Electronic Supporting Information for

Diastereoselective Bicyclization of Enynols via Gold Catalysis

Chiara Cecchini, ${ }^{\text {a }}$ Gianpiero Cera, ${ }^{a}$ Matteo Lanzi, ${ }^{a}$ Luciano Marchiò, ${ }^{a}$ Max Malacria ${ }^{\text {b }}$ and Giovanni Maestri ${ }^{\text {a }}$

${ }^{\text {a }}$ Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy;
${ }^{\text {b }}$ Sorbonne Université, Institut Parisien de Chimie Moleculaire, UMR 8232, Place Jussieu 4, 75252 Paris, France.

Table of contents

General remarks and materials 3
Synthesis of reagents 4
Synthesis of products 16
Scope limitations 26
Copies of NMR spectra 27
Crystallographic data 66
References 69

General Remarks and Materials

All chemicals those syntheses are not reported hereafter were purchased from commercial sources and used as received. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$ NMR spectra were recorded at 300 K on a Bruker 400 MHz or Bruker 300 MHz spectrometers using solvents as internal standards (7.26 ppm for ${ }^{1} \mathrm{H}$ NMR and 77.00 ppm for ${ }^{13} \mathrm{C}$ NMR for $\left.\mathrm{CDCl}_{3}\right){ }^{19} \mathrm{~F}$-NMR spectra were recorded in CDCl_{3} at 298 K on a JEOL 600 spectrometer. The terms $\mathrm{m}, \mathrm{s}, \mathrm{d}, \mathrm{t}, \mathrm{q}$ and quint represent multiplet, singlet, doublet, triplet, quadruplet and quintuplet respectively, and the term brs means a broad signal. LC-MS were recorded on an Agilent LQ Mass Spectrometer (ESI source). Chromatographic purifications were performed under gradient using a Combiflash ${ }^{\circledR}$ system and prepacked disposable silica cartridges. The synthesis of enynes \mathbf{A} (see GP-1) and substituted acetates \mathbf{B} (see GP-2) was carried out following known procedures. ${ }^{[1,2]}$ Substituted N-cinnamyl-4-methylbenzenesulfonamides C (see GP-3) were prepared according to a previously employed protocol. ${ }^{[3]}$ Gold complexes B, C and \mathbf{E} were obtained following published procedures. ${ }^{[4,5,6]}$ CCDC $1941564-1941565$ contain the crystallographic data for products $\mathbf{4 a}$ and $\mathbf{2 g}$, respectively.

Synthesis of reagents

General Procedure for synthesis of enynols (GP-1)

A solution of the desired enyne \mathbf{A} (1 equiv.) in THF $\left(0.25 \mathrm{M}\right.$) was cooled to $-78^{\circ} \mathrm{C}$ and then BuLi (1.6 M in hexane, 1.3 equiv.) was added dropwise under a N_{2} atmosphere. After 1 hour, paraformaldehyde (3 equiv.) was added and the mixture was stirred overnight at room temperature. Upon complete conversion, a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ was added and the resulting mixture was extracted with EtOAc (3 x 20 mL). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and purified by column chromatography (eluent: gradient hexane/ethyl acetate).

General Procedure for synthesis of enynols (GP-2)

To a solution of but-2-yne-1,4-diol (5 equiv.) in THF, $\mathrm{Et}_{2} \mathrm{Zn}$ (0.9 M in hexane, 0.5 equiv.) was added dropwise. The resulting mixture was stirred until it turned cloudily white (30 min). At this point the desired acetate \mathbf{B} (1 equiv.) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ were then added and the reaction was stirred overnight at room temperature. Upon complete conversion, the mixture was concentrated and carefully purified by column chromatography (eluent: gradient hexane/ethyl acetate).

General Procedure for synthesis of enynols (GP-3)

The desired cinnamyl-benzensulphonamide \mathbf{C} (1 equiv.) was dissolved in acetone and then $\mathrm{K}_{2} \mathrm{CO}_{3}(2$ equiv.) was added. After 15 minutes, ((4-bromobut-2-yn-1-yl)oxy)(tert-butyl))dimethylsilane (1.5 equiv.) was syringed and the resulting mixture was stirred overnight at $70^{\circ} \mathrm{C}$. Upon complete conversion, the reaction was diluted with water and the solution was extracted with EtOAc (3×30 mL). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude was dissolved in THF (0.4 M), cooled at $0^{\circ} \mathrm{C}$ and subsequently TBAF $\cdot \mathrm{H}_{2} \mathrm{O}$ (1.3 equiv.) was added to the mixture. The reaction was stirred for 1.5 hours. Upon complete conversion, the reaction was diluted with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and purified by column chromatography (eluent: gradient hexane/ethyl acetate).

Gold catalyst B

Complex B has been prepared following the reported procedure. ${ }^{[4]}$ Spectra correspond to the literature. ${ }^{[4]}{ }^{31} \mathbf{P} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.8$.

Gold catalyst C

Complex B has been prepared following the reported procedure. ${ }^{[5]}$ Spectra correspond to the literature. ${ }^{[5]}{ }^{31} \mathbf{P} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 29.3.

Gold catalyst E

Complex \mathbf{E} has been prepared following the reported procedure. ${ }^{[6]}$ Spectra correspond to the literature. ${ }^{[6]}{ }^{\mathbf{3 1}} \mathbf{P} \mathbf{~ N M R ~}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 100.8$.

4-(cinnamyloxy)but-2-yn-1-ol (1a)

1a was isolated following the reported procedure. ${ }^{[2]}$ Spectra correspond to the literature. ${ }^{[2] ~} \mathbf{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.66(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dt}, J=15.9,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.35(\mathrm{~s}, 2 \mathrm{H}), 4.26-4.24(\mathrm{~m}, 4 \mathrm{H})$.

(E)-4-[(3-(3-fluoro-4-methylphenyl)allyl)oxy]but-2-yn-1-ol (1b)

$\mathbf{1 b}$ was isolated following procedure GP-2 using but-2-yne-1,4-diol ($925 \mathrm{mg}, 10.8 \mathrm{mmol}$) and (E)-3-(3-fluoro-4-methylphenyl)allyl acetate ($448 \mathrm{mg}, 2.1 \mathrm{mmol}$). Purification by column chromatography afforded $\mathbf{1 b}(39 \%, 196 \mathrm{mg}, 0.8 \mathrm{mmol})$ as a brown oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13-7.01(\mathrm{~m}$, $3 \mathrm{H}), 6.56(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dt}, J=15.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 4.23-4.20(\mathrm{~m}, 4 \mathrm{H}), 2.25$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.5\left(\mathrm{~d},{ }^{1} J_{C-F}=244.2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 136.2\left(\mathrm{~d},{ }^{4} J_{C-F}=7.8 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $132.2\left(\mathrm{~d},{ }^{8} J_{C-F}=2.2 \mathrm{~Hz}, \mathrm{CH}\right), 131.5\left(\mathrm{~d},{ }^{5} J_{C-F}=5.3 \mathrm{~Hz}, \mathrm{CH}\right), 125.4(\mathrm{CH}), 124.4\left(\mathrm{~d},{ }^{3} J_{C-F}=17.6 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{\mathrm{q}}\right), 122.1\left(\mathrm{~d},{ }^{7} J_{C-F}=3.2 \mathrm{~Hz}, \mathrm{CH}\right), 112.6\left(\mathrm{~d},{ }^{2} J_{C-F}=22.8 \mathrm{~Hz}, \mathrm{CH}\right), 84.9\left(\mathrm{C}_{\mathrm{q}}\right), 81.6\left(\mathrm{C}_{\mathrm{q}}\right), 70.2\left(\mathrm{CH}_{2}\right)$, $57.5\left(\mathrm{CH}_{2}\right), 51.1\left(\mathrm{CH}_{2}\right), 14.4\left(\mathrm{~d},{ }^{6} J_{C-F}=3.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{19} \mathbf{F}$ NMR ($\left.565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-117.7$. LCMS calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{FNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 257.10$, found 257.19.

(E)-4-[(3-(4-chlorophenyl)allyl)oxy]but-2-yn-1-ol (1c)

$\mathbf{1 c}$ was isolated following procedure GP-2 using but-2-yne-1,4-diol ($851 \mathrm{mg}, 9.9 \mathrm{mmol}$) and (E)-3-(4-chlorophenyl)allyl acetate ($417 \mathrm{mg}, 1.9 \mathrm{mmol}$). Purification by column chromatography afforded $\mathbf{1 c}(54 \%, 255 \mathrm{mg}, 1.1 \mathrm{mmol})$ as a pale yellow oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.26(\mathrm{~m}, 4 \mathrm{H})$, $6.59(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dt}, J=15.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{t}, J=1.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.21(\mathrm{dd}, J=6.1,1.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.0\left(\mathrm{C}_{\mathrm{q}}\right), 133.5\left(\mathrm{C}_{\mathrm{q}}\right), 131.9(\mathrm{CH})$, $128.8(\mathrm{CH}), 127.7(\mathrm{CH}), 125.8(\mathrm{CH}), 84.8\left(\mathrm{C}_{\mathrm{q}}\right), 81.7\left(\mathrm{C}_{\mathrm{q}}\right), 70.2\left(\mathrm{CH}_{2}\right), 57.5\left(\mathrm{CH}_{2}\right)$, $51.2\left(\mathrm{CH}_{2}\right)$. LCMS calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 259.05$, found 259.12.

(E)-4-[(3-(naphthalen-1-yl)allyl)oxy]but-2-yn-1-ol (1d)

1d was isolated following procedure GP-2 using but-2-yne-1,4-diol (1040 mg, 12.0 mmol) and (E)-3-(4-chlorophenyl)allyl acetate ($550 \mathrm{mg}, 2.4 \mathrm{mmol}$). Purification by column chromatography afforded $\mathbf{1 d}(32 \%, 200 \mathrm{mg}, 0.8 \mathrm{mmol})$ as a yellow oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.45(\mathrm{~m}$, $3 \mathrm{H}), 7.41(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dt}, J=15.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.31(\mathrm{~m}, 6 \mathrm{H}), 2.10(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 134.3\left(\mathrm{C}_{\mathrm{q}}\right), 133.6\left(\mathrm{C}_{\mathrm{q}}\right), 131.1\left(\mathrm{C}_{\mathrm{q}}\right), 130.5(\mathrm{CH}), 128.6(\mathrm{CH}), 128.3(\mathrm{CH})$, $128.2(\mathrm{CH}), 126.1(\mathrm{CH}), 125.8(\mathrm{CH}), 125.6(\mathrm{CH}), 124.0(\mathrm{CH}), 123.8(\mathrm{CH}), 85.0\left(\mathrm{C}_{\mathrm{q}}\right), 81.6\left(\mathrm{C}_{\mathrm{q}}\right), 70.6$ $\left(\mathrm{CH}_{2}\right), 57.6\left(\mathrm{CH}_{2}\right), 51.0\left(\mathrm{CH}_{2}\right) . \mathbf{L C}-\mathbf{M S}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 245.10$, found 245.16.

(E)-4-[(3-(naphthalen-2-yl)allyl)oxy]but-2-yn-1-ol (1e)

$\mathbf{1 e}$ was isolated following procedure GP-2 using but-2-yne-1,4-diol (732 mg, 8.5 mmol) and (E)-3-(naphthalen-2-yl)allyl acetate ($385 \mathrm{mg}, 1.7 \mathrm{mmol}$). Purification by column chromatography afforded $\mathbf{1 e}(43 \%, 184 \mathrm{mg}, 0.7 \mathrm{mmol})$ as a pale yellow wax. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82-7.74(\mathrm{~m}$, 4H), 7.61 (dd, $J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.42$ (m, 2H), 6.81 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{dt}, J=15.8$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.27(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.0\left(\mathrm{C}_{\mathrm{q}}\right), 133.6\left(\mathrm{C}_{\mathrm{q}}\right), 133.5(\mathrm{CH})$, $133.1\left(\mathrm{C}_{\mathrm{q}}\right), 128.3(\mathrm{CH}), 128.0(\mathrm{CH}), 127.7(\mathrm{CH}), 126.7(\mathrm{CH}), 126.3(\mathrm{CH}), 126.0(\mathrm{CH}), 125.5(\mathrm{CH})$, $123.5(\mathrm{CH}), 84.8\left(\mathrm{C}_{\mathrm{q}}\right), 81.8\left(\mathrm{C}_{\mathrm{q}}\right), 70.5\left(\mathrm{CH}_{2}\right), 57.5\left(\mathrm{CH}_{2}\right), 51.2\left(\mathrm{CH}_{2}\right)$. $\mathbf{L C}$ - MS calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NaO}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+} 275.10$, found 275.19.

4-(cinnamyloxy)-4-phenylbut-2-yn-1-ol (1f)

1f was isolated following procedure GP-1 using (E)-(1-(cinnamyloxy)prop-2-yn-1-yl)benzene (500 $\mathrm{mg}, 2.0 \mathrm{mmol}$) and paraformaldehyde ($181 \mathrm{mg}, 6.0 \mathrm{mmol}$). Purification by column chromatography afforded $\mathbf{1 f}(40 \%, 224 \mathrm{mg}, 0.8 \mathrm{mmol})$ as a pale yellow oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-$ $7.54(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.28(\mathrm{~m}, 8 \mathrm{H}), 6.68(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dt}, J=15.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~s}$, $1 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 4.35-4.29(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.4\left(\mathrm{C}_{\mathrm{q}}\right), 136.6$ $\left(\mathrm{C}_{\mathrm{q}}\right), 133.4(\mathrm{CH}), 128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.6(\mathrm{CH}), 127.9(\mathrm{CH}), 127.5(\mathrm{CH}), 126.6(\mathrm{CH}), 125.4$ $(\mathrm{CH}), 86.1\left(\mathrm{C}_{\mathrm{q}}\right), 83.5\left(\mathrm{C}_{\mathrm{q}}\right), 70.7\left(\mathrm{CH}_{2}\right), 69.0(\mathrm{CH}), 51.0\left(\mathrm{CH}_{2}\right)$. LC-MS calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NaO}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+} 301.12$ found 301.16 .

4-(cinnamyloxy)pent-2-yn-1-ol (1g)

$\mathbf{1 g}$ was isolated following procedure GP-1 using (E)-(3-(but-3-yn-2-yloxy)prop-1-en-1-yl)benzene ($432 \mathrm{mg}, 2.3 \mathrm{mmol}$) and paraformaldehyde ($209 \mathrm{mg}, 7.0 \mathrm{mmol}$). Purification by column chromatography afforded $\mathbf{1 g}(36 \%, 183 \mathrm{mg}, 0.8 \mathrm{mmol})$ as a pale yellow oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.43-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.66(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{dt}, J=15.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{ddd}, J$ $=12.4,5.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.31(\mathrm{~m}, 3 \mathrm{H}), 4.16(\mathrm{ddd}, J=12.4,6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 1 \mathrm{H}), 1.50$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.6\left(\mathrm{C}_{\mathrm{q}}\right), 133.0(\mathrm{CH}), 128.6(\mathrm{CH}), 127.8(\mathrm{CH})$, $126.5(\mathrm{CH}), 125.5(\mathrm{CH}), 85.6\left(\mathrm{C}_{\mathrm{q}}\right), 83.3\left(\mathrm{C}_{\mathrm{q}}\right), 69.3\left(\mathrm{CH}_{2}\right), 64.5(\mathrm{CH}), 51.1\left(\mathrm{CH}_{2}\right), 22.1\left(\mathrm{CH}_{3}\right)$. LCMS calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 239,11$, found 239.15.

N-cinnamyl- N-(4-hydroxybut-2-yn-1-yl)-4-methylbenzenesulfonamide (3a)

3a was isolated following procedure GP-1 using N-cinnamyl-4-methyl-N-(prop-2-yn-1-yl) benzenesulfonamide ($2.83 \mathrm{~g}, 8.7 \mathrm{mmol}$) and paraformaldehyde ($784 \mathrm{mg}, 26.1 \mathrm{mmol}$). Purification by column chromatography afforded $\mathbf{3 a}(60 \%, 1.86 \mathrm{~g}, 8.7 \mathrm{mmol})$ as a white solid. M. p. $=(75-78){ }^{\circ} \mathrm{C}$ ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 7 \mathrm{H}), 6.56(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.08(\mathrm{dt}, J=15.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 4.00-3.98(\mathrm{~m}, 4 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{brs}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.7\left(\mathrm{C}_{\mathrm{q}}\right), 136.2\left(\mathrm{C}_{\mathrm{q}}\right), 136.1\left(\mathrm{C}_{\mathrm{q}}\right), 134.8(\mathrm{CH}), 129.5(\mathrm{CH}), 128.7$ $(\mathrm{CH}), 128.1(\mathrm{CH}), 128.0(\mathrm{CH}), 126.5(\mathrm{CH}), 123.0(\mathrm{CH}), 83.9\left(\mathrm{C}_{\mathrm{q}}\right), 78.7\left(\mathrm{C}_{\mathrm{q}}\right), 50.8\left(\mathrm{CH}_{2}\right), 48.9\left(\mathrm{CH}_{2}\right)$, $36.2\left(\mathrm{CH}_{2}\right)$, $21.5\left(\mathrm{CH}_{3}\right)$. $\mathbf{L C}-\mathbf{M S}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 378.11$, found 378.13.

N-cinnamyl- N-(4-hydroxybut-2-yn-1-yl)methanesulfonamide (3b)

3b was isolated following procedure GP-1 using N-cinnamyl- N-(prop-2-yn-1yl)methanesulfonamide ($500 \mathrm{mg}, 2.0 \mathrm{mmol}$) and paraformaldehyde ($180 \mathrm{mg}, 6.0 \mathrm{mmol}$). Purification by column chromatography afforded $\mathbf{3 b}(40 \%, 224 \mathrm{mg}, 0.8 \mathrm{mmol})$ as a white solid. M. p. $=(91-$ $95){ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.65(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dt}, J=$ $15.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.0\left(\mathrm{C}_{\mathrm{q}}\right), 135.0(\mathrm{CH}), 128.7(\mathrm{CH}), 128.2(\mathrm{CH}), 126.6(\mathrm{CH})$, $122.9(\mathrm{CH}), 84.4\left(\mathrm{C}_{\mathrm{q}}\right), 79.3\left(\mathrm{C}_{\mathrm{q}}\right), 51.0\left(\mathrm{CH}_{2}\right), 48.9\left(\mathrm{CH}_{2}\right), 38.7\left(\mathrm{CH}_{3}\right), 36.1\left(\mathrm{CH}_{2}\right)$. LC-MS calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 302.08$, found 302.15.

(E)-N-(4-hydroxybut-2-yn-1-yl)-4-methyl-N-(3-(o-tolyl)allyl)benzenesulfonamide (3c)

3c was isolated following procedure GP-1 using (E)-4-methyl-N-(prop-2-yn-1-yl)-N-(3-(otolyl)allyl)benzenesulfonamide ($399 \mathrm{mg}, 1.2 \mathrm{mmol}$) and paraformaldehyde ($106 \mathrm{mg}, 3.5 \mathrm{mmol}$). Purification by column chromatography afforded $\mathbf{3 c}(42 \%, 189 \mathrm{mg}, 0.5 \mathrm{mmol})$ as a yellow solid. M. p. $=(76-79){ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.18$ - $7.12(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dt}, J=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H})$, $4.02-4.00(\mathrm{~m}, 4 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{brs}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.7$ $\left(\mathrm{C}_{\mathrm{q}}\right), 136.1\left(\mathrm{C}_{\mathrm{q}}\right), 135.5\left(\mathrm{C}_{\mathrm{q}}\right), 135.2\left(\mathrm{C}_{\mathrm{q}}\right), 133.0(\mathrm{CH}), 130.4(\mathrm{CH}), 129.5(\mathrm{CH}), 128.0(2 \mathrm{CH}), 126.2$ $(\mathrm{CH}), 125.8(\mathrm{CH}), 124.2(\mathrm{CH}), 83.9\left(\mathrm{C}_{\mathrm{q}}\right), 78.7\left(\mathrm{C}_{\mathrm{q}}\right), 50.8\left(\mathrm{CH}_{2}\right), 49.1\left(\mathrm{CH}_{2}\right), 36.2\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right)$, $19.8\left(\mathrm{CH}_{3}\right)$. LC-MS calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 392.13$, found 392.20
(E)-N-[3-(3-(benzyloxy)phenyl)allyl]-N-(4-hydroxybut-2-yn-1-yl)-4methylbenzenesulfonamide (3d)

3d was isolated following procedure GP-3 using (E)-N-(3-(3-(benzyloxy)phenyl)allyl)-4methylbenzenesulfonamide ($879 \mathrm{mg}, 2.2 \mathrm{mmol}$) and ((4-bromobut-2-yn-1-yl)oxy)(tert-butyl)) dimethylsilane ($880 \mathrm{mg}, 3.3 \mathrm{mmol}$). Purification by column chromatography afforded $\mathbf{3 d}(20 \%, 201$ $\mathrm{mg}, 0.4 \mathrm{mmol})$ as a white solid. M. p. $=(82-85)^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.33$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.87(\mathrm{~m}, 3 \mathrm{H})$, $6.53(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dt}, J=15.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 4.00-3.97(\mathrm{~m}$, $4 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1\left(\mathrm{C}_{\mathrm{q}}\right), 143.7\left(\mathrm{C}_{\mathrm{q}}\right), 137.6\left(\mathrm{C}_{\mathrm{q}}\right), 136.9\left(\mathrm{C}_{\mathrm{q}}\right)$, $136.2\left(\mathrm{C}_{\mathrm{q}}\right), 134.7(\mathrm{CH}), 129.7(\mathrm{CH}), 129.5(\mathrm{CH}), 128.6(\mathrm{CH}), 128.1(\mathrm{CH}), 128.0(\mathrm{CH}), 127.5(\mathrm{CH})$, $123.4(\mathrm{CH}), 119.5(\mathrm{CH}), 114.6(\mathrm{CH}), 112.9(\mathrm{CH}), 83.9\left(\mathrm{C}_{\mathrm{q}}\right), 78.7\left(\mathrm{C}_{\mathrm{q}}\right), 70.0\left(\mathrm{CH}_{2}\right), 50.8\left(\mathrm{CH}_{2}\right), 48.8$ $\left(\mathrm{CH}_{2}\right), 36.3\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right)$. LC-MS calcd for $\mathrm{C}_{27} \mathrm{H}_{2} \mathrm{NNNaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 484.15$ found 484.19

(E)-N-(4-hydroxybut-2-yn-1-yl)-N-(3-(4-methoxyphenyl)allyl)-4-methylbenzenesulfonamide (3e)

3e was isolated following procedure GP-3 using (E)-N-(3-(4-methoxyphenyl)allyl)-4methylbenzenesulfonamide ($293 \mathrm{mg}, 0.9 \mathrm{mmol}$) and ((4-bromobut-2-yn-1-yl)oxy)(tert-butyl)) dimethylsilane ($364 \mathrm{mg}, 1.4 \mathrm{mmol}$). Purification by column chromatography afforded $\mathbf{3 e}(\mathbf{3 3 \%}, 120$ $\mathrm{mg}, 0.3 \mathrm{mmol})$ as a white solid. M. p. $=(83-87){ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.34$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=15.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.95(\mathrm{dt}, J=15.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 4.03-3.97(\mathrm{~m}, 4 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H})$, $1.32($ brs, 1 H$) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.6\left(\mathrm{C}_{\mathrm{q}}\right), 143.6\left(\mathrm{C}_{\mathrm{q}}\right), 136.3\left(\mathrm{C}_{\mathrm{q}}\right), 134.4(\mathrm{CH}), 129.4$
$(\mathrm{CH}), 128.9\left(\mathrm{C}_{q}\right), 128.0(\mathrm{CH}), 127.8(\mathrm{CH}), 120.6(\mathrm{CH}), 114.1(\mathrm{CH}), 83.8\left(\mathrm{C}_{\mathrm{q}}\right), 78.8\left(\mathrm{C}_{\mathrm{q}}\right), 55.3\left(\mathrm{CH}_{3}\right)$, $50.8\left(\mathrm{CH}_{2}\right), 49.0\left(\mathrm{CH}_{2}\right), 36.1\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right)$. LC-MS calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NNaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 408.20$, found 408.17 .

(E)-N-(3-(4-chlorophenyl)allyl)- N -(4-hydroxybut-2-yn-1-yl)-4-methylbenzenesulfonamide (3f)

3f was isolated following procedure GP-3 using (E)-N-(3-(4-chlorophenyl)allyl)-4methylbenzenesulfonamide ($413 \mathrm{mg}, 1.3 \mathrm{mmol}$) and ((4-bromobut-2-yn-1-yl)oxy)(tert-butyl)) dimethylsilane ($505 \mathrm{mg}, 1.9 \mathrm{mmol}$). Purification by column chromatography afforded $\mathbf{3 f}(\mathbf{3 1 \%}, 155$ $\mathrm{mg}, 0.4 \mathrm{mmol})$ as a white solid. M. p. $=(73-76)^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.33$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.29 - 7.24 (m, 4H), 6.52 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.07$ (dt, $J=15.8$, 6.7 Hz, 1H), $4.13(\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.7\left(\mathrm{C}_{\mathrm{q}}\right), 136.2\left(\mathrm{C}_{\mathrm{q}}\right), 134.6\left(\mathrm{C}_{\mathrm{q}}\right), 133.8\left(\mathrm{C}_{\mathrm{q}}\right), 133.4(\mathrm{CH}), 129.5$ $(\mathrm{CH}), 128.8(\mathrm{CH}), 128.0(\mathrm{CH}), 127.7(\mathrm{CH}), 123.9(\mathrm{CH}), 83.9\left(\mathrm{C}_{\mathrm{q}}\right), 78.6\left(\mathrm{C}_{\mathrm{q}}\right), 50.8\left(\mathrm{CH}_{2}\right), 48.7\left(\mathrm{CH}_{2}\right)$, $36.4\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right)$. LC-MS calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClNNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 412.08$, found 412.14.

(E)-N-(4-hydroxybut-2-yn-1-yl)-4-methyl-N-(3-(naphthalen-2-yl)allyl)benzenesulfonamide (3g)

$\mathbf{3 g}$ was isolated following procedure GP-3 using (E)-4-methyl-N-(3-(naphthalen-2-yl)allyl) benzenesulfonamide ($610 \mathrm{mg}, 1.8 \mathrm{mmol}$) and ((4-bromobut-2-yn-1-yl)oxy)(tert-butyl)) dimethylsilane ($714 \mathrm{mg}, 2.7 \mathrm{mmol}$). Purification by column chromatography afforded $\mathbf{3 g}(18 \%, 175$ $\mathrm{mg}, 0.3 \mathrm{mmol})$ as a yellow solid. M. p. $=(78-81)^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-7.77$ (m, 5H), 7.69 (s, 1H), $7.55-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=$
$15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dt}, J=15.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.05-4.02(\mathrm{~m}, 4 \mathrm{H}), 2.44(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.7\left(\mathrm{C}_{\mathrm{q}}\right), 136.3\left(\mathrm{C}_{\mathrm{q}}\right), 134.9(\mathrm{CH}), 133.5\left(\mathrm{C}_{\mathrm{q}}\right), 133.5\left(\mathrm{C}_{\mathrm{q}}\right), 133.2$ $\left(\mathrm{C}_{\mathrm{q}}\right), 129.5(\mathrm{CH}), 128.4(\mathrm{CH}), 128.0(\mathrm{CH}), 128.0(\mathrm{CH}), 127.7(\mathrm{CH}), 126.8(\mathrm{CH}), 126.4(\mathrm{CH}), 126.2$ $(\mathrm{CH}), 123.4(\mathrm{CH}), 123.4(\mathrm{CH}), 84.0\left(\mathrm{C}_{\mathrm{q}}\right), 78.7\left(\mathrm{C}_{\mathrm{q}}\right)$, $50.8\left(\mathrm{CH}_{2}\right), 49.0\left(\mathrm{CH}_{2}\right), 36.3\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right)$. LC-MS calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 428.13$, found 428.18.

(E)-N-(3-(furan-3-yl)allyl)-N-(4-hydroxybut-2-yn-1-yl)-4-methylbenzenesulfonamide (3h)

3h was isolated following procedure GP-1 using (E)-N-(3-(furan-3-yl)allyl)-4-methyl- N-(prop-2-yn1 -yl)benzenesulfonamide ($270 \mathrm{mg}, 0.9 \mathrm{mmol}$) and paraformaldehyde ($77 \mathrm{mg}, 2.6 \mathrm{mmol}$). Purification by column chromatography afforded $\mathbf{3 h}(30 \%, 88 \mathrm{mg}, 0.2 \mathrm{mmol})$ as a yellow solid. M. p. $=(85-$ 89) ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dt}, J=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H})$, $3.99(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{brs}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $143.7(\mathrm{CH}), 143.7\left(\mathrm{C}_{\mathrm{q}}\right), 140.9(\mathrm{CH}), 136.2\left(\mathrm{C}_{\mathrm{q}}\right), 129.4(\mathrm{CH}), 128.0(\mathrm{CH}), 124.6(\mathrm{CH}), 123.3\left(\mathrm{C}_{\mathrm{q}}\right)$, $122.6(\mathrm{CH}), 107.5(\mathrm{CH}), 83.8\left(\mathrm{C}_{\mathrm{q}}\right), 78.7\left(\mathrm{C}_{\mathrm{q}}\right), 50.8\left(\mathrm{CH}_{2}\right), 48.7\left(\mathrm{CH}_{2}\right), 36.1\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right) . \mathbf{L C}-$ MS calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NNaO} 4 \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 368.09$, found 368.17.

(E)-N-(4-hydroxybut-2-yn-1-yl)-4-methyl- N-(3-(thiophen-2-yl)allyl)benzenesulfonamide (3i)

$3 \mathbf{i}$ was isolated following procedure GP-1 using (E)-4-methyl-N-(prop-2-yn-1-yl)-N-(3-(thiophen-2yl)allyl)benzenesulfonamide ($292 \mathrm{mg}, 0.9 \mathrm{mmol}$) and paraformaldehyde ($79 \mathrm{mg}, 2.6 \mathrm{mmol}$). Purification by column chromatography afforded $\mathbf{3 i}(37 \%, 118 \mathrm{mg}, 0.3 \mathrm{mmol})$ as a yellow solid. M. p. $=(79-82){ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.18-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{dt}, J=15.5,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.13(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.8\left(\mathrm{C}_{\mathrm{q}}\right), 141.1\left(\mathrm{C}_{\mathrm{q}}\right), 136.1\left(\mathrm{C}_{\mathrm{q}}\right), 129.5(\mathrm{CH}), 128.0(\mathrm{CH}), 127.8(\mathrm{CH}), 127.5(\mathrm{CH}), 126.4$ $(\mathrm{CH}), 124.9(\mathrm{CH}), 122.5(\mathrm{CH}), 83.9\left(\mathrm{C}_{\mathrm{q}}\right), 78.7\left(\mathrm{C}_{\mathrm{q}}\right), 50.8\left(\mathrm{CH}_{2}\right), 48.7\left(\mathrm{CH}_{2}\right), 36.3\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right)$. LC-MS calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NNaO}_{3} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 384.07$, found 384.11

(Z)-N-(4-hydroxybut-2-yn-1-yl)-4-methyl-N-(3-phenylallyl)benzenesulfonamide (3j)

31 was isolated following procedure GP-1 using (Z)-4-methyl-N-(3-phenylallyl)-N-(prop-2-yn-1yl)benzenesulfonamide ($498 \mathrm{mg}, 1.53 \mathrm{mmol}$) and paraformaldehyde ($137 \mathrm{mg}, 4.59 \mathrm{mmol}$). Purification by column chromatography afforded $\mathbf{3 1}(38 \%, 207 \mathrm{mg}, 0.581 \mathrm{mmol})$ as a yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 7 \mathrm{H}), 6.72(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.64$ (dt, $J=11.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=6.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.7\left(\mathrm{C}_{\mathrm{q}}\right)$, $136.2\left(\mathrm{C}_{\mathrm{q}}\right), 135.9\left(\mathrm{C}_{\mathrm{q}}\right), 134.0(\mathrm{CH}), 129.5(\mathrm{CH}), 128.9(\mathrm{CH})$, $128.2(\mathrm{CH}), 127.8(\mathrm{CH}), 127.3(\mathrm{CH}), 126.1(\mathrm{CH}), 83.9\left(\mathrm{C}_{\mathrm{q}}\right), 78.2\left(\mathrm{C}_{\mathrm{q}}\right), 50.4\left(\mathrm{CH}_{2}\right), 44.1\left(\mathrm{CH}_{2}\right), 36.4$ $\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right)$. LC-MS calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 378.11$, found 378.20.

Synthesis of products

Catalytic Synthesis of 2 and 4 (GP-4)

$\left(2,4-\left(\mathrm{t}-\mathrm{Bu}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right)_{3} \mathrm{PAuCl}$ (1.8 and 1.2 mg for reagents $\mathbf{1}$ and $\mathbf{3}$, respectively, $1 \mathrm{~mol} \%$) was dissolved in 1.0 mL of freshly degassed CHCl_{3} under N_{2} in a 10 mL two-necked round bottom flask. The substrate (0.2 mmol and 0.14 mmol for reagents $\mathbf{1}$ and $\mathbf{3}$, respectively, 1 equiv.) and AgSbF_{6} (a tip of a spatula) were then added and the mixture was stirred at room temperature. The reaction was monitored by TLC. Upon complete conversion, the solution was diluted with DCM (5 mL) and purified by column chromatography (eluent: gradient hexane/ethyl acetate).

3-phenyl-3,3a,4,6-tetrahydro-1H-furo[3,4-c]pyran (2a)

The procedure GP-4 was followed using 1a ($40.4 \mathrm{mg}, 0.20 \mathrm{mmol}$). Purification by column chromatography (eluent: gradient hexane/ethyl acetate.) yielded 2a as a pale yellow oil $(56 \%, 22.2$ $\mathrm{mg}, 0.11 \mathrm{mmol}$, d.r. $>25: 1$). $\mathbf{R}_{\mathbf{f}}=0.45$ (eluent: Hexane/ethyl acetate $=8: 2$). ${ }^{1} \mathbf{H} \mathbf{N M R}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.40-7.33(\mathrm{~m}, 5 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ (d, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.29-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.79$ (brs, $1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.4\left(\mathrm{C}_{\mathrm{q}}\right), 138.8\left(\mathrm{C}_{\mathrm{q}}\right), 128.6(\mathrm{CH}), 128.1(\mathrm{CH}), 126.0(\mathrm{CH})$, $116.2(\mathrm{CH}), 83.4(\mathrm{CH}), 69.7\left(\mathrm{CH}_{2}\right), 65.9\left(\mathrm{CH}_{2}\right), 64.3\left(\mathrm{CH}_{2}\right), 46.5(\mathrm{CH})$. LC-MS calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NaO}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+} 225.09$, found 225.12 .

3-(3-fluoro-4-methylphenyl)-3,3a,4,6-tetrahydro-1H-furo[3,4-c]pyran (2b)

The procedure GP-4 was followed using 1 b ($46.8 \mathrm{mg}, 0.20 \mathrm{mmol}$). Purification by column chromatography (eluent: gradient hexane/ethyl acetate.) yielded 2b as a pale yellow oil ($33 \%, 16.4$ $\mathrm{mg}, 0.07 \mathrm{mmol}$, d.r. $>25: 1$). $\mathbf{R}_{\mathbf{f}}=0.41$ (eluent: Hexane/ethyl acetate $=8: 2$). ${ }^{1} \mathbf{H} \mathbf{N M R}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.05-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}$, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.07(\mathrm{~m}, 3 \mathrm{H}), 3.30(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70$ (brs, $1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.4\left(\mathrm{~d},{ }^{1} J_{C-F}=245.0 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 140.3\left(\mathrm{~d},{ }^{4} J_{C-F}=7.2\right.$ $\left.\mathrm{Hz}, \mathrm{C}_{\mathrm{q}}\right), 138.5(\mathrm{Cq}), 131.6\left(\mathrm{~d},{ }^{5} J_{C-F}=5.4 \mathrm{~Hz}, \mathrm{CH}\right), 124.5\left(\mathrm{~d},{ }^{3} J_{C-F}=17.3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 121.2\left(\mathrm{~d},{ }^{7} J_{C-F}=3.3\right.$ $\mathrm{Hz}, \mathrm{CH}), 116.4(\mathrm{CH}), 112.5\left(\mathrm{~d},{ }^{2} J_{C-F}=23.1 \mathrm{~Hz}, \mathrm{CH}\right), 82.6\left(\mathrm{~d},{ }^{8} J_{C-F}=1.6 \mathrm{~Hz}, \mathrm{CH}\right), 69.7\left(\mathrm{CH}_{2}\right), 65.8$ $\left(\mathrm{CH}_{2}\right), 64.3\left(\mathrm{CH}_{2}\right), 46.6(\mathrm{CH}), 14.4\left(\mathrm{~d},{ }^{6} J_{C-F}=3.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{19} \mathbf{F}$ NMR $\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-117.0$. LC-MS calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{FNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 257.10$ found 257.12.

3-(4-chlorophenyl)-3,3a,4,6-tetrahydro-1H-furo[3,4-c]pyran (2c)

The procedure GP-4 was followed using 1c ($47.3 \mathrm{mg}, 0.20 \mathrm{mmol}$). Purification by column chromatography (eluent: gradient hexane/ethyl acetate.) yielded $\mathbf{2 c}$ as a colourless oil ($51 \%, 23.7 \mathrm{mg}$, 0.10 mmol , d.r. $>25: 1$). $\mathbf{R}_{\mathbf{f}}=0.30$ (eluent: Hexane/ethyl acetate $=8: 2$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.34(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}$, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.146-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{t}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{brs}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.0\left(\mathrm{C}_{\mathrm{q}}\right), 138.4\left(\mathrm{C}_{\mathrm{q}}\right), 133.7\left(\mathrm{C}_{\mathrm{q}}\right), 128.8$
$(\mathrm{CH}), 127.3(\mathrm{CH}), 116.5(\mathrm{CH}), 82.7(\mathrm{CH}), 69.8\left(\mathrm{CH}_{2}\right), 65.7\left(\mathrm{CH}_{2}\right), 64.3\left(\mathrm{CH}_{2}\right), 46.7(\mathrm{CH})$. LC-MS calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 259,05$ found 259.09.

3-(naphthalen-1-yl)-5-tosyl-1,3,3a,4,5,6-hexahydrofuro[3,4-c]pyridine (2d)

The procedure GP-4 was followed using 1d ($50.4 \mathrm{mg}, 0.20 \mathrm{mmol}$). Purification by column chromatography (eluent: gradient hexane/ethyl acetate.) yielded 2d as a white solid ($40 \%, 20.2 \mathrm{mg}$, 0.08 mmol , d.r. $>25: 1$). M. p. $=(98-100){ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.35$ (eluent: Hexane/ethyl acetate $=8: 2$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 3 \mathrm{H}), 5.70(\mathrm{bs}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83-4.78(\mathrm{~m}$, $1 \mathrm{H}), 4.61-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.09(\mathrm{~m}, 3 \mathrm{H}), 3.42(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{brs}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.0\left(\mathrm{C}_{\mathrm{q}}\right), 135.3\left(\mathrm{C}_{\mathrm{q}}\right), 133.9\left(\mathrm{C}_{\mathrm{q}}\right), 131.3\left(\mathrm{C}_{\mathrm{q}}\right), 128.9(\mathrm{CH}), 128.8(\mathrm{CH}), 126.2$ $(\mathrm{CH}), 125.7(\mathrm{CH}), 125.5(\mathrm{CH}), 123.6(\mathrm{CH}), 123.3(\mathrm{CH}), 116.3(\mathrm{CH}), 80.6(\mathrm{CH}), 69.6\left(\mathrm{CH}_{2}\right), 66.5$ $\left(\mathrm{CH}_{2}\right), 64.5\left(\mathrm{CH}_{2}\right), 45.4(\mathrm{CH})$. $\mathbf{L C}-\mathbf{M S}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 275.10$, found 275.14.

3-(naphthalen-2-yl)-3,3a,4,6-tetrahydro-1H-furo[3,4-c]pyran (2e)

The procedure GP-4 was followed using 1e ($50.4 \mathrm{mg}, 0.20 \mathrm{mmol}$). Purification by column chromatography (eluent: gradient hexane/ethyl acetate.) yielded $\mathbf{2 e}$ as a white solid ($64 \%, 32.8 \mathrm{mg}$, 0.13 mmol , d.r. $>25: 1$). M. p. $=(82-85){ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.30$ (eluent: Hexane/ethyl acetate $=8: 2$). ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.88$ - $7.81(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 3 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=12.5$
$\mathrm{Hz}, 1 \mathrm{H}), 4.55-4.49(\mathrm{~m}, 2 \mathrm{H}), 4.28-4.13(\mathrm{~m}, 3 \mathrm{H}), 3.38(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.8\left(\mathrm{C}_{\mathrm{q}}\right), 137.9\left(\mathrm{C}_{\mathrm{q}}\right), 133.3\left(\mathrm{C}_{\mathrm{q}}\right), 133.3\left(\mathrm{C}_{\mathrm{q}}\right), 128.5(\mathrm{CH}), 128.0(\mathrm{CH}), 127.7$ $(\mathrm{CH}), 126.2(\mathrm{CH}), 126.0(\mathrm{CH}), 125.0(\mathrm{CH}), 123.8(\mathrm{CH}), 116.3(\mathrm{CH}), 83.6(\mathrm{CH}), 69.9\left(\mathrm{CH}_{2}\right), 66.0$ $\left(\mathrm{CH}_{2}\right), 64.4\left(\mathrm{CH}_{2}\right), 46.6(\mathrm{CH})$. LC-MS calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 275.10$, found 275.12.

3,6-diphenyl-3,3a,4,6-tetrahydro-1H-furo[3,4-c]pyran (2f)

The procedure GP-4 was followed using 1f ($55.6 \mathrm{mg}, 0.20 \mathrm{mmol}$). Purification by column chromatography (eluent: gradient hexane/ethyl acetate.) yielded $\mathbf{2 f}$ as a yellow oil ($55 \%, 30.6 \mathrm{mg}$, 0.11 mmol , d.r. $>25: 1$). $\mathbf{R}_{\mathbf{f}}=0.55$ (eluent: Hexane/ethyl acetate $=8: 2$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.40-7.30(\mathrm{~m}, 10 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=12.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.41$ (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (dd, $J=10.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95$ (brs, $1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.8\left(\mathrm{C}_{\mathrm{q}}\right), 140.2\left(\mathrm{C}_{\mathrm{q}}\right), 139.4\left(\mathrm{C}_{\mathrm{q}}\right), 128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.2$ $(\mathrm{CH}), 128.1(\mathrm{CH}), 127.2(\mathrm{CH}), 126.0(\mathrm{CH}), 119.8(\mathrm{CH}), 83.4(\mathrm{CH}), 76.3(\mathrm{CH}), 69.7\left(\mathrm{CH}_{2}\right), 67.0$ $\left(\mathrm{CH}_{2}\right), 46.6(\mathrm{CH})$. $\mathbf{L C}-\mathbf{M S}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 301.12$, found 301.16 .

6-methyl-3-phenyl-3,3a,4,6-tetrahydro-1H-furo[3,4-c]pyran (2g)

$d \mathbf{a}+d \mathbf{b}$

The procedure GP-4 was followed using $\mathbf{1 g}(43.3 \mathrm{mg}, 0.20 \mathrm{mmol})$. Purification by column chromatography (eluent: gradient hexane/ethyl acetate) yielded $\mathbf{2 g}$ as a pale yellow oil (31%, 13.0 $\mathrm{mg}, 0.06 \mathrm{mmol}$, d.r. $\approx 2: 1$). $\mathbf{R}_{\mathbf{f}}=0.6$ (eluent: Hexane/ethyl acetate $=8: 2$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.40-7.33(\mathrm{~m}, 10 \mathrm{H}, d \mathrm{a}+d \mathrm{~b}) 5.62-5.60(\mathrm{~m}, 1 \mathrm{H}, d \mathrm{a}), 5.57-5.56(\mathrm{~m}, 1 \mathrm{H}, d \mathrm{~b}), 4.75-4.71(\mathrm{~m}, 1 \mathrm{H}$,
$d \mathrm{a}), 4.70-4.68(\mathrm{~m}, 1 \mathrm{H}, d \mathrm{~b}), 4.50-4.47(\mathrm{~m}, 1 \mathrm{H}, d \mathrm{a}), 4.46-4.44(\mathrm{~m}, 1 \mathrm{H}, d \mathrm{~b}), 4.41-4.38(\mathrm{~m}, 1 \mathrm{H}, d \mathrm{a})$, $4.35(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, d \mathrm{a}), 4.34(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, d \mathrm{~b}), 4.25-2.20(\mathrm{~m}, 1 \mathrm{H}, d \mathrm{~b}), 4.13(\mathrm{dd}, J=10.5$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}, d \mathrm{a}), 3.91(\mathrm{dd}, J=10.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}, d \mathrm{~b}), 3.50-3.47(\mathrm{~m}, 1 \mathrm{H}, d \mathrm{a}), 3.45-3.40(\mathrm{~m}, 1 \mathrm{H}, d \mathrm{~b})$, $2.83-2.76(\mathrm{~m}, 1 \mathrm{H}, d \mathrm{a}), 2.72-2.71(\mathrm{~m}, 1 \mathrm{H}, d \mathrm{~b}), 1.33-1.29(\mathrm{~m}, 3 \mathrm{H}, d \mathrm{~b}), 1.31-1.27(\mathrm{~m}, 3 \mathrm{H}, d \mathrm{a}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.5\left(\mathrm{C}_{\mathrm{q}}, d \mathrm{a}\right), 140.4\left(\mathrm{C}_{\mathrm{q}}, d \mathrm{~b}\right), 139.3\left(\mathrm{C}_{\mathrm{q}}, d \mathrm{a}\right), 138.9\left(\mathrm{C}_{\mathrm{q}}, d \mathrm{~b}\right), 128.6(\mathrm{CH}$, $d \mathrm{a}), 128.6(\mathrm{CH}, d \mathrm{~b}), 128.1(\mathrm{CH}, d \mathrm{a}, d \mathrm{~b}), 126.0(\mathrm{CH}, d \mathrm{a}), 126.0(\mathrm{CH}, d \mathrm{~b}), 121.3(\mathrm{CH}, d \mathrm{a}), 121.0(\mathrm{CH}$, $d \mathrm{~b}), 83.5(\mathrm{CH}, d \mathrm{a}), 83.3(\mathrm{CH}, d \mathrm{~b}), 69.9(\mathrm{CH}, d \mathrm{a}), 69.7(\mathrm{CH}, d \mathrm{~b}), 69.5\left(\mathrm{CH}_{2}, d \mathrm{a}\right), 67.6\left(\mathrm{CH}_{2}, d \mathrm{~b}\right), 66.5$ (da), $60.4(d b), 46.5(\mathrm{CH}, d \mathrm{a}), 46.5(\mathrm{CH}, d \mathrm{~b}), 21.3\left(\mathrm{CH}_{3}, d \mathrm{a}\right), 20.0\left(\mathrm{CH}_{3}, d \mathrm{~b}\right)$. LC-MS calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 239.10$ found 239.16 .

3-phenyl-5-tosyl-1,3,3a,4,5,6-hexahydrofuro[3,4-c]pyridine (4a)

The procedure GP-4 was followed using 3a ($49.8 \mathrm{mg}, 0.14 \mathrm{mmol}$). Purification by column chromatography (eluent: gradient hexane/ethyl acetate) yielded $\mathbf{4 a}$ as a wax $(71 \%, 35.5 \mathrm{mg}, 0.09$ mmol , d.r. $>25: 1$). $\mathbf{R}_{\mathbf{f}}=0.31$ (eluent: Hexane/ethyl acetate $=7: 3$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 7 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=12.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=11.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}$, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{brs}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 143.7\left(\mathrm{C}_{\mathrm{q}}\right), 130.0\left(\mathrm{C}_{\mathrm{q}}\right), 139.4\left(\mathrm{C}_{\mathrm{q}}\right), 133.5\left(\mathrm{C}_{\mathrm{q}}\right), 129.8(\mathrm{CH}), 128.7(\mathrm{CH}), 128.5(\mathrm{CH}), 127.5(\mathrm{CH})$, $126.2(\mathrm{CH}), 113.0(\mathrm{CH}), 84.1(\mathrm{CH}), 69.5\left(\mathrm{CH}_{2}\right), 47.3(\mathrm{CH}), 44.5\left(\mathrm{CH}_{2}\right), 44.3\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right)$. LCMS calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 378.11$, found 378.17.

5-(methylsulfonyl)-3-phenyl-1,3,3a,4,5,6-hexahydrofuro[3,4-c]pyridine (4b)

The procedure GP-4 was followed using 3b ($55.9 \mathrm{mg}, 0.20 \mathrm{mmol}$). Purification by column chromatography (eluent: gradient hexane/ethyl acetate) yielded $\mathbf{4 b}$ as a white solid ($45 \%, 25.1 \mathrm{mg}$, 0.09 mmol , d.r. $>25: 1$). M. p. $=(116-119)^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.27$ (eluent: Hexane/ethyl acetate $\left.=7: 3\right) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=$ $12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=11.5,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.60(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.74(\mathrm{~m}, 4 \mathrm{H}), 2.64(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 140.3\left(\mathrm{C}_{\mathrm{q}}\right), 139.4\left(\mathrm{C}_{\mathrm{q}}\right), 128.8(\mathrm{CH}), 128.4(\mathrm{CH}), 126.0(\mathrm{CH}), 113.2(\mathrm{CH}), 84.1(\mathrm{CH}), 69.6\left(\mathrm{CH}_{2}\right)$, $47.5(\mathrm{CH}), 44.3\left(\mathrm{CH}_{2}\right), 44.1\left(\mathrm{CH}_{2}\right), 36.0\left(\mathrm{CH}_{3}\right)$. LC-MS calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 302.08$, found 302.21.

3-(o-tolyl)-5-tosyl-1,3,3a,4,5,6-hexahydrofuro[3,4-c]pyridine (4c)

The procedure GP-4 was followed using $\mathbf{3 c}(51.7 \mathrm{mg}, 0.14 \mathrm{mmol})$. Purification by column chromatography (eluent: gradient hexane/ethyl acetate) yielded $\mathbf{4 c}$ as a white solid $(87 \%, 44.3 \mathrm{mg}$, 0.12 mmol , d.r. $>25: 1$). M. p. $=(120-124)^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.33$ (eluent: Hexane/ethyl acetate $=7: 3$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.30 - 7.18 (m, 3H), 5.55 (s, 1H), 4.67 (d, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39$ (d, $J=$ $12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=11.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.94($ brs, 1 H$), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $143.7\left(\mathrm{C}_{\mathrm{q}}\right), 140.2\left(\mathrm{C}_{\mathrm{q}}\right), 136.8\left(\mathrm{C}_{\mathrm{q}}\right), 135.9\left(\mathrm{C}_{\mathrm{q}}\right), 133.6\left(\mathrm{C}_{\mathrm{q}}\right), 130.7(\mathrm{CH}), 129.8(\mathrm{CH}), 128.2(\mathrm{CH}), 127.5$ $(\mathrm{CH}), 126.5(\mathrm{CH}), 126.1(\mathrm{CH}), 112.9(\mathrm{CH}), 80.8(\mathrm{CH}), 69.3\left(\mathrm{CH}_{2}\right), 46.5(\mathrm{CH}), 44.7\left(\mathrm{CH}_{2}\right), 44.3$ $\left(\mathrm{CH}_{2}\right)$, $21.5\left(\mathrm{CH}_{3}\right)$, $19.3\left(\mathrm{CH}_{3}\right)$. $\mathbf{L C}-\mathbf{M S}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 392.13$, found 392.18 .

3-(3-(benzyloxy)phenyl)-5-tosyl-1,3,3a,4,5,6-hexahydrofuro[3,4-c]pyridine (4d)

The procedure GP-4 was followed using 3d ($64.6 \mathrm{mg}, 0.14 \mathrm{mmol}$). Purification by column chromatography (eluent: gradient hexane/ethyl acetate) yielded $\mathbf{4 d}$ as a white solid ($64 \%, 41.5 \mathrm{mg}$, 0.09 mmol , d.r. $>25: 1$). M. p. $=(134-137){ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.38$ (eluent: Hexane/ethyl acetate $=7: 3$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.28(\mathrm{~m}, 8 \mathrm{H}), 6.99-6.91(\mathrm{~m}, 3 \mathrm{H}), 5.52$ (s, 1H), $5.09(\mathrm{~s}, 2 \mathrm{H}), 4.66(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.11(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=11.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ (brs, 1 H), $2.43(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2\left(\mathrm{C}_{\mathrm{q}}\right), 143.8\left(\mathrm{C}_{\mathrm{q}}\right), 141.2$ $\left(\mathrm{C}_{\mathrm{q}}\right), 139.9\left(\mathrm{C}_{\mathrm{q}}\right), 136.9\left(\mathrm{C}_{\mathrm{q}}\right), 133.5\left(\mathrm{C}_{\mathrm{q}}\right), 129.8(\mathrm{CH}), 129.8(\mathrm{CH}), 128.7(\mathrm{CH}), 128.1(\mathrm{CH}), 127.7$ $(\mathrm{CH}), 127.5(\mathrm{CH}), 118.7(\mathrm{CH}), 114.5(\mathrm{CH}), 113.0(\mathrm{CH}), 112.8(\mathrm{CH}), 83.9(\mathrm{CH}), 70.1\left(\mathrm{CH}_{2}\right), 69.6$ $\left(\mathrm{CH}_{2}\right), 47.4(\mathrm{CH}), 44.6\left(\mathrm{CH}_{2}\right), 44.3\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right)$. LC-MS calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NNaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$ 484.16, found 484.19.

3-(4-methoxyphenyl)-5-tosyl-1,3,3a,4,5,6-hexahydrofuro[3,4-c]pyridine (4e)

The procedure GP-4 was followed using 3e ($53.9 \mathrm{mg}, 0.14 \mathrm{mmol}$). Purification by column chromatography (eluent: gradient hexane/ethyl acetate) yielded $\mathbf{4 e}$ as a white solid $(92 \%, 50.1 \mathrm{mg}$, 0.13 mmol , d.r. $>25: 1$). M. p. $=(126-128)^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.27$ (eluent: Hexane/ethyl acetate $=7: 3$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.91$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 4.63$ (d, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34$ (d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=11.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~d}, J=$ $16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{brs}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.24\left(\mathrm{t},(J=10.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\right.$
$\delta 159.8\left(\mathrm{C}_{\mathrm{q}}\right), 143.7\left(\mathrm{C}_{\mathrm{q}}\right), 140.1\left(\mathrm{C}_{\mathrm{q}}\right), 133.6\left(\mathrm{C}_{\mathrm{q}}\right), 131.2\left(\mathrm{C}_{\mathrm{q}}\right), 129.8(\mathrm{CH}), 127.6(\mathrm{CH}), 127.5(\mathrm{CH})$, $114.1(\mathrm{CH}), 112.9(\mathrm{CH}), 83.8(\mathrm{CH}), 69.4\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right), 47.0(\mathrm{CH}), 44.5\left(\mathrm{CH}_{2}\right), 44.3\left(\mathrm{CH}_{2}\right), 21.5$ $\left(\mathrm{CH}_{3}\right)$. LC-MS calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NNaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 408.12$, found 408.17.

3-(4-chlorophenyl)-5-tosyl-1,3,3a,4,5,6-hexahydrofuro[3,4-c]pyridine (4f)

The procedure GP-4 was followed using 3 f ($54.6 \mathrm{mg}, 0.14 \mathrm{mmol}$). Purification by column chromatography (eluent: gradient hexane/ethyl acetate) yielded $\mathbf{4 f}$ as a white solid $(71 \%, 39.0 \mathrm{mg}$, 0.01 mmol , d.r. $>25: 1$). M. p. $=(140-144)^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.28$ (eluent: Hexane/ethyl acetate $=7: 3$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 4.69-4.64(\mathrm{~m}, 1 \mathrm{H}), 4.41-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=9.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.16-4.11(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=11.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.74$ (brs, 1 H), $2.46(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.27(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.8\left(\mathrm{C}_{\mathrm{q}}\right), 139.6\left(\mathrm{C}_{\mathrm{q}}\right), 138.1\left(\mathrm{C}_{\mathrm{q}}\right)$, $134.1\left(\mathrm{C}_{\mathrm{q}}\right), 133.6\left(\mathrm{C}_{\mathrm{q}}\right), 129.8(\mathrm{CH}), 128.92(\mathrm{CH}), 127.5(2 \mathrm{CH}), 113.3(\mathrm{CH}), 83.3(\mathrm{CH}), 69.6\left(\mathrm{CH}_{2}\right)$, $47.5(\mathrm{CH}), 44.4\left(\mathrm{CH}_{2}\right), 44.3\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right) . \mathbf{L C}-\mathbf{M S}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClNNa}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$ 412.08, found 412.13.

3-(naphthalen-2-yl)-5-tosyl-1,3,3a,4,5,6-hexahydrofuro[3,4-c]pyridine (4g)

The procedure GP-4 was followed using $\mathbf{3 g}$ ($56.8 \mathrm{mg}, 0.14 \mathrm{mmol}$). Purification by column chromatography (eluent: gradient hexane/ethyl acetate) yielded $\mathbf{4 g}$ as a white solid ($63 \%, 36.5 \mathrm{mg}$,
0.09 mmol , d.r. $>25: 1$). M. p. $=(177-180){ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.27$ (eluent: Hexane/ethyl acetate $=7: 3$). ${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.90-7.84(\mathrm{~m}, 3 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.55$ $(\mathrm{m}, 3 \mathrm{H}), 7.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.39$ $(\mathrm{d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.11(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=11.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.88$ $(\mathrm{s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.7\left(\mathrm{C}_{\mathrm{q}}\right), 140.0\left(\mathrm{C}_{\mathrm{q}}\right)$, $136.8\left(\mathrm{C}_{\mathrm{q}}\right), 133.7\left(\mathrm{C}_{\mathrm{q}}\right), 133.5\left(\mathrm{C}_{\mathrm{q}}\right), 133.3\left(\mathrm{C}_{\mathrm{q}}\right), 129.8(\mathrm{CH}), 128.7(\mathrm{CH}), 128.0(\mathrm{CH}), 127.8(\mathrm{CH})$, $127.5(\mathrm{CH}), 126.3(\mathrm{CH}), 126.2(\mathrm{CH}), 125.4(\mathrm{CH}), 123.8(\mathrm{CH}), 113.1(\mathrm{CH}), 84.3(\mathrm{CH}), 69.7\left(\mathrm{CH}_{2}\right)$, $47.3(\mathrm{CH}), 44.6\left(\mathrm{CH}_{2}\right), 44.3\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right) . \mathbf{L C - M S}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 428.13$, found 428.16.

3-(furan-2-yl)-5-tosyl-1,3,3a,4,5,6-hexahydrofuro[3,4-c]pyridine (4h)

The procedure GP-4 was followed using $\mathbf{3 h}$ ($48.4 \mathrm{mg}, 0.14 \mathrm{mmol}$). Purification by column chromatography (eluent: gradient hexane/ethyl acetate) yielded $\mathbf{4 h}$ as a white solid ($68 \%, 34.5 \mathrm{mg}$, 0.10 mmol , d.r. $>25: 1$). M.p. $=(149-152){ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.27$ (eluent: Hexane/ethyl acetate $=7: 3$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.44(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.12(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=11.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.82$ (brs, $1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.9(\mathrm{CH}), 143.8\left(\mathrm{C}_{\mathrm{q}}\right)$, $140.2(\mathrm{CH}), 139.7\left(\mathrm{C}_{\mathrm{q}}\right), 133.5\left(\mathrm{C}_{\mathrm{q}}\right), 129.8(\mathrm{CH}), 127.5(\mathrm{CH}), 123.9\left(\mathrm{C}_{\mathrm{q}}\right), 113.1(\mathrm{CH}), 108.5(\mathrm{CH})$, $76.3(\mathrm{CH}), 69.2\left(\mathrm{CH}_{2}\right), 45.7(\mathrm{CH})$, $44.6\left(\mathrm{CH}_{2}\right)$, $44.3\left(\mathrm{CH}_{2}\right)$, $21.6\left(\mathrm{CH}_{3}\right)$. LC-MS calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NNaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$368.09, found 368.13.

3-(thiophen-2-yl)-5-tosyl-1,3,3a,4,5,6-hexahydrofuro[3,4-c]pyridine (4i)

The procedure GP-4 was followed using $\mathbf{3 i}(50.6 \mathrm{mg}, 0.14 \mathrm{mmol})$. Purification by column chromatography (eluent: gradient hexane/ethyl acetate) yielded $\mathbf{4 i}$ as a pale yellow solid $(68 \%, 36.1$ $\mathrm{mg}, 0.10 \mathrm{mmol}$, d.r. $>25: 1$). M. p. $=(132-135)^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.24$ (eluent: Hexane/ethyl acetate $=7: 3$). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 2 \mathrm{H})$, $5.52(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-$ $4.07(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.80\left(\mathrm{C}_{\mathrm{q}}\right), 142.38\left(\mathrm{C}_{\mathrm{q}}\right), 139.3\left(\mathrm{C}_{\mathrm{q}}\right), 133.6\left(\mathrm{C}_{\mathrm{q}}\right), 129.8(\mathrm{CH}), 127.5($ $\mathrm{CH}), 126.8(\mathrm{CH}), 125.8(\mathrm{CH}), 125.2(\mathrm{CH}), 113.4(\mathrm{CH}), 79.5(\mathrm{CH}), 69.4\left(\mathrm{CH}_{2}\right), 47.4(\mathrm{CH}), 44.5\left(\mathrm{CH}_{2}\right)$, $44.3\left(\mathrm{CH}_{2}\right)$, $21.6\left(\mathrm{CH}_{3}\right)$. $\mathbf{L C}-\mathbf{M S}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NNaO}_{3} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$384.07, found 384.11.

Scope limitations

List of unsuccessful substrates

Copies of NMR spectra

Gold catalyst B (162 MHz, CDCl_{3})

Gold catalyst C (162 MHz, CDCl_{3})

$\stackrel{\text { Ñ }}{\text { in }}$

1b ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1b ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1b ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1c (300 MHz, $\left.\mathrm{CDCl}_{3}\right)$

1c ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1d ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1d (101 MHz, CDCl_{3})

1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

1e (300 MHz, $\left.\mathrm{CDCl}_{3}\right)$

1e (101 MHz, CDCl_{3})

1f ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1f ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1g ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

120
$\bullet m$
∞
∞
∞
$\begin{array}{ll}\text { m } \\ \text { on } \\ 0 & 1 \\ 0 \\ 0\end{array}$
$\stackrel{7}{i}$
$\stackrel{-1}{\text { i }}$

$\mathbf{1 g}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3b ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3b $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3d ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3d ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

3e(400 MHz, CDCl_{3})

3e (101 MHz, CDCl_{3})

$\mathbf{3 g}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3h（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$\mathbf{3 i}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$3 \mathbf{i}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3j ($101 \mathrm{MHz}, \mathrm{CDCl} 3$)

2a ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2a ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2b (300 MHz CDCl 3)

- $\underbrace{\infty}_{1}$
$\underbrace{\infty}_{\sim}$
!
$\stackrel{+9}{\sim}$

2b $(75 \mathrm{MHz} \mathrm{CDCl} 3$)

2b (565 MHz CDCl 3)

2c ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2c ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2d (300 MHz, CDCl_{3})

2d ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\underbrace{\infty} \underbrace{\infty}$

2e(400 MHz, $\left.\mathrm{CDCl}_{3}\right)$

$\mathbf{2 e}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\bigcirc	1	1	1	16	150	1	1	,	110	-10	1	1	1	1	1	1	1	1	1	T
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

$$
\begin{aligned}
& \begin{array}{l}
6 \\
\text { ¢ } \\
\text { ¢ }
\end{array}
\end{aligned}
$$

$\mathbf{2 f}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

$\mathbf{4 a}(75 \mathrm{MHz}, \mathrm{CDCl} 3)$

4b ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4c ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	$\begin{aligned} & \text { of } \\ & \stackrel{1}{1} \end{aligned}$	$\stackrel{\infty}{\circ}$	$\begin{aligned} & \text { m } \\ & \stackrel{\circ}{\circ} \\ & \hline 1 \end{aligned}$	

4c ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4d ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4d (101 MHz, CDCl_{3})

$\mathbf{4 e}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4g ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathbf{4 g}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4h ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4h ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathbf{4 i}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

荥号品
$\stackrel{\bullet}{1}$

Crystallographic data

X-ray crystallography. A summary of data collection and structure refinement for $4 \mathbf{a}$ and $2 \mathbf{e}$ is reported in Table 1. Single crystal data were collected with Bruker D8 Venture PhothonII area detector diffractometer. Complete datasets were obtained by merging several series of exposure frames. ${ }^{[7]}$ An absorption correction was applied with the program SADABS. ${ }^{[8]}$ The structure were solved with ShelxT ${ }^{[9]}$ and refined on F^{2} with full-matrix least squares (ShelxL), ${ }^{[10]}$ using the Olex2 software package. ${ }^{[11]}$ Non hydrogen atoms were refined anisotropically, and the hydrogen atoms were placed at their calculated positions.

Figure 1. Asymmetric unit of $\mathbf{4 a}$ with thermal ellipsoids depicted at the 30% probability level.
$C(14)$ and $C(2)$ are stereocenters and in the asymmetric unit they exhibit S and R chirality, respectively. The space group is centrosymmetric ($\mathrm{C} 2 / \mathrm{c}$), hence the centrosymmetrically related molecular structure is also present.

Figure 2. Asymmetric unit of $\mathbf{2 e}$ with thermal ellipsoids depicted at the 30% probability level. $\mathrm{C}(1)$ and $\mathrm{C}(2)$ are stereocenters and in the asymmetric unit they exhibit R and S chirality, respectively. The space group is chiral $\mathrm{P} 2_{1} 2_{1} 2_{1}$ and, in the crystal, the compound is enantiopure.

Table 1. Crystal data and structure refinement for $\mathbf{4 a}$ and $\mathbf{2 e}$

	4a	2e
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}$
Formula weight	355.44	252.30
Temperature/K	270	200
Crystal system	monoclinic	orthorhombic
Space group	C2/c	$\mathrm{P} 2{ }_{1} 2{ }_{1}{ }_{1}$
a / \AA	33.942(4)	7.3872(2)
b/A	$11.5163(11)$	10.8747(3)
c / \AA	$9.4629(9)$	16.4977(4)
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	99.030(4)	90
$\gamma /{ }^{\circ}$	90	90
Volume/ \AA^{3}	3653.1(6)	1325.32(6)
Z	8	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.293	1.264
μ / mm^{-1}	0.195	0.648
$\mathrm{F}(000)$	1504.0	536.0
Crystal size/mm ${ }^{3}$	$0.22 \times 0.06 \times 0.06$	$0.27 \times 0.22 \times 0.08$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	5.888 to 51.43	10.726 to 149.024
Index ranges	$\begin{aligned} & -41 \leq \mathrm{h} \leq 38,-14 \leq \mathrm{k} \leq 14,-11 \leq 1 \leq \\ & 11 \end{aligned}$	$-9 \leq \mathrm{h} \leq 9,-13 \leq \mathrm{k} \leq 13,-20 \leq 1 \leq 20$
Reflections collected	19589	40279
Independent reflections	$3460\left[\mathrm{R}_{\text {int }}=0.0991, \mathrm{R}_{\text {sigma }}=0.0607\right]$	$2682\left[\mathrm{R}_{\text {int }}=0.0208, \mathrm{R}_{\text {sigma }}=0.0084\right]$
Data/restraints/parameters	3460/0/228	2682/0/172
Goodness-of-fit on F^{2}	1.031	1.059
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0516, \mathrm{wR}_{2}=0.1011$	$\mathrm{R}_{1}=0.0306, \mathrm{wR}_{2}=0.0833$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1147, \mathrm{wR}_{2}=0.1309$	$\mathrm{R}_{1}=0.0307, \mathrm{wR}_{2}=0.0835$
Largest diff. peak/hole / e \AA^{-3}	0.19/-0.23	0.29/-0.16
Flack parameter	-	0.04(2)

References

[1] C. Cecchini, M. Lanzi, G. Cera, M. Malacria and G. Maestri, Synthesis, 2019, 51, 1216.
[2] M. Lanzi, T. Cañeque, L. Marchiò, R. Maggi, F. Bigi, M. Malacria and G. Maestri, ACS Catal., 2018, 8, 144.
[3] C.A. Busacca, and Y. Dong, Tetrahedron Lett., 1996, 37, 3947.
[4] J. Cordón, J.M. López-de-Luzuriaga, and M. Monge, Organometallics, 2016, 35, 732.
[5] Y. Lu, X. Fu, H. Chen, X Du, X. Jia and Y. Liu, Adv. Synth. Catal., 2009, 351, 129.
[6] S. López, E. Herrero-Gómez, P. Pérez-Galán, C, Nieto-Oberhuber and A. Echavarren, Angew. Chem.Int.Ed., 2006, 45, 6029.
[7] Bruker, 2012. SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
[8] L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. J. Stalke, Appl. Cryst., 2015, 48, 3.
[9] G. M. Sheldrick, Acta Crystallographica Section A, 2015, 71, 3.
[10] G. M. Sheldrick, Acta Crystallographica Section C, 2015, 71, 3.
[11] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339.

