Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Supporting Information for

Total syntheses of (-)-15-oxopuupehenol and (+)-puupehenone and formal syntheses of (-)-puupehenol and (+)-puupehedione

Huayue Song, Lin Liu, Mingyang Yang, Guangmiao Wu, Peng Chen, Xingang Xie *

and Xuegong She

State Key Laboratory of Applied Organic Chemistry, Department of Chemistry,

Lanzhou University, Lanzhou 730000, People's Republic of China

Contents

1. Optimization of the Suzuki carbonylative coupling reaction2
2. Determination of the structure of Compounds 13a
3. DFT Calculations
3.1 Computational details
3.2 Calculation results
4. Comparison of the spectra data of synthetic and those of natural product7
4.1 Comparisons of the spectra data of synthetic (-)-15-oxopuupehenol and those
of natural one7
4.1.1 Comparisons of their ¹³ C NMR spectra data (ppm)7
4.1.2 Comparisons of their partial ¹ H NMR spectra data (ppm)8
4.1.3 Comparisons of their physical data and MS data8
4.2 Comparisons of the spectra data of synthetic puupehenone and those of
Natural one
4.2.1 Comparisons of their ¹³ C NMR spectra data (ppm)9
4.2.2 Comparisons of their partial ¹ H NMR spectra data (ppm)9
4.2.3 Comparisons of their physical data and MS data10
5. References
6. NMR spectra of all synthetic new compounds

1. Optimization of the Suzuki carbonylative coupling reaction

As shown in Table S1, the commercially available (4-methoxyphenyl) boronic acid 12a and bicyclic triflate 11 were used as models to screen the conditions of the planed Suzuki carbonylative coupling reaction. Various Pd catalysts (PdCl₂, Pd(PPh₃)₄, Pd(PPh₃)₂Cl₂, Pd(OAc)₂, Pd(dppf)₂Cl₂, Pd₂(dba)₃ and Pd(CH₃CN)₂Cl₂), the reaction temperature (80°C vs 100°C) and the solvents (DMF or dioxane) were screened. Then the optimized reaction conditions were thus identified to be entry 9:

B(OF	$^{(1)_2}$ $^{(1)_2}$	Conditions,	MeO	
Entry	Pd catalyst Tem	perature(°C)	Solvents	Yields(%)
1	PdCl ₂ , PPh ₃	100	DMF	31
2	$Pd(PPh_3)_2Cl_2$	100	DMF	30
3	Pd(OAc) ₂ , PPh ₃	100	DMF	-
4	Pd(dppf)Cl ₂	100	DMF	30
5	Pd ₂ (dba) ₃	100	DMF	-
6	Pd(PPh ₃) ₄	100	DMF	30
7	Pd(CH ₃ CN) ₂ Cl ₂	100	DMF	-
8	$PdCl_2$, PPh_3	80	DMF	40
9 ^b	PdCl ₂ , PPh ₃	80	DMF	60
10 ^b	PdCl ₂ , PPh ₃	80	1,4-dioxane	-
11 ^b	PdCl ₂ , PPh ₃	60	DMF	-

Table S1	. Screening	the conditions	of Suzuki c	arbonylative of	coupling reac	tion ^a

^a All the reactions were performed on 0.2 mmol scale, using 0.2 equiv. Pd as catalyst and 3 equiv. K₂CO₃ as base. ^b 0.3 equiv. PdCl₂ and 0.6 equiv. PPh₃ were used.

2. Determination of the structure of Compounds 13a

Compounds 13 and 13a are inseparable by column chromatography on silica gel and 13 and 13a's mixed NMR spectra (¹H , ¹³C, and ¹³C DEPT 135) and Mass spectra (LCMS) are obtained.

(1) ¹H NMR Spectra of inseparable mixture (**13** and **13a**)

From the mixed ¹H NMR Spectra, we can deduce the following items:

a. The amounts of 13a and 13 is in 1:4 ratio ($0.26 : 1 \approx 1 : 4$, ArO-H; $0.26 : 0.98 \approx 1 : 4$, Ar-H; $0.85 : 3.17 \approx 1 : 4$, ArO-CH₃).

b. There is a strong Hydrogen bond between the phenol and its ortho-carbonyl group in 13a which makes its phenolic hydrogen appeared in 12.91 ppm.

c. There are two aromatic hydrogen atoms in 13a (6.47 ppm, 1.26 Ar-H vs 6.98, 7.02 ppm, (0.26+0.98) Ar-H vs 12.91, 12.85ppm, (0.26+1.00) ArO-H)

(2) ¹³C and DEPT 135 NMR spectra of inseparable mixture (**13** and **13a**)

LC/MS data was obtained on Agilent Technologies 1260 Infinity II with C18 silica gel columns and Agilent G6125B Series LC/MSD mass detector. As eluent, a mixture of MeCN (HPLC grade) with H₂O (Mili-Q Integral Water Purification System) and 0.1 vol-% formic acid as additive was employed.

According to the Mass spectra, **13** and **13a** has the same molecular ionic peak (Found : $373.20 \quad (M+H)^+$) at a very close retention time which indicate they have a same molecular composition (C₂₃H₃₂O₄).

Based on the above obtained spectra data, **13a** is deduced to be the ketone/enol tautomer of **13**.

When the inseparable mixture of **13** and **13a** (4 : 1 ratio according to the obtained ¹H NMR spectra indicates that the amount of **13** is about 80%) was submitted to the optimal cyclization reaction (Table 1, entry 6), the desired cyclization product **19** was obtained in 86% yield. The high yield indicates that **13a** can be partially transformed into **13** or directly yields in **19**.

When the mixture of **13** and **13a** (4 : 1 ratio according to ¹H NMR) was treated with Tf_2O /pyridine in CH₂Cl₂, a single acylation product **S1** was obtained in 98% yield. This result supports our speculation that **13** and **13a** are tautermeric to each other due to the presence of a strong hydrogen bond.

3. DFT Calculations

3.1 Computational details

All the computational works were performed using Gaussian 16 suite of programs.^{S1} Geometry optimizations were carried out at M062X^{S2}/6-31G (d,p) level of theory. Vibrational frequencies were calculated at the same level to ensure the optimized structures are energy minima (no imaginary frequency).

3.2 Calculation results

Fig The optimized geometries of I, I', 19 and 8-epi-19

Table SX. The calculated total energies (E) and the relative total energies (Δ E) of **I** and **I'**, **19** and 8-*epi*-**19**.

isomer	E (a.u.)	$\Delta E (kJ/mol)$
Ι	-1194. 913985	0
I'	-1194. 913982	0.008
19	-1196. 13073347	34.95
8-epi-19	-1196. 14405886	0

[S1] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, *Gaussian 16, Revision A.03*, Gaussian, Inc., Wallingford CT, 2016.

[S2] Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group

Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-class Functionals and 12 other Functionals. *Theor. Chem. Acc.* 2008, *120*, 215.

4. Comparison of the spectra data of synthetic and those of natural product

4.1 Comparisons of the spectra data of synthetic (-)-15-oxopuupehenol and those of natural one

(-)-15-oxopuupehenol (6)

4.1.1 Comparisons of their ¹³C NMR spectra data (ppm)

number	Synthetic (-)-15-oxopuupehenol	Natural (-)-15-oxopuupehenol ¹	Δ
1	40.1	40.1	0
2	18.4	18.4	0
3	41.6	41.6	0
4	33.4	33.4	0
5	54.2	54.2ª	0
6	18.2	18.2	0
7	39.9	39.9	0
8	80.4	80.4	0
9	64.5	64.5	0
10	38.7	38.6 ^b	0.1
11	33.8	33.8	0
12	22.0	22.0	0
13	26.6	26.6	0
14	15.2	15.2	0
15	195.6	195.5°	0.1
16	114.8	114.7 ^d	0.1
17	157.1	156.9 ^e	0.2
18	103.7	103.7	0
19	153.5	153.5 ^f	0
20	138.5	138.8 ^g	- 0.3

^C In the article, the ¹³C NMR spectra data for C15 is 194.3 ppm, however, it reads as 195.5 ppm in the spectra provide by the isolation author in the SI. So 195.5 was adopted to compare with the data of synthetic one's. The same situations were found at C5, 10, 16, 17, 19, 20, 21.

number	Synthetic (-)-15-oxopuupehenol	Natural (-)-15-oxopuupehenol ¹	Δ
	1.68 (m)	1.67 (m)	0.01
1	2.21 (d, $J = 14.2$ Hz)	2.21 (dt, $J = 14.5$, 3.2 Hz)	0
	1.71 (m)	1.70 (m)	0.01
2	1.64 (m)	1.62(m)	0.02
2	1.19 (m)	1.17 (m)	0.02
3	1.39 (m)	1.41 (m)	- 0.02
5	0.88 (d, <i>J</i> = 1.4 Hz, 1H)	0.91 (m)	- 0.03
6	1.52 (m)	1.52 (m)	0
6	1.41 (m)	1.41 (m)	0
7	1.53 (m)	1.53 (m)	0
/	1.21 (m)	1.22 (m)	-0.01
9	1.91(s)	1.88 (s)	0.03
11	0.91 (s)	0.92 (s)	-0.01
12	0.84 (s)	0.84 (s)	0
13	1.23 (s)	1.23 (s)	0
14	0.85 (s)	0.85 (s)	0
18	6.43 (s)	6.42 (s)	0.01
19	-	6.60 (s)	
20	-	6.29 (s)	
21	7.55 (s)	7.47 (s)	0.08

4.1.2 Comparisons of their partial ¹H NMR spectra data (ppm)

4.1.3 Comparisons of their physical data and MS data

data	Symthetic () 15 evenue abaral	Reported values
data	Synthetic (-)-15-oxopuupenenoi	(-)-15-oxopuupehenol
[α] _D	- 102.0 (c = 0.5 M, CH ₃ OH)	$-106 (c = 0.52 M, CH_3OH)^1$ -94.3 (c = 0.01M, CH ₃ OH) ²
MS	345.2066(M+H ⁺)	344.1980 ¹

4.2 Comparisons of the spectra data of synthetic Puupehenone and those of Natural

one

Puupehenone (1)

4.2.1 Comparisons of their ¹³C NMR spectra data (ppm)

number	Synthetic Puupehenone	Natural Puupehenone ⁵	Δ
1	39.2	39.2	0
2	18.1	18.1	0
3	41.6	41.6	0
4	33.3	33.3	0
5	53.8	53.8	0
6	18.4	18.4	0
7	40.0	40.0	0
8	78.8	78.9	- 0.1
9	54.8	54.8	0
10	40.7	40.7	0
11	140.4	140.7	- 0.3
12	129.3	129.2	0.1
13	105.0	105.2	- 0.2
14	147.4	147.5	-0.1
15	182.0	182.1	-0.1
16	106.0	106.0	0
17	162.8	162.8	0
18	33.7	33.7	0
19	21.9	21.9	0
20	28.0	28.0	0
21	15.0	15.0	0

4.2.2 Comparisons of their partial ¹H NMR spectra data (ppm)

number	Synthetic Puupehenone	Natural Puupehenone ⁵	Δ
1	1.57 (m)	1.57 (m)	0
1	2.17 (m)	2.17 (m)	0
2	1.43 (m)	1.43 (m)	0
3	1.19 (m)	1.21 (m)	- 0.02
5	1.40 (m)	1.41 (m)	- 0.01
5	0.94 (m)	0.94 (m)	0

6	1.52 (m)	1.54 (m)	- 0.02
7	1.16 (m)	1.16 (m)	0
/	1.68 (m)	1.67 (m)	0.01
9	2.04 (d, <i>J</i> = 6.9 Hz)	2.04 (d, <i>J</i> = 7.0 Hz)	0
11	6.65 (d, <i>J</i> = 6.9 Hz)	6.65 (brd, J = 7.0 Hz)	0
13	6.20 (s)	6.20 (s)	0
16	5.85 (d, <i>J</i> = 1.0 Hz)	5.85 (d, J = 1.1 Hz)	- 0.01
18	0.91 (s)	0.90 (s)	0.01
19	0.84 (s)	0.83 (s)	0.01
20	1.23 (s)	1.21 (s)	0.02
21	0.82 (s)	0.80 (s)	0.02

4.2.3 Comparisons of their physical data and MS data

data	Synthetic Puupehenone	Reported values Puupehenone
		315 (c =1.64, CCl ₄) ³
		$297.0(c = 0.44, CCl_4)^4$
[~1]	$[\alpha]_D \qquad 278.0 (c = 0.5 \text{ M}, \text{CHCl}_3) \\ 180.0 (c = 0.1 \text{M}, \text{CH}_2 \text{Cl}_2)$	59 (c = 0.1, CH ₃ OH) ⁵
[α]D		98 (c = 0.5, CHCl ₃) ⁵
		$189(c = 1.08, CCl_4)^6$
		113 (c=1.79, CHCl ₃) ⁶
MS	351.1937 (M+Na ⁺)	351.1948 (M+Na ⁺) ⁵

5. References

1. Nasu, S. S.; Yeung, B. K. S.; Hamman, M. T.; Scheuer, P. J.; Kelly-Borgues, M.;

Goins, K. J. Org. Chem. 1995, 60, 7290-7292.

2. Alvarez-Manzaneda, E. J.; Chahboun, R.; Pérez, B. I.; Cabrera, E., Alvarez, E.;

Alvarez-Manzaneda, R. Org. Lett., 2005, 7, 1447-1480.

3. Ravi, B. N.; Perzanowski, H. P.; Ross, R. A.; Erdman, T. R.; Scheuer, P. J.; Finer, J.;

Clardy, J. Pure Appl. Chem. 1979, 51, 1893-1900.

4. Hamann, M. T.; Scheuer, P. J.; Kelly-Borges, M. J. Org. Chem. 1993, 58, 6565-6569.

- 5. Hagiwara, K.; Hernandez J. E. G.; Harper, M. K.; Carroll, A.; Motti, C. A.; Awaya,
- J.; Nguyen, H.-Y.; Wright, A. D. J. Nat. Prod. 2015, 78, 325-329.

6. Urban, S.; Capon, R. J. J. Nat. Prod. 1996, 59, 900-901.

6. NMR spectra of all synthetic new compounds.

18a (300 MHz, CDCI₃)

 $\overbrace{-6.91}^{6.94}$

 $\sim \sim \sim$

ιιιιι

-3.86

shy-20180901-5-C 13C OBSERVE	— 163. 36			∽114.46 √113.67				$\overbrace{-18, 75}^{-21.58} \times 18.75 \\ \overbrace{-18, 64}^{-18.64} \times 18.64 \\ $
18a (75 MHz, CDCI ₃)								
	1							
n 1 mar de 19m - Hel de ar bel de testa en en der statione etwa de provinsi mar helden de Propositionen en	hadelbarg strandstandik at de gradie site date de angelen stan Mangelen server server in gjitt bergen server server gjite stander	y altra j and ann y the or a he altra i an Yan y et gan ya nagi ya tu iyo yi na ja	della, et a the alternation decision for providing the second se	נו איז		ark haa lee halle e daadkuntee ahaante Mary gaartee waa harvinga teermaante	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	name ha an
200 190 180	170 160 15	0 140	130 120	0 110 100 f1 (ppm)	90 80 70	60 50	40 30	20 10 C

f1 (ppm)

 $\begin{array}{c}
 33 \\
 16 \\
 15 \\
 14 \\
 14
 \end{array}$

Ċ.

-----3.87

18d (300 MHz, CDCI₃)

-2.37 33 0

----3.74

HO OME OME HO OME OME OME OME + CME	✓114.94	$<_{100.25}^{100.46}$	$ \begin{array}{c} $	$\begin{array}{c} 41. \ 94 \\ 41. \ 94 \\ 37. \ 09 \\ 33. \ 34. \ 34$
13 13a (101 MHz, CDCI ₃)				

		1	

110 100 f1 (ppm)

当前色谱图

当前色谱图

 $\begin{array}{c} \overbrace{156, 31} \\ \overbrace{155, 73} \\ -143, 79 \\ -143, 79 \\ -114, 50 \\ -114, 50 \\ -106, 17 \end{array}$

 $\overbrace{\begin{tabular}{c} 33.38\\ -64.32\\ -64.32\\ -56.08\\ -54.23\\ -33.38\\ -33.38\\ -33.38\\ -33.38\\ -33.38\\ -64.07\\ -54.23\\ -33.38\\$

Т

f1 (ppm) shy-20180116-1 式

---6.35

8-epi-19 (400 MHz, CDCl₃)

∧3.88 3.86 3.86

shy-20180116-1 👷	~ 155.29 ~ 154.65	 	 	 	56.11 56.11 55.54 55.54	$\bigwedge_{33,355}^{41.83}$
8-epi-19 (101 MHz, CDCl ₃)						

 $\overbrace{-15,72}^{21.60}$

shy-4 LC

~

---6.43

(-)-15-oxopuupehenol (400 MHz, CDCl₃)

OH но \equiv HC 13 (-)-15-oxopu upehe nol (600 MHz, CDCl₃)

shy-4 65 161 HO HO H H	 	 — 103. 70	 	 $\overbrace{\begin{tabular}{c} 41.59\\ 44.59\\ 44.65\\ 38.65\\ 33.43\\ 33.43\\ 33.43\\ 18.36\\ -26.57\\ -22.01\\ 18.36\\ 18.36\\ -15.21\\ 15.21\\ \end{array}$
(-)-15-oxopuupehenol (101 MHz, CDCl ₃)				

110 100 f1 (ppm)

Т

3.5 f1 (ppm)

0. 688 0. 688 0. 688 0. 688 0. 688 0. 688 0. 688 0. 688 0. 688 0. 688 0. 688 0. 688 0. 688 0. 688 0. 688 0. 698 0. 608 0. 688 0. 698 0. 688 0. 779 0. 688 0. 779 0. 688 0. 779 0. 688 0. 779 0. 688 0. 779 0. 688 0. 779 0. 688 0. 779 0. 779 0. 788 0. 798

 $<_{3.77}^{3.78}$

[]

shy-20181206-1-C 25 75 99 13C OBSERVE 64 15 15 13C OBSERVE 64 15 15	116.08 113.91 109.46	100.72	77. 20	56.37 55.87	43. 91 42. 03 39. 07 38. 59	33. 73 32. 75 30. 98	25.46 24.99 21.18 18.94 17.29
			I	\/	1151	\77	\/ /\\
22 (75 MHz, CDCl ₃)							

