Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Supporting Information

Rhodium-Catalyzed Biheteroaryl-2-Carbonitriles Synthesis via Double C–H Activation

Hui-Bei Xu,^a Yan-Ying Zhu,^a Jia-Hui Yang,^a Xin-Yue Chai,^a Lin Dong^{*a}

- 1. General methods
- 2. Optimization of the reaction conditions
- 3. Invalid examples
- 4. General procedure for synthesis of 3H-indole compounds
- 5. Mechanistic study
- 6. Synthetic application of 3
- 7. Characterization data for compounds
- 8. ¹H and ¹³C NMR spectra.

1. General methods

NMR data were obtained for ¹H at 400 MHz or 600 MHz, and for ¹³C at 100 MHz or 151 MHz.Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution. ESI HRMS was recorded on a Waters SYNAPT G2 and Water XEVO G2 Q-ToF.UV detection was monitored at 220 nm. TLC was performed on glass-backed silica plates. Column chromatography was performed on silica gel (200-300 mesh), eluting with ethyl acetate and petroleum ether.

2. Screening reaction conditions

Many other conditions cannot increase the yield of **3a** (Table A).

Table A. Additional reaction conditions^a

	. OEt			NC	
	+	NH	[M] Additive	-S	
	~ 5	Solve	nt, 120 °C, 5h		
	1a	2a		3a	
Entry	Cat.	Additive/[equiv.]	oxidant	Yield ^b /%	
1	[Cp*IrCl ₂] ₂	$AgSbF_6$	Ag ₂ O	8%	
2	Cp*Co(CO) ₂	$AgSbF_6$	Ag ₂ O	N.R.	
3	Ru(p-cymene) ₂	$AgSbF_6$	Ag ₂ O	N.R.	
4	$[Cp*RhCl_2]_2$	$AgSbF_6$	Cu(OAc) ₂	14%	
5	$[Cp*RhCl_2]_2$	$AgSbF_6$	Cu(acac) ₂	N.R.	
6	$[Cp*RhCl_2]_2$	$AgSbF_6$	Ag ₂ CO ₃	9%	
7	[Cp*RhCl ₂] ₂	$AgSbF_6$	$Cu(OAc)_2 H_2O$	N.R.	
8	$[Cp*RhCl_2]_2$	AgSbF ₆ /NaOPiv	AgF	23%	
9	[Cp*RhCl ₂] ₂	AgSbF ₆ /NaOPiv	Ag ₂ CO ₃	25%	
10	[Cp*RhCl ₂] ₂	AgSbF ₆ /HOAc	Ag ₂ O	N.R.	
11	$[Cp*RhCl_2]_2$	AgSbF ₆ /TsOH	Ag ₂ O	22%	
12	[Cp*RhCl ₂] ₂	AgOAc	Ag ₂ O	N.R.	
13 ^c	[Cp*RhCl ₂] ₂	$AgSbF_6$	Ag ₂ O	N.R.	
14^d	[Cp*RhCl ₂] ₂	$AgSbF_6$	Ag ₂ O	N.R.	
15	[Cp*RhCl ₂] ₂		Ag ₂ O	43%	

^{*a*} Reaction conditions unless otherwise specified:**1a** (0.1mmol), **2a** (0.12mmol), 5 mol% of catalyst, silver salts (30% mol), and oxidant (0.21 mmol) in DCE (0.5 mL) at 120 °C under Air for 5 h. 1-AdCOOH is the abbreviation of 1-adamantanecarboxylic acid. ^{*b*} Isolated yield. ^{*c*} 0.25 ml of DMF. ^{*d*} 0.25 ml of toluene.

3. Invalid examples

However, other heterocycles such as benzimidazole, benzoxazole, benzothiazole and N-methyl indole could not be tolerated under the optimized reaction conditions. In addition, ethyl thiophene-2-carboxylate or ethyl furan-2-carboxylate were not suitable substrates, probably due to the electronic effects (Scheme A).

Scheme A. Invalid substrates in the cascade reaction.

Scheme A

4. General procedure for synthesis of biheteroaryl-2-carbonitrile compounds

benzothiophene 1 (0.1 mmol), benzimidate 2 (0.12 mmol), $[Cp*RhCl_2]_2$ (3 mg, 5 mol%), AgSbF₆ (5.2 mg, 30 mol%), Ag₂O (48.7 mg, 0.21 equiv.) and Li₂CO₃ (7.4 mg, 1 equiv.) were stirred in TFE (0.5 mL) under an air atmosphere at 120 °C for 1.5 h, then additional 0.1 mmol of 2 was added for 5 h. After completion, the reaction mixture was purified by flash chromatography eluting with ethyl acetate and petroleum ether (1:30) to give the product 3 and 4 as an off-white solid.

5. Mechanistic study

(1) Detection of the intermediate III

Benzothiophene **1a** (0.1 mmol), benzimidate **2a** (0.12 mmol), $[Cp*RhCl_2]_2$ (3 mg, 5 mol%), AgSbF₆ (5.2 mg, 30 mol%), Ag₂O (48.7 mg, 0.21 equiv.) and Li₂CO₃ (7.4 mg, 1 equiv.) were stirred in TFE (0.5 mL) under an air atmosphere at 120 °C for 0.5 h. Then the reaction mixture was cooled to room temperature and analyzed by LC-MS without purification. The mass spectrum was obtained as below. LC-MS (ESI+): calculated for **III** m/z [III + H]⁺ (C₁₇H₁₆NOS):282.1, found: 282.1

(2) Kinetic isotope experiments

To a flask charged with benzothiophene **1a** (0.1 mmol), benzimidate **2a** or **2a**- d_5 (0.12 mmol), [Cp*RhCl₂]₂ (3 mg, 5 mol%), AgSbF₆ (5.2 mg, 30 mol%), Ag₂O (48.7 mg, 0.21 equiv.) and Li₂CO₃ (7.4 mg, 1 equiv.) were stirred in TFE (0.5 mL). The reaction mixture was stirred at 120 °C for 1.5 h under air atmosphere. After cooled to room temperature, the reaction mixture was purified by flash chromatography eluting with ethyl acetate and petroleum ether (1:20) to give the desired product 7.6 mg of **3a** and 6.9 mg of **3a**- d_4 . The KIE value of k_H/k_D = 1.1 was determined based on the product yield of **3a** and **3a**- d_4 .

To a flask charged with benzothiophene **1a** or **1a**-*d* (0.1 mmol), benzimidate **2a** (0.12 mmol), $[Cp*RhCl_2]_2$ (3 mg, 5 mol%), AgSbF₆ (5.2 mg, 30 mol%), Ag₂O (48.7 mg, 0.21 equiv.) and Li₂CO₃ (7.4 mg, 1 equiv.) were stirred in TFE (0.5 mL). The reaction mixture was stirred at 120 °C for 1.5 h under air atmosphere. After cooled to room temperature, the reaction mixture was purified by flash chromatography eluting with ethyl acetate and petroleum ether (1:20) to give the desired product 7.6 mg of **3a** and 6 mg of **3a** (from**1a**-*d*). The KIE value of k_H/k_D = 1.3 was determined based on the product yield of **3a**.

6. Synthetic application of 3

To a solution of 2-(benzo[b]thiophen-2-yl)benzonitrile **3a** (0.1 mmol, 23.5 mg) in Et₂O (0.5 mL) was added dropwise LiAlH₄ (0.4 mmol, 15.2 mg in 0.3 mL Et₂O) at 0°C and stirred for 0.5 h. 4 M NaOH was added slowly to until a clear solution was obtained. The Et₂O layer was separated and the aqueous phase was extracted with Et₂O (5 mL, 3 times). Combined the organic layers and dried over Na₂SO₄. After removing the solvent under reduced pressure, the residue was purified by column chromatography on silica gel with EtOAc. The product **5a** was obtained in 60% isolated yield as an off-white solid.

To a solution of 2-(benzo[b]thiophen-2-yl)benzonitrile **3a** (0.1 mmol, 23.5 mg) in ethylene glycol (2.5 mL) was added sodium hydroxide solution (120 mg NaOH in 2 mL water) and stirred at 130 °C to reflux overnight. After completion of the reaction, the mixture was cooled down to room temperature and extracted with DCM (5 mL, 3 times). Combined the organic layers and

dried over Na_2SO_4 . After removing the solvent under reduced pressure, the residue was purified by column chromatography on silica gel with EtOAc. The product **6a** was obtained in 82% isolated yield as white solid.

A flame-dried Schlenk tube with a magnetic stir bar was charged with *ortho*-carboxyl bi(hetero)arene **6a** (0.1 mmol), Pd(OAc)₂ (10.0 mol%), Ac-Gly-OH (20 mol %), PhI(OAc)₂ (2.0 equiv), KOAc (2.0 equiv) and *t*-BuOH (1 mL). The resulting mixture was heated at 120 °C for 24 h. After completion, the reaction mixture was purified by column chromatography on silica gel to provide the desired product **7a**.

Schlenk А flame-dried tube with а magnetic stir bar was charged with 2-(5-bromothiophen-2-yl)benzonitrile 4d (0.1 mmol), DMF (1 mL), 1M aqueous solution of sodium carbonate (0.25 mL) and boronic acid (1.1 mmol). The mixture was degassed with a steady stream of argon for 10min at room temperature. To this mixture, Pd(Ph₃P)₄ (0.1mmol) was added and the mixture was degassed with argon for 2 min after which it was heated under argon to 85 °C for 3 h. After completion of the reaction, the mixture was extracted with EA (5 mL, 3 times). Combined the organic layers and dried over Na₂SO₄. After removing the solvent under reduced pressure, the residue was purified by column chromatography on silica gel. The product 5d was obtained in 88% isolated yield as yellow oil.

7. Characterization data for compounds

2-(benzo[b]thiophen-2-yl)benzonitrile (3a)

19.7 mg (84%); off-white solid; mp =109.3-113.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.88 – 7.84 (m, 2H), 7.78 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.71 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.64 (td, *J* = 7.7, 1.4 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.42 – 7.37 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 140.2, 140.1, 139.1, 137.5, 134.4, 133.0, 130.2, 128.1, 125.2, 124.8, 124.5, 124.4, 122.1,

118.7, 110.4; HRMS (EI) m/z $[M + Na]^+$ calculated for C₁₅H₉NNaS: 258.0353, found 258.0358.

2-(benzo[b]thiophen-2-yl)-4-methylbenzonitrile (3b)

15.7 mg (63%); off-white solid; mp = 132.9-136.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.80 (m, 3H), 7.62 – 7.57 (m, 2H), 7.47 – 7.33 (m, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.3, 140.0, 139.3, 138.6, 134.7, 134.7, 133.9, 130.1, 125.1, 124.7, 124.4, 123.9, 122.1, 118.8, 110.2, 20.8; HRMS (EI) m/z [M + Na]⁺ calculated for

C₁₆H₁₁NNaS: 272.0510, found 272.0504.

2-(benzo[b]thiophen-2-yl)-4-methoxybenzonitrile (3c)

24.4 mg (92%); off-white solid; mp = 127.3-131.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.83 (m, 3H), 7.70 (d, *J* = 8.7 Hz, 1H), 7.43 – 7.35 (m, 2H), 7.18 (d, *J* = 2.5 Hz, 1H), 6.94 (dd, *J* = 8.7, 2.5 Hz, 1H), 3.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.8, 140.2, 140.1, 139.4, 139.1, 136.2, 125.3, 124.8, 124.5, 124.5, 122.1, 119.1,

115.7, 114.0, 102.4, 55.7; HRMS (EI) $m/z [M + Na]^+$ calculated for $C_{16}H_{11}NNaOS$: 288.0459, found 288.0459.

2-(benzo[b]thiophen-2-yl)-4-fluorobenzonitrile (3d)

14.4 mg (57%); off-white solid; mp = 120.5-123.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.80 (m, 3H), 7.62 – 7.57 (m, 2H), 7.47 – 7.33 (m, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7 (d, *J* = 256Hz), 140.5(d, *J* = 10Hz), 140.1, 140.0, 137.7 (d, *J* = 2Hz), 136.8 (d, *J* = 9Hz), 125.7, 125.1, 125.0, 124.7, 122.2, 118.1, 115.2 (d, *J* = 20Hz),

106.6, 99.9 (d, J = 17Hz); HRMS (EI) m/z [M + Na]⁺ calculated for C₁₅H₈FNNaS: 276.0259, found 276.0258.

2-(benzo[b]thiophen-2-yl)-4-chlorobenzonitrile (3e)

21.5 mg (80%); off-white solid; mp = 122.0-127.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.89 – 7.85 (m, 2H), 7.73 – 7.69 (m, 2H), 7.44 – 7.39 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.2, 140.0, 139.6, 139.2, 137.6, 135.5, 130.3, 128.4, 125.7, 125.2, 125.0, 124.7, 122.2, 118.0, 108.8; HRMS (EI) m/z [M + Na]⁺ calculated for

C₁₅H₈ClNNaS: 291.9964, found 291.9965.

2-(benzo[b]thiophen-2-yl)-4-bromobenzonitrile (3f)

25.3 mg (81%); off-white solid; mp = 146.1-154.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.84 (m, 4H), 7.63 (d, J = 8.3 Hz, 1H), 7.58 (dd, J = 8.3, 1.8 Hz, 1H), 7.45 – 7.38 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 140.2, 140.0, 139.2, 137.5, 135.4, 133.2, 131.3, 128.1, 125.7, 125.2, 125.0, 124.7, 122.2, 118.1, 109.3; HRMS (EI) m/z [M + Na]⁺

calculated for C₁₅H₈BrNNaS: 335.9459, found 335.9457.

2-(benzo[b]thiophen-2-yl)-4-(trifluoromethyl)benzonitrile (3g)

19.1 mg (63%); off-white solid; mp = 84.9-93.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.94 (d, J = 2.4 Hz, 1H), 7.93 – 7.87 (m, 3H), 7.70 (dd, J = 8.2, 1.6 Hz, 1H), 7.45 – 7.40 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 140.4, 140.0, 138.6, 137.4, 135.1, 134.9 (d, J = 33Hz), 127.0 (q, J = 3Hz), 125.8, 125.5, 125.1, 124.8, 124.7 (q, J =

3Hz), 122.9 (q, J = 270Hz), 122.3, 117.5, 113.8; HRMS (EI) m/z [M + Na]⁺ calculated for C₁₆H₈F₃NNaS: 326.0227, found 326.0228.

methyl 3-(benzo[b]thiophen-2-yl)-4-cyanobenzoate (3h)

14.1 mg (48%); off-white solid; mp = $151.5-155.8^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 1.7 Hz, 1H), 8.07 (dd, J = 8.1, 1.6 Hz, 1H), 7.93 (s, 1H), 7.91 – 7.85 (m, 3H), 7.44 – 7.39 (m, 2H), 3.99 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 140.3, 140.1, 137.9, 134.6, 134.2, 131.0, 128.7, 125.6, 125.0, 125.0, 124.7, 122.2, 118.0,

114.1, 52.9; HRMS (EI) m/z $[M + Na]^+$ calculated for $C_{17}H_{11}NNaO_2S$: 316.0408, found 316.0410.

2-(benzo[b]thiophen-2-yl)-6-fluorobenzonitrile (3i)

11.9 mg (47%);off-white solid; mp = 118.0-124.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.88 (dt, *J* = 9.6, 3.4 Hz, 2H), 7.63 (td, *J* = 8.1, 5.7 Hz, 1H), 7.52 (d, *J* = 7.9 Hz, 1H), 7.42 (q, *J* = 5.0, 4.4 Hz, 2H), 7.21 (t, *J* = 8.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6 (d, *J* = 258Hz), 140.2, 140.1, 139.3, 137.9 (d, *J* = 2Hz), 134.5 (d, *J* = 9Hz), 125.7, 125.7, 125.1, 125.0, 124.7, 122.1, 115.2 (d, *J* = 20Hz), 113.5, 99.9 (d, *J* = 17Hz); HRMS

(EI) $m/z [M + Na]^+$ calculated for C₁₅H₈FNNaS: 276.0259, found 276.0258.

2-(benzo[b]thiophen-2-yl)-6-chlorobenzonitrile (3j)

19.1 mg (71%); off-white solid; mp = 149.5-158.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.89 – 7.85 (m, 2H), 7.61 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.57 (t, *J* = 7.8 Hz, 1H), 7.51 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.44 – 7.38 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 140.2, 140.0, 139.9, 138.9, 138.1, 133.4, 129.0, 128.4, 125.6, 125.2, 125.0, 124.7, 122.1, 115.6, 111.4; HRMS (EI) m/z [M + Na]⁺ calculated for C₁₅H₈ClNNaS: 291.9964, found 291.9966

2-(benzo[b]thiophen-2-yl)-6-methylbenzonitrile (3k)

13.7 mg (55%); off-white solid; mp = 123.4-127.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.81 (m, 3H), 7.56 – 7.49 (m, 2H), 7.43 – 7.35 (m, 2H), 7.32 (t, *J* = 4.4 Hz, 1H), 2.65 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 140.2, 140.2, 139.6, 137.9, 132.4, 129.6, 127.7, 125.1, 124.7, 124.4, 124.4, 122.1, 117.5, 111.2, 21.2; HRMS (EI) m/z [M + Na]⁺ calculated for C₁₆H₁₁NNaS: 272.0510, found 272.0507.

2-(benzo[b]thiophen-2-yl)-5-methylbenzonitrile (3l)

11.7 mg (47%);off-white solid; mp = 48.2-56.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 9.3 Hz, 4H), 7.52 (d, J = 4.8 Hz, 2H), 7.43 – 7.35 (m, 4H), 7.34 – 7.29 (m, 1H), 2.65 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.04, 140.23, 140.06, 139.32, 137.32, 134.38, 130.89, 129.03, 125.19, 124.78, 124.46, 124.30, 122.10, 118.97,

107.53, 21.83; HRMS (EI) $m/z [M + Na]^+$ calculated for $C_{16}H_{11}NNaS$: 272.0510, found 272.0504.

2-(benzo[b]thiophen-2-yl)-5-chlorobenzonitrile (3m)

13.7 mg (51%); off-white solid; mp = 151.4-155.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.85 (m, 3H), 7.76 (d, *J* = 2.1 Hz, 1H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.61 (dd, *J* = 8.5, 2.1 Hz, 1H), 7.42 – 7.38 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 140.2, 140.1, 137.9, 136.1, 134.2, 133.9, 133.4, 131.4, 125.5, 125.0, 124.8, 124.6, 122.1, 117.4, 111.8; HRMS (EI) m/z $[M + Na]^+$ calculated for C₁₅H₈ClNNaS: 291.9964, found 291.9965.

6-(benzo[b]thiophen-2-yl)benzo[d][1,3]dioxole-5-carbonitrile (3n)

17.9 mg (64%); off-white solid; mp = 103.8-106.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.90 – 7.84 (m, 2H), 7.43 – 7.34 (m, 3H), 6.87 (d, *J* = 8.1 Hz, 1H), 6.18 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.4, 145.7, 140.4, 139.2, 132.8, 130.6, 126.0, 125.3, 124.6, 124.4, 122.1, 119.1, 118.8, 108.3, 104.1, 102.4; HRMS (EI) m/z [M + Na]⁺

calculated for C₁₆H₉NNaO₂S: 302.0252, found 302.0254.

3-(benzo[b]thiophen-2-yl)-2-naphthonitrile (30)

21.4 mg (75%); off-white solid; mp = 172.0-175.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 8.14 (s, 1H), 7.95 – 7.86 (m, 5H), 7.65 (ddd, *J* = 15.2, 14.1, 7.2 Hz, 2H), 7.44 – 7.37 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 140.0, 139.4, 136.8, 134.6, 131.7, 131.4, 129.8, 129.7, 128.3, 128.1, 128.0, 125.1, 124.8, 124.4, 124.3, 122.1, 118.9,

108.6; HRMS (EI) $m/z [M + Na]^+$ calculated for $C_{19}H_{11}NNaS$: 308.0510, found 308.0519.

3-(benzo[b]thiophen-2-yl)thiophene-2-carbonitrile (3p)

8.4 mg (35%); off-white solid; mp = 90.3-96.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.84 (dt, *J* = 7.0, 2.3 Hz, 2H), 7.59 (d, *J* = 5.2 Hz, 1H), 7.39 (td, *J* = 5.2, 2.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 139.9, 139.7, 134.8, 132.2, 127.9, 125.6, 125.0, 124.5, 123.7, 122.2, 114.7,

103.7; HRMS (EI) m/z $[M + Na]^+$ calculated for C₁₃H₇NNaS₂: 263.9918, found 263.9916.

2-(5-methylthiophen-2-yl)benzonitrile (4a)

Me

10.9 mg (55%); off-white solid; mp = 115.7-124.4 °C;¹H NMR (400 MHz, CDCl₃) δ 7.70 (dt, *J* = 7.7, 1.0 Hz, 1H), 7.59 – 7.54 (m, 2H), 7.45 (d, *J* = 3.6 Hz, 1H), 7.33 (ddd, *J* = 7.7, 5.4, 3.4 Hz, 1H), 6.81 (dq, *J* = 3.5, 1.1 Hz, 1H), 2.54 (d, *J* = 1.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.4, 137.9, 137.0, 134.3, 132.9, 129.3, 127.7, 127.0, 126.6, 119.0, 109.5, 15.4; HRMS (EI) m/z

 $[M + Na]^+$ calculated for C₁₂H₉NNaS: 222.0353, found 222.0355.

2-(5-chlorothiophen-2-yl)benzonitrile (4b)

10.5 mg (48%); off-white solid; mp = 102.1-109.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (dd, J = 7.8, 1.4 Hz, 1H), 7.60 (td, J = 7.7, 1.4 Hz, 1H), 7.53 (dd, J = 8.1, 1.2 Hz, 1H), 7.44 – 7.37 (m, 2H), 6.98 (d, J = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.8, 136.7, 134.4, 133.1, 132.1, 129.4, 127.9, 127.4, 127.1, 118.5, 110.0; HRMS (EI) m/z [M + Na]⁺ C₁₁H₆CINNaS: 241.9807,

found 241.9827.

2-(5-bromothiophen-2-yl)benzonitrile (4c)

10.5 mg (40%); off-white solid; mp = 172.0-175.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (dd, J = 7.8, 0.8 Hz, 1H), 7.60 (td, J = 7.9, 1.3 Hz, 1H), 7.56 – 7.51 (m, 1H), 7.40 (ddd, J = 7.1, 6.7, 2.6 Hz, 2H), 7.12 (d, J = 3.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.4, 135.6, 134.5, 133.3, 123.0, 129.3, 128.7, 118.1, 115.0, 113.2, 110.; HRMS (EI) m/z [M + Na]⁺calculated for C₁₁H₆BrNNaS:285.9302, found 285.9302.

2-(5-phenylthiophen-2-yl)benzonitrile (4d)

18.0 mg (69%); off-white solid; mp = 111.0-120.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (dd, *J* = 7.8, 0.9 Hz, 1H), 7.69 – 7.63 (m, 4H), 7.61 (td, *J* = 7.7, 1.4 Hz, 1H), 7.44 – 7.37 (m, 3H), 7.37 – 7.30 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.4, 138.5, 137.4, 134.4, 133.7, 133.0, 129.3, 129.0, 128.6, 128.1, 127.5, 126.0, 124.2, 118.9, 109.7; HRMS (EI) m/z [M + Na]⁺ calculated for

C₁₇H₁₁NNaS:284.0510, found 284.0510.

2-(4,5-dibromothiophen-2-yl)benzonitrile (4e)

13.6 mg (40%); off-white solid; mp = 155.3-159.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.7 Hz, 1H), 7.63 (t, *J* = 7.7 Hz, 1H), 7.53 (d, *J* = 7.9 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.40 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.4, 135.6, 134.5, 133.3, 130.0, 129.0, 128.7, 118.1, 115.0, 113.2, 110.1; HRMS (EI) m/z [M + Na]⁺ calculated for C₁₁H₅Br₂NNaS: 363.8407, found

363.8403.

2-(5-bromo-4-methylthiophen-2-yl)benzonitrile (4f)

14.1 mg (51%); off-white solid; mp = 114.2-121.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.7 Hz, 1H), 7.62 – 7.55 (m, 1H), 7.52 (d, J = 7.8 Hz, 1H), 7.39 (td, J = 7.7, 1.1 Hz, 1H), 7.32 (s, 1H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 138.6, 136.8, 134.4, 133.1, 129.4, 129.2, 127.8, 118.6, 111.7, 109.6, 15.4; HRMS (EI) m/z [M + Na]⁺C₁₂H₈BrNNaS:

299.9459, found 299.9456

2-(3-bromobenzo[b]thiophen-2-yl)benzonitrile (4g)

18.2 mg (58%); off-white solid; mp = 155.9-162.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.88 (m, 1H), 7.87 – 7.81 (m, 2H), 7.71 (td, *J* = 7.7, 1.3 Hz, 1H), 7.63 (dd, *J* = 7.7, 0.8 Hz, 1H), 7.60 – 7.44 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 138.1, 136.7, 133.7, 133.5, 132.6, 132.0, 129.4, 126.2, 125.6, 124.1, 122.3, 117.5, 114.0, 109.1; HRMS (EI) m/z [M + Na]⁺

calculated for $C_{15}H_8BrNNaS:335.9459$, found 335.9460.

2-(benzofuran-2-yl)benzonitrile (4h)

7.0 mg (32%); off-white solid; mp = 75.0-83.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.1 Hz, 1H), 7.77 (d, *J* = 7.7 Hz, 1H), 7.72 (s, 1H), 7.70 – 7.64 (m, 2H), 7.55 (d, *J* = 8.2 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.7 Hz, 1H), 7.29 (d, *J* = 7.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃)

 δ 154.7, 151.2, 134.4, 133.0, 133.0, 128.8, 128.2, 127.1, 125.7, 123.4, 122.0, 118.8, 111.3, 108.1, 106.8; HRMS (EI) m/z [M + Na]⁺ calculated for C₁₅H₉NNaO:242.0582, found 242.0581.

(2-(benzo[b]thiophen-2-yl)phenyl)methanamine (5a)

14.3 mg (60%); white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.82 (m, 1H), 7.79 (dd, J = 7.2, 1.6 Hz, 1H), 7.51 (dd, J = 7.5, 1.4 Hz, 1H), 7.47 (dd, J = 7.5, 1.6 Hz, 1H), 7.37 (ddtt, J = 14.7, 7.3, 3.8, 2.0 Hz, 4H), 7.29 (s, 1H), 4.89 (s, 2H), 4.07 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ

141.6, 140.1, 140.0, 133.7, 131.3, 129.0, 128.8, 127.6, 124.6, 124.4, 123.7, 123.6, 122.0, 42.9; HRMS (EI) $m/z [M + H]^+$ calculated for $C_{15}H_{14}NS$: 240.0847, found 240.0845.

2-(benzo[b]thiophen-2-yl)benzoic acid (6a)

20.8 mg (82%); white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.83 (m, 1H), 7.79 (dd, J = 7.2, 1.8 Hz, 1H), 7.72 (dd, J = 7.5, 1.6 Hz, 1H), 7.56 (dd, J = 7.6, 1.5 Hz, 1H), 7.52 (dd, J = 7.4, 1.6 Hz, 1H), 7.50 – 7.45 (m, 1H), 7.43 (s, 1H), 7.37 (td, J = 6.9, 1.6 Hz, 2H); ¹³C NMR (100 MHz,

CDCl₃) δ 171.0, 141.0, 140.3, 140.1, 135.3, 131.9, 130.9, 130.3, 128.8, 128.6, 124.7, 124.7, 123.9, 123.9, 122.1;

5H-benzo[4,5]thieno[3,2-c]isochromen-5-one (7a)

17.4 mg (69%); light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.39 (dt, J = 8.0, 1.5 Hz, 1H), 8.01 (dt, J = 6.5, 2.0 Hz, 1H), 7.85 – 7.75 (m, 2H), 7.60 (dd, J = 7.8, 2.3 Hz, 1H), 7.54 (t, J = 7.7 Hz, 1H), 7.50 – 7.42 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 161.80, 144.94, 136.47, 135.32, 133.90, 131.19, 129.65, 128.40, 127.00, 125.33, 123.19, 122.84, 121.12,

119.82, 115.26.

2-(5-(m-tolyl)thiophen-2-yl)benzonitrile (5d)

24 mg (88%); light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.39 (dt, *J* = 8.0, 1.5 Hz, 1H), 8.01 (dt, *J* = 6.5, 2.0 Hz, 1H), 7.85 - 7.75 (m, 2H), 7.60 (dd, *J* = 7.8, 2.3 Hz, 1H), 7.54 (t, *J* = 7.7 Hz, 1H), 7.50 - 7.42 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 161.80,

144.94, 136.47, 135.32, 133.90, 131.19, 129.65, 128.40, 127.00, 125.33, 123.19, 122.84, 121.12, 119.82, 115.26.

8. ¹H and ¹³C NMR spectra.

140. 24 140. 26 137. 57 147. 57 147. 5

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (gpm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)