Supporting Information

Visible-Light-Promoted Hydroxysulfonylation of Alkylidenecyclopropanes: Synthesis of Cyclopropane-Containing β-Hydroxysulfones

Chuang Liu, Yan-Jie Yang, Jun-Ying Dong, Ming-Dong Zhou, Lei Li* and He Wang*

School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China. Fax: (+86)-24-56863837; phone: (+86)-24-56863837; e-mail: heliwang123@126.com, lilei0814.com@163.com.

Table of Contents

I. General Information Data	S1
II. Experimental Section and Characterization Data	S1
III. Derivatization of product 3aa	S21
IV. Control experiments	
V. Crystal structure of 3aa	S23
VI. NMR Spectra	

I. General Information

All chemicals were obtained from commercial sources and were used as received unless otherwise noted. ¹H, ¹³C and ¹⁹F NMR spectra were recorded using CDCl₃ or DMSO as a solvent on a 400 MHz spectrometer at 298 K. The chemical shift is given in dimensionless δ values and is frequency referenced relative to TMS in ¹H and ¹³C NMR spectroscopy. HRMS data were obtained via ESI mode with a TOF mass analyzer. The intensity data were recorded on a Bruker D8 QUEST with Mo-K α radiation ($\lambda = 0.71073$ Å). The crystal structure was solved by means of direct methods and refined by employing full-matrix least squares on F2 (SHELXTL-2014). All solvents were obtained from commercial sources and were used as received. Column chromatography was performed on silica gel (300-400 mesh) using ethyl acetate (EA)/petroleum ether (PE).

II. Experimental Section and Characterization Data

ACPs 1 was synthesized according to the literatures.¹⁻¹¹

Method 1: KO'Bu (2.53 g, 22.5 mmol) was added at room temperature in three (7.5)portions mmol each) stirred suspension of to а 3-bromopropyltriphenylphosphonium bromide (4.64 g, 10 mmol) in dry THF (45 mL). After the solution was stirred at room temperature for 30 min. The orange solution was then refluxed for 2 h before aryl ketones (10 mmol) was added and stirring was continued at 65 °C for overnight. The reaction mixture was quenched by brine (20 mL) at room temperature, the aqueous layer was extracted with hexane $(3 \times 10 \text{ mL})$. The combined organic layers were washed with brine (4 \times 10 mL), dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude reaction mixture was purified by flash column chromatography over silica gel with PE / EA to afford the corresponding product 1.

Method 2: To a suspension of 0.85 g of NaH (53% suspension in mineral oil) in 20 ml 1,2-dimethoxyethane, 3-bromopropyltriphenylphosphonium bromide (4.64 g, 10 mmol) was added at room temp under N₂, and then two drops of EtOH were added. This mixture was stirred for 6 h at 60-70 °C. Aryl ketones (10 mmol) was added and

the mixture was stirred at 70 °C for an additional 5 h. The mixture was poured into ice-water and extracted with hexane. The hexane extract was dried and concentrated. The crude reaction mixture was purified by flash column chromatography over silica gel with PE / EA to afford the corresponding product 1.

Synthesis of β -Hydroxysulfones 3

ACPs (1, 0.2 mmol), TsCl (2a, 0.3 mmol), $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ (2 mol %), and K_2HPO_4 (1.5 equiv) was added in CH₃CN:H₂O=30:1 (1 mL) at room temperature and 12 W blue LED light irradiation for 3 h under N₂ atmosphere. After the reaction, CH₃CN was removed under reduced pressure, purification was finally performed by flash column chromatography on silica gel using EtOAc and petroleum ether to give the desired product **3**.

Diphenyl(1-tosylcyclopropyl)methanol (3aa)

White solid; m.p. 181-182 °C; yield: 68.2 mg (90%); ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.36 (m, 4H), 7.22 (d, J = 8.4 Hz, 2H), 7.14-7.05 (m, 6H), 7.00 (d, J = 8.0 Hz, 2H), 5.78 (s, 1H), 2.37 (s, 3H), 1.71-1.67 (m, 2H), 1.05-0.91 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 142.4, 137.5, 129.2, 128.6, 127.7, 127.5, 127.2, 79.0, 49.1, 21.5, 10.5. HRMS (ESI): calcd for C₂₃H₂₂O₃S ([M+Na]⁺) 401.1182, found 401.1191.

Di-*p*-tolyl(1-tosylcyclopropyl)methanol (**3ba**)

White solid; m.p. 225-226 °C; yield: 56.2 mg (69%); ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.19 (m, 4H), 7.20 (d, J = 8.4 Hz, 2H), 7.00 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.0 Hz, 4H), 5.67 (s, 1H), 2.39 (s, 3H), 2.24 (s, 6H), 1.68-1.65 (m, 2H), 1.05-1.01 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 143.6, 139.5, 137.7, 136.9, 129.1, 128.6, 128.1, 127.5, 78.7, 49.4, 21.6, 20.9, 10.4. HRMS (ESI): calcd for C₂₅H₂₆O₃S ([M+Na]⁺) 429.1495, found 429.1496.

Bis(4-methoxyphenyl)(1-tosylcyclopropyl)methanol (3ca)

White solid; m.p. 173-174 °C; yield: 57.7 mg (66%); ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.26 (m, 4H), 7.21 (d, *J* = 8.4 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 6.58 (d, *J* = 9.2 Hz, 4H), 5.68 (s, 1H), 3.73 (s, 6H), 2.38 (s, 3H), 1.69-1.66 (m, 2H), 1.03-1.00 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 143.6, 137.7, 134.7, 129.1, 128.8, 128.6, 112.7, 78.5, 55.2, 49.6, 21.5, 10.4. HRMS (ESI): calcd for C₂₅H₂₆O₅S ([M+Na]⁺) 461.1393, found 461.1399.

Bis(4-fluorophenyl)(1-tosylcyclopropyl)methanol (3da)

White solid; m.p. 200-201 °C; yield: 44.1 mg (53%); ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.29 (m, 4H), 7.23 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.4 Hz, 2H), 6.78-6.74 (m, 4H), 5.86 (s, 1H), 2.41 (s, 3H), 1.73-1.70 (m, 2H), 0.99-0.96 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.0 (d, J = 245.9 Hz), 144.3, 138.0 (d, J = 3.2 Hz), 137.3, 129.4, 129.3, 128.6, 114.4 (d, J = 21.2 Hz), 78.4, 49.1, 21.5, 10.4. HRMS (ESI): calcd for C₂₃H₂₀F₂O₃S ([M+Na]⁺) 437.0993, found 437.0997.

Bis(4-chlorophenyl)(1-tosylcyclopropyl)methanol (3ea)

White solid; m.p. 260-261 °C; yield: 55.0 mg (62%); ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, J = 8.8 Hz, 4H), 7.21 (d, J = 8.4 Hz, 2H), 7.08-7.02 (m, 6H), 5.89 (s, 1H), 2.45 (s, 3H), 1.75-1.71 (m, 2H), 0.99-0.96 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 144.6, 140.4, 137.1, 133.7, 129.4, 128.9, 128.5, 127.7, 78.3, 48.9, 21.6, 10.2. HRMS (ESI): calcd for C₂₃H₂₀Cl₂O₃S ([M+Na]⁺) 469.0402, found 469.0413.

Phenyl(*p*-tolyl)(1-tosylcyclopropyl)methanol (**3fa**)

White solid; m.p. 182-183 °C; yield: 53.0 mg (68%); ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.36 (m, 2H), 7.26-7.23 (m, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.13-7.04 (m, 3H), 7.00 (d, J = 8.0 Hz, 2H), 6.86 (d, J = 8.0 Hz, 2H), 5.72 (s, 1H), 2.38 (s, 3H), 2.34 (s, 3H), 1.70-1.66 (m, 2H), 1.05-1.01 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 142.5, 139.4, 137.6, 137.0, 129.2, 128.6, 128.2, 127.6, 127.6, 127.5, 127.2, 78.9, 49.3, 21.6, 20.9, 10.5, 10.4. HRMS (ESI): calcd for C₂₄H₂₄O₃S ([M+Na]⁺) 415.1338, found 415.1344.

(4-Methoxyphenyl)(phenyl)(1-tosylcyclopropyl)methanol (**3ga**)

White solid; m.p. 138-139 °C; yield: 46.8 mg (57%); ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.35 (m, 2H), 7. 27 (d, J = 8.8 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.11-7.06 (m, 3H), 7.01 (d, J = 8.0 Hz, 2H), 6.59 (d, J = 9.2 Hz, 2H), 5.73 (s, 1 H), 3.72 (s, 3H), 2.37 (s, 3H), 1.70-1.66 (m, 2H), 1.04-1.00 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 143.7, 142.7, 137.6, 134.5, 129.2, 128.9, 128.6, 127.6, 127.5, 127.2, 112.8, 78.8, 55.2, 49.3, 21.5, 10.5, 10.3. HRMS (ESI): calcd for C₂₄H₂₄O₄S ([M+Na]⁺) 431.1288, found 431.1295.

(4-Fluorophenyl)(phenyl)(1-tosylcyclopropyl)methanol (3ha)

White solid; m.p. 195-196 °C; yield: 56.0 mg (71%); ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.32 (m, 4H), 7.23 (d, J = 8.4 Hz, 2H), 7.15-7.07 (m, 3H), 7.03 (d, J = 8.0 Hz, 2H), 6.76-6.71 (m, 2H), 5.83 (s, 1H), 2.39 (s, 3H), 1.71-1.68 (m, 2H), 1.04-0.97 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.0 (d, J = 245.6 Hz), 144.1, 142.0, 138.4 (d, J = 3.2 Hz), 137.4, 129.4, 129.3, 129.2, 128.6, 127.6, 127.4, 114.2 (d, J = 21.3 Hz), 78.7, 49.1, 21.5, 10.7, 10.2. HRMS (ESI): calcd for C₂₃H₂₁FO₃S ([M+H]⁺) 397.1268, found 397.1268.

(4-Chlorophenyl)(phenyl)(1-tosylcyclopropyl)methanol (3ia)

White solid; m.p. 187-188 °C; yield: 50.9 mg (62%); ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.35 (m, 2H), 7.29 (d, J = 8.8 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 7.16-7.08 (m, 3H), 7.03 (d, J = 8.0 Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H), 5.85 (s, 1H), 2.41 (s, 3H), 1.75-1.67 (m, 2H), 1.05-0.95 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 141.6, 141.2, 137.3, 133.4, 129.3, 128.9, 128.6, 127.7, 127.6, 127.6, 127.5, 78.6, 49.0, 21.6, 11.0, 9.7. HRMS (ESI): calcd for C₂₃H₂₁ClO₃S ([M+Na]⁺) 435.0792, found 435.0799.

(4-Bromophenyl)(phenyl)(1-tosylcyclopropyl)methanol (3ja)

White solid; m.p. 188-189 °C; yield: 66.5 mg (73%); ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.35 (m, 2H), 7.23-7.20 (m, 4H), 7.15-7.09 (m, 5H), 7.04 (d, J = 8.0 Hz, 2H), 5.85 (s, 1H), 2.42 (s, 3H), 1.76-1.66 (m, 2H), 1.06-0.95 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 141.8, 141.4, 137.3, 130.5, 129.4, 129.3, 128.5, 127.7, 127.6, 127.5,

121.7, 78.6, 48.97, 21.6, 11.1, 8.5. HRMS (ESI): calcd for $C_{23}H_{21}BrO_3S$ ([M+H]⁺) 457.0468, found 457.0461.

Phenyl(*m*-tolyl)(1-tosylcyclopropyl)methanol (**3ka**)

White solid; m.p. 153-154 °C; yield: 51.2 mg (65%); ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.38 (m, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.18-7.16 (m, 2H), 7.12-7.06 (m, 3H), 7.01-6.95 (m, 3H), 6.91 (d, J = 7.6 Hz, 1H), 5.79 (s, 1H), 2.37 (s, 3H), 2.14 (s, 3H), 1.74-1.64 (m, 2H), 1.08-1.00 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 142.4, 142.2, 137.5, 137.0, 129.2, 128.6, 128.4, 128.0, 127.7, 127.5, 127.4, 127.3, 124.9, 78.9, 49.2, 21.5, 10.9, 10.2. HRMS (ESI): calcd for C₂₄H₂₄O₃S ([M+Na]⁺) 415.1338, found 415.1321.

(3-Chlorophenyl)(phenyl)(1-tosylcyclopropyl)methanol (3la)

White solid; m.p. 167-168 °C; yield: 56.2 mg (68%); ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.35 (m, 2H), 7.32 (d, *J* = 7.6 Hz, 1H), 7.26-7.22 (m, 3H), 7.14-7.12 (m, 3H), 7.09-7.00 (m, 4H), 5.92 (s, 1H), 2.39 (s, 3H), 1.78-1.66 (m, 2H), 1.09-0.95 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 144.9, 144.4, 141.4, 137.0, 133.6, 129.4, 129.0, 128.5, 127.9, 127.7, 127.6, 127.4, 125.7, 78.6, 48.8, 21.6, 11.1, 9.6. HRMS (ESI): calcd for C₂₃H₂₁ClO₃S ([M+Na]⁺) 435.0792, found 435.0795.

Phenyl(1-tosylcyclopropyl)(3-(trifluoromethyl)phenyl)methanol (**3ma**) White solid; m.p. 174-175 °C; yield: 55.8 mg (63%); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (s, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.38-7.34 (m, 3H), 7.22-7.10 (m, 6H), 7.00 (d, J = 8.4 Hz, 2H), 6.00 (s, 1H), 2.36 (s, 3H), 1.79-1.70 (m, 2H), 1.06-0.96 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 143.9, 141.3, 137.0, 130.9 (q, J = 2.2 Hz), 129.9 (q, J = 32.1 Hz), 129.4, 128.6, 128.1, 127.8, 127.7, 127.6, 124.3-124.1 (m), 123.9 (q, J = 270.8 Hz), 78.7, 48.8, 21.5, 10.9, 9.8. HRMS (ESI): calcd for C₂₄H₂₁F₃O₃S ([M+Na]⁺) 469.1056, found 469.1041.

(2-Fluorophenyl)(phenyl)(1-tosylcyclopropyl)methanol (3na)

White solid; m.p. 164-165 °C; yield: 55.0 mg (69%); ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.79 (m, 1H), 7.48-7.46 (m, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.23-7.18 (m, 3H), 7.10-7.07 (m, 2H), 7.01 (d, J = 8.0 Hz, 2H), 6.41-6.35 (m, 1H), 5.70 (s, 1H), 2.37 (s, 3H), 1.84-1.78 (m, 1H), 1.68-1.60 (m, 1H), 1.20-1.14 (m, 1H), 1.07-1.01 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 158.9 (d, J = 243.0 Hz), 143.7, 140.8, 136.6, 131.8 (d, J = 13.0 Hz), 129.6 (d, J = 8.6 Hz), 129.4 (d, J = 4.1 Hz), 129.0, 128.9, 127.9, 127.8 (d, J = 3.7 Hz), 127.6, 124.4 (d, J = 2.9 Hz), 116.0 (d, J = 24.4 Hz), 78.3 (d, J = 3.2 Hz), 48.7 (d, J = 2.1 Hz), 21.6, 13.7 (d, J = 8.6 Hz), 9.7 (d, J = 2.9 Hz). HRMS (ESI): calcd for C₂₃H₂₁FO₃S ([M+Na]⁺) 419.1088, found 419.1099.

(3,4-Dimethylphenyl)(phenyl)(1-tosylcyclopropyl)methanol (3oa)

White solid; m.p. 142-143 °C; yield: 43.2 mg (53%); ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.39 (m, 2H), 7.19 (d, J = 8.0 Hz, 2H), 7.11-7.07 (m, 5H), 6.98 (d, J = 8.0 Hz, 2H), 6.85 (d, J = 8.0 Hz, 1H), 5.74 (s, 1H), 2.37 (s, 3H), 2.14 (s, 3H), 2.05 (s, 3H), 1.73-1.63 (m, 2H), 1.08-1.01 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 142.4, 139.9, 137.6, 135.7, 135.4, 129.0, 128.9, 128.6, 127.7, 127.5, 127.2, 125.1, 78.8, 49.4, 21.6, 20.0, 19.3, 10.8, 10.2. HRMS (ESI): calcd for C₂₅H₂₆O₃S ([M+Na]⁺) 429.1495, found 429.1504.

Phenyl(thiophen-2-yl)(1-tosylcyclopropyl)methanol (**3pa**)

White solid; m.p. 174-175 °C; yield: 26.3 mg (34%); ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.37 (m, 2H), 7.18 (d, J = 8.0 Hz, 2H), 7.13-7.09 (m, 2H), 7.06-7.00 (m, 4H), 6.68 (dd, J = 5.2, 3.6 Hz, 1H), 6.61 (dd, J = 3.6, 1.2 Hz, 1H), 6.12 (s, 1H), 2.37 (s, 3H), 1.82-1.65 (m, 2H), 1.29-1.18 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 143.7, 142.5, 137.3, 129.2, 128.4, 127.8, 127.5, 126.6, 126.4, 125.4, 78.3, 49.5, 21.5, 12.0, 9.4. HRMS (ESI): calcd for C₂₁H₂₀O₃S₂ ([M+Na]⁺) 407.0746, found 407.0746.

p-Tolyl(1-tosylcyclopropyl)methanol (**3qa**)

White solid; m.p. 94-95 °C; yield: 29.9 mg (47%); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 6.91 (d, *J* = 8.0 Hz, 2H), 5.27 (s, 1H), 3.70 (s, 1H), 2.49 (s, 3H), 2.28 (s, 3H), 1.68-1.62 (m, 1H), 1.37-1,31 (m, 1H), 1.12-1.07 (m, 1H), 0.41-0.36 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 137.9, 135.4, 134.5, 130.0, 128.8, 128.7, 126.5, 70.9, 47.1, 21.7, 21.1, 12.9, 6.5. HRMS (ESI): calcd for C₁₈H₂₀O₃S ([M+Na]⁺) 339.1025, found 339.1014.

(4-Chlorophenyl)(1-tosylcyclopropyl)methanol (3ra)

Yellow oil; yield: 35.0 mg (52%); ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 6.98 (d, J = 8.0 Hz, 2H), 5.22 (d, J = 1.6 Hz, 1H), 3.80 (d, J = 2.4 Hz, 1H), 2.49 (s, 3H), 1.72-1.66 (m, 1H), 1.44-1.38 (m, 1H), 1.09-1.04 (m,1H), 0.46-0.40 (m, 1H). ¹³C NMR (100 MHz, CDCl₃)

δ 145.0, 136.2, 135.2, 133.9, 130.0, 128.7, 128.3, 127.9, 70.7, 47.0, 21.7, 12.8, 6.9. HRMS (ESI): calcd for C₁₇H₁₇ClO₃S ([M+Na]⁺) 359.0479, found 359.0491.

(1-Tosylcyclopropyl)(4-(trifluoromethyl)phenyl)methanol (3sa)

White solid; m.p. 67-68 °C; yield: 42.0 mg (57%); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 5.23 (s, 1H), 3.87 (s, 1H), 2.46 (s, 3H), 1.75-1.69 (m, 1H), 1.53-1.47 (m, 1H), 1.15-1.09 (m, 1H), 0.53-0.48 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 142.0, 135.3, 130.2 (q, J = 32.3 Hz), 130.0, 128.6, 126.9, 125.0 (q, J = 3.8 Hz), 123.9 (q, J = 270.5 Hz), 71.2, 46.9, 21.6, 12.8, 7.7. HRMS (ESI): calcd for C₁₈H₁₇F₃O₃S ([M+Na]⁺) 393.0743, found 393.0752.

m-Tolyl(1-tosylcyclopropyl)methanol (**3ta**)

White solid; m.p. 117-118 °C; yield: 41.1 mg (65%); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 7.12-7.08 (t, J = 7.6 Hz, 1H), 7.01 (d, J = 8.0 Hz, 1H), 6.86 (s, 1H), 6.78 (d, J = 8.0 Hz, 1H), 5.26 (s, 1H), 3.70 (s, 1H), 2.49 (s, 3H), 2.25 (s, 3H), 1.69-1.62 (m, 1H), 1.39-1.34 (m, 1H), 1.15-1.09 (m, 1H), 0.44-0.38 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 137.8, 137.5, 135.4, 129.9, 128.8, 128.7, 128.0, 127.0, 123.8, 71.1, 47.1, 21.7, 21.4, 13.0, 6.7. HRMS (ESI): calcd for C₁₈H₂₀O₃S ([M+Na]⁺) 339.1025, found 339.1025.

(1-Tosylcyclopropyl)(3-(trifluoromethyl)phenyl)methanol (**3ua**)
Yellow oil; yield: 39.5 mg (53%); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 8.0 Hz, 1H), 7.37-7.33 (m, 3H), 7.29 (s, 1H), 7.26 (s

1H), 5.26 (d, J = 3.2 Hz, 1H), 3.88 (d, J = 3.2 Hz, 1H), 2.48 (s, 3H), 1.76-1.70 (m, 1H), 1.51-1.45 (m, 1H), 1.12-1.07 (m, 1H), 0.48-0.43 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 145.1, 139.0, 135.2, 130.6 (q, J = 32.3 Hz), 130.0, 128.6, 124.9 (q, J = 3.7 Hz), 123.8 (q, J = 270.7 Hz), 123.3 (q, J = 3.8 Hz), 71.1, 46.9, 21.7, 12.8, 7.3. HRMS (ESI): calcd for C₁₈H₁₇F₃O₃S ([M+Na]⁺) 393.0743, found 393.0751.

(2,4-Dichlorophenyl)(1-tosylcyclopropyl)methanol (3va)

White solid; m.p. 132-133 °C; yield: 43.8 mg (59%); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 1H), 7.41 (d, J = 8.4 Hz, 2H), 7.24 (dd, J = 2.0 Hz, 8.4 Hz, 1H), 7.18 (d, J = 8.4 Hz, 1H), 5.58 (s, 1H), 3.99 (d, J = 1.6 Hz, 1H), 2.49 (s, 3H), 1.75-1.71 (m, 1H), 1.42-1.36 (m, 1H), 0.95-0.90 (m, 1H), 0.24-0.18 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 145.2, 134.6, 134.5, 133.5, 133.2, 129.9, 129.2, 128.8, 128.7, 127.3, 67.3, 45.8, 21.7, 13.9, 5.9. HRMS (ESI): calcd for C₁₇H₁₆Cl₂O₃S ([M+Na]⁺) 393.0089, found 393.0089.

(2,5-Dimethoxyphenyl)(1-tosylcyclopropyl)methanol (3wa)

White solid; m.p. 168-169 °C; yield: 36.0 mg (50%); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 3.2 Hz, 1H), 6.71 (dd, J = 3.2 Hz, 8.8 Hz, 1H), 6.57 (d, J = 8.8 Hz, 1H), 5.59 (s, 1H), 3.74 (s, 3H), 3.68 (d, J = 2.0 Hz, 1H), 3.24 (s, 3H), 2.50 (s, 3H), 1.70-1.64 (m, 1H), 1.33-1.26 (m, 1H), 1.05-0.99 (m, 1H), 0.27-0.21 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 153.7, 149.9, 144.4, 135.7, 129.5, 129.0, 126.6, 113.7, 112.4, 110.6, 65.6, 55.7, 55.1, 46.2, 21.7, 13.8, 6.3. HRMS (ESI): calcd for C₁₉H₂₂O₅S ([M+Na]⁺) 385.1080, found 385.1080.

Diphenyl(1-tosylcyclobutyl)methanol (3xa)

White solid; m.p. 170-171 °C; yield: 26.3 mg (34%); ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.45 (m, 4H), 7.34 (d, J = 8.4 Hz, 2H), 7.16-7.09 (m, 6H), 7.04 (d, J = 8.0 Hz, 2H), 5.40 (s, 1H), 3.03-2.95 (m, 2H), 2.85-2.77 (m, 2H), 2.38 (s, 3H), 1.82-1.71 (m, 1H), 0.96-0.85 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 142.9, 135.8, 129.5, 129.3, 127.7, 127.5, 127.1, 79.3, 74.7, 27.1, 21.6, 15.1. HRMS (ESI): calcd for C₂₄H₂₄O₃S ([M+H]⁺) 393.1519, found 393.1522.

Diphenyl(1-(phenylsulfonyl)cyclopropyl)methanol (3ab)

White solid; m.p. 201-202 °C; yield: 56.6 mg (78%); ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.42 (m, 1H), 7.40-7.37 (m, 4H), 7.36-7.32 (m, 2H), 7.24-7.20 (m, 2H), 7.13-7.05 (m, 6H), 5.76 (s, 1H), 1.74-1.71 (m, 2H), 1.08-1.04 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.2, 140.6, 132.8, 128.6, 128.5, 127.6, 127.5, 127.4, 79.0, 49.2, 10.6. HRMS (ESI): calcd for C₂₂H₂₀O₃S ([M+H]⁺) 365.1206, found 365.1209.

(1-((4-Methoxyphenyl)sulfonyl)cyclopropyl)diphenylmethanol (3ac)

White solid; m.p. 145-146 °C; yield: 57.4 mg (73%); ¹H NMR (400 MHz, CDCl₃) δ 7.40 (m, 4H), 7.27-7.23 (m, 2H), 7.12-7.06 (m, 6H), 6.68-6.64 (m, 2H), 5.83 (s, 1H), 3.83 (s, 3H), 1.69-1.66 (m, 2H), 1.04-1.01 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 142.4, 131.9, 130.7, 127.7, 127.5, 127.3, 113.9, 79.0, 55.7, 49.0, 10.5. HRMS (ESI): calcd for C₂₃H₂₂O₄S ([M+Na]⁺) 417.1131, found 417.1132.

(1-((4-Chlorophenyl)sulfonyl)cyclopropyl)diphenylmethanol (**3ad**) White solid; m.p. 204-205 °C; yield: 56.4 mg (71%); ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.37 (m, 4H), 7.26-7.24 (m, 2H), 7.19-7.08 (m, 8H), 5.66 (s, 1H), 1.73-1.69 (m, 2H), 1.09-1.06 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 139.7, 139.0, 130.0, 128.9, 127.7, 127.6, 127.5, 78.8, 49.3, 10.6. HRMS (ESI): calcd for C₂₂H₁₉ClO₃S ([M+Na]⁺) 421.0636, found 421.0636.

Br

(1-((4-Bromophenyl)sulfonyl)cyclopropyl)diphenylmethanol (3ae)

White solid; m.p. 180-181 °C; yield: 71.4 mg (81%); ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.32 (m, 6H), 7.19-7.08 (m, 8H), 5.65 (s, 1H), 1.73-1.69 (m, 2H), 1.09-1.06 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 139.5, 131.8, 130.0, 128.3, 127.7, 127.6, 127.5, 78.8, 49.3, 10.6. HRMS (ESI): calcd for C₂₂H₁₉BrO₃S ([M+Na]⁺) 465.0130, found 465.0119.

Diphenyl(1-((4-(trifluoromethyl)phenyl)sulfonyl)cyclopropyl)methanol (**3af**)

White solid; m.p. 161-162 °C; yield: 68.1 mg (79%); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 4H), 7.38-7.36 (m, 4H), 7.15-7.05 (m, 6H), 5.62 (s, 1H), 1.78-1.75 (m, 2H), 1.13-1.10 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 141.9, 134.3 (q, *J* = 32.8 Hz), 129.0, 127.7, 127.6, 125.6 (q, *J* = 3.7 Hz), 123.2 (q, *J* = 271.4 Hz), 78.7, 49.4, 10.6. HRMS (ESI): calcd for C₂₃H₁₉F₃O₃S ([M+Na]⁺) 455.0899, found 455.0902.

(1-((4-Nitrophenyl)sulfonyl)cyclopropyl)diphenylmethanol (3ag)

White solid; m.p. 191-192 °C; yield: 74.6 mg (91%); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.8 Hz, 2H), 7.52 (d, J = 9.2 Hz, 2H), 7.40-7.37 (m, 4H), 7.17-7.07 (m, 6H), 5.48 (s, 1H), 1.80-1.76 (m, 2H), 1.17-1.31 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 149.9, 146.2, 141.9, 129.9, 127.8, 127.7, 123.5, 78.7, 49.8, 10.9. HRMS (ESI): calcd for C₂₂H₁₉NO₅S ([M+Na]⁺) 432.0876, found 432.0878.

Diphenyl(1-(m-tolylsulfonyl)cyclopropyl)methanol (3ah)

White solid; m.p. 169-170 °C; yield: 55.7 mg (74%); ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.38 (m, 4H), 7.27-7.24 (m, 2H), 7.19-7.15 (m, 1H), 7.13-7.05 (m, 6H), 6.98 (s, 1H), 5.80 (s, 1H), 2.19 (s,3H), 1.74-1.71 (m, 2H), 1.07-1.04 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.2, 140.3, 138.8, 133.9, 129.4, 128.5, 127.6, 127.4, 125.7, 78.9, 49.3, 21.2, 10.5. HRMS (ESI): calcd for C₂₃H₂₂O₃S ([M+Na]⁺) 401.1182, found 401.1188.

Diphenyl(1-((3-(trifluoromethyl)phenyl)sulfonyl)cyclopropyl)methanol (3al)

White solid; m.p. 162-163 °C; yield: 65.1 mg (75%); ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.0 Hz, 1H), 7.59-7.55 (m, 2H), 7.42-7.37 (m, 5H), 7.14-7.05 (m, 6H), 5.59 (s, 1H), 1.80-1.77 (m, 2H), 1.15-1.11 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 141.8, 131.7, 131.3 (q, J = 33.3 Hz), 129.7 (q, J = 3.4 Hz), 129.4, 127.8, 127.7, 127.6, 125.6 (q, J = 4.0 Hz), 123.0 (q, J = 271.4 Hz), 78.7, 49.5, 10.7. HRMS (ESI): calcd for C₂₃H₁₉F₃O₃S ([M+Na]⁺) 455.0899, found 455.0892.

(1-(Naphthalen-2-ylsulfonyl)cyclopropyl)diphenylmethanol (3aj)

White solid; m.p. 199-200 °C; yield: 56.0 mg (68%); ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J*= 8.4 Hz, 1H), 7.78 (s, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.67-7.60 (m, 2H), 7.55-7.51 (m, 1H), 7.46 (dd, *J* = 2.0, 8.8 Hz, 1H), 7.39-7.36 (m, 4H), 6.97-6.90 (m, 6H), 5.83 (s, 1H), 1.81-1.78 (m, 2H), 1.10-1,07 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 137.3, 134.8, 131.9, 131.0, 129.7, 129.2, 128.7, 127.6 (2C), 127.4 (2C), 127.2, 123.2, 79.0, 49.2, 10.6. HRMS (ESI): calcd for C₂₆H₂₂O₃S ([M+Na]⁺) 437.1182, found 437.1161.

(1-((2-Chlorophenyl)sulfonyl)cyclopropyl)diphenylmethanol (3ak)

White solid; m.p. 156-157 °C; yield: 37.8 mg (47%); ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.47 (m, 4H), 7.39-7.36 (m, 2H), 7.30-7.25 (m, 1H), 7.10-7.05 (m, 6H), 6.95-6.91 (m, 1H), 5.76 (s, 1H), 2.01-1.98 (m, 2H), 1.15-1.12 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.2, 138.6, 133.8, 133.3, 132.1, 131.4, 127.6, 127.5, 127.4, 127.1, 78.9, 49.6, 10.1. HRMS (ESI): calcd for C₂₂H₁₉ClO₃S ([M+Na]⁺) 421.0636, found 421.0640.

(1-(Methylsulfonyl)cyclopropyl)diphenylmethanol (3al)

White solid; m.p. 96-97 °C; yield: 55.0 mg (91%); ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.55 (m, 4H), 7.36-7.25 (m, 6H), 4.71 (s, 1H), 2.64 (s, 3H), 1.59-1.55 (m, 2H), 1.03-0.99 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 128.1, 128.0, 127.9, 78.9, 47.8, 43.1, 10.5. HRMS (ESI): calcd for C₁₇H₁₈O₃S ([M+Na]⁺) 325.0869, found

325.0862.

(1-((4-Chlorophenyl)sulfonyl)cyclopropyl)(4-methoxyphenyl)(phenyl)methanol (**3gd**) White solid; m.p. 61-62 °C; yield: 53.1 mg (62%); ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.35 (m, 2H), 7.29-7.23 (m, 4H), 7.20-7.07 (m, 5H), 6.61 (d, J = 9.2 Hz, 2H), 5.61 (s, 1H), 3.74 (s, 3H), 1.72-1.69 (m, 2H), 1.08-1.05 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.9, 142.3, 139.5, 139.1, 134.1, 129.9, 128.9, 128.8, 127.6, 127.5, 127.4, 112.8, 78.6, 55.2, 49.6, 10.6, 10.5. HRMS (ESI): calcd for C₂₃H₂₁ClO₄S ([M+Na]⁺) 451.0741, found 451.0756.

Phenyl(1-(phenylsulfonyl)cyclopropyl)(*m*-tolyl)methanol (3kb)

White solid; m.p. 112-113 °C; yield: 62.3 mg (82%); ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.43 (m, 1H), 7.41-7.38 (m, 2H), 7.35-7.32 (m, 2H), 7.25-7.19 (m, 3H), 7.16 (d, J = 8.0 Hz, 1H), 7.12-7.06 (m, 3H), 6.96 (t, J = 7.6 Hz, 1H), 6.93-6.90 (m, 1H), 5.76 (s, 1H), 2.16 (s, 3H), 1.76-1.68 (m, 2H), 1.02-1.04 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 142.1, 140.6, 137.1, 132.8, 128.6, 128.5, 128.3, 128.2, 127.7, 127.6, 127.5, 127.4, 124.8, 78.9, 49.3, 21.6, 10.8, 10.4. HRMS (ESI): calcd for C₂₃H₂₂O₃S ([M+Na]⁺) 401.1182, found 401.1187.

Phenyl(*m*-tolyl)(1-(*m*-tolylsulfonyl)cyclopropyl)methanol (**3kh**) White solid; m.p. 134-135 °C; yield: 66.5 mg (85%); ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.40 (m, 2H), 7.26-7.21 (m, 3H), 7.18-7.15 (m, 2H), 7.11-7.05 (m, 3H), 6.98-6.89 (m, 3H), 5.81 (s, 1H), 2.18 (s, 3H), 2.15 (s, 3H), 1.77-1.67 (m, 2H), 1.10-1.02 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 142.1, 140.4, 138.7, 137.0, 133.9, 129.4, 128.4, 128.3, 128.2, 127.7, 127.4, 127.3, 125.7, 124.8, 78.9, 49.4, 21.6, 21.2, 10.8, 10.2. HRMS (ESI): calcd for C₂₄H₂₄O₃S ([M+Na]⁺) 415.1338, found 415.1141.

(1-((4-Ntrophenyl)sulfonyl)cyclopropyl)(*m*-tolyl)methanol (**3kg**)

White solid; m.p. 119-120 °C; yield: 43.1 mg (62%); ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 8.0 Hz, 2H), 7.97 (d, *J* = 8.4 Hz, 2H), 7.10 (d, *J* = 7.6 Hz, 1H), 7.02 (d, *J* = 7.6 Hz, 1H), 6.87-6.85 (m, 2H), 5.24 (s, 1H), 3.31 (br, 1H), 2.23 (s, 3H), 1.69-1.56 (m, 2H), 1.31-1.24 (m, 1H), 0.73-0.68 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 150.5, 145.1, 138.2, 137.9, 130.0, 129.2, 128.3, 127.1, 124.0, 123.7, 71.7, 47.0, 21.3, 12.5, 8.4. HRMS (ESI): calcd for C₁₇H₁₇NO₅S ([M+Na]⁺) 370.0720, found 370.0733.

(2-Fluorophenyl)(phenyl)(1-(phenylsulfonyl)cyclopropyl)methanol (**3nb**) White solid; m.p. 159-160 °C; yield: 53.6 mg (70%); ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.80 (m, 1H), 7.48-7.43 (m, 3H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.25-7.18 (m, 5H), 7.12-7.04 (m, 2H), 6.38-6.33 (m, 1H), 5.67 (s, 1H), 1.89-1.83 (m, 1H), 1.74-1.68 (m, 1H), 1.23-1.16 (m, 1H), 1.10-1.04 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 158.9 (d, *J* = 242.9 Hz), 140.7, 139.7, 132.8, 131.6 (d, *J* = 13.0 Hz), 129.9 (d, *J* = 8.6 Hz), 129.3 (d, *J* = 4.1 Hz), 128.9, 128.2, 128.0, 127.8 (d, *J* = 3.8 Hz), 127.7, 124.4 (d, *J* = 2.8 Hz), 116.1 (d, *J* = 24.5 Hz), 78.2 (d, *J* = 3.1 Hz), 48.8, 13.8 (d, *J* = 8.5 Hz), 9.6 (d, *J* = 2.9 Hz). HRMS (ESI): calcd for C₂₂H₁₉FO₃S ([M+Na]⁺) 405.0931, found 405.0937.

(2-Fluorophenyl)(phenyl)(1-(m-tolylsulfonyl)cyclopropyl)methanol (**3nh**) White solid; m.p. 132-133 °C; yield: 64.2 mg (81%); ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.81 (m, 1H), 7.49-7.46 (m, 2H), 7.29-7.26 (m, 2H), 7.24-7.15 (m, 4H), 7.12-7.05 (m, 3H), 6.40-6.34 (m, 1H), 5.73 (s, 1H), 2.21 (s, 3H), 1.90-1.84 (m, 1H), 1.72-1.66 (m, 1H), 1.23-1.16 (m, 1H), 1.10-1.04 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.0 (d, *J* = 243.2 Hz), 140.6, 139.4, 138.3, 133.8, 131.6 (d, *J* = 13.2 Hz), 129.8 (d, *J* = 8.6 Hz), 129.4, 129.3 (d, *J* = 4.1 Hz), 128.1, 127.9, 127.8 (d, *J* = 3.9 Hz), 127.7, 126.2, 124.2 (d, *J* = 2.9 Hz), 115.9 (d, *J* = 24.5 Hz), 78.1 (d, *J* = 3.4 Hz), 48.9 (d, *J* = 2.3 Hz), 21.2, 13.8 (d, *J* = 8.7 Hz), 9.5 (d, *J* = 3.2 Hz). HRMS (ESI): calcd for C₂₃H₂₁FO₃S ([M+Na]⁺) 419.1088, found 419.1096.

MeO	+ TsCl	[Ru(bpy) ₃]Cl ₂ • <u>K₂HPO4 (</u> CH ₃ C rt, 12 W t	6H ₂ O (2 m 1.5 equiv.) N, N ₂ blue LEDs	MeO MeO MeO Me	MeO	Ts
1ac	2a			Заса	4aca	5aca
	entry	1ac/2a	t∕h	solvent	Yield (%)	
					3aca/4aca/5aca	
	1	1/1.5	3	CH ₃ CN:H ₂ O=30:1	0/15%/8%	
	2 ^{c)}	1/1.5	3	CH ₃ CN:H ₂ O=30:1	0/21%/4%	
	3 ^{d)}	1/1.5	3	CH ₃ CN:H ₂ O=30:1	0/36%/0	
	4	1/1.5	3	CH ₃ CN	0/29%/0	
	5	1/1.5	12	CH ₃ CN	0/38%/5%	
	6 ^{e)}	1/3	30	CH ₃ CN	0/0/39%	
	7 ^{f)}	1/3	30	CH ₃ CN	0/0/24%	

8	1/1.05	12	CH ₃ CN	0/59%/5%
9	1.5/1	12	CH ₃ CN	0/46%/0
10	1.5/1	16	CH ₃ CN	0/63%/0
11	1.5/1	20	CH ₃ CN	0/60%/0
12 ^{g)}	1.5/1	16	CH ₃ CN	0/60%/0

^{a)} Reactions were carried out using **1** (0.3 mmol), **2a** (0.2 mmol), [Ru(bpy)₃]Cl₂•6H₂O (2 mol%), base (0.3 mmol) and in a solvent (1 mL) at room temperature and 12 W blue LEDs light irradiation for 16 h under N₂ atmosphere. ^{b)} Isolated yield. ^{c)} NaHCO₃ (1.5 equiv.) was applied as the base. ^{d)} 50 °C. ^{e)} [Ru(bpy)₃]Cl₂•6H₂O (5 mol%). ^{f)} [Ru(bpy)₃]Cl₂•6H₂O (5 mol%) and K₂HPO₄ (3.0 equiv.). ^{g)} [Ru(bpy)₃]Cl₂ (2 mol%).

Synthesis of cyclopropyl styrenes 4

ACPs (1, 0.3 mmol), TsCl (2a, 0.2 mmol), [Ru(bpy)₃]Cl₂•6H₂O (2 mol %), and K₂HPO₄ (1.5 equiv.) was added in CH₃CN (1 mL) at room temperature and 12 W blue LEDs light irradiation for 16 h under N₂ atmosphere. After the reaction, CH₃CN was removed under reduced pressure, purification was finally performed by flash column chromatography on silica gel using EtOAc and petroleum ether to give the desired product **4**.

Ts

1-Methyl-4-((1-(1-phenylvinyl)cyclopropyl)sulfonyl)benzene (**4ya**) White solid; m.p. 112-113 °C; yield: 50.0 mg (84%); ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.45-7.40 (m, 2H), 7.25-7.22 (m, 5H), 5.71 (s, 1H), 5.06 (s, 1H), 2.41 (s, 3H), 1.97-1.94 (m, 2H), 1.15-1.12 (m, 2H). ¹³C NMR (100 MHz, CDCl₃)

δ 144.3, 142.2, 138.2, 135.2, 129.5, 129.3, 128.1, 127.9, 126.9, 123.2, 46.6, 21.6, 14.6. HRMS (ESI): calcd for C₁₈H₁₈O₂S ([M+H]⁺) 299.1100, found 299.1082.

(1-(1-(Phenylsulfonyl)cyclopropyl)vinyl)benzene (**4yb**)

White solid; m.p. 68-69 °C; yield: 39.7 mg (70%); ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.75 (m, 2H), 7.60-7.55 (m, 1H), 7.47-7.39 (m, 4H), 7.25-7.21 (m, 3H), 5.72 (s, 1H), 5.06 (s, 1H), 2.00-1.97 (m, 2H), 1.18-1.14 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 138.1, 133.4, 129.4, 128.7, 128.1, 128.0, 126.9, 123.3, 46.6, 14.7. HRMS (ESI): calcd for C₁₇H₁₆O₂S ([M+Na]⁺) 307.0763, found 307.0775.

1-Methyl-3-((1-(1-phenylvinyl)cyclopropyl)sulfonyl)benzene (4yh)

Yellow liquid; yield: 38.6 mg (65%); ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.55 (m, 1H), 7.54 (s, 1H), 7.43-7.39 (m, 2H), 7.37-7.30 (m, 2H), 7.24-7.21 (m, 3H), 5.72 (s, 1H), 5.09 (s, 1H), 2.35 (s, 3H), 1.99-1.95 (m, 2H), 1.18-1.15 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 138.8, 138.2, 138.0, 134.2, 129.8, 128.5, 128.0, 127.9, 126.9, 126.5, 123.2, 46.6, 21.3, 14.6. HRMS (ESI): calcd for C₁₈H₁₈O₂S ([M+Na]⁺) 321.0920, found 321.0932.

1-Methyl-4-((1-(1-(p-tolyl)vinyl)cyclopropyl)sulfonyl)benzene (4za)

White solid; m.p. 115-116 °C; yield: 38.8 mg (62%); ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 8.0 Hz, 2H), 5.66 (s, 1H), 4.99 (s, 1H), 2.41 (s, 3H), 2.31 (s, 3H), 1.96-1.92 (m, 2H), 1.15-1.12 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 142.0, 137.8, 135.4, 135.2, 129.4, 129.2, 128.8, 126.8, 122.2, 46.6, 21.6, 21.1, 14.6. HRMS (ESI): calcd for C₁₉H₂₀O₂S ([M+Na]⁺) 335.1076, found 335.1068.

1-Chloro-4-(1-(1-tosylcyclopropyl)vinyl)benzene (4aaa)

White solid; m.p. 141-142 °C; yield: 42.7 mg (64%); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.4 Hz, 2H), 7.39-7.35 (m, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.22-7.18 (m, 2H), 5.69 (s, 1H), 5.05 (s, 1H), 2.43 (s, 3H), 1.97-1.94 (m, 2H), 1.15-1.11 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 141.2, 136.7, 135.0, 133.9, 129.4, 129.3, 128.2, 123.5, 46.6, 21.6, 14.5. HRMS (ESI): calcd for C₁₈H₁₇ClO₂S ([M+H]⁺) 333.0711, found 333.0704.

1-Bromo-4-(1-(1-tosylcyclopropyl)vinyl)benzene (4aba)

White solid; m.p. 135-136 °C; yield: 46.3 mg (62%); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.0 Hz, 2H), 7.38-7.34 (m, 2H), 7.32-7.28 (m, 2H), 7.24 (d, J = 8.0 Hz, 2H), 5.70 (s, 1H), 5.06 (s, 1H), 2.43 (s, 3H), 1.97 (s, 3H), 1.97-1.94 (m, 2H), 1.15-1.11 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 141.3, 137.2, 135.0, 131.2, 129.4, 129.3, 128.5, 123.5, 122.2, 46.5, 21.6, 14.5. HRMS (ESI): calcd for C₁₈H₁₇BrO₂S ([M+H]⁺) 377.0205, found 377.0220.

1-Methoxy-3-(1-(1-tosylcyclopropyl)vinyl)benzene (4aca)

Yellow oil; yield: 41.0 mg (63%); ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.17 (t, J = 8.0 Hz, 1H), 7.01-6.98 (m, 1H), 6.95-6.94 (m, 1H), 6.80-6.77 (m, 1H), 5.71 (s, 1H), 5.09 (s, 1H), 3.76 (s, 3H), 2.41 (s, 3H), 1.97-1.93 (m, 2H), 1.15-1.12 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 144.3, 142.1, 139.8, 135.2, 129.4, 129.3, 129.0, 123.6, 119.5, 113.4, 112.7, 55.2, 46.7, 21.6,

14.7. HRMS (ESI): calcd for C₁₉H₂₀O₃S ([M+H]⁺) 329.1206, found 329.1218.

(*E*)-1-methoxy-3-(2-tosyl-1-(1-tosylcyclopropyl)vinyl)benzene (**5aca**)

White solid; m.p. 115-116 °C; yield: 8.0 mg (8%); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 7.09 (t, J = 8.0 Hz, 1H), 6.89 (s, 1H), 6.82-6.79 (m, 1H), 6.39 (d, J = 7.6 Hz, 1H), 6.12 (s, 1H), 3.63 (s, 3H), 2.45 (s, 3H), 2.43 (s, 3H), 1.87-1.83 (m, 2H), 1.03-1.00 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.9, 148.0, 145.1, 144.3, 138.4, 137.6, 135.3, 135.2, 129.9, 129.4, 129.2, 128.9, 128.0, 121.2, 115.1, 113.1, 55.1, 48.1, 21.7, 21.6, 15.0. HRMS (ESI): calcd for C₂₆H₂₆O₅S₂ ([M+Na]⁺) 505.1114, found 505.1116.

III. Derivatization of product 3aa.

A stired solution of β -Hydroxysulfones (0.2 mmol, 75.6 mg) and SnCl₄ (0.2 mmol, 52.1 mg) in CH₂Cl₂ (1 mL) was refluxed for 1 h. After cooling to room temperature, the solution was washed with 10 % NaHCO₃ and with brine, dried (Na₂SO₄) and evaporated to remove the solvent. The residue was chromatographed on silica gel with acetic ether-light petroleum 1:5 as eluent.

Ts Ph Ph

(4-Chloro-2-tosylbut-1-ene-1,1-diyl)dibenzene (6aa)

White solid; m.p. 149-150 °C; yield: 69.3 mg (88%); ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.27 (m, 5H), 7.19-7.15 (m, 1H), 7.11-7.03 (m, 6H), 6.95-6.93 (m, 2H), 3.82 (t, *J* = 7.2 Hz, 2H), 3.10 (t, *J* = 7.2 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 143.4, 140.7, 139.2, 138.9, 138.1, 129.1, 129.0, 128.7, 128.4, 128.0, 127.8, 127.7, 127.5, 43.1, 33.9, 21.5. HRMS (ESI): calcd for C₂₃H₂₁ClO₂S ([M+Na]⁺) 419.0843, found 419.0861.

 β -Hydroxysulfones (0.2 mmol, 75.6 mg) and *p*-toluenesulfonic acid (0.2 mmol, 34.4 mg) in dry methylbenzene (2 mL) was refluxed for 1 h. After cooling to room temperature, the methylbenzene solution was washed with 10 % NaHCO₃ and with brine, dried (Na₂SO₄) and evaporated to remove the solvent. The mixture was chromatographed on silica gel with acetic ether-light petroleum 1:5 as eluent.

4,4-Diphenyl-3-tosylbut-3-en-1-yl 4-methylbenzenesulfonate (7aa)

White solid; m.p. 149-150 °C; yield: 90.2 mg (85%); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.29-7.23 (m, 5H), 7.15-7.13 (m, 1H), 7.09-7.03 (m, 6H), 6.91-6.88 (m, 2H), 4.29 (t, J = 6.8 Hz, 2H), 2.96 (t, J = 6.8Hz, 2H), 2.43 (s, 3H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 144.8, 143.6, 140.5, 138.8, 137.9, 137.5, 132.9, 129.9, 129.2, 128.8, 128.7, 128.3, 128.0, 127.9, 127.7, 127.6, 127.5, 68.6, 30.4, 21.7, 21.6. HRMS (ESI): calcd for C₃₀H₂₈O₅S₂ ([M+Na]⁺) 555.1270, found 555.1262.

IV. Control experiments.

MCPs (1a, 0.2 mmol, 41.2 mg), TsCl (2a, 0.3 mmol, 57.3 mg), diphenylethene (3.0 equiv., 108.0 mg), [Ru(bpy)₃]Cl₂•6H₂O (2 mol%, 3.0 mg), and K₂HPO₄ (1.5 equiv., 52.2 mg) was added in CH₃CN:H₂O=30:1 (1 mL) at room temperature and 12 W blue LEDs light irradiation for 3 h under N₂ atmosphere. After the reaction, CH₃CN was removed under reduced pressure, purification was finally performed by flash column chromatography on silica gel using EtOAc and petroleum ether to give the product **8aa**.

Ts Ph Ph

4,4'-(4,4-Diphenylbut-3-ene-1,3-diyldisulfonyl)bis(methylbenzene)¹² (**8aa**) White solid; m.p. 97-98 °C; yield: 29.2 mg (29%); ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.4 Hz, 2H), 7.39-7.34 (m, 2H), 7.32-7.28 (m, 4H), 7.21-7.19 (m, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.11-7.09 (m, 2H), 6.99 (s, 1H), 2.38 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 154.7, 143.8, 139.2, 138.6, 135.6, 130.2, 129.8, 129.3, 129.0, 128.8, 128.6, 128.2, 127.8, 127.7, 21.6.

(Methoxy(1-tosylcyclopropyl)methylene)dibenzene (9aaa)

White solid; m.p. 115-116 °C; yield: 61.2 mg (78%); ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.43 (m, 4H), 7.33 (d, J = 8.0 Hz, 2H), 7.31-7.28 (m, 6H), 7.09 (d, J = 8.4 Hz, 2H), 2.84 (s, 3H), 2.37 (s, 3H), 1.74-1.71 (m, 2H), 1.26-1.21 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.7, 140.0, 138.6, 130.6, 128.7, 128.2, 128.0, 127.4, 84.6, 51.3, 50.8, 21.5, 13.4. HRMS (ESI): calcd for C₂₄H₂₄O₃S ([M+Na]⁺) 415.1338, found 415.1347.

Table 1. Single crystal data for wh11.

Identification code	wh11		
Chemical formula	$C_{23}H_{22}O_3S$		
Formula weight	378.46 g/mol		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal size	0.230 x 0.250 x 0.500 r	mm	
Crystal habit	colorless block		
Crystal system	monoclinic		
Space group	P 1 21/n 1		
Unit cell dimensions	a = 11.3828(19) Å	$\alpha = 90^{\circ}$	
	b = 11.548(2) Å	$\beta = 91.392(10)^{\circ}$	
	c = 14.490(3) Å	$\gamma=90^{\circ}$	
Volume	1904.1(6) Å ³		
Z	4		
Density (calculated)	1.320 g/cm ³		
Absorption coefficient	0.191 mm ⁻¹		
F(000)	800		

Table 2. Data collection and structure refinement for wh11.

Theta range for data collection	2.25 to 25.12°
Index ranges	-13<=h<=13, -13<=k<=13, -17<=l<=17
Reflections collected	14632
Independent reflections	3376 [R(int) = 0.0572]
Coverage of independent reflections	99.1%
Absorption correction	Multi-Scan

Max. and min. transmission	0.9570 and 0.9110		
Structure solution technique	direct methods		
Structure solution program	SHELXT 2014/5 (Sheldrick, 2014)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2017/1 (Sheldrick, 2017)		
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	3376 / 0 / 246		
Goodness-of-fit on F ²	1.032		
Δ/σ_{max}	0.001		
Final R indices	2216 data; I>2σ(I)	R1 = 0.0495, wR2 = 0.1031	
	all data	R1 = 0.0940, wR2 = 0.1198	
Waighting scheme	$w=1/[\sigma^2(F_o^2)+(0.051)]$	(7P) ² +0.4169P]	
weighting scheme	where $P = (F_o^2 + 2F_c^2)/3$		
Largest diff. peak and hole	0.156 and -0.306 eÅ	-3	
R.M.S. deviation from mean	0.044 eÅ ⁻³		

Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters $(Å^2)$ for wh11.

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized $U_{\mbox{ij}}$ tensor.

	x/a	y/b	z/c	U(eq)
S 1	0.41686(5)	0.48660(5)	0.74423(5)	0.0505(2)
01	0.58872(14)	0.37657(15)	0.59971(12)	0.0564(5)
02	0.53092(15)	0.53685(14)	0.72874(13)	0.0628(5)
03	0.31751(16)	0.56300(15)	0.74648(14)	0.0713(6)
C1	0.3968(2)	0.1307(2)	0.54575(17)	0.0527(7)
C2	0.3698(2)	0.0680(2)	0.4671(2)	0.0627(8)
C3	0.4097(3)	0.1019(3)	0.3828(2)	0.0672(8)
C4	0.4761(3)	0.2002(3)	0.37782(19)	0.0681(8)

C5	0.5018(2)	0.2644(2)	0.45578(18)	0.0573(7)
C6	0.4625(2)	0.2312(2)	0.54149(16)	0.0429(6)
C7	0.53381(18)	0.22680(19)	0.70753(15)	0.0382(6)
C8	0.6525(2)	0.2125(2)	0.72775(18)	0.0544(7)
С9	0.6908(2)	0.1425(3)	0.7998(2)	0.0643(8)
C10	0.6120(3)	0.0851(2)	0.8524(2)	0.0628(8)
C11	0.4941(2)	0.0975(2)	0.83318(18)	0.0532(7)
C12	0.4553(2)	0.16772(19)	0.76206(16)	0.0414(6)
C13	0.49430(18)	0.3043(2)	0.62727(16)	0.0416(6)
C14	0.39026(19)	0.38426(19)	0.65369(16)	0.0414(6)
C15	0.2641(2)	0.3480(2)	0.64254(19)	0.0569(7)
C16	0.3123(2)	0.4339(3)	0.5776(2)	0.0643(8)
C17	0.4248(2)	0.41366(19)	0.85034(17)	0.0439(6)
C18	0.3244(2)	0.3723(2)	0.89066(19)	0.0541(7)
C19	0.3334(2)	0.3138(2)	0.97301(19)	0.0580(7)
C20	0.4413(2)	0.2977(2)	0.01762(17)	0.0520(7)
C21	0.5398(2)	0.3421(2)	0.97685(18)	0.0532(7)
C22	0.5328(2)	0.3993(2)	0.89399(18)	0.0489(7)
C23	0.4498(3)	0.2330(3)	0.1075(2)	0.0790(9)

Table 4. Bond lengths (Å) for wh11.

S1-O3	1.4354(17)	S1-O2	1.4446(17)
S1-C17	1.754(3)	S1-C14	1.786(2)
O1-C13	1.425(2)	O1-H1	0.82
C1-C2	1.379(3)	C1-C6	1.383(3)
C1-H1A	0.93	C2-C3	1.370(4)
С2-Н2	0.93	C3-C4	1.367(4)
С3-Н3	0.93	C4-C5	1.377(4)
C4-H4	0.93	C5-C6	1.384(3)
С5-Н5	0.93	C6-C13	1.538(3)
C7-C8	1.385(3)	C7-C12	1.387(3)
C7-C13	1.527(3)	C8-C9	1.383(4)

C8-H8	0.93	C9-C10	1.363(4)
С9-Н9	0.93	C10-C11	1.371(3)
С10-Н10	0.93	C11-C12	1.376(3)
С11-Н11	0.93	С12-Н12	0.93
C13-C14	1.557(3)	C14-C15	1.501(3)
C14-C16	1.511(3)	C15-C16	1.482(4)
C15-H15A	0.97	C15-H15B	0.97
C16-H16A	0.97	C16-H16B	0.97
C17-C22	1.379(3)	C17-C18	1.381(3)
C18-C19	1.373(4)	C18-H18	0.93
C19-C20	1.386(3)	С19-Н19	0.93
C20-C21	1.379(3)	C20-C23	1.502(4)
C21-C22	1.371(3)	C21-H21	0.93
С22-Н22	0.93	С23-Н23А	0.96
С23-Н23В	0.96	С23-Н23С	0.96

Table 5. Bond angles (°) for wh11.

O3-S1-O2	117.92(12) O3-S1-C17	107.39(12)
O2-S1-C17	107.58(11) O3-S1-C14	107.69(11)
O2-S1-C14	106.78(11) C17-S1-C14	109.29(11)
С13-О1-Н1	109.5	C2-C1-C6	120.9(3)
C2-C1-H1A	119.5	C6-C1-H1A	119.5
C3-C2-C1	121.0(3)	С3-С2-Н2	119.5
С1-С2-Н2	119.5	C4-C3-C2	118.7(3)
С4-С3-Н3	120.7	С2-С3-Н3	120.7
C3-C4-C5	120.7(3)	С3-С4-Н4	119.6

С5-С4-Н4	119.6	C4-C5-C6	121.4(3)
С4-С5-Н5	119.3	С6-С5-Н5	119.3
C1-C6-C5	117.3(2)	C1-C6-C13	122.8(2)
C5-C6-C13	119.9(2)	C8-C7-C12	117.4(2)
C8-C7-C13	119.9(2)	C12-C7-C13	122.71(19)
C9-C8-C7	121.1(3)	С9-С8-Н8	119.4
С7-С8-Н8	119.4	C10-C9-C8	120.5(2)
С10-С9-Н9	119.8	С8-С9-Н9	119.8
C9-C10-C11	119.3(3)	С9-С10-Н10	120.4
С11-С10-Н10	120.4	C10-C11-C12	120.6(3)
С10-С11-Н11	119.7	С12-С11-Н11	119.7
C11-C12-C7	121.1(2)	С11-С12-Н12	119.4
С7-С12-Н12	119.4	O1-C13-C7	110.27(18)
O1-C13-C6	105.00(18)	C7-C13-C6	110.67(19)
O1-C13-C14	107.76(18)	C7-C13-C14	111.85(18)
C6-C13-C14	111.03(18)	C15-C14-C16	58.96(16)
C15-C14-C13	122.7(2)	C16-C14-C13	118.8(2)
C15-C14-S1	114.10(18)	C16-C14-S1	111.75(18)
C13-C14-S1	117.17(15)	C16-C15-C14	60.86(16)
C16-C15-H15A	117.7	C14-C15-H15A	117.7
C16-C15-H15B	117.7	C14-C15-H15B	117.7
H15A-C15-H15B	114.8	C15-C16-C14	60.18(16)
C15-C16-H16A	117.8	C14-C16-H16A	117.8
C15-C16-H16B	117.8	C14-C16-H16B	117.8
H16A-C16-H16B	114.9	C22-C17-C18	120.1(2)
C22-C17-S1	119.1(2)	C18-C17-S1	120.78(19)

S28

C19-C	18-C17	119.5(2)	С19-С18-Н18	120.3
C17-C	18-H18	120.3	C18-C19-C20	121.2(3)
C18-C	19-H19	119.4	С20-С19-Н19	119.4
C21-C2	20-C19	118.1(3)	C21-C20-C23	121.4(2)
C19-C2	20-C23	120.6(3)	C22-C21-C20	121.6(2)
C22-C2	21-H21	119.2	C20-C21-H21	119.2
C21-C2	22-C17	119.5(2)	С21-С22-Н22	120.3
C17-C2	22-H22	120.3	С20-С23-Н23А	109.5
C20-C2	23-H23B	109.5	H23A-C23-H23B	109.5
C20-C2	23-H23C	109.5	H23A-C23-H23C	109.5

H23B-C23-H23C 109.5

Table 6. Anisotropic atomic displacement parameters (Å²) for wh11.

The anisotropic atomic displacement factor exponent takes the form: -2 π 2 [h^2 a^{*2} U_{11} + ... + 2 h k

 $a^* b^* U_{12}$]

	U11	U22	U33	U23	U13	U12
S 1	0.0475(4)	0.0385(4)	0.0651(5)	-0.0010(3)	-0.0070(3)	0.0020(3)
01	0.0472(10)	0.0616(12)	0.0608(12)	0.0057(9)	0.0095(9)	-0.0197(9)
02	0.0580(11)	0.0496(11)	0.0805(14)	0.0039(9)	-0.0043(10)	-0.0216(9)
03	0.0704(13)	0.0495(11)	0.0934(15)	-0.0052(10)	-0.0119(11)	0.0257(10)
C1	0.0582(17)	0.0527(16)	0.0472(16)	-0.0001(13)	0.0008(13)	-0.0057(14)
C2	0.075(2)	0.0539(17)	0.059(2)	-0.0053(15)	-0.0047(15)	-0.0062(15)
C3	0.086(2)	0.065(2)	0.0498(19)	-0.0106(15)	-0.0107(16)	0.0149(18)
C4	0.085(2)	0.076(2)	0.0439(18)	0.0092(16)	0.0011(15)	0.0083(18)
C5	0.0625(17)	0.0604(17)	0.0490(17)	0.0077(15)	0.0025(14)	-0.0035(14)
C6	0.0393(13)	0.0473(15)	0.0420(15)	0.0042(12)	-0.0002(11)	0.0012(12)
C7	0.0307(13)	0.0399(13)	0.0438(14)	-0.0041(11)	-0.0016(11)	0.0016(11)
C8	0.0334(14)	0.0666(17)	0.0632(18)	-0.0026(15)	0.0027(12)	0.0027(13)
C9	0.0435(16)	0.0680(19)	0.080(2)	-0.0050(17)	-0.0170(15)	0.0179(15)
C10	0.074(2)	0.0483(16)	0.065(2)	0.0020(14)	-0.0226(16)	0.0097(15)
C11	0.0654(18)	0.0416(14)	0.0523(16)	0.0035(13)	-0.0046(14)	-0.0079(13)

C12	0.0352(13)	0.0389(13)	0.0499(15)	0.0005(12)	-0.0022(11)	-0.0024(11)
C13	0.0313(13)	0.0449(14)	0.0487(15)	0.0051(12)	0.0049(11)	-0.0080(11)
C14	0.0344(13)	0.0397(13)	0.0498(15)	0.0034(11)	-0.0068(11)	-0.0007(11)
C15	0.0334(14)	0.0610(17)	0.0759(19)	-0.0069(15)	-0.0073(13)	-0.0020(13)
C16	0.0575(17)	0.0695(19)	0.0649(19)	0.0062(16)	-0.0188(14)	0.0128(15)
C17	0.0385(14)	0.0400(14)	0.0529(15)	-0.0099(12)	-0.0026(12)	0.0034(11)
C18	0.0328(14)	0.0681(18)	0.0615(18)	-0.0095(15)	0.0006(12)	0.0059(13)
C19	0.0479(16)	0.0673(18)	0.0593(18)	-0.0075(15)	0.0132(14)	0.0022(14)
C20	0.0536(17)	0.0508(16)	0.0516(17)	-0.0079(13)	0.0018(14)	0.0110(14)
C21	0.0416(16)	0.0585(17)	0.0589(18)	-0.0061(14)	-0.0075(13)	0.0029(13)
C22	0.0390(14)	0.0484(15)	0.0593(18)	-0.0072(13)	-0.0018(12)	-0.0043(12)
C23	0.087(2)	0.082(2)	0.069(2)	0.0086(18)	0.0042(17)	0.0098(18)

Table 7. Hydrogen atomic coordinates and isotropic atomic displacement parameters $(Å^2)$ for wh11.

	x/a	y/b	z/c	U(eq)
H1	0.5961	0.4308	0.6360	0.085
H1A	0.3705	0.1051	0.6025	0.063
H2	0.3239	0.0017	0.4714	0.075
Н3	0.3919	0.0588	0.3301	0.081
H4	0.5043	0.2239	0.3212	0.082
Н5	0.5464	0.3315	0.4507	0.069
H8	0.7074	0.2507	0.6923	0.065
Н9	0.7708	0.1345	0.8125	0.077
H10	0.6379	0.0379	0.9008	0.075
H11	0.4399	0.0582	0.8686	0.064
H12	0.3750	0.1757	0.7503	0.05
H15A	0.2482	0.2707	0.6193	0.068
H15B	0.2093	0.3755	0.6879	0.068
H16A	0.2872	0.5138	0.5835	0.077
H16B	0.3260	0.4089	0.5149	0.077
H18	0.2512	0.3841	0.8622	0.065
H19	0.2660	0.2844	0.9993	0.07
H21	0.6128	0.3330	1.0063	0.064
H22	0.6003	0.4281	0.8674	0.059
H23A	0.5185	0.1849	1.1083	0.119

H23B	0.3812	0.1856	1.1140	0.119
H23C	0.4550	0.2872	1.1576	0.119

D–H···A	D(D)…H)	$d(H)\cdots A)$	$d(D) \cdots A)$	∠(DHA)	Symmetry
					transformation for A
O(1)−H(1)···O(2)	0.82	1.98	2.7229(6)	151	x,y,z
C(5)–H(5)····O(1)	0.93	2.26	2.6279(5)	103	x,y,z
C(8)−H(8)…O(1)	0.93	2.38	2.7370(6)	103	x,y,z
C(12)-H(12)····O(3)	0.93	2.55	3.3316(7)	142	3/2-x,1/2-y,1/2-z
C(16)−H(16A)····O(3)	0.97	2.44	2.8645(6)	106	x,y,z
C(22)–H(22)····O(2)	0.93	2.48	2.8733(6)	105	x,y,z

Table 8. Hydrogen bond parameters (Å, °) for compound 3aa.

References

- 1. M. Shi, B.-Y. Wang, J.-W. Huang, J. Org. Chem. 2005, 70, 5606-5610.
- 2. W.-D. Liu, G.-Q. Xu, X.-Q. Hu, P.-F. Xu, Org. Lett. 2017, 19, 6288-6291.
- 3. H.-C, Jiang, X.-Y. Tang, M. Shi, Chem. Commun. 2016, 52, 5273-5276.

- Y. Liu, Q. L. Wang, C. S. Zhou, B. Q. Xiong, P. L. Zhang, C. A. Yang, K. W. Tang, J. Org. Chem. 2017, 82, 7394-7401.
- 5. M. Shi, L.-P. Liu, J. Tang, Org. Lett. 2006, 18, 4043-4046.
- 6. A. Schweinitz, A. Chtchemelinine, A. Orellana, Org. Lett. 2011, 13, 232-235.
- 7. Z. Z. Zhu, K. Chen, L. Yu, Z. L. X. Y. Tang, M. Shi, Org. Lett. 2015, 17, 5994-5997.
- Y. Liu, Q.-L Wang, Z. Chen, Q. Zhou, H. Li, C.-S. Zhou, B. Xiong, P.-L. Zhang,
 K.-W. Tang, J. Org. Chem. 2019, 84, 5, 2829-2839.
- 9. T. Matsuda, T. Tsuboi, M. Murakami, J. Am. Chem. Soc. 2007, 129, 42, 12596-12597.
- 10. W.-D. Liu, G.-Q. Xu, X.-Q. Hu, P.-F. Xu, Org. Lett. 2017, 19, 23, 6288-6291.
- 11. N. Hideo, T. Eiki, I. Masataka, Org. Lett. 1999, 13, 517-520.
- 12. (a) J.-M. Li, Y.-H. Wang, Y. Yu, R. Wu, J. Weng, G. Lu, ACS Catal. 2017, 7, 4,
 2661-2667; (b) J. Yan, J. Xu, Y. Zhou, J. Chen, Q. Song, Org. Chem. Front. 2018, 5,
 1483-1487.

VI. NMR Spectra

¹H NMR and ¹³C NMR spectra of compound **3aa**

¹H NMR and ¹³C NMR spectra of compound **3ba**

¹H NMR and¹³C NMR spectra of compound **3ca**

¹H NMR and ¹³C NMR spectra of compound **3da**

¹H NMR and ¹³C NMR spectra of compound **3ea**

¹H NMR and ¹³C NMR spectra of compound **3fa**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectra of compound $\mathbf{3ga}$

¹H NMR and ¹³C NMR spectra of compound **3ha**

¹H NMR and ¹³C NMR spectra of compound **3ia**

¹H NMR and ¹³C NMR spectra of compound **3ja**

¹H NMR and ¹³C NMR spectra of compound **3ka**

¹H NMR and ¹³C NMR spectra of compound **3la**

¹H NMR and ¹³C NMR spectra of compound **3ma**

¹H NMR and ¹³C NMR spectra of compound **3na**

¹H NMR and ¹³C NMR spectra of compound **30a**

¹H NMR and ¹³C NMR spectra of compound **3pa**

¹H NMR and ¹³C NMR spectra of compound **3qa**

¹H NMR and ¹³C NMR spectra of compound **3ra**

¹H NMR and ¹³C NMR spectra of compound **3sa**

¹H NMR and ¹³C NMR spectra of compound **3ta**

¹H NMR and ¹³C NMR spectra of compound **3ua**

¹H NMR and ¹³C NMR spectra of compound **3va**

¹H NMR and ¹³C NMR spectra of compound **3wa**

¹H NMR and ¹³C NMR spectra of compound 3xa

¹H NMR and ¹³C NMR spectra of compound **3ab**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectra of compound 3ac

¹H NMR and ¹³C NMR spectra of compound **3ad**

¹H NMR and ¹³C NMR spectra of compound **3ae**

¹H NMR and ¹³C NMR spectra of compound **3af**

¹H NMR and ¹³C NMR spectra of compound **3ag**

S63

¹H NMR and ¹³C NMR spectra of compound **3ai**

¹H NMR and ¹³C NMR spectra of compound **3aj**

¹H NMR and ¹³C NMR spectra of compound **3ak**

S67

¹H NMR and ¹³C NMR spectra of compound **3gd**

¹H NMR and ¹³C NMR spectra of compound **3kb**

¹H NMR and ¹³C NMR spectra of compound **3kh**

¹H NMR and ¹³C NMR spectra of compound **3kg**

¹H NMR and ¹³C NMR spectra of compound **3nb**

¹H NMR and ¹³C NMR spectra of compound **3nh**

¹H NMR and ¹³C NMR spectra of compound 4yb

¹H NMR and ¹³C NMR spectra of compound **4yh**

¹H NMR and ¹³C NMR spectra of compound **4za**

¹H NMR and ¹³C NMR spectra of compound **4aaa**

¹H NMR and ¹³C NMR spectra of compound **4aba**

¹H NMR and ¹³C NMR spectra of compound **4aca**

¹H NMR and ¹³C NMR spectra of compound **5aca**

¹H NMR and ¹³C NMR spectra of compound **6aa**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectra of compound 7aa

$^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectra of compound $\boldsymbol{8aa}$

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectra of compound **9aa**