Supporting Information

Rhodium-catalyzed ene-cycloisomerization of allylic-sulfide-tethered

alkylidenecyclopropanes: DFT analysis of origins of regio- and

diastereo-selectivities

Ting Wang, Shuting Lv, Xianming Guo, Zhanpeng Li and Juan Li*

Department of Chemistry, Jinan University, Huangpu Road West 601, Guangzhou,

Guangdong 510632, P. R. China

*Corresponding author. E-mail: tchjli@jnu.edu.cn (J. Li)

Table of Contents

1. Transition-metal-catalyzed reaction pathways for MCPs and ACPs. (Scheme S1)	S2
2. Other possible isomers of proximal and distal ring opening of ACP. (Scheme S2)	S3
3. Other possible alkene insertion mode from I-3 . (Scheme S3)	S3
4. Isomers of I-TS4 and III-TS4. (Scheme S4)	S4
5. Two-step process from IV-4. (Fig. S1)	S4
6. Isomers of IV-TS3 and V-TS3. (Scheme S5)	S5
7. Formation of diastereomeric 2-RS in path B. (Fig. S2)	S5
8. Ring opening of ACP through distal C–C cleavage with the Pd(0) and Ni(0) catalysts. (Scheme S6)	S6
9. Ring opening of ACP with the Pd(0) and Ni(0) catalysts using ligand P(O- <i>p</i> -Tol) _{3.} (Fig. S3)	S6
10. DFT with D3 dispersion correction. (Scheme S7 and Fig. S4)	S7
11. Other possible pathways from I-4 to 2-RR. (Fig. S5)	S 8
12. 3D structures of key species labeled in Figs. 1, 2 and 6. (Figs. S6 and S7)	S 8
13. RDG analysis of IV-TS1 and VII-TS1. (Fig. S8)	S9
	 Transition-metal-catalyzed reaction pathways for MCPs and ACPs. (Scheme S1) Other possible isomers of proximal and distal ring opening of ACP. (Scheme S2) Other possible alkene insertion mode from I-3. (Scheme S3) Isomers of I-TS4 and III-TS4. (Scheme S4) Two-step process from IV-4. (Fig. S1) Isomers of IV-TS3 and V-TS3. (Scheme S5) Formation of diastereomeric 2-RS in path B. (Fig. S2) Ring opening of ACP through distal C–C cleavage with the Pd(0) and Ni(0) catalysts. (Scheme S6) Ring opening of ACP with the Pd(0) and Ni(0) catalysts using ligand P(O-p-Tol)₃. (Fig. S3) DFT with D3 dispersion correction. (Scheme S7 and Fig. S4) Other possible pathways from I-4 to 2-RR. (Fig. S5) 3D structures of key species labeled in Figs. 1, 2 and 6. (Figs. S6 and S7) RDG analysis of IV-TS1 and VII-TS1. (Fig. S8)

Section 14. Conformers of VI-TS2 and VI-TS3. (Scheme S8)	S10
Section 15. Table of energy values.	S11
Section 16. Calculated imaginary frequencies of all transition states species.	S15
Section 17. References.	S17

Section 1. Transition-metal-catalyzed reaction pathways for MCPs and ACPs

When the cyclopropane ring of a MCP or an ACP reacts with a transition-metal catalyst M, either the proximal or distal C–C σ bond of the three-membered ring moiety can be activated (Scheme S1, path A). When the exo-methylene moiety of a MCP or an ACP reacts with an organic transition-metal complex R–MLn, the exo-methylene moiety of the MCP or ACP can be activated first, and two different regioisomers can be formed (Scheme S1, path B).

Scheme S1 Transition-metal-catalyzed reaction pathways for MCPs and ACPs.

Section 2. Other possible isomers of proximal and distal ring opening of

ACP

Scheme S2 Isomers of proximal and distal ring opening of ACP. Values shown are relative free energies in kcal/mol.

Section 3. Other possible alkene insertion mode from I-3

Scheme S3 Other possible alkene insertion mode from I-3. Values shown are relative free energies in kcal/mol.

Section 4. Isomers of I-TS4 and III-TS4

Scheme S4 Isomers of I-TS4 and III-TS4. Values shown are relative free energies in kcal/mol.

Section 5. Two-step process from IV-4

Fig. S1. Calculated free-energy profiles for two-step process from IV-4. Values shown are relative free energies in kcal/mol.

Section 6. Isomers of IV-TS3 and V-TS3

Scheme S5 Isomers of IV-TS3 and V-TS3. Values shown are relative free energies in kcal/mol.

Section 7. Formation of diastereomeric 2-RS in path B

Fig. S2. Calculated free-energy profiles for formation of diastereomer 2-RS in path B.

Section 8. Ring opening of ACP through distal C–C cleavage with the

Pd(0) and Ni(0) catalysts

Scheme S6 Distal C–C cleavage with the Pd(0) and Ni(0) systems. Values shown are relative free energies in kcal/mol.

Section 9. Ring opening of ACP with the Pd(0) and Ni(0) catalysts using ligand P(O-*p*-Tol)₃

Fig. S3. Comparison of two divergent pathways for Pd(0) and Ni(0) systems using ligand $P(O-p-Tol)_3$. Values shown are relative free energies in kcal/mol.

Section 10. DFT with D3 dispersion correction

Scheme S7 Intermediates and transition states optimized with the dispersion corrections

in Scheme 2. Interatomic distances are in angstroms, and energies are in kcal/mol.

Fig. S4. Key transition states optimized with the dispersion corrections for Ni and Pd cases. Values shown are relative free energies in kcal/mol.

Section 11. Other possible pathway from I-4 to 2-RR

Fig. S5. Calculated free-energy profiles for other pathway starting from **I-4**. Values shown are relative free energies in kcal/mol.

Section 12. 3D structures of key species labeled in Figs. 1, 2 and 6

Fig. S6. Optimized structures of key species labeled in Figs. 1 and 2. Key bond lengths are given in Å.

Fig. S7. Optimized structures of key species labeled in Fig. 6. Key bond lengths are given

in Å.

Section 13. RDG analysis

Fig. S8. RDG analysis of **IV-TS1** and **VII-TS1**. The RDG isosurface map were performed with Multiwfn 3.6¹ and VMD 1.9² software packages.

The analysis of RDG isosurface for VII-TS1 demonstrates that there is a significant

steric repulsion (red surface).

Section 14. Conformers of VI-TS2 and VI-TS3

Scheme S8 Conformers of VI-TS2 and VI-TS3. Interatomic distances are in angstroms,

and energies are in kcal/mol.

Section 15. Table of energy values

Geometry	E ₀	Е	H _{373.15}	G _{373.15}	E _(sol,M06)
1	-1055.637697	-1055.637697	-1055.610138	-1055.708430	-1055.201576
[Rh(COD)Cl] ₂	-1763.555431	-1763.522618	-1763.521437	-1763.626762	-1765.245048
COD	-311.917101	-311.905650	-311.904468	-311.959144	-311.7268187
L	-1379.872794	-1379.836080	-1379.834898	-1379.957007	-1379.224797
I-1	-4385.208837	-4385.101018	-4385.099836	-4385.387181	-4384.544593
I-TS1	-4385.203859	-4385.095139	-4385.093957	-4385.394547	-4384.513911
I-2	-4385.237653	-4385.130368	-4385.129186	-4385.420817	-4384.53044
I-3	-4385.208545	-4385.100369	-4385.099187	-4385.387831	-4384.536859
I-TS2	-4385.164151	-4385.099218	-4385.098273	-4385.274456	-4384.525732
I-4	-4385.240558	-4385.133424	-4385.132242	-4385.425179	-4384.571787
I-5	-3005.392960	-3005.325518	-3005.324337	-3005.516000	-3005.358529
I-6	-3005.387134	-3005.319870	-3005.318688	-3005.507323	-3005.35876
I-TS3	-3005.359454	-3005.292158	-3005.290977	-3005.479310	-3005.331403
I-7	-3005.370129	-3005.301851	-3005.300669	-3005.495054	-3005.343453
I-8	-3005.376031	-3005.307419	-3005.306237	-3005.501284	-3005.348662
I-TS4	-3005.344133	-3005.276548	-3005.275367	-3005.466649	-3005.318682
I-9	-3005.380974	-3005.313395	-3005.312213	-3005.504673	-3005.357809
RhL ₂ Cl	-3329.569412	-3329.488139	-3329.486958	-3329.721843	-3329.315269
II-TS1	-4385.197472	-4385.089396	-4385.088214	-4385.379584	-4384.512032
II-2	-4385.232976	-4385.125010	-4385.123828	-4385.413517	-4384.529874
III-TS3	-3005.351298	-3005.284060	-3005.282878	-3005.474328	-3005.320943
III-7	-3005.354414	-3005.286652	-3005.285470	-3005.478596	-3005.321915
III-8	-3005.372449	-3005.305068	-3005.303886	-3005.496759	-3005.32848
III-TS4	-3005.357561	-3005.289300	-3005.288118	-3005.484474	-3005.326561
III-9	-3005.368315	-3005.301620	-3005.300438	-3005.491612	-3005.331592
IV-TS1	-4385.185964	-4385.079342	-4385.078160	-4385.365069	-4384.517044
IV-1	-4385.215936	-4385.109499	-4385.108317	-4385.391952	-4384.542865
IV-2	-3005.365414	-3005.298013	-3005.296832	-3005.489137	-3005.329512
IV-3	-3005.359457	-3005.292067	-3005.290886	-3005.481943	-3005.329457
IV-TS2	-3005.338607	-3005.272617	-3005.271435	-3005.457177	-3005.306054
IV-4	-3005.358229	-3005.290254	-3005.289073	-3005.481238	-3005.335047
IV-TS3	-3005.320000	-3005.251563	-3005.250381	-3005.444463	-3005.294757
IV-5	-3005.394455	-3005.326482	-3005.325300	-3005.518438	-3005.364282
V-TS2	-3005.323076	-3005.256245	-3005.255063	-3005.444630	-3005.29372
V-3	-3005.331679	-3005.263827	-3005.262645	-3005.456456	-3005.297545

 Table S1 Energies (in Hartree) for all TS and intermediates.

V-4	-3005.341172	-3005.273197	-3005.272015	-3005.466802	-3005.306159
V-TS3	-3005.289799	-3005.221594	-3005.220412	-3005.415662	-3005.256980
V-5	-3005.363623	-3005.295552	-3005.294370	-3005.488689	-3005.316655
V-6	-3005.350559	-3005.282634	-3005.281453	-3005.473798	-3005.306204
V-TS4	-3005.346656	-3005.278893	-3005.277712	-3005.472137	-3005.314024
V-7	-3005.397984	-3005.330182	-3005.329001	-3005.522645	-3005.362646
VI-3	-4385.210753	-4385.102529	-4385.101347	-4385.394910	-4384.549037
VI-TS2	-4385.405105	-4385.301816	-4385.300635	-4385.569931	-4384.526443
VI-4	-4385.244248	-4385.137465	-4385.136283	-4385.421811	-4384.564518
VI-5	-3005.384402	-3005.317956	-3005.316775	-3005.505948	-3005.346915
VI-6	-3005.363953	-3005.296651	-3005.295469	-3005.484430	-3005.324459
VI-TS3	-3005.338826	-3005.271390	-3005.270209	-3005.459681	-3005.299640
VI-7	-3005.345888	-3005.277977	-3005.276796	-3005.465629	-3005.308690
VI-8	-3005.371465	-3005.301979	-3005.300798	-3005.499180	-3005.340637
VI-TS4	-3005.355339	-3005.286937	-3005.285756	-3005.479147	-3005.320825
VI-9	-3005.397296	-3005.328379	-3005.327198	-3005.525978	-3005.370654
VII-1	-4385.201377	-4385.093295	-4385.092114	-4385.383589	-4384.540304
VII-TS1	-4385.170731	-4385.063898	-4385.062716	-4385.348040	-4384.503725
VII-2	-4385.219432	-4385.112856	-4385.111674	-4385.396121	-4384.550129
VII-3	-3005.353683	-3005.286030	-3005.284848	-3005.477451	-3005.315719
VII-4	-3005.352419	-3005.285122	-3005.283941	-3005.472768	-3005.321136
VII-TS2	-3005.332644	-3005.266540	-3005.265358	-3005.451403	-3005.29991
VII-5	-3005.351924	-3005.283760	-3005.282578	-3005.477525	-3005.329493
VII-TS3	-3005.307062	-3005.238304	-3005.237122	-3005.433499	-3005.281349
VII-6	-3005.392686	-3005.324882	-3005.323700	-3005.515300	-3005.358297
2-RR	-4385.272666	-4385.165932	-4385.164751	-4385.468300	-4384.571183
2-RS	-4385.276819	-4385.168116	-4385.166935	-4385.476384	-4384.577450
3	-4385.283424	-4385.178250	-4385.177068	-4385.473422	-4384.574996
Pd(PH ₃) ₂	-813.083325	-813.073901	-813.072719	-813.125614	-814.2625607
Ni(PPh ₃) ₂	-2241.756617	-2241.704621	-2241.703439	-2241.858174	-3579.755105
PdI-TS1	-1868.690403	-1868.651373	-1868.650191	-1868.781074	-1869.417828
PdI-1	-1868.727270	-1868.688887	-1868.687706	-1868.815728	-1869.449238
PdII-TS1	-1868.686667	-1868.647977	-1868.646795	-1868.777339	-1869.418677
PdII-1	-1868.713886	-1868.675449	-1868.674267	-1868.803359	-1869.436206
PdIV-TS1	-1525.502058	-1525.470723	-1525.469541	-1525.577342	-1526.257767
PdIV-1	-1525.567909	-1525.536419	-1525.535237	-1525.642444	-1526.321066
^{Ni} I-TS1	-3297.375160	-3297.295839	-3297.294658	-3297.516292	-4634.937218
^{Ni} I-1	-3297.417771	-3297.336199	-3297.335018	-3297.559117	-4634.986029
^{Ni} II-TS1	-3297.370779	-3297.288964	-3297.287782	-3297.516119	-4634.953506
^{Ni} II-1	-3297.393569	-3297.311600	-3297.310418	-3297.536398	-4634.966359

NiIV-TS1	-2261.144484	-2261.092676	-2261.091494	-2261.245574	-3599.215314
^{Ni} IV-1	-2261.188759	-2261.135598	-2261.134416	-2261.292651	-3599.258899
I-TS1-1	-4385.212305	-4385.107098	-4385.105917	-4385.394298	-4384.513024
I-TS1-2	-3005.311028	-3005.242330	-3005.241148	-3005.436015	-3005.283262
I-TS1-3	-3005.314367	-3005.245900	-3005.244718	-3005.438312	-3005.280495
I-TS1-4	-3005.309103	-3005.239834	-3005.238653	-3005.443508	-3005.261670
II-TS1-1	-4385.193109	-4385.084650	-4385.083468	-4385.377312	-4384.509454
II-TS1-2	-3005.308020	-3005.240376	-3005.239194	-3005.431006	-3005.281079
II-TS1-3	-3005.304790	-3005.236320	-3005.235138	-3005.427984	-3005.283286
II-TS1-4	-3005.301508	-3005.232498	-3005.231316	-3005.431006	-3005.252479
I-TS2'	-4385.169555	-4385.062264	-4385.061082	-4385.349155	-4384.495018
I-4′	-4385.206766	-4385.100189	-4385.099007	-4385.383784	-4384.524773
I-TS4-1	-3005.338233	-3005.269674	-3005.268492	-3005.461480	-3005.304061
I-TS4-2	-3005.346673	-3005.279469	-3005.278287	-3005.466296	-3005.315028
I-TS4-3	-3005.340908	-3005.272596	-3005.271414	-3005.464472	-3005.30845
III-TS4-1	-3005.340738	-3005.273253	-3005.272071	-3005.462525	-3005.31596
III-TS4-2	-3005.348055	-3005.281263	-3005.280081	-3005.470362	-3005.318619
III-TS4-3	-3005.347765	-3005.280843	-3005.279662	-3005.470645	-3005.310093
I-5'	-3005.362547	-3005.294813	-3005.293632	-3005.486248	-3005.321001
I-TS3'	-3005.346931	-3005.280459	-3005.279277	-3005.466755	-3005.304061
I-6′	-3005.371530	-3005.303014	-3005.301832	-3005.494736	-3005.335583
I-TS4'	-3005.333168	-3005.265249	-3005.264067	-3005.455675	-3005.301197
IV-TS3-1	-3005.307171	-3005.238597	-3005.237415	-3005.429701	-3005.280358
V-TS3-1	-3005.271204	-3005.202844	-3005.201662	-3005.396890	-3005.242796
V-TS3-2	-3005.282543	-3005.213946	-3005.212764	-3005.410053	-3005.248044
V-TS3-3	-3005.282731	-3005.214281	-3005.213099	-3005.409137	-3005.249818
V-TS3-4	-3005.346730	-3005.278912	-3005.277731	-3005.473201	-3005.315013
V-TS3-5	-3005.282199	-3005.214009	-3005.212827	-3005.406548	-3005.247984
IV-5'	-3005.360410	-3005.293714	-3005.292532	-3005.480537	-3005.335367
IV-TS3'	-3005.317022	-3005.248706	-3005.247525	-3005.441811	-3005.292397
IV-6′	-3005.383785	-3005.315833	-3005.314652	-3005.503717	-3005.347070
IV-7′	-3005.381811	-3005.313730	-3005.312548	-3005.504053	-3005.345603
IV-TS4'	-3005.348235	-3005.280451	-3005.279270	-3005.471056	-3005.317846
IV-8′	-3005.394455	-3005.326482	-3005.325300	-3005.518438	-3005.364282
PdL ₂	-2886.559246	-2886.480230	-2886.479048	-2886.709851	-2886.458314
^{Pd} I-TS1-a	-3942.168132	-3942.063136	-3942.061955	-3942.351825	-3941.619082
^{Pd} I-1-a	-3942.196165	-3942.089695	-3942.088514	-3942.381172	-3941.651422
^{Pd} II-TS1-a	-3942.158251	-3942.052568	-3942.051387	-3942.342979	-3941.620907
^{Pd} II-1-a	-3942.177444	-3942.070871	-3942.069690	-3942.362316	-3941.636163
PdIV-TS1-a	-2562.240667	-2562.175091	-2562.173910	-2562.367813	-2562.362649

PdIV-1-a	-2562.303968	-2562.238375	-2562.237193	-2562.428897	-2562.419538
NiL ₂	-2929.079129	-2929.003615	-2929.002434	-2929.223318	-4266.770904
^{Ni} I-TS1-a	-3984.708505	-3984.602920	-3984.601739	-3984.892530	-5321.965328
^{Ni} I-1-a	-3984.739320	-3984.633330	-3984.632148	-3984.921788	-5321.998687
^{Ni} II-TS1-a	-3984.703091	-3984.597925	-3984.596743	-3984.886469	-5321.969193
^{Ni} II-1-a	-3984.719060	-3984.612736	-3984.611555	-3984.903226	-5321.982535
^{Ni} IV-TS1-a	-2604.796749	-2604.732646	-2604.731464	-2604.919906	-3942.713467
^{Ni} IV-1-a	-2604.840817	-2604.775323	-2604.774141	-2604.965678	-3942.755556
Pd(PH ₃) ₂ -D3	-813.087952	-813.077521	-813.076339	-813.132189	-814.2631772
PH ₃ -D3	-343.141734	-343.137979	-343.136798	-343.169163	-343.1344263
Ni(PPh ₃) ₂ -D3	-2241.841240	-2241.787252	-2241.786071	-2241.947717	-3579.762161
PPh ₃ -D3	-1036.223112	-1036.198774	-1036.197593	-1036.285742	-1035.718672
1-D3	-1055.645532	-1055.619751	-1055.618569	-1055.709415	-1055.199924
[Rh(COD)Cl] ₂	-1763.613321	-1763.580613	-1763.579431	-1763.684594	-1765.24547
-D3	-311 932603	-311 921204	-311 920022	_311 074563	_311 7266213
	-1379 892062	-1379 855771	-1379 854589	-1370 073325	-1379 223275
L-D3	-4385 415080	-4385 308933	-4385 307751	-4385 582280	-4384 553395
IV_TS1_D3	-4385 392624	-4385 287821	-4385 286639	-4385 558026	-4384 524693
IV-151-D3	-4385.421350	-4385 316833	-4385 315651	-4385 586093	-4384 549471
IV-1-D3 IV-2-D3	-3005 488803	-3005 422304	-3005 421123	-3005 610668	-3005 337035
PdL-TS1-D3	-1868 730089	-1868 691198	-1868 690017	-1868 821768	-1869 419521
PdII-TS1-D3	-1868 735041	-1868 696941	-1868 695759	-1868 819548	-1869 4248
PdIV-TS1-D3	-1525 549261	-1525 518484	-1525 517302	-1525 620960	-1526 254456
PdV-TS1-D3	-1868 683800	-1868 647655	-1868 646473	-1868 762114	-1869 365094
NiI-TS1-D3	-3297 519500	-3297 438076	-3297 436894	-3297 661528	-4634 946119
NiII-TS1-D3	-3297.474268	-3297.393878	-3297.392696	-3297.607556	-4634.952307
NiIV-TS1-D3	-2261.242954	-2261.190665	-2261.189483	-2261.342631	-3599.214332
NiV-TS1-D3	-3297.477940	-3297.398221	-3297.397039	-3297.607198	-4634.89168
VI-TS2-a	-4385.197831	-4385.091838	-4385.090657	-4385.373305	-4384.522047
VI-TS3-a	-3005.338795	-3005.271395	-3005.270213	-3005.459230	-3005.299228

 E_0 = Sum of electronic and zero-point Energies by B3LYP in solvent

E = Sum of electronic and thermal Energies by B3LYP in solvent

 $H_{373.15}$ = Sum of electronic and thermal Enthalpies by B3LYP in solvent

 $G_{373.15}$ = Sum of electronic and thermal Free Energies by B3LYP in solvent

 $E_{(sol, M06)}$ = Single point energies calculated by M06 in solvent

Section 16. Calculated imaginary frequencies of all transition states

species

Table S2. Calculated imaginary frequencies of all transition states species for substrate

Species	Frequency
I-TS1	-90.17
I-TS2	-231.90
I-TS3	-215.39
I-TS4	-259.97
II-TS1	-316.28
III-TS3	-552.77
III-TS4	-832.92
IV-TS1	-240.15
IV-TS2	-236.71
IV-TS3	-478.71
V-TS2	-518.30
V-TS3	-538.78
V-TS4	-730.61
VI-TS2	-256.62
VI-TS3	-192.47
VI-TS4	-185.77
VII-TS1	-290.13
VII-TS2	-225.8
VII-TS3	-499.08
PdI-TS1	-320.47
PdII-TS1	-311.34
PdIV-TS1	-293.22
^{Ni} I-TS1	-313.52
^{Ni} II-TS1	-142.67
NiIV-TS1	-270.81
I-TS1-1	-250.15
I-TS1-2	-276.67
I-TS1-3	-35.38
I-TS1-4	-107.11
II-TS1-1	-175.67
II-TS1-2	-195.63
II-TS1-3	-318.52
II-TS1-4	-215.40

I-TS2'	-405.37
I-TS4-1	-246.83
I-TS4-2	-260.61
I-TS4-3	-186.83
III-TS4-1	-735.57
III-TS4-2	-822.38
III-TS4-3	-1025.26
I-TS3'	-247.47
I-TS4'	-252.55
IV-TS3-1	-488.99
V-TS3-1	-567.80
V-TS3-2	-469.38
V-TS3-3	-469.14
V-TS3-4	-444.07
V-TS3-5	-541.48
IV-TS3'	-513.94
IV-TS4'	-230.47
PdI-TS1-a	-307.86
PdII-TS1-a	-316.79
PdIV-TS1-a	-267.79
^{Ni} I-TS1-a	-315.91
^{Ni} II-TS1-a	-278.50
^{Ni} IV-TS1-a	-294.45
IV-TS1-D3	-236.61
PdI-TS1-D3	-319.35
PdII-TS1-D3	-293.84
PdIV-TS1-D3	-287.81
PdV-TS1-D3	-634.78
^{Ni} I-TS1-D3	-312.08
^{Ni} II-TS1-D3	-40.63
^{Ni} IV-TS1-D3	-265.84
NiV-TS1-D3	-509.03
VI-TS2-a	-241.46
VI-TS3-a	-192.35

Section 17. References

- 1 T. Lu and F. Chen, Multiwfn: A Multifunctional Wavefunction Analyzer, J. Comput. Chem., 2012, **33**, 580.
- 2 E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcíá, A. J. Cohen and W.

Yang, Revealing Noncovalent Interactions, J. Am. Chem. Soc., 2010, 132, 6498.