Visible – light promoted sulfonamidation of enol acetates to α–amino ketones based on redox – neutral photocatalysis

Lin Wang,^a Pi Cheng,^a, * Xinhao Wang,^a Wei Wang,^a Jianguo Zeng,^a

Yun Liang^b and Oliver Reiser^c

^a Key Laboratory of Traditional Chinese Veterinary Medicine of Hunan Province, Hunan Agricultural University, Changsha, Hunan 410128, China

^b Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China

^c Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany

*corresponding author: <u>picheng@hunau.edu.cn; picheng55@126.com</u>

Table of contents

1.	General information	2
2.	General procedure for the synthesis of enol acetates	2
3.	General procedure for the synthesis of <i>N</i> -arylsulfonyl-1-aminopyridine salts 2 .	2
4.	General procedure for the synthesis of α -sulfonylamino ketones 3 and 4	3
5.	Spectra data of α-sulfonylamino ketones	4
6.	NMR spectra of α-sulfonylamino ketones	12
7.	References	.43

1. General information:

Column chromatography silica gel (200–300 mesh) and TCL plate were purchased from Qingdao Meijin Chemical Inc(Qingdao; China); HRMS data were obtained in the ESI mode on an Agilent 6530 Q-TOF/MS system. ¹H NMR and ¹³C NMR spectra were recorded on Bruker 400 MHz spectrometer and chemical shifts were given in δ with TMS as an internal reference.

2. General procedure for synthesis of enol acetates 1^[1]:

$$R^{1}$$
 R^{2} + R^{2} $R^$

A 100 mL flask equipped with a magnetic stir bar, a reflux condenser and a drying tube was charged with ketone (50.0 mmol, 1.00 equiv), isopropenyl acetate (250 mmol, 5.00 equiv) and *p*-TsOH·H₂O (4.00 mmol, 0.08 equiv). The reaction mixture was heated to 120°C. After 24 h the reaction mixture was allowed to cool to room temperature and the remaining isopropenyl acetate was subsequently evaporated under reduced pressure. The residue was redissolved in Et₂O (100 mL) and the resulting solution was washed with H₂O (3×50 mL) and dried over Na₂SO₄. The solvent was evaporated *in vacuo* to give a dark red oil. The pure product was obtained by distillation under reduced pressure or by purification on SiO₂ column chromatography (DCM/hexanes, 1:1). All enol acetates **1a–1s** were synthesized and purified according to the above procedure and are in agreement with literature reference.^[2–7]

3. General procedure for the synthesis of *N*-arylsulfonyl-1-aminopyridine salts 2^[8]

To a mixture of 1–aminopyridinium iodide (1 equiv) and CH_3CN (0.13 M) were added DMAP (10 mol %), K_2CO_3 (3.6 equiv) and sulforyl chloride (1 equiv) at 0 °C

under N₂. Then, the cooling bath was removed and the reaction mixture was stirred at R.T. for 6 h. The suspension was filtered and concentrated in vacuo. The residue was suspended in CH₂Cl₂ and filtered to remove inorganic impurities. After the solvent was removed under reduced pressure, the crude product was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 10/1) and washed with a small amount of CH₂Cl₂ to afford aminopyridinium ylide. The ylide product (1 equiv) was diluted with CH₂Cl₂ (0.3 M) and tetrafluoroboric acid solution (40 wt.% in H₂O) (1.3 equiv) was added to the solution at R.T.. The mixture was stirred for 30 min, then the product was precipitated. The mixture was filtered, washed with diethyl ether and pentane and dried in vacuo. The pure product was obtained as a white solid.

4. General procedure for the synthesis of α -sulfonylamino ketones 3 and 4

A Schlenk tube equipped with a magnetic stir bar was charged with 0.2 mmol enolacetate 1, 2.0 equivalent of *N*-arylsulfonyl-1-aminopyridine salts 2, 1 mol% of photocatalysis Ir(ppy)₃ and 2 mL DMSO under N₂ atmosphere. The flask was sealed by a plastic screw-cap with a Teflon sealed inlet for a glass rod. A high power LED (λ = 455 nm) was attached to the top of the glass rod, which then could act as an optical fiber. After irradiation at room temperature for 24 h, the LED was removed, the solvent was poured to 20 mL water and extracted with 20 mL EtOAc for three times. The combined organic layer was then washed with 20 mL water for three times and evaporated giving crude product, which was purified on silica gel chromatography and eluted with PE/EtOAc to give target compounds **3** or **4**.

5. Spectra data of α-sulfonylamino ketones

Obtained as white solid, mp: 123–125 °C; ¹HNMR (400Hz, CDCl₃):
$$\delta$$
7.79
(d, J = 8.0Hz, 2H), 7.66(d, J = 8.0 Hz, 4H), 7.29 (d, J = 8.4Hz, 2H), 7.26 (d, J = 8.4Hz, 2H), 5.73 (s, 1H), 4.44 (d, J = 4.4Hz, 2H), 2.42(s, 3H), 2.40 (s, J = 8.4Hz, 2H), 5.73 (s, 1H), 4.44 (d, J = 4.4Hz, 2H), 2.42(s, 3H), 2.40 (s, J = 8.4Hz, 2H), 5.73 (s, 1H), 4.44 (d, J = 4.4Hz, 2H), 5.42(s, 3H), 2.40 (s, J = 8.4Hz, 2H), 5.73 (s, 1H), 4.44 (d, J = 4.4Hz, 2H), 5.42(s, 3H), 2.40 (s, J = 8.4Hz, 2H), 5.73 (s, 1H), 4.44 (d, J = 4.4Hz, 2H), 5.42(s, 3H), 2.40 (s, J = 8.4Hz, 2H), 5.73 (s, 1H), 4.44 (d, J = 4.4Hz, 2H), 5.42(s, 3H), 2.40 (s, J = 8.4Hz, 2H), 5.42(s, 3H), 5.40 (s, J = 8.4Hz, 2H), 5.40 (s

3H); ¹³CNMR (100Hz, CDCl₃): δ 192.1, 145.5, 143.7, 136.3, 131.4, 129.8 (×2), 129.6 (×2), 128.0 (×2), 127.2 (×2), 48.5, 21.7, 21.5; HRMS (ESI⁺): calcd 304.1002 for C₁₆H₁₈NO₃S⁺[M+H]⁺; Found, 304.1005.

 $\begin{array}{c} \text{Me} \\ & \text{Me} \\ & \text{Me} \\ & \text{NHTs} \end{array} \qquad \text{Obtained as white solid, mp: 103-106 °C; ^1H NMR (400MHz, CDCl_3):} \\ & \delta 7.80 (d, J = 8.0 \text{ Hz}, 2\text{H}), 7.67 - 7.34 \text{ m}, 4\text{H}), 7.30 (d, J = 8.0\text{Hz}, 2\text{H}), \\ & 5.72 (s, 1\text{H}), 4.46 (d, J = 4.0\text{Hz}, 2\text{H}), 2.41 (s, 6\text{H}); ^{13}\text{CNMR} (100\text{Hz}, \text{CDCl}_3): \delta 192.7, 143.7, 138.9, \\ & 136.2, 135.2, 133.8, 129.8(\times 2), 128.8, 128.4, 127.2(\times 2), 125.1, 48.7, 21.5, 21.3; \text{HRMS (ESI^+):} \\ & \text{calcd 304.1002 for C}_{16}\text{H}_{18}\text{NO}_3\text{S}^+\text{[M+H]}^+; \text{Found, 304.1002.} \end{array}$

Obtained as white solid, mp: 118–121 °C; ¹H NMR (400MHz, CDCl₃): Me NHTs δ 7.80 (d, J = 8.4Hz, 2H),7.36 (s, 1H), 7.30 (d, J = 8.0Hz, 2H), 7.24 (d, J = 7.8 Hz, 1H), 7.14 (d, J = 8.0 Hz), 5.71 (t, J = 4.4Hz, 1H), 4.38 (d, J = 4.0

Hz, 2H), 2.41 (s, 3H), 2.38 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100Hz, CDCl₃): δ 195.2, 143.7, 136.6, 136.3, 135.7, 133.7, 133.4, 132.4, 129.8 (×2), 129.1, 127.2 (×2), 50.1, 21.5, 21.1, 20.8; HRMS (ESI⁺): calcd 318.1164 for C₁₇H₂₀NO₃S⁺[M+H]⁺; Found, 318.1155.

Obtained as white solid, mp: 115–117 °C; ¹H NMR (400Hz, CDCl₃): δ 7.88–7.84 (m, 2H), 7.80 (d, J = 8.4Hz, 2H), 7.61–7.59 (m, 1H), 7.49–7.45 (m, 2H), 7.29 (d, J = 8.0 Hz, 2H), 5.75 (t, J = 4.4Hz, 1H), 4.48 (d, J = 4.4 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (100Hz, CDCl₃): δ 192.6, 143.7, 136.3, 134.4, 133.9, 129.8 (×2), 129.0 (×2), 127.9 (×2), 127.2 (×2), 48.7, 21.5; HRMS (ESI⁺): calcd 290.0851 for C₁₅H₁₆NO₃S⁺[M+H]⁺; Found, 290.0852.

Obtained as white solid, mp: 98–100 °C; ¹H NMR (400MHz, CDCl₃): δ 7.84 (d, *J* = 9.2 Hz, 2H), 7.79 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.4Hz, 2H),6.94 (d, *J* = 9.2 Hz, 2H), 5.72 (t, *J* = 4.4 Hz, 1H), 4.41 (d, *J* = 4.4Hz, 2H), 3.88 (s, 3H), 2.41 (s, 3H); ¹³C NMR (100Hz, CDCl₃): δ 190.8, 164.5, 143.7, 136.1, 130.2 (×2), 129.8 (×2), 127.2 (×2), 126.8, 114.2 (×2), 55.6, 48.2, 21.5; HRMS (ESI⁺): calcd 320.0957 for C₁₆H₁₈NO₄S⁺[M+H]⁺; Found, 320.0959.

Obtained as the white solid, mp: 148–150 °C; ¹H NMR (400Hz, CDCl₃): δ 7.79 (d, J = 6.8Hz, 2H), 7.45 (dd, J = 2.0, 8.0 Hz), 7.33 (d, J = 2.0 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 6.86 (d, J = 8.0 Hz, 1H), 6.08 (s, 2H), 5.67 (t, J = 4.0 Hz, 1H), 4.39

(d, J = 4.4 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (100Hz, CDCl₃): δ 190.5, 152.9, 148.5, 143.7, 136.3, 129.8 (×2), 128.6, 27.2 (×2), 124.3, 108.2, 107.6, 102.1, 48.3, 21.5; HRMS (ESI⁺): calcd 334.0749 for C₁₆H₁₆NO₅S⁺[M+H]⁺; Found, 334.0780.

Obtained as white solid, mp: 123–125 °C; ¹H NMR (400MHz ,CDCl3): δ AcO 7.90 (d, J = 8.8Hz, 2H), 7.79 (d, J = 8.4Hz, 2H), 7.30 (d, J = 8.0Hz, 2H), 7.22 (d, J = 8.8 Hz, 2H), 5.68 (t, J = 4.4 Hz, 1H), 4.45 (d, J = 4.4 Hz, 2H), 2.41 (s, 3H), 2.34 (s, 3H); ¹³CNMR (100Hz, CDCl₃): δ 191.4, 168.7, 155.3, 143.9, 136.0, 131.3, 129.9 (×2), 129.6 (×2), 127.2 (×2), 122.3 (×2), 48.6, 21.5, 21.1; HRMS (ESI+): calcd 348.0900 for C₁₇H₁₈NO₅S⁺ [M+H]⁺; Found, 348.0909.

Obtained as white solid, mp: 160–163 °C; ¹H NMR (400MHz, CDCl₃): δ 7.93 (d, J = 8.8Hz, 2H), 7.80, (d, J = 8.4Hz, 2H), 7.31 (d, J = 8.4 Hz, 4H), 5.64 (t, J = 4.4 Hz, 1H), 7.47 (d, J = 4.8Hz, 2H), 2.42 (s, 3H); ¹³C NMR (100Hz, CDCl₃): δ 191.2, 153.5, 5/43 143.9, 136.1, 132.0, 130.0 (×2), 129.9 (×2), 127.2 (×4), 120.6, 48.7, 21.5; HRMS (ESI⁺): calcd for 374.0674 for C₁₆H₁₅F₃NO₄S⁺[M+H]⁺; Found, 374.0667.

Obtained as white solid, mp: 112–114 °C; ¹H NMR (400MHz, CDCl₃): δ F 7.80 (d, J = 8.4 Hz, 2H), 7.76 – 7.69 (m, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.08 (t, J = 8.8 Hz, 1H), 5.72 (t, J = 4.4 Hz, 1H), 4.44 (d, J = 4.6 Hz, 2H), 2.41 (s, 3H), 2.32 (d, J = 1.6Hz, 3H); ¹³C NMR (100Hz, CDCl₃): 191.3, 165.0 (d, ¹ $J_{F-C} = 254$ Hz), 143.8, 136.1, 131.8 (d, ³ $J_{F-C} = 6.8$ Hz), 129.8 (d, ⁴ $J_{F-C} = 3.4$ Hz), 129.8(×2), 127.9 (³ $J_{F-C} = 9.5$ Hz), 127.2 (×2), 126.1 (d, ² $J_{F-C} = 17.6$ Hz), 115.7 (d, ² $J_{F-C} = 23.2$ Hz), 48.5, 21.5, 14.5 (d, ³ $J_{F-C} = 3.5$ Hz); HRMS (ESI⁺): calcd 322.0913 for C₁₆H₁₇FNO₃S⁺[M+H]⁺; Found, 322.0913.

Obtained as white solid, mp: 164–166 °C; ¹H NMR (400MHz, CDCl₃): δ 7.83– 7.79 (m, 4H), 7.47 (d, J = 8.8 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 5.63 (s, 1H), 4.45 (d, J = 4.4Hz, 2H), 2.42 (s, 3H); ¹³C NMR (100Hz, CDCl₃): δ 191.5, 143.9, 141.1, 136.1, 132.1, 129.9 (×2), 129.4 (×2), 129.2 (×2), 127.2 (×2), 48.6, 21.5; HRMS (ESI⁺): calcd 324.0416 for C₁₅H₁₅CINO₃S⁺[M+H]⁺; Found, 324.0454.

Obtained as white solid, mp: 140–142 °C; ¹H NMR (400MHz, CDCl₃): δ 7.83 (s, 1H), 7.79 (d, *J* =8.0 Hz, 2H), 7.74 (d, *J* = 7.6 Hz, 1H), 7.58 (d, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 5.70 (s, 1H), 4.46 (d, *J* = 4.4 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (100Hz, CDCl₃): δ 191.7, 143.9, 136.0, 135.4, 135.3, 134.3, 130.3, 129.9 (×2), 128.0, 127.2 (×2), 125.9, 48.8, 21.5; HRMS (ESI⁺): calcd 324.0416 for C₁₅H₁₅ClNO₃S⁺[M+H]⁺; Found, 324.0443.

Obtained as white solid, mp: 72–74 °C; ¹HNMR (400MHz, CDCl3): δ 7.78 (d, *J* = 8.4Hz, 2H), 7.50–7.43 (m, 3H), 7.36–7.30 (m, 3H), 5.64 (t, *J* = 4.8Hz, 1H), 4.45 (d, *J* = 4.8Hz, 2H), 2.42 (s, 3H); ¹³CNMR (100MHz, CDCl₃): δ 195.2, 143.8, 136.3, 135.2, 133.2, 131.9, 131.0, 129.9, 129.8 (×2), 127.3 (×2), 127.1, 51.9, 21.5; HRMS (ESI⁺): calcd 324.0456 for C₁₅H₁₅ClNO₃S⁺[M+H]⁺; Found 324.0443.

Obtained as white solid, mp: 163–165 °C; ¹H NMR (400MHz, CDCl₃): δ 7.79 Br (d, *J* = 8.4Hz, 2H), 7.73 (d, *J* = 8.8 Hz, 2H), 7.62 (d, *J* = 8.8 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 5.68 (t, *J* = 4.4 Hz, 1H), 4.44 (d, *J* =4.4 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (100Hz, CDCl₃): δ 191.8, 143.9, 136.1, 132.5, 132.4 (×2), 129.9 (×2), 129.8, 129.3 (×2), 127.2 (×2), 48.7, 21.5; HRMS (ESI⁺): calcd 367.9951 for C₁₅H₁₅BrNO₃S⁺[M+H]⁺; Found, 367.9962. calcd 367.9930 for C₁₅H₁₅BrNO₃S⁺[M+H+2]⁺; Found, 367.9947.

Obtained as white solid, mp: 141–143 °C; ¹H NMR (400MHz, CDCl₃): δ 7.98 (s, 1H), 7.84–7.73 (m, 4H), 7.37 (t, J = 7.6 Hz, 1H), (7.31 (d, J = 8.0 Hz, 2H), 5.66 (s, 1H), 4.45 (d, J = 4.8 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (100

Hz, CDCl₃): δ 191.6, 143.9, 137.2, 136.1, 135.5, 130.9, 130.6, 129.9 (×2), 127.2 (×2), 126.4, 123.3, 48.8, 21.5; HRMS (ESI⁺): calcd 367.9955 for C₁₅H₁₅BrNO₃S⁺[M+H]⁺; Found, 367.9974. calcd 369.9930 for C₁₅H₁₅BrNO₃S⁺[M+H+2]⁺; Found, 369.9974.

Obtained as white solid, mp: 96–98 °C; ¹H NMR (400MHz, CDCl₃): δ 7.79 (d, *J* = 8.4 Hz, 2H), 7.63–7.58 (m, 1H), 7.39–7.31 (m, 5H), 5.63 (t, *J* = 4.8Hz, 1H), 4.42 (d, *J* = 4.8 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (100Hz, CDCl₃): δ 196.3, 143.9, 137.4, 136.2, 134.2, 133.0, 129.8 (×2), 129.3, 127.6, 127.3 (×2), 126.5, 51.4, 21.5; HRMS (ESI⁺): calcd 367.9951 for C₁₅H₁₅BrNO₃S⁺[M+H]⁺; Found, 367.9955. calcd 369.9930 for C₁₅H₁₅BrNO₃S⁺[M+H+2]⁺; Found, 369.9974.

Obtained as white solid, mp: 84–86 °C; ¹H NMR (400MHz, CDCl₃): δ 7.95 (d, *J* = 8.0 Hz, 1H), 7.8 (d, *J* = 8.0 Hz, 2H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.33 (t, *J* = 8.0 Hz, 3H), 7.19 (dd, *J* = 1.6, 7.6 Hz, 1H), 5.56 (s, 1H), 4.37 (d, *J* = 4.8 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (100Hz, CDCl₃): δ 196.5, 143.9, 141.4, 140.0, 136.2, 133.0, 129.9(×2), 128.4, 128.3, 127.3 (×2), 91.5, 50.6, 21.6; HRMS (ESI⁺): calcd 416.9817 for C₁₅H₁₅INO₃S⁺ [M+H]⁺; Found, 416.9854.

Obtained as white solid, mp: 146 - 149 °C; ¹H NMR (400MHz, CDCl₃):
$$\delta$$

F₃C 7.98 (d, J = 8.0 Hz, 2H), 7.80 (d, J = 8.0 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7/43

7.32 (d, J = 8.4 Hz, 2H), 5.64 (t, J = 4.4 Hz, 1H), 4.51 (d, J = 4.4 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (100Hz, CDCl₃): 191.9, 144.0, 136.4, 136.1, 135.9 (q, ² $J_{F-C} = 32.7$ Hz), 130.0 (×2), 128.3 (×2), 127.2 (×2), 126.1 (q, ³ $J_{F-C} = 3.7$ Hz), 124.6 (q, ¹ $J_{F-C} = 271.1$ Hz), 49.0, 21.5; HRMS (ESI⁺): calcd 358.0719 for C₁₆H₁₅F₃NO₃S⁺ [M+H]⁺; Found, 358.0708.

Obtained as white solid, mp: 125–127 °C; ¹H NMR (400MHz, CDCl₃): δ 8.11 (s, 1H), 8.06 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 8.4 Hz, 2H), 7.64 (t, J = 8.0 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 5.75 (t, J = 4.4 Hz, 1H), 4.52 (d, J = 4.4 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (100Hz, CDCl₃): δ 191.7, 143.9, 136.1, 134.4, 131.6 (q, ² J_{F-C} = 33.0 Hz), 131.0, 130.7 (q, ³ J_{F-C} = 3.6 Hz), 129.9 (×2), 129.8, 127.2 (×2), 124.7 (q, ³ J_{F-C} = 3.7 Hz), 123.4 (q, ¹ J_{F-C} = 271.0 Hz), 48.9, 21.5; HRMS (ESI⁺): calcd 358.0719 for C₁₆H₁₅FNO₃S⁺ [M+H]⁺; Found, 358.0722.

Obtained as white solid, mp: 99–101 °C; ¹H NMR (400MHz , CDCl₃): δ 8.53 (d, *J* = 8.0 Hz, 1H), 8.06 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 8.4 Hz, 1H), 7.84 (s, 1H), 7.83 (d, *J* = 8.4 Hz, 2H), 7.61–7.55 (m, 2H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 8.4 Hz, 2H), 5.80 (t, *J* = 4.4 Hz, 1H), 4.54 (d, *J* = 4.4 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (100Hz, CDCl₃): δ 195.6, 143.8, 136.2, 134.5, 134.0, 131.5, 130.1, 129.9 (×2), 128.6 (×2), 128.4, 127.3 (×2), 126.9, 125.4, 124.3, 50.4, 21.5; HRMS (ESI⁺): calcd 340.1007 for C₁₉H₁₈NO₃S⁺[M+H]⁺; Found, 340.1071.

Obtained as white solid, mp: 97–99 °C; ¹H NMR (400MHz, CDCl₃): δ 7.95 (d, *J* = 8.0 Hz, 1H), 7.81 (d, *J* = 8.4 Hz, 2H), 7.51 (dt, *J* = 1.0, 7.2 Hz, 1H), 7.32–7.24 (m, 4H), 6.09 (d, *J* = 2.4 Hz, 1H), 3.90–3.85 (m, 1H), 3.13–2.98 (m, 2H), 2.77–2.73 (m, 1H), 2.41 (s, 3H), 2.16–2.05 (m, 1H); ¹³C NMR (100Hz, CDCl₃): δ 193.8, 143.8, 143.7, 136.2, 134.5, 130.6, 129.8(×2), 129.0, 127.9, 127.2 (×2), 126.9, 59.1, 31.9, 28.1, 21.5; HRMS (ESI⁺): calcd 316.1007 for C₁₇H₁₈NO₃S⁺[M+H]⁺; Found, 316.1005.

Obtained as white solid, mp: 102–104 °C; ¹H NMR (400MHz, CDCl₃): δ 7.79 (d, J = 8.4 Hz, 2H), 7.74 – 7.71 (m, 2H), 7.30 (d, J = 8.0 Hz, 1H), 7.16 (dd, J = 4.0, 4.8 Hz, 1H), 5.72 (t, J = 4.4 Hz, 1H), 4.41 (d, J = 4.4 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (100Hz, **8**/43 CDCl₃): δ 185.5, 143.8, 140.2, 136.2, 135.0, 132.5, 129.8 (×2), 128.4, 127.2(×2), 48.7, 21.5; HRMS (ESI⁺): calcd 296.0410 for C₁₇H₁₈NO₃S⁺[M+H]⁺; Found, 296.0407.

Obtained as yellow brown solid, mp: 121–124 °C; ¹H NMR (400MHz, $CDCl_3$): δ 7.85 (d, J =8.8Hz, 2H), 7.76 (d, J = 8.4Hz, 2H), 7.28 (d, J = 7.6Hz, 2H), 6.97 (d, J = 8.8Hz, 2H), 5.67 (s, 1H), 4.44 (d, J = 4.4Hz, 2H), 3.86 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100Hz, CDCl_3): δ 192.2, 163.1, 145.6, 131.3, 130.7, 129.7 (×2) 129.3 (×2), 128.0 (×2), 114.4 (×2), 55.6, 48.5, 21.8; HRMS (ESI⁺): calcd 320.0957 for C₁₆H₁₈NO₄S⁺[M+H]⁺; Found, 320.0966.

1H), 4.40 (d, J = 4.0 Hz, 2H), 2.68 (s, 3H), 2.42 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100Hz, CDCl₃): δ 192.2, 145.6, 143.7, 137.2, 134.0, 133.5, 131.3, 129.7, 129.6 (×2), 128.0 (×2), 126.7, 48.4, 21.7, 21.2, 20.1; HRMS (ESI⁺): calcd 318.1164 for C₁₇H₂₀NO₃S⁺[M+H]⁺; Found ,318.1182.

Obtained as white solid, mp: 149–152 °C; ¹H NMR (400MHz CDCl₃): 7.95-7.92 (m, 2H), 7.77(d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 7.21-7.16 (m,2H), 5.76 (s, 1H), 4.47 (d, J = 4.8 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (100Hz, CDCl₃): δ 191.9, 165.2 (d, ¹*J*_{F-C} = 253.0 Hz), 145.7, 135.4, 131.2, 129.9 (d, ²*J*_{F-C} = 19.3 Hz, ×2), 129.7 (×2), $128.0 (\times 2)$, 116.4 (d, ²*J*_{F-C} = 22.5 Hz, ×2), 48.5, 21.8; HRMS (ESI⁺): calcd 308.0757 for $C_{15}H_{15}FNO_3S^+[M+H]^+$; Found, 308.0732.

Obtained as white solid, mp: 167–168 °C; ¹H NMR (400MHz, CDCl₃): δ 7.85 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 8.0 Hz, 2H), 7.48(d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 5.79 (s, 1H), 4.47 (d, J = 4.4Hz, 2H), 2.43

(s, 3H); ¹³C NMR (100MHz, CDCl₃): δ 191.8, 145.8, 139.4, 137.8, 131.2, 129.7 (×2), 129.5 (×2), 128.6 (×2), 128.0 (×2), 48.5, 21.8; HRMS (ESI⁺): calcd 324.0461 for C₁₅H₁₅ClNO₃S⁺ [M+H]⁺; Found, 324.0418.

Obtained as white solid, mp: 109–111 °C; ¹H NMR (400MHz, CDCl₃): δ Me Obtained as white solid, mp: 109–111 °C; ¹H NMR (400MHz, CDCl₃): δ 7.79 (d, J = 8Hz, 2H), 7.48–7.36 (m, 2H), 7.30–7.28 (m, 4H), 6.58 (t, J = 4Hz, 1H), 4.59 (d, J = 4Hz, 2H), 2.43 (t, J = 4Hz, 3H); ¹³C NMR (100Hz, CDCl₃): 191.6, 145.7, 135.1, 132.6, 131.8, 131.5 (×2), 131.1, 129.7 (×2), 129.3, 128.1 (×2). 48.9, 21.8; HRMS (ESI⁺): calcd 324.0461 for C₁₅H₁₅ClNO₃S⁺[M+H]⁺;Found, 324.0434.

Obtained as white solid, mp: 104–106 °C; ¹H NMR (400MHz, CDCl₃): δ 7.79–7.76 (m, 3H), 7.65 (d, *J* = 8.8 Hz, 2H), 7.29 (d, *J* = 8.8 Hz, 2H), 5.75 (s, 1H), 4.76 (d, *J* = 4.4 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (100Hz, CDCl₃):

191.8, 145.8, 138.3, 132.5 (×2), 131.2, 129.7 (×2), 128.7 (×2), 127.8 (×2), 127.9, 48.4, 21.8; HRMS (ESI⁺): calcd 358.0071 for C₁₅H₁₄ClNO₃S⁺[M+H]⁺; Found, 358.0033.

Obtained as white solid: mp: 164–166 °C; ¹H NMR (400Hz, CDCl₃): δ 7.77.78 (d, *J* = 8.4 Hz, 2H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.64 (d, *J* = 8.8 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 5.81 (s, 1H), 4.47 (d, *J* = 4.4 Hz, 2H), 2.43

(s, 3H); ¹³C NMR (100Hz, CDCl₃): δ 191.9, 145.7, 138.5, 132.5 (×2), 131.3, 129.7 (×2), 128.7 (×2), 128.0 (×2), 127.8, 48.5, 21.8; HRMS (ESI⁺): calcd 367.9951 for C₁₅H₁₅BrNO₃S⁺ [M+H]⁺; Found, 367.9901. calcd 369.9930 for C₁₅H₁₅BrNO₃S⁺ [M+H+2]⁺; Found, 369.9907.

5.77 (t, *J* = 4.0 Hz, 1H), 4.52 (d, *J* = 4.0 Hz, 2H), 2.46–2.38 (s, 3H); ¹³C NMR (100Hz, CDCl₃): δ 192.0, 145.9, 145.6, 139.3, 137.8, 131.4, 129.7 (×2), 129.0 (×2), 128.5, 128.0 (×2), 127.8 (×2), 127.7 (×2), 127.3 (×2). 48.5, 21.7; HRMS (ESI⁺): calcd 366.1164 for C₂₁H₂₀NO₃S⁺ [M+H]⁺; Found, 366.1160.

(m, 2H), 7.24 (d, J = 8.0 Hz, 2H), 5.84 (s, 1H), 4.49 (d, J = 4.0 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 192.0, 145.6, 136.0, 134.9, 132.1, 131.3, 129.7, 129.6 (×2), 129.2, 128.9, 128.6, 128.0 (×2), 127.9, 127.6, 122.3, 48.5, 21.6; HRMS (ESI⁺): calcd 340.1007 for C₁₉H₁₈NO₃S⁺ [M+H]⁺; Found, 340.1000.

6. NMR spectra of α -sulfonylamino ketones

13 / 43

26 / 43

34 / 43

35 / 43

7. References

- [1] Berkessel, A.; Sebastian, L.; Müller, T. N. Angew. Chem. Int. Ed. 2006, 45, 6567-6570.
- [2] Gärtner, D.; Stein, A. L.; Grupe, S.; Arp, J.; Jacobi von Wangelin, A. Angew. Chem. Int. Ed.
 2015, 54, 10545-10549.
- [3] Yu, J.-Y.; Shimizu, R.; Kuwano, R. Angew. Chem. Int. Ed. 2010, 49, 6396-6399.
- [4] Song, C.-X.; Cai, G.-X.; Farrell, T. R.; Jiang, Z.-P.; Li, H.; Gan, L.-B.; Shi, Z.-J. Chem. Commun. 2009, 6002-6004.
- [5] Lu, Y.; Li, Y.; Zhang, R.; Jin, K.; Duan, C. J. Fluorine Chem. 2014, 161, 128-133.
- [6] Geibel, I.; Dierks, A.; Müller, T.; Christoffers, J. Chem. Eur. J. 2017, 23, 7245-7254.
- [7] Noji, M.; Ohno, T.; Fuji, K.; Futaba, N.; Tajima, H.; Ishii, K. J. Org. Chem. 2003, 68, 9340-9347.
- [8] J.-N. Mo, W.-L. Yu, J.-Q. Chen, X.-Q. Hu, P.-F. Xu, Org. Lett. 2018, 15, 4471.