Figure SI- 30. <sup>1</sup>H NMR (500 MHz) spectrum of 7 in CDCl<sub>3</sub>.



Figure SI- 31. <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz) spectrum of 7 in CDCl<sub>3</sub>.

#### 4-Bromo-2-*n*-hexylthiophene (11)



Figure SI- 32. <sup>1</sup>H NMR (500 MHz) spectrum of 11 in CDCl<sub>3</sub>.



δ (ppm)

Figure SI- 33. <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz) spectrum of **11** in CDCl<sub>3</sub>.





Figure SI- 35. <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz) spectrum of 12 in CDCl<sub>3</sub>.



# (4-Hexyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)thiophen-2yl)trimethylstannane (13)



Figure SI- 37. <sup>1</sup>H NMR (500 MHz) spectrum of 13 in CDCl<sub>3</sub>.



Figure SI- 38. <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz) spectrum of **13** in CDCl<sub>3</sub>.



Figure SI- 40. <sup>119</sup>Sn{<sup>1</sup>H} NMR (160 MHz) spectrum of 13 in CDCl<sub>3</sub>.

#### 1-Bromo-2-(hexyloxy)benzene (15)



Figure SI- 41. <sup>1</sup>H NMR (500 MHz) spectrum of 15 in CDCl<sub>3</sub>.



Figure SI- 42. <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz) spectrum of 15 in CDCl<sub>3</sub>.

#### 1-Bromo-2-(hexyloxy)-5-iodobenzene (16)



Figure SI- 43. <sup>1</sup>H NMR (500 MHz) spectrum of 16 in CDCl<sub>3</sub>.



Figure SI- 44. <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz) spectrum of 16 in CDCl<sub>3</sub>.

#### 2-Bromo-6-iodo-3-pyridinol (18)



Figure SI- 45. <sup>1</sup>H NMR (500 MHz) spectrum of 18 in CDCl<sub>3</sub>.



**Figure SI- 46.** <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz) spectrum of **18** in CDCl<sub>3</sub>.

### 2-Bromo-3-(hexyloxy)-6-iodopyridine (8)



Figure SI- 47. <sup>1</sup>H NMR (500 MHz) spectrum of 8 in CDCl<sub>3</sub>.



Figure SI- 48. <sup>13</sup>C{<sup>1</sup>H}NMR (126 MHz) spectrum of 8 in CDCl<sub>3</sub>.





Figure SI- 49. <sup>1</sup>H NMR (500 MHz) spectrum of 5 in CDCl<sub>3</sub>.



Figure SI- 50. <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz) spectrum of 5 in CDCl<sub>3</sub>.





# 2-Bromo-6-(4-hexyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)thiophen-2yl)-3-(hexyloxy)pyridine (6)

Figure SI- 52. <sup>1</sup>H NMR (500 MHz) spectrum of 6 in CDCl<sub>3</sub>.



Figure SI- 53. <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz) spectrum of 6 in CDCl<sub>3</sub>.



Figure SI- 54. <sup>11</sup>B{<sup>1</sup>H} NMR (160 MHz) spectrum of 6 in CDCl<sub>3</sub>.



Poly-(1,4-(3-hexyl)-thiophene-2,6-(3-hexyloxy)-phenylene) 01

Figure SI- 56. <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz) spectrum of O1 in CDCl<sub>3</sub>.



## Poly-(2,6-(3-hexyloxy)-pyridine-1,4-(3-hexyl)-thiophene) O2

Figure SI- 57. <sup>1</sup>H NMR (600 MHz) spectrum of O2 in CDCl<sub>3</sub>.



Figure SI- 58. <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz) spectrum of **O2** in CDCl<sub>3</sub>.

## **DFT Calculations**

To simplify the calculation of the monomers, dimers and trimers from the starting materials **5** and **6**, calculations were carried out based on two monomers **S1** and **S2** with similar structures. The difference lays in the size of the alkoxy groups from hexoxy to methoxy and the replacement of electrophile and dinucleophile for a proton respectively.



The equilibrium geometries were optimized with Gaussian 09<sup>[10]</sup> using B3LYP/6-31-G\*- level of theory with empirical dispersion correction (GD3), followed by a frequency calculation to ensure that the optimized structures were the true minima. The orbital energies of HOMO and LUMO and their energy differences were calculated for these optimized molecules **S1** and **S2**. The Uv/vis spectra were calculated at the level of time-dependent density functional theory (TD-DFT) with the B3LYP/6-31-G\*. Further dimers (**S1-2** and **S2-3**) and trimers (**S1-3** and **S2-3**) of the respective monomers were also calculated (Table SI-8).

Bond length alternation (BLA) values were estimated by the substraction of the double bond length from the longer single bond length for both inner thiophenes. Since the substitution pattern of the thiophenes us not symmetric we calculated for each pair of single and double bonds the BLA values.

| Molecule                                        | E <sub>homo</sub><br>(eV) | E <sub>lumo</sub><br>(eV) | HOMO-LUMO<br>(eV) | Uv <sub>λmax</sub> |
|-------------------------------------------------|---------------------------|---------------------------|-------------------|--------------------|
|                                                 | -0.66                     | -5.32                     | 4.66              | 4.37 eV<br>284 nm  |
| Me<br>H<br>H<br>S<br>OMe<br>OMe<br>OMe<br>OMe   | -1.09                     | -5.17                     | 4.08              | 3.71 eV<br>334 nm  |
| Me Me Me<br>H S S S H OMe OMe<br>S1-3           | -1.22                     | -5.17                     | 3.95              | 3.60 eV<br>344 nm  |
| H S OMe<br>S2                                   | -1.01                     | -5.43                     | 4.42              | 4.12 eV<br>301 nm  |
| H S Me<br>N S N H<br>OMe<br>S2-2                | -1.45                     | -5.15                     | 3.70              | 3.39 eV<br>366 nm  |
| Me Me Me Ne | -1.57                     | -5.11                     | 3.54 eV           | 3.14 eV<br>395 nm  |

**Table SI- 10.** Molecular orbital energies (HOMO, LUMO), HOMO-LUMO gaps and calculated absorptionwavelength from the monomers S1 and S2, dimers S1-2, S2-2 and trimers S1-3 and S2-3.

## **Molecular Orbitals**



Figure SI- 59. Molecular orbitals of S1 (displayed with an isovalue of 0.02): HOMO (left) and LUMO (right).

Symmetry = C1 B3LYP/6-31G(d) E=-937.92384330 Ha

| ΑΤΟΜ | SYMBOL | X        | Y        | Z        |
|------|--------|----------|----------|----------|
| 1    | С      | 0.919567 | -1.27171 | 0.406397 |
| 2    | С      | 0.202495 | -0.11965 | 0.026458 |
| 3    | С      | 0.942719 | 1.019296 | -0.3243  |
| 4    | С      | 2.305746 | -1.28042 | 0.435678 |
| 5    | С      | 3.028695 | -0.12825 | 0.092916 |
| 6    | С      | 2.337051 | 1.028512 | -0.28737 |
| 7    | 0      | 4.386986 | -0.23991 | 0.159257 |
| 8    | С      | 5.17097  | 0.896508 | -0.16902 |
| 9    | Н      | 6.211054 | 0.589787 | -0.04309 |
| 10   | Н      | 4.958857 | 1.741717 | 0.500202 |
| 11   | Н      | 5.010153 | 1.212673 | -1.20889 |
| 12   | С      | -1.26411 | -0.08968 | 0.000244 |
| 13   | С      | -2.09817 | 0.981374 | 0.214313 |
| 14   | S      | -2.21246 | -1.52477 | -0.35591 |
| 15   | С      | -3.4927  | 0.677175 | 0.105882 |
| 16   | С      | -3.70004 | -0.64286 | -0.19261 |
| 17   | С      | -4.58667 | 1.689834 | 0.310417 |
| 18   | Н      | -4.64793 | -1.14832 | -0.32613 |
| 19   | Н      | -1.72578 | 1.966456 | 0.477531 |
| 20   | Н      | 2.867164 | 1.93065  | -0.57012 |

| 21 | Н | 2.856642 | -2.16721 | 0.732714 |
|----|---|----------|----------|----------|
| 22 | Н | 0.379007 | -2.16713 | 0.701041 |
| 23 | Н | -4.50626 | 2.513021 | -0.4107  |
| 24 | Н | -4.53606 | 2.132805 | 1.313026 |
| 25 | Н | -5.57636 | 1.237493 | 0.193371 |
| 26 | Н | 0.419699 | 1.912838 | -0.65257 |

**Table SI- 11.** xyz Coordinates from the DFT calculations of molecule **S1-1**.



**Figure SI- 60.** Molecular orbitals of dimer of **S1-2** (displayed with an isovalue of 0.02): HOMO (left) and LUMO (right).

Symmetry = C1 B3LYP/6-31G(d) E=-1874.65930957 Ha

| ΑΤΟΜ | SYMBOL | X        | Y        | Z        |
|------|--------|----------|----------|----------|
| 1    | С      | 3.731042 | 2.085738 | -0.2582  |
| 2    | С      | 3.613124 | 0.686968 | -0.20421 |
| 3    | С      | 2.339871 | 0.137835 | 0.014373 |
| 4    | С      | 2.611913 | 2.893348 | -0.0812  |
| 5    | С      | 1.359116 | 2.333192 | 0.164789 |
| 6    | С      | 1.201117 | 0.930374 | 0.220664 |
| 7    | 0      | 0.285024 | 3.184532 | 0.306807 |
| 8    | С      | -0.17714 | 3.342686 | 1.651613 |
| 9    | Н      | 0.609483 | 3.779838 | 2.281548 |
| 10   | Н      | -0.49898 | 2.38655  | 2.08117  |
| 11   | Н      | -1.03006 | 4.023003 | 1.603646 |

| 12 | С | 4.769996 | -0.20031 | -0.37253 |
|----|---|----------|----------|----------|
| 13 | С | 4.965114 | -1.44927 | 0.166722 |
| 14 | S | 6.14669  | 0.247599 | -1.36493 |
| 15 | С | 6.207604 | -2.06095 | -0.19387 |
| 16 | С | 6.948125 | -1.25221 | -1.01438 |
| 17 | С | 6.641177 | -3.41983 | 0.285194 |
| 18 | Н | 7.923617 | -1.45748 | -1.43645 |
| 19 | Н | 4.247525 | -1.91384 | 0.835787 |
| 20 | С | -0.10053 | 0.284968 | 0.456328 |
| 21 | Н | 2.68957  | 3.975488 | -0.11856 |
| 22 | Н | 4.703265 | 2.542901 | -0.41938 |
| 23 | S | -1.54105 | 0.799555 | -0.40522 |
| 24 | С | -0.37885 | -0.79078 | 1.280292 |
| 25 | С | -2.51777 | -0.43894 | 0.352016 |
| 26 | С | -1.74783 | -1.18612 | 1.212042 |
| 27 | С | 0.60748  | -1.46963 | 2.195853 |
| 28 | Н | -2.15814 | -1.98273 | 1.824591 |
| 29 | С | -3.9472  | -0.58294 | 0.059467 |
| 30 | Н | 6.694037 | -3.45706 | 1.380542 |
| 31 | Н | 7.627826 | -3.68472 | -0.10719 |
| 32 | Н | 5.934198 | -4.19712 | -0.03094 |
| 33 | Н | 1.462242 | -0.82536 | 2.419751 |
| 34 | Н | 0.999293 | -2.39549 | 1.753573 |
| 35 | Н | 0.12683  | -1.74391 | 3.14184  |
| 36 | С | -4.5737  | -1.84176 | 0.168892 |
| 37 | С | -4.74196 | 0.505222 | -0.33017 |
| 38 | С | -6.10277 | 0.360646 | -0.60096 |
| 39 | С | -6.70565 | -0.89659 | -0.476   |
| 40 | С | -5.92691 | -1.9973  | -0.08638 |
| 41 | Н | -4.29717 | 1.493601 | -0.40844 |
| 42 | Н | -6.67741 | 1.230888 | -0.89597 |
| 43 | 0 | -8.02416 | -1.1575  | -0.70918 |

| 44 | Н | -6.407   | -2.96756 | -0.00659 |
|----|---|----------|----------|----------|
| 45 | С | -8.85728 | -0.08562 | -1.12366 |
| 46 | Н | -9.85205 | -0.51427 | -1.25904 |
| 47 | Н | -8.51627 | 0.347283 | -2.07404 |
| 48 | Н | -8.90464 | 0.706865 | -0.36421 |
| 49 | Н | -3.98039 | -2.71067 | 0.437897 |
| 50 | Н | 2.21837  | -0.93936 | -0.01817 |

 Table SI- 12. xyz Coordinates from the DFT calculations of molecule S1-2.



**Figure SI- 61.** Molecular orbitals of trimer of **S1-3** (displayed with an isovalue of 0.02): HOMO (left) and LUMO (right).

Symmetry = C1 B3LYP/6-31G(d) E=-2811.39411966 Ha

| ATOM | SYMBOL | X        | Y        | Z        |
|------|--------|----------|----------|----------|
| 1    | С      | -0.14973 | 2.12917  | 0.231239 |
| 2    | С      | -0.27217 | 0.731206 | 0.156165 |
| 3    | С      | -1.55522 | 0.172038 | 0.269528 |
| 4    | С      | -1.2745  | 2.924965 | 0.423375 |
| 5    | С      | -2.54159 | 2.354251 | 0.536371 |
| 6    | С      | -2.70406 | 0.953057 | 0.459961 |
| 7    | 0      | -3.62146 | 3.196516 | 0.686578 |
| 8    | С      | -4.16198 | 3.244615 | 2.010709 |
| 9    | Н      | -3.40881 | 3.608455 | 2.722758 |
| 10   | Н      | -4.52353 | 2.260952 | 2.333247 |
| 11   | Н      | -5.00005 | 3.943794 | 1.973248 |

| 12 | С      | 0.889824 | -0.13935 | -0.0526  |
|----|--------|----------|----------|----------|
| 13 | C      | 0.936594 | -1.36959 | -0.66401 |
| 14 | S      | 2 486067 | 0 303268 | 0 513662 |
|    | с<br>С | 2 230837 | -1 96955 | -0 70452 |
| 16 | C      | 3 103538 | -1 1777  | -0 10830 |
| 17 |        | 2 193330 | 2 20201  | 1 29007  |
| 1/ | C      | 2.404230 | -3.29201 | -1.30097 |
| 18 | C      | 4.634246 | -1.42512 | 0.052607 |
| 19 | Н      | 0.065815 | -1.82/13 | -1.1231  |
| 20 | С      | -4.01895 | 0.300647 | 0.576645 |
| 21 | Н      | -1.19404 | 4.006159 | 0.4782   |
| 22 | Н      | 0.824974 | 2.595361 | 0.118626 |
| 23 | S      | -5.39965 | 0.87603  | -0.34206 |
| 24 | С      | -4.3538  | -0.81559 | 1.3211   |
| 25 | С      | -6.42932 | -0.39325 | 0.28332  |
| 26 | С      | -5.7185  | -1.19359 | 1.146234 |
| 27 | С      | -3.43154 | -1.55177 | 2.258694 |
| 28 | Н      | -6.1705  | -2.01816 | 1.688395 |
| 29 | С      | -7.83906 | -0.50751 | -0.10294 |
| 30 | Н      | 1.839536 | -3.40303 | -2.2599  |
| 31 | Н      | 2.269401 | -4.13737 | -0.71368 |
| 32 | Н      | 3.524264 | -3.38617 | -1.70623 |
| 33 | Н      | -2.58359 | -0.93293 | 2.564558 |
| 34 | Н      | -3.02498 | -2.46082 | 1.795802 |
| 35 | Н      | -3.97134 | -1.86416 | 3.159915 |
| 36 | С      | -8.47855 | -1.76454 | -0.09977 |
| 37 | С      | -8.60269 | 0.607491 | -0.4787  |
| 38 | С      | -9.94618 | 0.490541 | -0.83595 |
| 39 | С      | -10.5633 | -0.76577 | -0.81435 |
| 40 | С      | -9.81542 | -1.89329 | -0.44132 |
| 41 | Н      | -8.14807 | 1.594513 | -0.47652 |
| 42 | Н      | -10.497  | 1.380793 | -1.11628 |
| 43 | 0      | -11.8678 | -1.00125 | -1.13656 |

| 44 | Н | -10.3055 | -2.86185 | -0.44244 |
|----|---|----------|----------|----------|
| 45 | С | -12.6699 | 0.099799 | -1.53547 |
| 46 | Н | -13.6587 | -0.31112 | -1.74783 |
| 47 | Н | -12.2749 | 0.580813 | -2.44075 |
| 48 | Н | -12.7532 | 0.849829 | -0.737   |
| 49 | С | 5.108984 | -2.69105 | 0.441156 |
| 50 | С | 5.567232 | -0.39667 | -0.1447  |
| 51 | С | 6.950393 | -0.58984 | 0.007004 |
| 52 | С | 7.386758 | -1.87443 | 0.393183 |
| 53 | С | 6.473389 | -2.90644 | 0.603501 |
| 54 | Н | 4.405274 | -3.48975 | 0.650327 |
| 55 | Н | 6.855297 | -3.8724  | 0.920008 |
| 56 | 0 | 8.727168 | -2.12079 | 0.607422 |
| 57 | С | 7.871322 | 0.526357 | -0.25051 |
| 58 | С | 9.429025 | -2.57071 | -0.556   |
| 59 | Н | 9.020124 | -3.52603 | -0.91152 |
| 60 | Н | 10.4703  | -2.70366 | -0.2556  |
| 61 | Н | 9.374273 | -1.82859 | -1.36234 |
| 62 | С | 7.636978 | 1.611326 | -1.06583 |
| 63 | S | 9.433851 | 0.697678 | 0.535829 |
| 64 | С | 9.70548  | 2.224959 | -0.23819 |
| 65 | С | 8.678447 | 2.589344 | -1.06833 |
| 66 | Н | 6.741208 | 1.705663 | -1.67124 |
| 67 | Н | 10.62465 | 2.767866 | -0.05576 |
| 68 | С | 8.64191  | 3.848866 | -1.8909  |
| 69 | Н | 9.544002 | 4.449577 | -1.73893 |
| 70 | Н | 7.776684 | 4.47075  | -1.62907 |
| 71 | Н | 8.564873 | 3.623532 | -2.96205 |
| 72 | Н | 5.206439 | 0.589332 | -0.41901 |
| 73 | Н | -1.66984 | -0.90455 | 0.205958 |
| 74 | Н | -7.90763 | -2.6523  | 0.155709 |

 Table SI 13. xyz values from the DFT of Molecule S1-3.



Figure SI- 62. Molecular orbitals of S2 (displayed with an isovalue of 0.02): HOMO (left) and LUMO (right).

Symmetry = C1 B3LYP/6-31G(d) E= -953.96099057 Ha

| АТОМ | SYMBOL | x        | Y        | Z        |
|------|--------|----------|----------|----------|
| 1    | С      | 0.947856 | -1.40437 | -0.00064 |
| 2    | С      | 0.232807 | -0.18984 | -6.9e-05 |
| 3    | Ν      | 0.872    | 0.992888 | 0.000307 |
| 4    | С      | 2.332228 | -1.38134 | -0.00064 |
| 5    | С      | 2.993317 | -0.1468  | -0.00017 |
| 6    | С      | 2.206566 | 1.014343 | 0.000228 |
| 7    | 0      | 4.35428  | -0.18103 | -0.00018 |
| 8    | С      | 5.053967 | 1.056726 | 0.000464 |
| 9    | Н      | 6.11473  | 0.799992 | 0.000539 |
| 10   | Н      | 4.823161 | 1.649479 | 0.895786 |
| 11   | Н      | 4.823468 | 1.650221 | -0.89445 |
| 12   | С      | -1.23392 | -0.12938 | -3.2e-05 |
| 13   | С      | -2.01257 | 1.002383 | -0.00027 |
| 14   | S      | -2.24648 | -1.56324 | 0.000529 |
| 15   | С      | -3.41877 | 0.746435 | -8.9e-05 |
| 16   | С      | -3.68882 | -0.59695 | 0.000347 |
| 17   | С      | -4.46534 | 1.827525 | -0.00042 |
| 18   | Н      | -4.65952 | -1.07615 | 0.000487 |
| 19   | Н      | -1.57185 | 1.992456 | -0.00057 |
| 20   | Н      | 2.6608   | 2.001487 | 0.000548 |

| 21 | Н | 2.919373 | -2.29446 | -0.00105 |
|----|---|----------|----------|----------|
| 22 | Н | 0.425336 | -2.35644 | -0.00113 |
| 23 | Н | -4.36888 | 2.472663 | 0.881699 |
| 24 | Н | -5.47567 | 1.406608 | 0.000075 |
| 25 | Н | -4.36939 | 2.471662 | -0.88333 |

 Table SI- 14. xyz Coordinates from the DFT calculations of molecule S2-1.



**Figure SI- 63.** Molecular orbitals of dimer of **S2-2** (displayed with an isovalue of 0.02): HOMO (left) and LUMO (right).

Symmetry = C1

B3LYP/6-31G(d)

E=-1906.73623146 Ha

| ΑΤΟΜ | SYMBOL | X        | Y        | Z        |
|------|--------|----------|----------|----------|
| 1    | С      | 3.733679 | 2.148625 | -0.27105 |
| 2    | С      | 3.562851 | 0.757823 | -0.17116 |
| 3    | Ν      | 2.348121 | 0.201341 | -0.0349  |
| 4    | С      | 2.605586 | 2.956381 | -0.19884 |
| 5    | С      | 1.352041 | 2.377464 | -0.03628 |
| 6    | С      | 1.245343 | 0.966827 | 0.037441 |
| 7    | 0      | 0.236105 | 3.183077 | 0.015992 |
| 8    | С      | -0.09177 | 3.638404 | 1.334768 |
| 9    | Н      | 0.724803 | 4.243038 | 1.750821 |
| 10   | Н      | -0.29842 | 2.793074 | 2.002507 |
| 11   | Н      | -0.99022 | 4.250453 | 1.234244 |
| 12   | С      | 4.69036  | -0.18295 | -0.21593 |
| 13   | С      | 4.627585 | -1.55226 | -0.12432 |
| 14   | S      | 6.357365 | 0.337907 | -0.39264 |

| 15 | С | 5.897624 | -2.20359 | -0.19296 |
|----|---|----------|----------|----------|
| 16 | С | 6.92019  | -1.30274 | -0.33793 |
| 17 | С | 6.076329 | -3.69555 | -0.11551 |
| 18 | Н | 7.979281 | -1.51256 | -0.41708 |
| 19 | Н | 3.684001 | -2.07163 | -0.01028 |
| 20 | С | -0.0339  | 0.262664 | 0.191374 |
| 21 | Н | 2.675008 | 4.037858 | -0.27028 |
| 22 | Н | 4.717293 | 2.588521 | -0.40295 |
| 23 | S | -1.56871 | 1.022485 | -0.22361 |
| 24 | С | -0.23478 | -1.05049 | 0.605387 |
| 25 | С | -2.45829 | -0.43076 | 0.147165 |
| 26 | С | -1.60626 | -1.4196  | 0.579998 |
| 27 | С | 0.825149 | -2.02676 | 1.043478 |
| 28 | Н | -1.97007 | -2.39622 | 0.876416 |
| 29 | С | -3.91541 | -0.52809 | 0.019376 |
| 30 | Н | 5.684082 | -4.09292 | 0.828831 |
| 31 | Н | 7.131688 | -3.97691 | -0.18575 |
| 32 | Н | 5.538325 | -4.20131 | -0.92683 |
| 33 | Н | 1.584524 | -1.55371 | 1.670474 |
| 34 | Н | 1.35238  | -2.44397 | 0.178381 |
| 35 | Н | 0.366819 | -2.85348 | 1.597038 |
| 36 | Ν | -4.46708 | -1.69911 | 0.414389 |
| 37 | С | -4.70953 | 0.512364 | -0.48407 |
| 38 | С | -6.09078 | 0.352637 | -0.57989 |
| 39 | С | -6.65001 | -0.85878 | -0.16745 |
| 40 | С | -5.77954 | -1.85073 | 0.32111  |
| 41 | Н | -4.25819 | 1.44594  | -0.80675 |
| 42 | Н | -6.70195 | 1.158435 | -0.97045 |
| 43 | 0 | -7.97174 | -1.18052 | -0.19254 |
| 44 | Н | -6.20172 | -2.80088 | 0.643973 |
| 45 | С | -8.88436 | -0.2066  | -0.67957 |
| 46 | Н | -9.87367 | -0.66228 | -0.61226 |

| 47 | Н | -8.67483 | 0.053912 | -1.72605 |
|----|---|----------|----------|----------|
| 48 | Н | -8.86243 | 0.706498 | -0.06902 |

 Table SI- 15. xyz Coordinates from the DFT calculations of molecule S2-2.



**Figure SI- 64.** Molecular orbitals of trimer of **S2-3** (displayed with an isovalue of 0.02): HOMO (left) and LUMO (right).

Symmetry = C1

B3LYP/6-31G(d)

E=-2859.51240006 Ha

| ΑΤΟΜ | SYMBOL | X        | Y        | Z        |
|------|--------|----------|----------|----------|
| 1    | С      | 0.062352 | 2.069507 | 0.315208 |
| 2    | С      | -0.13611 | 0.679128 | 0.265718 |
| 3    | Ν      | -1.36619 | 0.138839 | 0.254192 |
| 4    | С      | -1.056   | 2.891031 | 0.37693  |
| 5    | С      | -2.32674 | 2.326481 | 0.38538  |
| 6    | С      | -2.45993 | 0.917567 | 0.316337 |
| 7    | 0      | -3.43243 | 3.146423 | 0.423383 |
| 8    | С      | -3.84162 | 3.515201 | 1.746444 |
| 9    | Н      | -3.04609 | 4.072381 | 2.2584   |
| 10   | Н      | -4.10669 | 2.629707 | 2.337061 |
| 11   | Н      | -4.72127 | 4.1512   | 1.629723 |
| 12   | С      | 0.979023 | -0.27379 | 0.213735 |
| 13   | С      | 0.881536 | -1.64278 | 0.115261 |
| 14   | S      | 2.653072 | 0.21938  | 0.263455 |
| 15   | С      | 2.129966 | -2.32199 | 0.084207 |
| 16   | С      | 3.202009 | -1.44371 | 0.165622 |
| 17 | С | 2.203381 | -3.82133 | -0.05372 |
|----|---|----------|----------|----------|
| 18 | С | 4.650734 | -1.66142 | 0.167702 |
| 19 | Н | -0.07509 | -2.14726 | 0.056349 |
| 20 | С | -3.75764 | 0.230568 | 0.309231 |
| 21 | Н | -0.9657  | 3.972738 | 0.412969 |
| 22 | Н | 1.059987 | 2.496776 | 0.300157 |
| 23 | S | -5.24946 | 1.064916 | -0.11927 |
| 24 | С | -4.00709 | -1.11377 | 0.568855 |
| 25 | С | -6.18584 | -0.39736 | 0.041388 |
| 26 | С | -5.38007 | -1.44582 | 0.418842 |
| 27 | С | -2.99526 | -2.15569 | 0.967849 |
| 28 | Н | -5.77865 | -2.43923 | 0.587237 |
| 29 | С | -7.63358 | -0.44577 | -0.18333 |
| 30 | Н | 1.224542 | -4.22311 | -0.3324  |
| 31 | Н | 2.498432 | -4.30724 | 0.885536 |
| 32 | Н | 2.921108 | -4.12612 | -0.82342 |
| 33 | Н | -2.27367 | -1.77087 | 1.692094 |
| 34 | Н | -2.4158  | -2.48934 | 0.099862 |
| 35 | Н | -3.50387 | -3.02652 | 1.39554  |
| 36 | Ν | -8.22738 | -1.64175 | 0.037277 |
| 37 | С | -8.37877 | 0.665116 | -0.60439 |
| 38 | С | -9.75413 | 0.550275 | -0.79832 |
| 39 | С | -10.3572 | -0.68781 | -0.56594 |
| 40 | С | -9.53425 | -1.75039 | -0.14892 |
| 41 | Н | -7.89369 | 1.619722 | -0.7856  |
| 42 | Н | -10.3271 | 1.411035 | -1.12425 |
| 43 | 0 | -11.6803 | -0.97309 | -0.70512 |
| 44 | Н | -9.99065 | -2.72171 | 0.034143 |
| 45 | С | -12.5452 | 0.072487 | -1.12602 |
| 46 | Н | -13.5442 | -0.36437 | -1.17137 |
| 47 | Н | -12.2677 | 0.448924 | -2.12007 |
| 48 | Н | -12.5455 | 0.906907 | -0.41138 |

| 49 | С | 5.254477 | -2.92053 | 0.355912 |
|----|---|----------|----------|----------|
| 50 | Ν | 5.391941 | -0.5524  | 0.004185 |
| 51 | С | 6.732461 | -0.6089  | -0.01745 |
| 52 | С | 7.39785  | -1.8454  | 0.127828 |
| 53 | С | 6.641475 | -2.99703 | 0.326294 |
| 54 | Н | 4.667449 | -3.80747 | 0.547711 |
| 55 | Н | 7.155196 | -3.94246 | 0.475243 |
| 56 | 0 | 8.772562 | -1.9029  | 0.126832 |
| 57 | С | 7.42149  | 0.673526 | -0.20253 |
| 58 | С | 9.345937 | -2.39217 | -1.09142 |
| 59 | Н | 9.001181 | -3.41165 | -1.30796 |
| 60 | Н | 10.42721 | -2.395   | -0.94122 |
| 61 | Н | 9.094215 | -1.73479 | -1.93287 |
| 62 | С | 6.797739 | 1.87296  | -0.464   |
| 63 | S | 9.160498 | 0.901592 | -0.10361 |
| 64 | С | 8.992302 | 2.596175 | -0.42397 |
| 65 | С | 7.686499 | 2.980497 | -0.59432 |
| 66 | Н | 5.720314 | 1.941446 | -0.55843 |
| 67 | Н | 9.871733 | 3.226934 | -0.46884 |
| 68 | С | 7.235023 | 4.386577 | -0.88348 |
| 69 | Н | 8.084393 | 5.074146 | -0.94549 |
| 70 | Н | 6.560175 | 4.75536  | -0.10105 |
| 71 | Н | 6.688136 | 4.440798 | -1.83303 |

| Table SI- 16 | <ul> <li>xyz Coordinates</li> </ul> | from the DFT | calculations of | molecule <b>S2-3</b> . |
|--------------|-------------------------------------|--------------|-----------------|------------------------|
|--------------|-------------------------------------|--------------|-----------------|------------------------|

## Bond length alternation (BLA) values

The BLA values for **S1-3** and **S2-3** were accessible by substraction of the longer C-C bond with the shorter C=C bond in both inner thiophene rings.



 Table SI-17. Bond lengths for C-C/C=C units and BLA values for S1-3 and S2-3.

| Trimer | δ r <sub>ba</sub> (Å) | δ r <sub>bc</sub> (Å) | δ r <sub>ed</sub> (Å) | δ r <sub>ef</sub> (Å) |
|--------|-----------------------|-----------------------|-----------------------|-----------------------|
| S1-3   | 0.04539               | 0.05254               | 0.04396               | 0.0519                |
| S2-3   | 0.03331               | 0.04559               | 0.02879               | 0.04536               |

Table SI-18. BLA values for S1-3 and S2-3 in direct comparison.

Comparing the BLA values of **S1-3** and **S2-3** lead to the comclusion that the thiophene rings in **S2-3** represent a more quinoidal structure than in **S1-3** since the bond length of the central C-C unit is shorter than expected as has a tendency to form a C=C unit.

## Literature

- [1] A. C. J. Heinrich, University of Kiel (Kiel ), **2014**.
- [2] X. Liu, J. Long, G. Wang, Y. Pei, B. Zhao, S. Tan, *Dyes Pigm.* **2015**, *121*, 118-127.
- [3] A. C. J. Heinrich, B. Thiedemann, P. J. Gates, A. Staubitz, *Org. Lett.* **2013**, *15*, 4666-4669.
- [4] J. Y. Hwang, L. A. Arnold, F. Zhu, A. Kosinski, T. J. Mangano, V. Setola, B. L. Roth, R. K. Guy, *Journal of Medicinal Chemistry* **2009**, *52*, 3892-3901.
- M. S. Yusubov, E. N. Tveryakova, E. A. Krasnokutskaya, I. A. Perederyna, V. V. Zhdankin, *Synthetic Communications* 2007, *37*, 1259-1265.
- [6] M. Gao, M. Wang, Q.-H. Zheng, *Bioorg Med Chem Lett* **2016**, *26*, 3694-3699.
- [7] A. K. Parhi, A. Xiang, J. D. Bauman, D. Patel, R. S. Vijayan, K. Das, E. Arnold,
   E. J. Lavoie, *Bioorg Med Chem* **2013**, *21*, 6435-6446.

- [8] J. Tauc, R. Grigorovici, A. Vancu, *physica status solidi* (*b*) **1966**, *15*, 627-637.
- [9] a) J. H. Nobbs, *Review of Progress in Coloration and Related Topics* 1985, 15, 66-75; b) E. A. Davis, N. F. Mott, *The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics* 1970, 22, 0903-0922.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Wallingford, CT, **2016**.