Supporting Information

Copper-Catalyzed Nitrene Transfer/Cyclization Cascade to Synthesize 3a-Nitrogenous Furoindolines and Pyrroloindolines

Guang-Yi Zhang, Yi Peng, Jing Xue, Yan-Hui Fan, Qing-Hai Deng*

The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China E-mail: ginghaideng@shnu.edu.cn

Table of Contents:

- I. General Information
- **II. Optimization of Reaction Conditions.**

III. General Catalytic Reaction Procedure of Products

- **IV. Mechanistic Experiments**
- V. Crystallographic Data
- VI. Reference
- VII. NMR Spectra of New Compounds (¹H NMR, ¹³C NMR, ¹⁹F NMR, ¹¹B NMR)

I. General Information

All manipulations were maintained under an atmosphere of argon unless otherwise stated. Commercially available reagents were used without further purification. Solvents were pre-dried over activated 4 Å molecular sieves and were refluxed over sodium-benzophenone (toluene, tetrahydrofurane), phosphorus pentoxide (chlorobenzene) or calcium hydride (dichloromethane, dichloroethane, acetonitrile) under an argon atmosphere and collected by distillation. Column chromatography was performed on silica gel (200-300 mesh). ¹H, ¹³C, ¹¹B, and ¹⁹F were recorded at 400 MHz, 101 MHz, 128 MHz, and 376 MHz, respectively. Melting points are uncorrected. Infrared spectra were prepared as KBr pellets and were recorded on a Varian Excalibur 3100 series FT-IR spectrometer. Mass spectra were recorded by the mass spectrometry service of Shanghai Institute of Organic Chemistry. 1a-1d¹, 1e², 1f³, 1g⁴, 1h, ¹1i⁵, 1j⁴, $1k-1l^1$, $1m^6$, $1n^7$, 10^8 , $1p^9$, $1q^{10}$, $1r^{11}$, 5^{17} , 6^{18} were synthesized according to the literature procedures. L1 and L2 were purchased from Sigma Aldrich and used without further purification. L3-L4¹², L5¹³, L6-L8¹², L9¹⁴, L10¹⁵, L11¹⁶ were synthesized according to the literature procedures.

CAUTION: Organic azides are known to be potentially explosive compounds. Although under the conditions and scale described here we did not encounter any problems, appropriate precautions should be taken when handling these compounds in general. All azidation reactions and subsequent workups were performed behind a blast shield.

II. Optimization of reaction conditions.

 Table S1. Optimization of the Reaction Conditions (Metal Salts) for the Synthesis of Product 3^a

2	FeCl ₂	2	NR^{c}
3	NiCl ₂	2	NR^{c}
4	(Cp*RhCl2)2	2	15
5	CoCl ₂	2	NR ^c
6	Pd(OAc) ₂	2	21
7	(Cp*IrCl ₂) ₂	2	trace
8	Zn(OTf)2	2	trace
9	MnCl ₂	2	trace
10	(Cp*RuCl ₂) ₂	2	trace
11	CuOAc	2	11.2
12	CuSCN	2	trace
13	$Cu(OAc)_2 \cdot H_2O$	2	23
14	CuCN	2	13
15	$CuSO_4 \cdot 5H_2O$	2	19
16	$Cu(ClO_4)_2 \cdot 6H_2O$	2	NR ^c
17	CuF ₂	2	NR^{c}
18	CuBH4(PPh3)2	2	trace
19	Cu(MeCN)4PF6	2	trace

^{*a*} Reaction conditions: **1a** (0.20 mmol), **2a** (3 equiv), metal salt (20 mol %), DCE (2.0 mL), 80 °C, argon. ^{*b*} The yields of isolated products. ^{*c*} No Reaction. DCE = 1,2-dichloroethane.

Table S2. Optimization of the Reaction Conditions (Solvents) for the Synthesis ofProduct 3^a

N H	`ОН +Na -	CuCl (20 mol %) solvent, 80 °C, N ₂	- HN HN N HO H H
entry	solvent	time (d)	Yield ^{<i>b</i>} (%)
1	DCE	2	27
2	MeCN	2	trace
3	EtOH	2	\mathbf{NR}^{c}
4	THF	2	trace
5	PhMe	2	16
6	PhCl	2	27
7	NMP	2	\mathbf{NR}^{c}
8	DMF	2	\mathbf{NR}^{c}
9	dioxane	2	trace

^{*a*}Reaction conditions: **1a** (0.20 mmol), **2a** (3 equiv), CuCl (20 mol %), solvent (2.0 mL), 80 °C, argon. ^{*b*}The yields of isolated products. ^{*c*}No Reaction. DCE = 1,2-dichloroethane.

Table S3. Optimization of the Reaction Conditions (Ligands) for the Synthesis of Product 3^a

	[Cu]	linnal	solvent	time	Yield ^b
entry		ligand		(h)	(%)
1	CuCl		PhCl	48	27
2	CuCl	L1	PhCl	12	13
3	CuCl	L2	PhCl	12	17
4	CuCl	L3	PhCl	12	45
5	CuOAc	L3	PhCl	12	45
6	CuSCN	L3	PhCl	12	70
7	CuBH ₄ (PPh ₃) ₂	L3	PhCl	12	88
8	CuBH4(PPh3)2	L4	PhCl	24	trace
9	CuBH4(PPh3)2	L5	PhCl	24	trace
10	CuBH4(PPh3)2	L6	PhCl	12	64
11	CuBH ₄ (PPh ₃) ₂	L7	PhCl	0.5	92
12	CuBH4(PPh3)2	L8	PhCl	24	trace
13	CuBH4(PPh3)2	L9	PhCl	24	trace
14	CuBH4(PPh3)2	L10	PhCl	24	trace
15	CuBH4(PPh3)2	L11	PhCl	24	25
16	CuBH4(PPh3)2	L7	DCE	0.5	95
17	CuBH4(PPh3)2	L7	MeCN	12	77
18	CuBH ₄ (PPh ₃) ₂	L7	toluene	12	56
19 ^c	CuBH4(PPh3)2	L7	DCE	0.5	93
$20^{c, d}$	CuBH4(PPh3)2	L7	DCE	2	86
21 ^{c, e}	CuBH ₄ (PPh ₃) ₂	L7	DCE	0.5	92
22 ^{<i>c</i>, <i>f</i>}	CuBH4(PPh3)2	L7	DCE	0.5	93
23 ^g	CuBH4(PPh3)2	L7	DCE	0.5	Trace

^{*a*} Reaction conditions: **1a** (0.20 mmol), **2a** (3 equiv), metal salt (20 mol %), ligand (24 mol %), solvent (2.0 mL), 80 °C, argon. ^{*b*} The yields of isolated products. ^{*c*} **2a** (1.5 equiv).

^{*d*} metal salt (10 mol %), ligand (12 mol %). ^{*e*} metal salt (12 mol %), ligand (14 mol %). ^{*f*} metal salt (15 mol %), ligand (18 mol %). ^{*g*} 60 °C.

III. General Catalytic Reaction Procedure of Products General Procedure:

After stirring a mixture of CuBH₄(PPh₃)₂ (0.024 mmol, 12 mol %) and L7 (0.028 mmol, 14 mol %) in dry DCE (2 mL) at 80 °C for 1 h, substrates 1 (0.20 mmol) and 2 (0.30 mmol) was added. The reaction mixture was stirred at 80 °C under argon atmosphere. After the disappearance of substrate 1 (monitored by TLC) and then the crude product was purified by silica gel flash chromatography to afford the desired product **3**.

General Procedure for gram Scale:

After stirring a mixture of CuBH₄(PPh₃)₂ (0.75 mmol, 12 mol %) and L7 (0.89 mmol, 14 mol %) in dry DCE (30mL) at 80 °C for 1 h, substrates **1a** (6.20 mmol) and **2a** (9.30 mmol) was added. The reaction mixture was stirred at 80 °C under argon atmosphere. After the disappearance of substrate **1a** (monitored by TLC) and then the crude product was purified by silica gel flash chromatography to afford the desired product **3aa** (1.56 g, 5.52 mmol, 89 %).

N-(4-methoxyphenyl)-2,3,8,8a-tetrahydro-3a*H*-furo[2,3-b]indol-3a-amine (3aa); reaction temperature: 80 °C; reaction time: 30 min; petroleum ether/ethylacetate = 8:1; **TLC**: $R_f = 0.4$ (PE / EA = 2:1, UV); white solid (mp: 132.9 – 135.9 °C); 92 % yield (51.4 mg, 0.18 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, J = 7.2 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 6.76 (t, J = 7.6 Hz, 1H), 6.67 (d, J = 8.8 Hz, 2H), 6.62 (d, J = 8.0 Hz, 1H), 6.47 (d, J = 8.8 Hz, 2H), 5.77 (s, 1H), 4.66 (s, 1H), 4.09 (t, J = 8.0 Hz, 1H), 3.72 – 3.63 (m, 4H), 2.51 (td, J = 11.7, 7.5 Hz, 1H), 2.29 (dd, J = 12.0, 4.8 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.9, 149.8, 139.7, 130.4, 129.6, 124.1, 119.5, 116.8, 114.9, 108.8, 95.7, 74.7, 66.0, 55.8, 42.4; IR ν (neat, cm⁻¹): 3445, 2066, 1634, 1275, 1261, 750; HRMS (ESI, m/z): calcd for C₁₇H₁₉N₂O₂⁺ [M+H]⁺: 283.1441, found: 283.1431.

5-Methoxy-*N***-(4-methoxyphenyl)-2,3,8,8a-tetrahydro-3a***H***-furo**[**2,3-b**]**indol-3a-amine** (**3ba**); reaction temperature: 80 °C; reaction time: 2 h; petroleum ether/ethylacetate = 8:1; TLC: $R_f = 0.4$ (PE / EA = 2:1, UV); yellow oil; 72 % yield (39.0 mg, 0.14 mmol); ¹H NMR (**400 MHz, CDCl3**) δ 6.80 (d, J = 2.8 Hz, 1H), 6.72 (dd, J = 8.4, 2.4 Hz, 1H), 6.67 (d, J = 8.8 Hz, 2H), 6.56 (d, J = 8.8 Hz, 1H), 6.47 (d, J = 8.8 Hz, 2H), 5.75 (s, 1H), 4.46 (brs, 1H), 4.07 (t, J = 8.0 Hz, 1H), 3.75 – 3.63 (m, 7H), 2.46 (td, J = 11.6, 7.5 Hz, 1H), 2.29 (dd, J = 11.8, 4.6 Hz, 1H); ¹³C{¹H} NMR (**101 MHz, CDCl3**) δ 154.0, 152.9, 143.6, 139.7, 131.8, 116.8, 115.1, 114.8, 110.0, 109.8, 96.5, 75.0, 65.8, 56.0, 55.7, 42.5; IR *v* (neat, cm⁻¹): 3446, 6005, 2325, 1552, 1275, 1261, 750; HRMS (ESI, m/z): calcd for C₁₈H₂₁N₂O₃⁺ [M+H]⁺: 313.1547, found: 313.1555.

N-(4-methoxyphenyl)-5-methyl-2,3,8,8a-tetrahydro-3aH-furo[2,3-b]indol-3a-

amine (3ca); reaction temperature: 80 °C; reaction time: 1 h; petroleum ether/ethylacetate = 8:1; TLC: R_f = 0.4 (PE / EA = 2:1, UV); white solid (mp: 154.6 – 159.7 °C); 97 % yield (57.6 mg, 0.19 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.02 (s, 1H), 6.94 (d, J = 7.6 Hz, 1H), 6.68 (d, J = 8.8 Hz, 2H), 6.54 (d, J = 8.0 Hz, 1H), 6.48 (d, J = 7.2 Hz, 2H), 5.76 (s, 1H), 4.53 (brs, 1H), 4.12-4.04 (m, 1H), 3.91 (brs, 1H), 3.74 – 3.61 (m, 4H), 2.50 (td, J = 11.7, 7.5 Hz, 1H), 2.32 – 2.19 (m, 4H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.8, 147.5, 139.8, 130.7, 130.0, 128.8, 124.5, 116.6, 114.9, 108.8, 95.9, 74.6, 65.9, 55.7, 42.3, 21.0; IR ν (neat, cm⁻¹): 3449, 3006, 2989, 1646, 1509, 1275, 1261, 779; HRMS (ESI, m/z): calcd for C₁₈H₂₁N₂O₂⁺ [M+H]⁺: 297.1598, found: 297.1604.

5-Bromo-N-(4-methoxyphenyl)-2,3,8,8a-tetrahydro-3aH-furo[2,3-b]indol-3a-

amine (3da); reaction temperature: 80 °C; reaction time: 2 h; petroleum ether/ethylacetate = 8:1; **TLC**: $R_f = 0.4$ (PE / EA = 2:1, UV); white solid (mp: 147.1 – 151.6 °C); 94 % yield (68.0 mg, 0.19 mmol); ¹**H NMR (400 MHz, CDCl₃)** δ 7.28 (d, J = 2.0 Hz, 1H), 7.21 (dd, J = 8.4, 2.0 Hz, 1H), 6.68 (d, J = 8.8 Hz, 2H), 6.50 (d, J = 8.4 Hz, 1H), 6.45 (d, J = 8.8 Hz, 2H), 5.76 (s, 1H), 4.66 (s, 1H), 4.09 (t, J = 8.4 Hz, 1H), 3.70 (s, 3H), 3.69 - 3.62 (m, 1H), 2.46 (td, J = 11.7, 7.5 Hz, 1H), 2.29 (dd, J = 11.8, 5.0 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.0, 148.7, 139.2, 132.5, 132.2, 127.1, 116.7, 114.9, 110.9, 110.0, 95.8, 74.5, 65.8, 55.7, 42.9; IR ν (neat, cm⁻¹): 3446, 2065,

1645, 1543, 1275, 1281, 750; **HRMS (ESI, m/z):** calcd for C₁₇H₁₈BrN₂O₂⁺ [M+H]⁺: 361.0546, found: 361.0542.

5-Chloro-*N***-(4-methoxyphenyl)-2,3,8,8a-tetrahydro-3a***H***-furo**[**2,3-b**]**indol-3a-amine (3ea);** reaction temperature: 80 °C; reaction time: 45 min; petroleum ether/ethylacetate = 8:1; **TLC**: R_f = 0.4 (PE / EA = 2:1, UV); white solid (mp: 148.2 – 151.2 °C); 99 % yield (62.8 mg, 0.20 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.14 (d, *J* = 2.4 Hz, 1H), 7.07 (dd, *J* = 7.8, 2.2 Hz, 1H), 6.72 – 6.62 (m, 2H), 6.53 (d, *J* = 8.4 Hz, 1H), 6.49 – 6.41 (m, 2H), 5.77 (s, 1H), 4.66 (brs, 1H), 4.12-4.05 (m, 1H), 3.79 – 3.60 (m, 4H), 2.45 (td, *J* = 11.7, 7.5 Hz, 1H), 2.29 (dd, *J* = 12.0, 4.0 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.01, 148.3, 139.4, 132.2, 129.4, 124.3, 123.9, 116.7, 114.9, 109.5, 96.1, 74.5, 65.8, 55.7, 42.9; IR *v* (neat, cm⁻¹): 3445, 3006, 2989, 1646, 1275, 1261, 759; HRMS (ESI, m/z): calcd for C₁₇H₁₈ClN₂O₂⁺ [M+H]⁺: 317.1051, found: 317.1056.

5-Fluoro-N-(4-methoxyphenyl)-2,3,8,8a-tetrahydro-3aH-furo[2,3-b]indol-3a-

amine (3fa); reaction temperature: 80 °C; reaction time: 3 h; petroleum ether/ethylacetate = 8:1; **TLC**: $R_f = 0.4$ (PE / EA = 2:1, UV); white solid (mp: 139.8 – 140.9 °C); 95 % yield (57.2 mg, 0.19 mmol); ¹**H NMR (400 MHz, CDCl₃)** δ 6.90 (dd, J = 8.0, 2.8 Hz, 1H), 6.87 – 6.80 (m, 1H), 6.70 – 6.63 (m, 2H), 6.54 (dd, J = 8.6, 4.1 Hz, 1H), 6.49 – 6.41 (m, 2H), 5.77 (s, 1H), 4.54 (brs, 1H), 4.13 – 4. 05(m, 1H), 3.74 – 3.62 (m, 4H), 2.45 (td, J = 11.6, 7.5 Hz, 1H), 2.34 -2.25 (m, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 158.6, 156.2, 153.1, 145.7, 139.5, 131.8 (d, J = 7.0 Hz), 115.9 (d, J = 11.6, 7.5 Hz, 120 M Hz, 120 M Hz, 115.9 (d, J = 11.6, 7.5 Hz, 120 M Hz, 120 M Hz, 115.9 (d, J = 11.6, 7.5 Hz, 120 M Hz, 120 M

23.5 Hz), 115.8 (d, *J* = 194.8 Hz), 111.2 (d, *J* = 23.7 Hz), 109.25 (d, *J* = 7.9 Hz), 96.7, 74.8, 65.8, 55.7, 43.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -125.07 (s, 1F); IR *v* (neat, cm⁻¹): 3440, 3006, 1645, 1410, 1275, 1261, 779; HRMS (ESI, m/z): calcd for C_{17H18}FN₂O₂⁺ [M+H]⁺: 301.1347, found: 301.1350.

4-Methoxy-N-(4-methoxyphenyl)-2,3,8,8a-tetrahydro-3*aH*-furo[2,3-b]indol-3aamine (3ga); reaction temperature: 80 °C; reaction time: 4 h; petroleum ether/ethylacetate = 8:1; TLC: R_f = 0.4 (PE / EA = 2:1, UV); brown solid (mp: 133.8 – 135.1 °C); 84 % yield (52.5 mg, 0.17 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.05 (t, *J* = 8.0 Hz, 1H), 6.66 (d, *J* = 8.9 Hz, 2H), 6.57 (d, *J* = 8.9 Hz, 2H), 6.24 (d, *J* = 8.0 Hz, 2H), 5.78 (s, 1H), 4.65 (brs, 1H), 4.14 – 4.04 (m, 1H), 3.77 (s, 3H), 3.72 – 3.62 (m, 4H), 2.52 - 2.41 (m, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.7, 148.2, 139.6, 130.3, 129.9, 121.4, 119.6, 118.2, 116.6, 114.8, 95.4, 74.9, 66.0, 55.7, 41.8, 16.7; IR *v* (neat, cm⁻¹): 3446, 3006, 2065, 1640, 1275, 1260, 750; HRMS (ESI, m/z): calcd for C₁₈H₂₁N₂O₃⁺ [M+H]⁺: 313.1547, found: 313.1551.

N-(4-methoxyphenyl)-4-methyl-2,3,8,8a-tetrahydro-3a*H*-furo[2,3-b]indol-3aamine (3ha); reaction temperature: 80 °C; reaction time: 5 h; petroleum ether/ethylacetate = 8:1; TLC: R_f = 0.4 (PE / EA = 2:1, UV); white solid (mp: 142.1 – 146.0 °C); 89 % yield (53.0 mg, 0.18 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.02 (t, *J* = 7.7 Hz, 1H), 6.63 (d, *J* = 8.9 Hz, 2H), 6.47 (dd, *J* = 15.7, 7.7 Hz, 2H), 6.40 (d, *J* = 8.6 Hz, 2H), 5.75 (s, 1H), 4.61 (brs, 1H), 4.08 (dd, *J* = 12.0, 4.5 Hz, 1H), 3.76 – 3.64 (m, 4H), 2.46 (dd, *J* = 11.3, 4.6 Hz, 1H), 2.38 – 2.25 (m, 4H); ¹³C{¹H} NMR (101 MHz, **CDCl₃**) δ 152.6, 150.0, 140.0, 135.2, 129.5, 126.6, 121.4, 116.0, 114.8, 106.4, 96.5, 74.7, 65.6, 55.7, 41.7, 17.6; **IR** *ν* (neat, cm⁻¹):3446, 3006, 2064, 1646, 1275, 1261, 1750; **HRMS (ESI, m/z):** calcd for C₁₈H₂₁N₂O₂⁺ [M+H]⁺: 297.1598, found: 297.1589.

4-Chloro-*N***-(4-methoxyphenyl)-2,3,8,8a-tetrahydro-3***aH***-furo[2,3-b]indol-3***a***-amine (3ia);** reaction temperature: 80 °C; reaction time: 3 h; petroleum ether/ethylacetate = 7:1; TLC: $R_f = 0.4$ (PE / EA = 2:1, UV); white solid (mp: 122.5 – 126.6 °C); 92 % yield (58.1 mg, 0.18 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.01 (t, *J* = 8.0 Hz, 1H), 6.64 (d, *J* = 9.2 Hz, 2H), 6.60 (d, *J* = 8.0 Hz, 1H), 6.45-6.53 (m, 3H), 5.79 (s, 1H), 4.77 (brs, 1H), 4.28 (brs, 1H), 4.09 (t, *J* = 8.2 Hz, 1H), 3.71 – 3.59 (m, 4H), 2.65 (dd, *J* = 12.0, 4.8 Hz, 1H), 2.40 (td, *J* = 11.7, 7.4 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.0, 151.8, 139.6, 130.8, 130.6, 125.1, 119.7, 116.6, 114.7, 106.8, 96.8, 75.1, 65.9, 55.6, 40.5; IR *v* (neat, cm⁻¹): 3359, 2920, 2849, 1604, 1275, 1261, 750; HRMS (ESI, m/z): calcd for C₁₇H₁₈ClN₂O₂⁺ [M+H]⁺: 317.1051, found: 317.1059.

6-Chloro-N-(4-methoxyphenyl)-2,3,8,8a-tetrahydro-3*aH***-furo[2,3-b]indol-3***a***-amine (3ja);** reaction temperature: 80 °C; reaction time: 4 h; petroleum ether/ethylacetate = 10:1; TLC: $R_f = 0.4$ (PE / EA = 2:1, UV); gray solid (mp: 145.9 – 150.9 °C); 84 % yield (53.3 mg, 0.17 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.06 (d, J = 8.0 Hz, 1H), 6.71 (dd, J = 7.8, 1.8 Hz, 1H), 6.67 (d, J = 8.8 Hz, 2H), 6.59 (d, J = 1.6 Hz, 1H), 6.44 (d, J = 9.2 Hz, 2H), 5.76 (s, 1H), 4.72 (s, 1H), 4.08 (t, J = 8.2 Hz, 1H), 3.70 (s, 3H), 3.68 – 3.62 (m, 1H), 2.45 (td, J = 11.7, 7.5 Hz, 1H), 2.26 (dd, J = 11.8, 5.0

Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.1, 150.7, 139.4, 135.1, 128.8, 124.9, 119.3, 116.9, 114.9, 108.7, 96.0, 74.2, 65.9, 55.7, 42.9; IR *v* (neat, cm⁻¹): 3445, 3006, 1066, 1645, 1470, 1275, 1261, 769; HRMS (ESI, m/z): calcd for C₁₇H₁₈ClN₂O₂⁺ [M+H]⁺: 317.1051, found: 317.1048.

N-(4-methoxyphenyl)-7-methyl-2,3,8,8a-tetrahydro-3aH-furo[2,3-b]indol-3a-

amine (3ka); reaction temperature: 80 °C; reaction time: 5 h; petroleum ether/ethylacetate = 8:1; TLC: $R_f = 0.4$ (PE / EA = 2:1, UV); white solid (mp: 139.4 – 141.5 °C); 89 % yield (53.0 mg, 0.18 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.06 (d, J = 7.4 Hz, 1H), 6.98 (d, J = 7.3 Hz, 1H), 6.72 (t, J = 7.5 Hz, 1H), 6.68 (d, J = 8.9 Hz, 2H), 6.48 (d, J = 8.8 Hz, 2H), 5.81 (s, 1H), 4.49 (brs, 1H), 4.09 (t, J = 8.3 Hz, 1H), 3.78 – 3.61 (m, 4H), 2.55 (td, J = 11.7, 7.6 Hz, 1H), 2.26 (dd, J = 12.0, 5.0 Hz, 1H), 2.18 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.7, 148.2, 139.6, 130.3, 129.9, 121.4, 119.6, 118.2, 116.6, 114.8, 95.4, 74.9, 66.0, 55.7, 41.8, 16.7; IR ν (neat, cm⁻¹):3446, 3006, 3065, 1644, 1275, 1261, 750; HRMS (ESI, m/z): calcd for C₁₈H₂₁N₂O₂+ [M+H]⁺: 297.1598, found: 297.1588.

N-(4-methoxyphenyl)-8a-methyl-2,3,8,8a-tetrahydro-3a*H*-furo[2,3-b]indol-3aamine (3la); reaction temperature: 80 °C; reaction time: 3.5 h; petroleum ether/ethylacetate = 8:1; TLC: R_f = 0.4 (PE / EA = 2:1, UV); yellow solid (mp: 124.8 – 128.3 °C); 87 % yield (51.5 mg, 0.17 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.11 (t, *J* = 7.4 Hz, 1H), 7.02 (d, *J* = 7.2 Hz, 1H), 6.70 (t, *J* = 7.4 Hz, 1H), 6.64-6.56 (m, 3H), 6.35 (d, *J* = 8.8 Hz, 2H), 4.57 (brs, 1H), 4.04 (brs, 1H), 3.94 (t, *J* = 7.6 Hz, 1H), 3.67 (s, 3H), 3.59-3.51 (m, 1H), 2.46-2.33 (m, 2H), 1.54 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.3, 149.3, 139.5, 129.4, 129.2, 124.5, 119.3, 116.5, 114.5, 108.6, 101.8, 74.2, 64.8, 55.6, 43.9, 22.7; **IR** *ν* (neat, cm⁻¹): 3440, 2065, 1644, 1510, 1275, 750, 518; HRMS (ESI, m/z): calcd for C₁₈H₂₁N₂O₂⁺ [M+H]⁺: 297.1598, found: 297.1593.

N-(4-methoxyphenyl)-5,8a-dimethyl-2,3,8,8a-tetrahydro-3aH-furo[2,3-b]indol-

3a-amine (3ma); reaction temperature: 80 °C; reaction time: 9 h; petroleum ether/ethylacetate = 8:1; **TLC**: R_f = 0.4 (PE / EA = 2:1, UV); yellow solid (mp: 123.5 – 127.4°C); 94 % yield (53.3 mg, 0.17 mmol); ¹**H NMR (400 MHz, CDCl₃)** δ 6.92 (d, *J* = 8.0 Hz, 1H), 6.86 (s, 1H), 6.61 (dd, *J* = 6.8, 2.0 Hz, 2H), 6.52 (d, *J* = 7.6 Hz, 1H), 6.37 (dd, *J* = 6.8, 2.4 Hz, 2H), 4.45 (brs, 1H), 4.03 (brs, 1H), 3.94 (t, *J* = 7.4 Hz, 1H), 3.67 (s, 3H), 3.59 - 3.50 (m, 1H), 2.46 – 2.31 (m, 2H), 2.20 (s, 3H), 1.52 (s, 3H); ¹³C{¹H} **NMR (101 MHz, CDCl₃)** δ 152.2, 147.0, 139.6, 129.9, 129.5, 128.6, 124.9, 116.4, 114.5, 108.6, 102.1, 74.1, 64.8, 55.6, 43.8, 22.7, 20.9; **IR** *v* (neat, cm⁻¹): 3447, 2065, 1633, 1507, 1275, 1261, 750; **HRMS (ESI, m/z):** calcd for C₁₉H₂₃N₂O₂⁺ [M+H]⁺: 311.1754, found: 311.1763.

N-(4-methoxyphenyl)-3,4,9,9a-tetrahydropyrano[2,3-b]indol-4a(2*H*)-amine (3na); reaction temperature: 80 °C; reaction time: 5 h; petroleum ether/ethylacetate = 8:1; TLC: $R_f = 0.4$ (PE / EA = 2:1, UV); yellow oil; 86 % yield (51.0 mg, 0.17 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.17 -7.10 (m, 1H), 6.97 (d, *J* = 7.6 Hz, 1H), 6.79 - 6.75 (m, 1H), 6.72 - 6.65 (m, 3H), 6.56 - 6.50 (m, 2H), 5.34 (s, 1H), 4.42 (s, 1H), 3.88 - 3.79 (m, 1H), 3.63 - 3.54 (m, 3H), 3.58 (m, 1H), 2.17 (m, 2H), 1.73 - 1.63 (m, 1H), 1.53 - 1.36 (m, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.0, 148.8, 138.4, 131.2, 129.0, 123.5, 121.2, 119.2, 114.3, 110.1, 91.9, 63.5, 60.7, 55.6, 30.3, 20.6; IR *ν* (neat, cm⁻¹): 3566, 3005, 1610, 1508, 1275, 1260, 750; HRMS (ESI, m/z): calcd for C₁₈H₂₁N₂O₂⁺ [M+H]⁺: 297.1598, found: 297.1589.

N-(4-methoxyphenyl)-1-tosyl-2,3,8,8a-tetrahydropyrrolo[2,3-b]indol-3a(1H)-

amine (30a); reaction temperature: 80 °C; reaction time: 3 h; petroleum ether/ethylacetate = 8:1; **TLC**: R_f = 0.4 (PE / EA = 2:1, UV); white solid (mp: 137.2 – 138.6 °C); 91 % yield (79.1mg, 0.18 mmol); ¹**H NMR (400 MHz, CDCl₃)** δ 7.70 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.17 – 7.08 (m, 2H), 6.76 (t, *J* = 7.2 Hz, 1H), 6.64 (d, *J* = 7.9 Hz, 1H), 6.61 – 6.55 (m, 2H), 6.31 – 6.25 (m, 2H), 5.54 (s, 1H), 4.86 (brs, 1H), 3.71 (s, 3H), 3.52 – 3.45 (m, 1H), 3.31 - 3.22 (m, 1H), 2.45 (s, 3H), 2.37 – 2.22 (m, 2H); ¹³C{¹H} **NMR (101 MHz, CDCl₃)** δ 153.3, 149.0, 143.7, 138.4, 135.8, 129.9, 129.7, 127.3, 123.5, 119.5, 118.1, 114.6, 110.0, 79.6, 74.5, 55.6, 46.3, 38.3, 21.6; **IR** *v* (neat, cm⁻¹): 3446, 3006, 2066, 1635, 1275, 1261, 750; **HRMS (ESI, m/z):** calcd for C₂₄H₂₆N₃O₃S⁺ [M+H]⁺: 436.1689, found: 436.1687.

Methyl 3a-((4-methoxyphenyl)amino)-3,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate (3pa); reaction temperature: 80 °C; reaction time: 3 h; petroleum ether/ethylacetate = 8:1; TLC: R_f = 0.4 (PE / EA = 2:1, UV); yellow solid (mp: 142.3 – 144.4 °C); 91 % yield (61.8mg, 0.18 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.07 (t, J = 7.2 Hz, 2H), 6.69 (q, J = 7.0 Hz, 1H), 6.65 – 6.59 (m, 2H), 6.55 (d, J = 7.7 Hz, 1H), 6.45 (dd, J = 16.5, 8.7 Hz, 2H), 5.50 (d, J = 12.1 Hz, 1H), 5.03 (s, 1H), 4.68 (s, 1H), 3.80 – 3.58 (m, 7H), 3.22 - 3.05 (m, 1H), 2.56 - 2.41 (m, 1H), 2.33 - 2.22 (m, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 155.9, 155.2, 153.7, 153.4, 149.3, 149.0, 138.8, 138.7, 130.0, 129.8, 123.7, 119.5, 119.3, 119.0, 118.1, 114.7, 114.7, 109.9, 109.7, 78.0,, 77.4, , 74.2, 73.2, 55.7, 52.8, 52.6, 44.9, 44.7, 37.7, 37.5; IR *ν* (neat, cm⁻¹): 3446, ; 3006, 2065, 1633, 1275, 1261, 750; HRMS (ESI, m/z): calcd for C₁₉H₂₂N₃O₃⁺ [M+H]⁺: 340.1656, found: 340.1663.

Tert-butyl 3a-((4-methoxyphenyl)amino)-3,3a,8,8a-tetrahydropyrrolo[2,3**b]indole-1(2H)-carboxylate (3qa)**; reaction temperature: 80 °C; reaction time: 3 h; petroleum ether/ethylacetate = 8:1; **TLC**: R_f = 0.4 (PE / EA = 2:1, UV); white solid (mp: 161.1 - 165.1 °C); 91 % yield (69.6mg, 0.18 mmol); ¹**H NMR (400 MHz, CDCl3)** δ 7.18 - 7.10 (m, 2H), 6.79 - 6.72 (m, 1H), 6.72 - 6.66 (m, 2H), 6.63 (d, *J* = 7.7 Hz, 1H), 6.52 (t, *J* = 9.6 Hz, 2H), 5.52 (d, *J* = 32.1 Hz, 1H), 5.11 (s, 1H), 4.68 (s, 1H), 3.71 (s, 3H), 3.65 (t, *J* = 7.8 Hz, 1H), 3.17 (dd, *J* = 18.3, 8.3 Hz, 1H), 2.58 - 2.47 (m, 1H), 2.36 - 2.28 (m, 1H), 1.54 - 1.44 (m, 9H); ¹³C{¹H} **NMR (101 MHz, CDCl3)** δ 154.9, 154.1, 153.7, 153.4, 149.5, 149.2, 138.9, 138.7, 130.1, 129.9, 129.8, 129.7, 123.8, 123.7, 119.4, 119.1, 118.1, 114.8, 114.7, 109.8, 109.6, 80.6, 80.2, 78.0, 77.8, 77.5, 74.2, 73.3, 55.7, 45.0, 44.4, 37.8, 37.7, 28.8, 28.6; **IR** ν (neat, cm⁻¹): 3446, 3006, 1646, 1507, 1275, 1261, 750; **HRMS (ESI, m/z):** calcd for C₂₂H₂₈N₂O₃⁺ [M+H]⁺: 382.2125, found: 382.2129.

1-Benzyl-3a-((4-methoxyphenyl)amino)-3,3a,8,8a-tetrahydropyrrolo[2,3-b]indol-2(1H)-one (3ra); reaction temperature: 80 °C; reaction time: 3 h; petroleum ether/ethylacetate = 8:1; TLC: $R_f = 0.4$ (PE / EA = 2:1, UV); white solid (mp: 168.7 – 175.2 °C); 57 % yield (44.1mg, 0.11 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 5H), 7.22 – 7.16 (m, 1H), 6.92 – 6.86 (m, 1H), 6.67 (d, J = 7.9 Hz, 1H), 6.65 – 6.61 (m, 2H), 6.35 – 6.30 (m, 2H), 5.26 (s, 1H), 4.99 (d, J = 14.8 Hz, 1H), 4.41 (s, 1H), 4.21 (d, J = 14.8 Hz, 1H), 3.70 (s, 3H), 3.28 (d, J = 17.7 Hz, 1H), 2.96 (d, J = 17.7 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 171.9, 153.4, 147.9, 137.9, 136.3, 133.4, 130.4, 129.0, 128.4, 128.0, 124.1, 121.2, 117.1, 115.0, 112.0, 78.2, 67.0, 55.8, 44.2, 41.9. IR ν (neat, cm⁻¹): 3445, 3006, 1645, 1511, 1275, 1261, 762; HRMS (ESI, m/z): calcd for C₂₄H₂₄N₃O₂⁺ [M+H]⁺: 386.1863, found: 386.1871.

5-Chloro-*N*-(4-fluorophenyl)-2,3,8,8a-tetrahydro-3a*H*-furo[2,3-b]indol-3a-amine (3eb); reaction temperature: 80 °C; reaction time: 4 h; petroleum ether/ethylacetate = 8:1; TLC: R_f = 0.4 (PE / EA = 2:1, UV); white solid (mp: 149.0 – 152.7 °C); 90 % yield (54.8 mg, 0.18 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.06 (d, *J* = 1.8 Hz, 1H), 7.01 (dd, *J* = 8.5, 1.9 Hz, 1H), 6.72 (t, *J* = 8.7 Hz, 2H), 6.47 (d, *J* = 8.3 Hz, 1H), 6.39 – 6.29 (m, 2H), 5.70 (s, 1H), 4.58 (brs, 1H), 4.02 (t, *J* = 8.3 Hz, 1H), 3.64-3.54 (m, 1H), 2.38 (td, *J* = 11.7, 7.5 Hz, 1H), 2.23 (dd, *J* = 11.9, 5.0 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 156.4 (d, *J* = 235.4 Hz), 148.2, 141.7 (d, *J* = 2.0 Hz), 131.5, 129.6, 124.2, 124.0, 115.8 (d, *J* = 28.7 Hz), 115.75, 109.5, 95.9, 74.2, 65.7, 43.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -126.50 (s, 1F). IR *ν* (neat, cm⁻¹):3447, 3006, 1646, 1473, 1275, 1261, 750; HRMS (ESI, m/z): calcd for C₁₆H₁₅ClFN₂O⁺ [M+H]⁺: 305.0851, found: 305.0836.

5-Chloro-N-(4-chlorophenyl)-2,3,8,8a-tetrahydro-3aH-furo[2,3-b]indol-3a-amine

(3ec); reaction temperature: 80 °C; reaction time: 5 h; petroleum ether/ethylacetate = 8:1; TLC: $R_f = 0.4$ (PE / EA = 2:1, UV); white solid (mp: 174.7 – 175.6 °C); 81 % yield (52.3 mg, 0.16 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, J = 2.0 Hz, 1H), 7.09 (dd, J = 8.4, 2.0 Hz, 1H), 7.02 (d, J = 8.8 Hz, 2H), 6.55 (d, J = 8.4 Hz, 1H), 6.39 (d, J = 8.8 Hz, 2H), 5.78 (s, 1H), 4.67 (brs, 1H), 4.33 (brs, 1H), 4.10 (t, J = 8.2 Hz, 1H), 3.71 - 3.63 (m, 1H), 2.45 (td, J = 11.7, 7.5 Hz, 1H), 2.30 (dd, J = 12, 4.8 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.2, 144.0, 131.3, 129.7, 129.3, 124.1, 123.3, 115.7, 109.5, 95.9, 73.9, 65.7, 43.0; IR ν (neat, cm⁻¹): 3420, 3006, 2990, 1633, 1476, 1275, 1261, 773; HRMS (ESI, m/z): calcd for C₁₆H₁₅Cl₂N₂O⁺ [M+H]⁺: 321.0556, found: 321.0563.

N-(4-bromophenyl)-5-chloro-2,3,8,8a-tetrahydro-3a*H*-furo[2,3-b]indol-3a-amine (3ed); reaction temperature: 80 °C; reaction time: 3 h; petroleum ether/ethylacetate = 8:1; TLC: $R_f = 0.4$ (PE / EA = 2:1, UV); white solid (mp: 183.8 – 184.8 °C); 75 % yield (54.5 mg, 0.15 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, J = 8.8 Hz, 2H), 7.13-7.06 (m, 2H), 6.55 (d, J = 8.3 Hz, 1H), 6.34 (d, J = 8.8 Hz, 2H), 5.78 (s, 1H), 4.63 (brs, 1H), 4.34 (brs, 1H), 4.10 (t, J = 8.3 Hz, 1H), 3.71-3.62 (m, 1H), 2.45 (td, J = 11.7, 7.5 Hz, 1H), 2.30 (dd, J = 11.8, 4.7 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.2, 144.5, 132.1, 131.2, 129.7, 124.1, 116.1, 110.4, 109.5, 95.9, 73.9, 65.6, 43.0; IR ν (neat, cm⁻¹): 3446, 3006, 2065, 1640, 1275, 1261, 779; HRMS (ESI, m/z): calcd for C₁₆H₁₅BrClN₂O⁺ [M+H]⁺: 365.0051, found: 365.0067.

5-Chloro-N-(4-iodophenyl)-2,3,8,8a-tetrahydro-3aH-furo[2,3-b]indol-3a-amine

(3ee); reaction temperature: 80 °C; reaction time: 4 h; petroleum ether/ethylacetate = 8:1; TLC: $R_f = 0.4$ (PE / EA = 2:1, UV); white solid (mp: 192.6 – 196.3 °C); 88 % yield (72.6 mg, 0.18 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, J = 8.7 Hz, 2H), 7.13 – 7.06 (m, 2H), 6.55 (d, J = 8.3 Hz, 1H), 6.24 (d, J = 8.7 Hz, 2H), 5.78 (s, 1H), 4.57 (brs, 2H), 4.10 (t, J = 8.3 Hz, 1H), 3.71 – 3.62 (m, 1H), 2.44 (td, J = 11.7, 7.5 Hz, 1H), 2.30 (dd, J = 11.9, 5.0 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.2, 145.1, 138.0, 131.2, 129.7, 124.1, 124.11, 116.7, 109.5, 95.9, 79.6, 73.8, 65.7, 43.1; IR ν (neat, cm⁻¹):3446, 3006, 1646, 1507, 1275, 1261. 750; HRMS (ESI, m/z): calcd for C₁₆H₁₅ClIN₂O⁺ [M+H]⁺: 412.9912, found: 412.9902.

5-Chloro-N-(4-(trifluoromethyl)phenyl)-2,3,8,8a-tetrahydro-3aH-furo[2,3-

b]indol-3a-amine (3ef); reaction temperature: 80 °C; reaction time: 3 h; petroleum ether/ethylacetate = 8:1; TLC: $R_f = 0.4$ (PE / EA = 2:1, UV); white solid (mp: 177.1 – 179.8 °C); 77 % yield (54.5 mg, 0.15 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 8.6 Hz, 2H), 7.13 (d, J = 2.0 Hz, 1H), 7.12 – 7.08 (m, 1H), 6.57 (d, J = 8.3 Hz, 1H), 6.48 (d, J = 8.6 Hz, 2H), 5.81 (s, 1H), 4.70 (brs, 1H), 4.59 (brs, 1H), 4.13 (t, J = 7.8 Hz, 1H), 3.73 - 3.64 (m, 1H), 2.48 (td, J = 11.7, 7.4 Hz, 1H), 2.33 (dd, J = 11.8, 4.8 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.2, 148.1, 130.7, 129.8, 127.9 (q, J = 269.0 Hz), 126.7 (q, J = 3.8 Hz), 124.1, 124.0, 119.9 (q, J = 32.5 Hz), 113.5, 109.6, 95.8, 73.6, 65.6, 43.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.32 (s, 3F); IR ν (neat, cm⁻¹): 3446, 3006, 1646, 1543, 1275, 1261, 750; HRMS (ESI, m/z): calcd for C₁₇H₁₅ClF₃N₂O⁺ [M+H]⁺: 355.0820, found: 355.0829.

reaction temperature: 80 °C; reaction time: 5 h; petroleum ether/ethylacetate = 8:1; **TLC**: $R_f = 0.4$ (PE / EA = 2:1, UV); white solid (mp: 181.4 – 185.6 °C); 78 % yield (40.0 mg, 0.16 mmol); ¹**H NMR (400 MHz, CDCl₃)** δ 7.15 (d, J = 2.1 Hz, 1H), 7.12 – 7.05 (m, 3H), 6.70 (t, J = 7.3 Hz, 1H), 6.55 (d, J = 8.4 Hz, 1H), 6.47 (d, J = 8.2 Hz, 2H), 5.83 (s, 1H), 4.70 (brs, 1H), 4.22 (brs, 1H), 4.11 (t, J = 8.0 Hz, 1H), 3.72 - 3.64 (m, 1H), 2.49 (td, J = 11.7, 7.5 Hz, 1H), 2.30 (dd, J = 12.0, 4.9 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.2, 145.5, 132.0, 129.5, 129.4, 124.2, 124.0, 118.5, 114.6, 109.5, 95.9, 73.9, 65.7, 42.9; **IR** *v* (neat, cm⁻¹):3420, 3006, 1633, 1508, 1479, 1275, 1261, 750; HRMS (ESI, m/z): calcd for C₁₆H₁₆ClN₂O⁺ [M+H]⁺: 287.0946, found: 287.0939.

5-Chloro-*N***-(p-tolyl)-2,3,8,8a-tetrahydro-3***aH***-furo**[**2,3-b**]**indol-3a-amine** (**3eh**); reaction temperature: 80 °C; reaction time: 5 h; petroleum ether/ethylacetate = 8:1; TLC: $R_f = 0.4$ (PE / EA = 2:1, UV); white solid (mp: 183.3 – 184.8 °C); 86 % yield (51.9 mg, 0.17 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, J = 2.4 Hz, 1H), 7.08 (dd, J = 8.2, 2.2 Hz, 1H), 6.89 (d, J = 8.4 Hz, 2H), 6.54 (d, J = 8.4 Hz, 1H), 6.40 (d, J = 8.4 Hz, 2H), 5.81 (s, 1H), 4.68 (brs, 1H), 4.09 (t, J = 7.8 Hz, 1H), 3.71 - 3.63 (m, 1H), 2.47 (td, J = 11.7, 7.5 Hz, 1H), 2.29 (dd, J = 12.0, 4.8 Hz, 1H), 2.19 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.2, 143.1, 132.1, 129.9, 129.4, 127.8, 124.2, 124.0, 114.9, 109.5, 96.0, 74.1, 65.7, 42.9, 20.4; IR ν (neat, cm⁻¹): 3453, 2065, 1633, 1473, 1275, 1261, 773; HRMS (ESI, m/z): calcd for C₁₇H₁₈ClN₂O⁺ [M+H]⁺: 301.1102, found: 301.1112.

N-([1,1'-biphenyl]-4-yl)-5-chloro-2,3,8,8a-tetrahydro-3a*H*-furo[2,3-b]indol-3aamine (3ei); reaction temperature: 80 °C; reaction time: 4 h; petroleum ether/ethylacetate = 8:1; **TLC**: R_f = 0.4 (PE / EA = 2:1, UV); white solid (mp: 227.1 – 239.0 °C); 93 % yield (67.5 mg, 0.19 mmol); ¹**H NMR (400 MHz, CDCl₃)** δ 7.48 (d, J = 8.1 Hz, 2H), 7.40 – 7.32 (m, 4H), 7.25 - 7.24 (m, 1H), 7.18 (d, J = 1.8 Hz, 1H), 7.10 (d, J = 8.3 Hz, 1H), 6.61 - 6.50 (m, 3H), 5.87 (s, 1H), 4.69 (brs, 1H), 4.13 (t, J = 8.3 Hz, 1H), 3.75 – 3.64 (m, 1H), 2.52 (td, J = 11.8, 7.6 Hz, 1H), 2.33 (dd, J = 11.9, 4.9 Hz, 1H); ¹³C{¹H} **NMR (101 MHz, CDCl₃)** δ 157.7, 155.3, 148.3, 141.7, 141.72, 131.6, 129.6, 124.2, 124.0, 116.0, 115.8, 115.76, 109.5, 95.9, 74.3, 65.7, 43.0; **IR** ν (neat, cm⁻¹):3446, 3006, 1646, 1473, 1275, 1261, 750; **HRMS (ESI, m/z):** calcd for C₂₂H₂₀ClN₂O⁺ [M+H]⁺: 363.1259, found: 363.1267.

N-(4-(benzyloxy)phenyl)-5-chloro-2,3,8,8a-tetrahydro-3a*H*-furo[2,3-b]indol-3aamine (3ej); reaction temperature: 80 °C; reaction time: 4 h; petroleum ether/ethylacetate = 8:1; TLC: R_f = 0.4 (PE / EA = 2:1, UV); white solid (mp: 163.2 – 188.5 °C); 95 % yield (74.1 mg, 0.19 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.28 (m, 5H), 7.15 (d, *J* = 2.0 Hz, 1H), 7.08 (dd, *J* = 8.3, 2.1 Hz, 1H), 6.74 (d, *J* = 8.9 Hz, 2H), 6.53 (d, *J* = 8.3 Hz, 1H), 6.45 (d, *J* = 8.8 Hz, 2H), 5.77 (s, 1H), 4.94 (s, 2H), 4.66 (brs, 1H), 4.09 (t, *J* = 8.2 Hz, 1H), 3.69 – 3.58 (m, 1H), 2.55 – 2.43 (m, 1H), 2.29 (dd, *J* = 12.1, 4.8 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.2, 148.2, 139.6, 137.5, 132.0, 129.4, 128.6, 127.9, 127.6, 124.3, 123.9, 116.4, 116.0, 109.5, 96.0, 74.4, 70.7, 65.8, 42.9; IR *v* (neat, cm⁻¹): 3446, 3006, 1644, 1507, 1275, 1261, 750; HRMS (ESI, m/z): calcd for C₂₃H₂₂ClN₂O₂⁺ [M+H]⁺: 393.1364, found: 393.1359.

5-Chloro-N-(3-methoxyphenyl)-2,3,8,8a-tetrahydro-3aH-furo[2,3-b]indol-3aamine (3ek); reaction temperature: 80 °C; reaction time: 3 h; petroleum

S19

ether/ethylacetate = 8:1; **TLC**: R_f = 0.4 (PE / EA = 2:1, UV); yellow solid (mp: 120.0 – 120.7 °C); 88 % yield (55.8 mg, 0.17 mmol); ¹**H NMR (400 MHz, CDCl₃)** δ 7.15 (d, J = 2.1 Hz, 1H), 7.08 (dd, J = 8.3, 2.2 Hz, 1H), 6.99 (t, J = 8.1 Hz, 1H), 6.54 (d, J = 8.3 Hz, 1H), 6.27 (dd, J = 8.1, 2.2 Hz, 1H), 6.11 (dd, J = 8.0, 2.0 Hz, 1H), 6.01 (t, J = 2.2 Hz, 1H), 5.83 (s, 1H), 4.76 (brs, 1H), 4.28 (brs, 1H), 4.14 – 4.05 (m, 1H), 3.71 – 3.62 (m, 4H), 2.46 (td, J = 11.7, 7.5 Hz, 1H), 2.30 (dd, J = 11.6, 4.6 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.7, 148.2, 146.8, 131.7, 130.1, 129.5, 124.1, 123.9, 109.4, 107.5, 103.7, 100.2, 96.0, 73.8, 65.6, 55.0, 43.1; IR ν (neat, cm⁻¹): 3420, 3006, 2066, 1633, 1275, 1261, 750; HRMS (ESI, m/z): calcd for C₁₇H₁₈ClN₂O₂⁺ [M+H]⁺: 317.1051, found: 317.1059.

5-Chloro-N-(2-methoxyphenyl)-2,3,8,8a-tetrahydro-3aH-furo[2,3-b]indol-3a-

amine (3el); reaction temperature: 80 °C; reaction time: 3 h; petroleum ether/ethylacetate = 8:1; **TLC**: $R_f = 0.4$ (PE / EA = 2:1, UV); grew solid (mp: 166.3 – 167.4 °C); 94 % yield (60.0 mg, 0.19 mmol); ¹**H NMR (400 MHz, CDCl3)** δ 7.16 (d, J = 2.1 Hz, 1H), 7.08 (dd, J = 8.4, 2.2 Hz, 1H), 6.80 – 6.74 (m, 1H), 6.69 – 6.63 (m, 2H), 6.55 (d, J = 8.3 Hz, 1H), 6.29 (dd, J = 5.9, 3.5 Hz, 1H), 5.83 (s, 1H), 4.85 (brs, 1H), 4.73 (brs, 1H), 4.15 – 4.07 (m, 1H), 3.86 (s, 3H), 3.69 (ddd, J = 11.4, 9.2, 5.1 Hz, 1H), 2.55 (td, J = 11.7, 7.5 Hz, 1H), 2.35 – 2.27 (m, 1H); ¹³C{¹H} NMR (101 MHz, CDCl3) δ 148.1, 147.1, 135.2, 132.0, 129.3, 124.1, 123.8, 121.1, 117.5, 111.7, 109.6, 109.4, 95.9, 73.4, 65.6, 55.5, 43.0; **IR** ν (neat, cm⁻¹): 3446, 3006, 2065, 1640, 1275, 750, 668; **HRMS (ESI, m/z):** calcd for C₁₇H₁₈ClN₂O₂⁺ [M+H]⁺: 317.1051, found: 317.1050.

5-Chloro-*N***-(9H-fluoren-2-yl)-2,3,8,8a-tetrahydro-3***aH***-furo**[**2,3-b**]**indol-3a-amine** (**3em**); reaction temperature: 80 °C; reaction time: 3 h; petroleum ether/ethylacetate = 8:1; **TLC**: $R_f = 0.4$ (PE / EA = 2:1, UV); white solid (mp: 222.8 – 228.3 °C); 97 % yield (72.8 mg, 0.19 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.6 Hz, 1H), 7.49 (d, J = 8.2 Hz, 1H), 7.43 (d, J = 7.4 Hz, 1H), 7.29 (t, J = 5.1 Hz, 1H), 7.19 – 7.14 (m, 2H), 7.10 (dd, J = 8.4, 2.2 Hz, 1H), 6.70 (s, 1H), 6.58 (d, J = 8.4 Hz, 1H), 6.50 (dd, J = 8.2, 1.8 Hz, 1H), 5.88 (s, 1H), 4.70 (brs, 1H), 4.31 (brs, 1H), 4.14 (t, J = 7.8 Hz, 1H), 3.74 (d, J = 4.9 Hz, 2H), 3.73 – 3.66 (m, 1H), 2.56 (td, J = 11.7, 7.5 Hz, 1H), 2.32 (dd, J = 12.0, 4.6 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.3, 145.1, 142.4, 129.6, 126.8, 125.3, 124.8, 124.2, 124.1, 120.8, 118.8, 113.7, 111.6, 109.6, 100.1, 95.9, 65.9, 42.7, 37.1; **IR** ν (neat, cm⁻¹):3446, 3006, 1646, 1507, 1275, 1261, 750; **HRMS (ESI, m/z):** calcd for C₂₃H₂₀ClN₂O⁺ [M+H]⁺: 375.1259, found: 375.1263.

5-Chloro-*N*-(**4**-(**4**,**4**,**5**,**5**-tetramethyl-1,**3**,**2**-dioxaborolan-2-yl)phenyl)-2,**3**,**8**,**8**atetrahydro-3a*H*-furo[2,**3**-b]indol-3a-amine (**3**en); reaction temperature: 80 °C; reaction time: 3 h; petroleum ether/ethylacetate = 8:1; **TLC**: R_f = 0.4 (PE / EA = 2:1, UV); white solid (mp: 183.1 – 188.7 °C); 72 % yield (59.8 mg, 0.15 mmol); ¹H NMR (**400 MHz, CDCl**₃) δ 7.54 (d, *J* = 8.5 Hz, 2H), 7.12 (d, *J* = 2.1 Hz, 1H), 7.07 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.54 (d, *J* = 8.3 Hz, 1H), 6.44 (d, *J* = 8.5 Hz, 2H), 5.83 (s, 1H), 4.62 (brs, 2H), 4.11 (t, *J* = 7.9 Hz, 1H), 3.70 – 3.72 (m, 1H), 2.48 (td, *J* = 11.7, 7.5 Hz, 1H), 2.30 (dd, *J* = 11.9, 4.5 Hz, 1H), 1.29 (s, 12H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.2, 148.0, 136.4, 131.5, 129.6, 124.1, 124.0, 113.5, 109.4, 96.1, 83.4, 73.7, 65.6, 43.0, 25.0, 24.9; ¹¹B NMR (128 MHz, CDCl₃) δ 30.52; IR *v* (neat, cm⁻¹): 3446, 3006, 2065, 1640, 1275, 1261, 750; HRMS (ESI, m/z): calcd for C₂₂H₂₇BClN₂O₃⁺ [M+H]⁺: 413.1798, found: 413.1802.

(8R,9S,13S,14S)-3-((5-chloro-2,3,8,8a-tetrahydro-3aH-furo[2,3-b]indol-3a-

yl)amino)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*

cyclopenta[a]phenanthren-17-one (3eo); reaction temperature: 80 °C; reaction time: 3 h; petroleum ether/ethylacetate = 50:1; TLC: $R_f = 0.4$ (PE / EA = 10:1, UV); white solid (mp: 169.8 – 172.2 °C); 95 % yield (87.6 mg, 0.19 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.13 (m, 1H), 7.08 (dt, J = 8.3, 2.3 Hz, 1H), 7.00 (d, J = 8.5 Hz, 1H), 6.55 (dd, J = 8.3, 1.4 Hz, 1H), 6.28 (d, J = 9.0 Hz, 2H), 5.82 (d, J = 1.7 Hz, 1H), 4.09 (t, J = 8.2 Hz, 1H), 3.71 – 3.63 (m, 1H), 2.83 – 2.62 (m, 2H), 2.48 (dd, J = 19.0, 8.5 Hz, 2H), 2.28 (dd, J = 10.9, 5.5 Hz, 2H), 2.22 – 1.88 (m, 5H), 1.64 – 1.33 (m, 8H), 0.88 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 221.1, 148.2, 143.4, 137.5, 132.1, 130.1, 129.5, 126.3, 124.3, 124.0, 115.1, 112.3, 109.4, 96.0, 73.9, 65.7, 50.6, 48.2, 44.1, 43.0, 38.6, 36.0, 31.7, 29.7, 26.7, 25.9, 21.7, 14.0; IR ν (neat, cm⁻¹): 3445, 3006, 2989, 1633, 1475, 1275, 1261, 750; HRMS (ESI, m/z): calcd for C₂₈H₃₂ClN₂O₂⁺ [M+H]⁺: 463.2147, found: 463.2141.

2,6-di-tert-butyl-4-((2,3,8,8a-tetrahydro-3aH-furo[2,3-b]indol-3a

yl)methyl)phenol (4); reaction temperature: 80 °C; reaction time: 3 h; petroleum ether/ethylacetate = 50:1; TLC: $R_f = 0.4$ (PE / EA = 10:1, UV); yellow oil; 18 % yield (13.6 mg, 0.04 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.05 (t, J = 7.6 Hz, 1H), 6.85 (d, J = 7.3 Hz, 1H), 6.78 (s, 2H), 6.74 (t, J = 7.4 Hz, 1H), 6.53 (d, J = 7.8 Hz, 1H), 5.37 (s, 1H), 5.07 (s, 1H), 4.42 (s, 1H), 3.96 (t, J = 7.8 Hz, 1H), 3.58 – 3.48 (m, 1H), 3.12 (d, J = 13.5 Hz, 1H), 2.87 (d, J = 13.5 Hz, 1H), 2.29 (td, J = 11.5, 7.3 Hz, 1H), 2.14 (dd, J = 13.5 Hz, 1H), 2.87 (d, J = 13.5 Hz, 1H), 2.29 (td, J = 11.5, 7.3 Hz, 1H), 2.14 (dd, J = 13.5 Hz, 1H), 2.87 (d, J = 13.5 Hz, 1H), 2.29 (td, J = 11.5, 7.3 Hz, 1H), 2.14 (dd, J = 13.5 Hz, 1H), 2.87 (d, J = 13.5 Hz, 1H), 2.29 (td, J = 11.5, 7.3 Hz, 1H), 2.14 (dd, J = 13.5 Hz, 1H), 2.87 (d, J = 13.5 Hz, 1H), 2.29 (td, J = 11.5, 7.3 Hz, 1H), 2.14 (dd, J = 13.5 Hz, 1H), 2.87 (d, J = 13.5 Hz, 1H), 2.29 (td, J = 11.5, 7.3 Hz, 1H), 2.14 (dd, J = 13.5 Hz, 1H), 2.87 (d, J = 13.5 Hz, 1H), 2.29 (td, J = 11.5, 7.3 Hz, 1H), 2.14 (dd, J = 13.5 Hz, 1H), 2.87 (d, J = 13.5 Hz, 1H), 3.88 (d, J = 13.5 Hz, 1H), 3.88 (d, J = 13.5 Hz, 1H), 3.88 (d, J = 13.5

11.8, 4.7 Hz, 1H), 1.37 (s, 18H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.4, 149.9, 135.3, 132.1, 128.4, 128.2, 126.7, 124.4, 118.7, 108.6, 97.3, 67.6, 59.2, 43.9, 39.8, 34.3, 30.4; **IR** *ν* (neat, cm⁻¹): 3444, 3008, 2066, 1636. 1275, 1261, 750; **HRMS (ESI, m/z)**: calcd for C₂₅H₃₄NO₂⁺ [M+H]⁺: 380.2584, found: 380.2588.

IV. Mechanistic Experiments:

(a) Radical inhibitation reactions

After stirring a mixture of CuBH₄(PPh₃)₂ (0.024 mmol, 12 mol %) and L7 (0.028 mmol, 14 mol %) in dry DCE (2 mL) at 80 °C for 1 h, substrates **1a** (0.20 mmol) and **2a** (0.30 mmol) and **TEMPO** or **BHT** (0.40 mmol) was added. The reaction mixture was stirred at 80 °C under argon atmosphere. After the disappearance of substrate **1a** (monitored by TLC) and then the crude product was purified by silica gel flash chromatography to afford the desired product **3aa**.

(b) Control experiments

After stirring a mixture of CuBH₄(PPh₃)₂ (0.024 mmol, 12 mol %) and L7 (0.028 mmol, 14 mol %) in dry DCE (2 mL) at 80°C for 1 h, substrates **5** or **6** (0.20 mmol) and **2a** (0.30mmol) was added. The reaction mixture was stirred at 80 °C under argon atmosphere. And then the reaction was monitored by TLC.

V. Crystallographic Data

 Table S4. Crystal data and structure refinement for 3aa (CCDC: 1951998).

Identification code	d8v19607	
Empirical formula	C17 H18 N2 O2	
Formula weight	282.33	
Temperature	193(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 16.9108(15) Å	a= 90°.
b = 7.6555(6) Å	b= 105.615(3)°.	
c = 11.6950(11) Å	g = 90°.	
Volume	1458.2(2) Å ³	
Z	4	
Density (calculated)	1.286 Mg/m ³	
Absorption coefficient	0.085 mm ⁻¹	
F(000)	600	
Crystal size	$0.170 \ge 0.150 \ge 0.120 \text{ mm}^3$	
Theta range for data collection	2.940 to 25.999°.	
Index ranges	-20<=h<=20, -9<=k<=9, -14<=l<=14	
Reflections collected	14661	
Independent reflections	2857 [R(int) = 0.0495]	
Completeness to theta = 25.242°	99.6 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.6041	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2857 / 0 / 196	
Goodness-of-fit on F ²	1.046	
Final R indices [I>2sigma(I)]	R1 = 0.0461, wR2 = 0.1112	
R indices (all data)	R1 = 0.0591, wR2 = 0.1204	
Extinction coefficient	0.027(5)	

VI. Reference

- 1. Han, L.; Liu, C.; Zhang, W.; Shi, X. X.; You, S. L. Chem. Commun. 2014, 50, 1231.
- Lee, K. L.; Foley, M. A.; Chen, L.; Behnke, M. L.; Lovering, F. E.; Kirincich, S. J.; Wang, W.; Shim, J.; Tam, S.; Shen, M. W. H.; Khor, S.; Xu, X.; Goodwin, D. G.; Ramarao, M. K.; Nickerson-Nutter, C.; Donahue, F.; Ku, M. S.; Clark, J. D.; McKew, J. C. J. Med. Chem. 2007, 50, 1380.
- Maskeri, M. A.; O'Connor, M. J.; Jaworski, A. A.; Davies, A. V.; Scheidt, K. A. Angew. Chem. Int. Ed. 2018, 57, 17225.
- 4. White, J. D.; Yager, K. M.; Yakura, T. J. Am. Chem. Soc. 1994, 116, 1831.
- 5. Galcera, C.; Marie-Odile; Sidhu, A.; Roubert, P.; Thurieau, C. PCT Int. Appl., 2003045926, 2003
- 6. Liu, C.; Zhang, W.; Dai, L.-X.; You, S.-L. Org. Lett. 2012, 14, 4525.
- Mamolo, M. G.; Zampieri, D.; Zanette, C.; Florio, C.; Collina, S.; Urbano, M.; Azzolina, O.; Vio, L. *Eur. J. Med. Chem.* 2008, 43, 2073.
- Cera, G.; Lanzi, M.; Balestri, D.; Della Ca, N.; Maggi, R.; Bigi, F.; Malacria, M.; Maestri, G. Org. Lett. 2018, 20, 3220.
- 9. De, S.; Das, M. K.; Bhunia, S.; Bisai, A. Org. Lett. 2015, 17, 5922.
- Allen, J. R.; Bahamonde, A.; Furukawa, Y.; Sigman, M. S. J. Am. Chem. Soc. 2019, 141, 8670.
- 11. Zhu, S.; MacMillan, D. W. J. Am. Chem. Soc. 2012, 134, 10815.
- 12. Tang, Y.; Ji, G.; Sun, X. CN 105461839, 2016.
- Caovilla, M.; Thiele, D.; de Souza, R. F.; Gregório, J. R.; Bernardo-Gusmão, K. Catal. Commun. 2017, 101, 85.
- Badiei, Y. M.; Dinescu, A.; Dai, X.; Palomino, R. M.; Heinemann, F. W.; Cundari, T. R.; Warren, T. H. Angew. Chem. Int. Ed. 2008, 47, 9961.
- 15. Kestel-Jakob, A.; Alt, H. G. Jordan J. Chem. 2007, 2, 219.
- Cheng, M.; Moore, D. R.; Reczek, J. J.; Chamberlain, B. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8738.
- 17. Gu, Y.; Huang, W.; Chen, S.; Wang, X. Org. Lett. 2018, 20, 4285.
- 18. Sato, S.; Shibuya, M.; Kanoh, N.; Iwabuchi, Y. Chem. Commun. 2009, 6264.

OCH₃

OCH₃

338 316 111 098 093 077 077	557 536	255 233	775
	6.		-5.

--0. 000

3eh

10.0

 $\begin{array}{c} \swarrow^{7}_{7.470} & 490 \\ \swarrow^{7}_{7.260} & \swarrow^{7}_{7.259} \\ \swarrow^{7}_{7.113} & 113 \\ \gamma^{7}_{7.092} \end{array}$

 $\begin{array}{c} 6.583 \\ 6.562 \\ 6.555 \\ 6.534 \end{array}$

--5.874

 $\begin{array}{c} 149 \\ 127 \\ 107 \\ 730 \\ 716 \\ 693 \\ 668 \\ 664 \end{array}$

က္က္တ္တ္တ္

 $\begin{array}{c} 5559 \\ 5540 \\ 5511 \\ 5501 \\ 5501 \\ 5501 \\ 349 \\ 336 \\ 336 \\ 337 \\ 307 \\$

-4.687

----0. 000

