Supplementary Information

Cyclamenols E and F, two diastereoisomeric bicyclic macrolactams

with cyclopentane moiety from an Antarctic Streptomyces species

Jingjing Shen,^{a,b} Jie Wang,^{a,b} Hao Chen,^c Yi Wang,^{a,b} Weiming Zhu*^{a,b} and Peng Fu*^{a,b}

^a Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China

^b Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China

^c Key Laboratory of Marine Bioactive Substances, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, China

List of Supporting Information

Theory and Calculation Details	S3
Cytotoxicity Assay	S3
Table S1. DFT-optimized structures and thermodynamic parameters for low-energy conformers of 1	S4
Table S2. DFT-optimized structures and thermodynamic parameters for low-energy conformers of 2	S4
Table S3. DFT-optimized structures and thermodynamic parameters for low-energy conformers of 18-e	<i>pi</i> -2S5
Table S4. Optimized Z-matrixes of 1 in the gas phase (Å) at B3LYP/6-31G(d) level	S6
Table S5. Optimized Z-matrixes of 2 in the gas phase (Å) at B3LYP/6-31G(d) level	S7
Table S6. Optimized Z-matrixes of 18-epi-2 in the gas phase (Å) at B3LYP/6-31G(d) level	S8
Table S7. The calculated ¹³ C NMR data for 2 and 18-epi-2.	S9
Figure S1. Structures of cyclamenols A–D	S10
Figure S2. HPLC profiles of crude extracts of <i>Streptomyces</i> sp. OUCMDZ-4348	S10
Scheme S1. Chemical reactions for the identification of the absolute configuration at C-18 of 1	S11
Figure S3. HPLC profiles of PGME amide products derived from compounds 1 and 3	S11
Figure S4. HRESIMS spectrum of cyclamenol E (1)	S12
Figure S5 . ¹ H-NMR spectrum of cyclamenol E (1) in DMSO- <i>d</i> ₆ (500 MHz)	S13
Figure S6. Expanded ¹ H-NMR spectrum of cyclamenol E (1) in DMSO- <i>d</i> ₆ (500 MHz)	S14
Figure S7. ¹³ C-NMR spectrum of cyclamenol E (1) in DMSO- <i>d</i> ₆ (125 MHz)	S15
Figure S8. Expanded ¹³ C-NMR spectrum of cyclamenol E (1) in DMSO- <i>d</i> ₆ (125 MHz)	S16

Figure S9. HSQC spectrum of cyclamenol E (1) in DMSO- d_6 (500 × 125 MHz)	S17
Figure S10. ¹ H- ¹ H COSY spectrum of cyclamenol E (1) in DMSO- <i>d</i> ₆ (500 MHz)	S18
Figure S11. HMBC spectrum of cyclamenol E (1) in DMSO- d_6 (500 × 125 MHz)	S19
Figure S12. NOESY spectrum of cyclamenol E (1) in DMSO- <i>d</i> ₆ (500 MHz)	S20
Figure S13 . ¹ H-NMR spectrum of cyclamenol E (1) in methanol- d_4 (500 MHz)	S21
Figure S14. Expanded ¹ H-NMR spectrum of cyclamenol E (1) in methanol- d_4 (500 MHz)	S22
Figure S15 . ¹ H- ¹ H COSY spectrum of cyclamenol E (1) in methanol- d_4 (500 MHz)	S23
Figure S16. NOESY spectrum of cyclamenol E (1) in methanol- d_4 (500 MHz)	S24
Figure S17. HRESIMS spectrum of cyclamenol F (2)	S25
Figure S18. ¹ H-NMR spectrum of cyclamenol F (2) in DMSO- <i>d</i> ₆ (600 MHz)	S26
Figure S19. Expanded ¹ H-NMR spectrum of cyclamenol F (2) in DMSO- <i>d</i> ₆ (600 MHz)	S27
Figure S20. ¹³ C-NMR spectrum of cyclamenol F (2) in DMSO- <i>d</i> ₆ (150 MHz)	S28
Figure S21. Expanded ¹³ C-NMR spectrum of cyclamenol F (2) in DMSO- <i>d</i> ₆ (150 MHz)	S29
Figure S22. HSQC spectrum of cyclamenol F (2) in DMSO- d_6 (600 × 150 MHz)	S30
Figure S23. ¹ H- ¹ H COSY spectrum of cyclamenol F (2) in DMSO- <i>d</i> ₆ (600 MHz)	S31
Figure S24. HMBC spectrum of cyclamenol F (2) in DMSO- d_6 (600 × 150 MHz)	S32
Figure S25. NOESY spectrum of cyclamenol F (2) in DMSO-d ₆ (600 MHz)	S33
Figure S26. HRESIMS spectrum of compound 1a	S34
Figure S27. ¹ H-NMR spectrum of compound 1a in CDCl ₃ (500 MHz)	S35
Figure S28. Expanded ¹ H-NMR spectrum of compound 1a in CDCl ₃ (500 MHz)	S36
Figure S29. HSQC spectrum of compound 1a in CDCl ₃ (500 × 125 MHz)	S37
Figure S30. ¹ H- ¹ H COSY spectrum of compound 1a in CDCl ₃ (500 MHz)	S38
Figure S31. HMBC spectrum of compound 1a in CDCl ₃ (500 × 125 MHz)	S39
Figure S32. NOESY spectrum of compound 1a in CDCl ₃ (500 MHz)	S40
Figure S33. ¹ H-NMR spectrum of (S)-MTPA ester (1aa) in CDCl ₃ (500 MHz)	S41
Figure S34. ¹ H- ¹ H COSY spectrum of (S)-MTPA ester (1aa) in CDCl ₃ (500 MHz)	S42
Figure S35. ¹ H-NMR spectrum of (<i>R</i>)-MTPA ester (1ab) in CDCl ₃ (500 MHz)	S43
Figure S36. ¹ H- ¹ H COSY spectrum of (<i>R</i>)-MTPA ester (1ab) in CDCl ₃ (500 MHz)	S44
Figure S37. HRESIMS spectrum of compound 2a	S45
Figure S38. ¹ H-NMR spectrum of compound 2a in CDCl ₃ (500 MHz)	S46
Figure S39. Expanded ¹ H-NMR spectrum of compound 2a in CDCl ₃ (500 MHz)	S47
Figure S40. ¹ H- ¹ H COSY spectrum of compound 2a in CDCl ₃ (500 MHz)	S48
Figure S41. NOESY spectrum of compound 2a in CDCl ₃ (500 MHz)	S49
Figure S42. ¹ H-NMR spectrum of (S)-MTPA ester (2aa) in CDCl ₃ (500 MHz)	S50
Figure S43. ¹ H- ¹ H COSY spectrum of (S)-MTPA ester (2aa) in CDCl ₃ (500 MHz)	S51
Figure S44. ¹ H-NMR spectrum of (<i>R</i>)-MTPA ester (2ab) in CDCl ₃ (500 MHz)	S52
Figure S45. ¹ H- ¹ H COSY spectrum of (<i>R</i>)-MTPA ester (2ab) in CDCl ₃ (500 MHz)	S53
Figure S46. DFT-optimized structures of the lowest energy conformations for two MTPA esters of 1a	S54
Figure S47. DFT-optimized structures of the lowest energy conformations for two MTPA esters of 2a	S54

Theory and Calculation Details. The calculations were performed by using the density functional theory (DFT) as carried out in the Gaussian $09.^{S1}$ The preliminary conformational distributions search was performed by HyperChem Release 8.0 software. All ground-state geometries were optimized at the B3LYP/6-31G(d) level. Solvent effects of methanol solution were evaluated at the same DFT level by using the SCRF/PCM method.^{S2} TDDFT^{S3} at B3LYP/6-31G(d) was employed to calculate the electronic excitation energies and rotational strengths in methanol. The stable conformations obtained at the B3LYP/6-31G(d) level were further used in magnetic shielding constants at the B3LYP/6-311++G(2d,p) level. The overall calculated ECD curves were weighted by Boltzmann distribution (with a half-bandwidth of 0.35 eV) with a UV correction of -13 nm. The calculated ECD spectrum were produced by SpecDis 1.70.1 software.^{S4}

Cytotoxicity Assay. By the Cell Titer Glo (CTG) assay,^{S5} compounds 1 and 2 were evaluated for cytotoxicity against A431 (Epidermoid carcinoma cell line), A673 (rhabdomyoma cell line), U87 (glioblastoma cell line), U251 (glioblastoma cell line), HCC1954 (grade 3 invasive ductal carcinoma cell line), MCF-7(human breast adenocarcinoma cell line), MKN-45 (human gastric cancer cell line), Hep3B (human liver cancer cell line), H1975 (human non-small cell lung carcinoma with L858R and T790M mutation cell line), DU145 (human prostate cancer cell line), MV-4-11 (biphenotypic B myelomonocytic leukemia cell line), K562 (human erythroleukemic cell line), A549 (lung cancer cell line), N87 (gastric carcinoma cell line), H1299 (human non-small cell lung carcinoma cell line), HUCCT1 (bile duct carcinoma cell line), 143B (human bone osteosarcoma cell line), B16F10 (highly metastatic mouse melanoma cell line), SPC-A1 (human lung cancer cell line overexpressing maspin cell line), HCT116 (colon carcinoma cell line), BT474 (hormone-sensitive breast cancer cell line), H2228 (non-small cell lung cancer cell line), MDA-MB-231 (breast cancer cell line), MDA-MB-468 (basal breast cancer cell line), Karpass299 (human T cell lymphoma cell line), HL60 (human promyelocytic leukemia cell line), HEK-293F (human embryonic kidney-293F cell line) and L02 (human liver cell line). In the CTG assay, 26 cell lines above were grown in DMEM supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin solution under a humidified atmosphere of 5% CO₂ and 95% air at 37 °C. 90 μ L of culture solution (containing fetal bovine serum) and 100 μ L of cell suspension at a density of 2 × 10³ cell/mL was plated in 96-well microtiter plates, allowed to attach overnight, and then exposed to 10 μ L varying concentrations (0.032–100 μ M) of compounds for 72 h. The CTG solution (100 μ L) was then added to each well and incubated for 10 min. Absorbance was then determined on a Spectra Max Plus plate reader at 500 nm.

References:

[S1] Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
[S2] (a) S. Miertus and J. Tomasi, *Chem. Phys.*, 1982, 65, 239–245; (b) J. Tomasi and M. Persico, *Chem. Rev.*, 1994, 94, 2027–2094; (c) R. Cammi and J. Tomasi, *J. Comp. Chem.*, 1995, 16, 1449–1458.

[S5] Y. Zhang, X. Hu, X. Miao, K. Zhu, S. Cui, Q. Meng, J. Sun and T. Wang, J. Cell. Mol. Med., 2016, 20, 360-369.

[[]S3] (a) M. E. Casida, In Recent Advances in Density Functional Methods, part I; D. P. Chong, Eds.; World Scientific: Singapore, 1995; pp 155–192; (b) E. K. U. Gross, J. F. Dobson and M. Petersilka, *Top. Curr. Chem.*, 1996, **181**, 81–172; (c) E. K. U. Gross and W. Kohn, *Adv. Quantum Chem.*, 1990, **21**, 255–291; (d) E. Runge and E. K. U. Gross, *Phys. Rev. Lett.*, 1984, **52**, 997–1000.
[S4] T. Bruhn, A. Schaumlöffel, Y. Hemberger and G. Pescitelli, SpecDis, Version 1.70.1, Berlin, Germany, 2017, <u>https://specdissoftware.jimdo.com</u>.

Conformers	Conf. A	Conf. B	Conf. C
DFT-optimized structures			
Population	46.2%	31.9%	21.9%
Total energy (a.u.)	-1133.93990984	-1133.93955867	-1133.93920460
Gibbs free energy (a.u.)	-1133.55013584	-1133.54129767	-1133.5490586
Sum of electronic and zero- point energies (a.u.)	-1133.495869	-1133.495785	-1133.495185
Sum of electronic and thermal energies (a.u.)	-1133.470621	-1133.470444	-1133.469978
Sum of electronic and thermal enthalpies (a.u.)	-1133.469676	-1133.469500	-1133.469034
Sum of electronic and thermal free energies (a.u.)	-1133.550136	-1133.550298	-1133.549059

Table S1. DFT-optimized structures and thermodynamic parameters for low-energy conformers of 1

Table S2. DFT-optimized structures and thermodynamic parameters for low-energy conformers of 2

Conformers	Conf. A	Conf. B
DFT-optimized structures		
Population	99.0%	1.0%
Total energy (a.u.)	-1133.93099988	-1133.92667507
Gibbs free energy (a.u.)	-1133.54154388	-1133.53760607
Sum of electronic and zero- point energies (a.u.)	-1133.486937	-1133.482970
Sum of electronic and thermal energies (a.u.)	-1133.461616	-1133.457516
Sum of electronic and thermal enthalpies (a.u.)	-1133.460672	-1133.456572
Sum of electronic and thermal free energies (a.u.)	-1133.541544	-1133.537606

Conformers	Conf. A	Conf. B
DFT-optimized structures		
Population	91.8%	8.2%
Total energy (a.u.)	-1133.93257627	-1133.93030495
Gibbs free energy (a.u.)	-1133.54337027	-1133.54114795
Sum of electronic and zero- point energies (a.u.)	-1133.489049	-1133.486448
Sum of electronic and thermal energies (a.u.)	-1133.463621	-1133.461089
Sum of electronic and thermal enthalpies (a.u.)	-1133.462677	-1133.460145
Sum of electronic and thermal free energies (a.u.)	-1133.543370	-1133.541148

Table S3. DFT-optimized structures and thermodynamic parameters for low-energy conformers of 18-epi-2

	С	onf. A		Conf. B			Conf. C				
С	-2.1449	-2.2045	-1.5098	С	-1.9898	-2.2963	-1.7481	C	-1.9688	-0.774	-4.5809
С	-1.2106	-2.8379	-2.5192	С	-1.4055	-2.5371	-3.1237	С	-0.8082	-1.7377	-4.4621
С	0.2224	-2.2346	-2.4127	С	0.0871	-2.0928	-3.1802	С	-0.2072	-1.7851	-3.0224
С	-3.2573	-1.5562	-1.9032	С	-3.0178	-1.4491	-1.5623	C	-3.1153	-0.9277	-3.8945
С	1.1728	-2.7987	-3.5118	С	0.7023	-2.2731	-4.6009	C	1.1357	-2.5735	-2.9957
С	-4.1917	-0.8708	-0.9949	С	-3.5137	-1.1353	-0.2148	C	-4.1762	0.0825	-3.9939
C	-3.9076	-0.5416	0.2796	C	-4.5033	-0.2397	-0.0475	C	-5.1583	0.1524	-3.0778
C	-4.8474	0.2263	1.1136	C	-5.0144	0.1861	1.2661	C	-6.1758	1.2149	-3.1104
0	-5.968	0.5095	0.6858	0	-6.0445	0.8629	1.269	0	-6.2889	1.9329	-4.1058
N	-4.3992	0.7721	2.3441	N	-4.2579	0.0584	2.4625	N	-6.8917	1.5252	-1.926
С	-4.968	1.9973	2.894	С	-4.4008	1.0003	3.5676	C	-7.4166	2.863	-1.6779
С	-4.2289	3.2521	2.3443	С	-3.3213	2.1188	3.4874	C	-6.3052	3.8091	-1.1371
С	-2.8029	3.3015	2.8594	С	-1.96	1.5813	3.8859	C	-5.7758	3.2992	0.1894
C	-1.7142	2.8749	2.1903	C	-0.9962	1.1736	3.0379	C	-4.6048	2.6585	0.3721
C	-4.9726	4.5497	2.7604	C	-3.6938	3.3042	4.4185	C	-6.8522	5.2503	-0.958
C	-1 7307	2 2848	0.8423	C	-1 1116	1 1 5 5 9	1.571	C	-3 6274	2 3569	-0 6869
C	-0.683	1.5644	0.4038	C	-0.1726	0.5473	0.8247	C	-2.6637	1.442	-0.4788
C	-0.6979	0.9191	-0.9161	C	-0.3102	0.4411	-0.6337	C	-1.6844	1.1046	-1.5217
C	0.2626	0.0425	-1.2597	C	0.4971	-0.3709	-1.3398	C	-0.8742	0.0407	-1.3759
C	0.252	-0.6822	-2.5878	C	0.3092	-0.5899	-2.8246	C	0.1229	-0.3718	-2.438
C	1.5176	-0.3846	-3.4369	C	1.5538	-0.173	-3.6512	C	1.5746	-0.4573	-1.8861
C	1.5881	-1.5972	-4.3989	C	1.3441	-0.9157	-4.9958	C	2.2494	-1.5165	-2.7937
0	0.6664	-1.4061	-5.4849	0	0.4619	-0.1483	-5.8317	0	2.6371	-0.9142	-4.0393
0	2.6963	-0.318	-2.616	0	2.7693	-0.603	-3.0148	0	1.5954	-0.8855	-0.5134
0	-1.1446	-4.253	-2.2727	0	-1.4914	-3.9386	-3.4321	0	-1.2267	-3.0603	-4.8424
Н	-1.9001	-2.2729	-0.4899	Н	-1.5508	-2.7737	-0.9189	Н	-1.8522	0.067	-5.2039
Н	-1.5871	-2.6754	-3.533	Н	-1.9699	-1.9768	-3.8742	Н	-0.028	-1.4085	-5.1553
Н	0.6418	-2.4992	-1.4372	Н	0.664	-2.7124	-2.486	Н	-0.9143	-2.2999	-2.3655
Н	-3.4816	-1.5231	-2.9317	Н	-3.4427	-0.9614	-2.3924	Н	-3.2346	-1.7476	-3.2466
Н	2.0619	-3.2177	-3.0346	Н	1.474	-3.0451	-4.5636	Н	1.1324	-3.2578	-2.1438
Н	0.6948	-3.5752	-4.1091	Н	-0.0525	-2.5639	-5.3325	Н	1.2974	-3.1474	-3.9081
Н	-5.1185	-0.5766	-1.3993	Н	-3.0649	-1.5949	0.6167	Н	-4.1323	0.7951	-4.7671
Н	-2.9722	-0.7897	0.6893	Н	-4.9377	0.1953	-0.9033	Н	-5.1709	-0.5359	-2.2817
Н	-3.5354	0.4444	2.7231	Н	-3.4941	-0.581	2.492	Н	-6.8135	0.9028	-1.1487
Н	-6.0265	2.0592	2.6315	Н	-5.3929	1.4555	3.5366	Н	-7.8213	3.2744	-2.6054
Н	-4.891	1.9666	3.9834	Н	-4.3089	0.4591	4.5122	Н	-8.2316	2.7933	-0.9535
Н	-4.2394	3.2123	1.2538	Н	-3.2951	2.5091	2.4683	Н	-5.5048	3.858	-1.8765
Н	-2.6515	3.6581	3.8401	Н	-1.757	1.4898	4.9167	Н	-6.3942	3.4155	1.0357
Н	-0.7884	2.9366	2.6899	Н	-0.1063	0.8055	3.4663	Н	-4.3881	2.3273	1.3489
Н	-4.4432	5.4205	2.3692	Н	-2.9255	4.0773	4.3582	Н	-6.0597	5.9023	-0.586
Н	-5.9849	4.5439	2.3524	Н	-4.6473	3.7348	4.1073	Н	-7.2012	5.6361	-1.9174
Н	-5.028	4.6248	3.8478	Н	-3.7777	2.9643	5.4523	Н	-7.6818	5.2575	-0.2489
Н	-2.5713	2.3981	0.2228	Н	-1.9471	1.5814	1.0978	Н	-3.6803	2.8448	-1.6154
Н	0.1518	1.4302	1.031	Н	0.6528	0.0955	1.2964	Н	-2.62	0.9393	0.4451
Н	-1.484	1.1239	-1.5846	Н	-1.0837	0.9625	-1.1202	Н	-1.6344	1.6871	-2.3962
Н	1.0345	-0.1671	-0.5747	Н	1.2529	-0.9066	-0.8393	H	-0.9555	-0.5465	-0.5054
Н	-0.6187	-0.3707	-3.1722	Н	-0.545	-0.0074	-3.1821	Н	0.124	0.3631	-3.248
Н	1.3984	0.5503	-3.9875	Н	1.5745	0.9088	-3.7953	Н	2.0727	0.5102	-1.9742
Н	2.5974	-1.7291	-4.792	Н	2.2945	-1.0672	-5.5101	H	3.123	-1.9534	-2.3078
Н	0.7821	-2.1763	-6.0817	Н	0.4064	-0.6283	-6.6857	H	3.0855	-1.6175	-4.5559
Н	3.436	-0.083	-3.2162	Н	3.5042	-0.2644	-3.5696	H	2.5348	-0.8605	-0.2313
Н	-2.0445	<u>-4.605</u> 6	-2.4435	H	-2.4481	-4.1533	-3.4783	H	-1.4924	-3.0062	-5.7857

Table S4. Optimized Z-matrixes of 1 in the gas phase (Å) at B3LYP/6-31G(d) level

	C	onf. A	1		C	onf. B	Γ
C	-1.9927	-2.6121	-0.1016	C	-0.9883	-3.2748	-0.1151
C	-2.1993	-2.9951	1.3482	C	-0.9391	-3.6256	1.3555
C	-0.8289	-3.1705	2.0683	C	0.3649	-3.0709	2.0093
C	-2.3682	-1.4123	-0.5794	C	-1.9227	-2.449	-0.6193
C	-0.9813	-3.6843	3.5306	C	0.5021	-3.4445	3.515
C	-2.0605	-1.0237	-1.9627	С	-1.8901	-2.0518	-2.0336
С	-2.2261	0.2465	-2.3737	С	-2.671	-1.0549	-2.4874
C	-1.8514	0.6846	-3.7288	C	-2.6053	-0.5844	-3.8811
0	-1.7718	-0.1454	-4.6364	0	-2.1713	-1.3345	-4.7573
N	-1.6342	2.0486	-4.0563	N	-3.0895	0.6895	-4.2772
С	-1.2422	3.064	-3.0853	С	-3.1764	1.8366	-3.3805
С	0.1815	3.621	-3.3798	С	-2.2035	2.9742	-3.8088
С	1.2414	2.5592	-3.6182	С	-0.7805	2.5199	-4.0851
С	1.6013	1.5483	-2.8025	С	0.0544	1.8594	-3.2583
С	0.637	4.6475	-2.3082	С	-2.2366	4.1705	-2.8203
С	1.0245	1.2572	-1.4822	С	-0.2506	1.4324	-1.8854
C	1.2465	0.0739	-0.8829	C	0.5264	0.531	-1.2588
C	0.6083	-0 2516	0 3994	C	0 182	0.046	0.0842
C	0.7306	-1 4754	0.9442	C	0.8821	-0 9448	0.6653
C	-0.0095	-1.8526	2 2076	C	0 4741	-1 5165	2 0044
C	0.9436	-2 1367	3 3981	C	1 5152	-1 2192	3 1158
C	0.0238	-2.1307	4 4023	C	1.0102	-2 2174	4 2383
0	0.0250	-3 7205	5 2972	0	2 2459	-2 5753	5.0579
0	2 051	-2 9536	2 9803	0	2.2.10)	-1 4517	2 6362
0	-2.031	-4 2356	1 4009	0	-0.9936	-5.0611	1 4301
Н	-1 4994	-3 2917	-0 7369	н	-0 2431	-3 6621	-0 7504
н	-2 7795	-2 2265	1 8654	н	-1 8116	-3 2093	1 8655
Н	-0 2314	-3 9047	1 5181	н	1 2283	-3 4882	1 4808
Н	-2 8355	-0 7199	0.0605	н	-2 6534	-2 0383	0.0167
Н	-0.7561	-4 7517	3 568	н	1 1415	-4 3225	3 6201
H	-1 9935	-3 518	3 9033	Н	-0.474	-3 6552	3 9555
н	-1.6557	-1 7383	-2 6206	н	-0.77	-2 5200	-2 68/16
 Н	-2.6078	0.0551	-1.6966	 Ц	-3 328	-0.5771	-2.00+0
 Н	-1.6392	2 30/0	-5.0222	н Н	-3.2651	0.8/20	-5 2/80
 Н	-1.0372	2.504)	-2.0712	н Н	-4 2003	2 218	-3.2+07
 Ц	1 0508	2.074	3 1523	 Ц	2 0775	1 5454	2 3518
 Н	0.0008	1 178	-1 3211	 Н	-2.5858	3 3 5 6	-4 7635
 Н	1 7637	2 6246	-4.5214	 Н	-0.3076	2 7537	-5.0402
 Ц	2 3 5 6 4	0.0023	3 15/10	 Ц	1 0065	1.6178	3 6/12
 Ц	0.0824	5.4666	2 25/2	 П	1.0005	2 8677	1 8204
 	-0.0824	J.4000 / 19	1 2269	 Ц	-1.6990	1 0680	-1.0294
 	1.6117	4.10	-1.5208	 Ц	2 2540	4.9009	-3.1603
 	0.4176	1.0645	-2.3807	 Ц	1 0806	4.3337	1 2 2 5 7
 	1 9 4 5 1	0.6495	-1.0013		-1.0690	0.1214	-1.3637
	0.0024	-0.0403	-1.3398	п U	0.6570	0.1314	0.5761
	1 2252	2 1004	0.0/01	п п	1 71 45	1 2522	0.3701
	0.6959	-2.1794	2 /072	 П	0.4960	1.0020	2 2117
	-0.0030	1 2014	2.4912	п U	1 /101	0 1 9 7 0	2.3117
	0.5274	-1.2014	1 0042	п U	0 2502	1 75	1 9617
	-0.32/4	-2.1300	4.7042	п 11	1 2022	-1./3	4.004/
	0.1134	-4.1000	2 7400	п	1.0922	-5.1554	2 2 1 1 5
	2.03/3	-3.0119	3.7489	п	J.4303	-1.1430	2.3443
п	-3.0100	-4.0341	1.0203	п	-1.14	-3.2939	⊥ ∠.J/U0

Table S5. Optimized Z-matrixes of 2 in the gas phase (Å) at B3LYP/6-31G(d) level

Conf. A				Conf. B				
C	-0 9026	-2 4751	-0 2372	C	-2 2418	-0 2958	1 4718	
C	-0 8743	-3 2883	1 0389	C	-2 2208	-1 4443	2 4577	
C	0.0449	-2.6285	2 1159	C	-0.8984	-2 2702	2.3888	
C	0.0755	-2.5418	-1 1616	C	-2 2559	-0.4798	0.1389	
C	-0.1132	-3 2838	3 5224	C	-0.8083	-3 3303	3 5242	
C	0.1152	-1 6828	-2 3587	C	-2 2929	0.6708	-0 7749	
C	-0.8074	-0.8024	-2 7161	C	-2.1585	0.5133	-2 1041	
C	-0.6627	0.0021	-3 8645	C	-2 211	1 6576	-3 0299	
0	0.3434	0.0679	-4 5744	0	-2 8309	2 6729	-2 7079	
N	-1 6142	1 148	-4 0199	N	-1 6763	1 5904	-4 343	
C	-1 3608	2 361	-4 7861	C	-0.4364	0.8814	-4 6357	
C	-0.9733	3 5395	-3 8446	C	0.8025	1 7846	-4 3655	
C	0.4893	3 4537	-3 4502	C	2 0462	0.9227	-4 2669	
	0.4073	2 8830	-2 3296		2.0402	0.3227	-3.1358	
	-1.2308	4 9026	-1 513		0.985	2 8508	-5.1556	
	0 1607	2 21/1	-4.343		1 782	0.4387	-1.8375	
	0.7534	1 4493	-0.3669		1.762	-0.4851	-0.8784	
	-0.0338	0.6822	0.5007		1.2513	-0.4031	0.4017	
	0.5617	-0.2283	1 3994		1.2313	-1.45	1 2281	
	-0.2249	-1.1076	2 3472	C	0.398	-1 4033	2 5231	
	0.161	-0.8625	3 8304	C	1 2027	-2 0005	3 7137	
	-0.3768	-2.1353	4 5316	C	0.6992	-3.4593	3 8483	
	0.2/02	-2.1555	5 8010	0	1 3601	-/ 3166	2 0102	
	1 5861	0.7370	3.0781	0	2 6237	1 0124	2.9102	
	0.429	-0.7379	0.7200	0	2.0237	2 2722	2 1021	
	-0.438	-4.0240	0.7299	<u></u> U	-3.3077	-2.2722	1 8542	
	-1.0004	-1.7009	-0.3312	<u>п</u>	-2.2409	1.0160	2 4507	
	-1.0993	2 7558	1.4101	<u>п</u>	-2.3243	2 8052	1 /2/2	
 Ц	0.8742	-2.7558	-1.0018	 	-0.8732	-1.4553	-0.25/18	
 Ц	0.8/42	-3.8076	3 781/	 Ц	-2.241	-1.4333	3 2081	
 Ц	0.0075	3 0887	3 5507	 Ц	1 3 3 3	2 0704	1 1155	
 Ц	1 0205	-1 7/78	_2 9/29	 Ц	-1.555	1 6363	-0.3760	
 Ц	1.6203	0.7175	2.9429	 Ц	2.4237	0.4521	2 /051	
 Ц	-7.4308	1 1 2 1 5	-3.4577	 Ц	-1.0881	2 2608	-2.4751	
 Ц	-2.4398	2 1007	5 5 2 5 6	 Ц	0.3716	0.0131	4 0130	
 Ц	-0.3743	2.1777	-5.3206	 Ц	-0.3710	0.5607	-5 6799	
 Ц	-1.6084	2.0000	-2.9571	 Ц	0.6537	2 3137	-3 122	
 Н	1 1977	3 8449	-4 1266	Н	2 5854	0.7251	-5 1506	
 Н	2 0195	2 8823	-7 2076	Н	3 3153	-0 297	-3 1981	
 Н	-0.6521	4 9727	-5.4657	Н	1 1075	2 3864	-6.4457	
н	-0.9428	5 7191	-3 8781	Н	1.1075	3 4633	-5 254	
 Н	-0.9420	5.0036	-4 7799	Н	0.1142	3 5164	-5.204	
 Н	-0.8871	2 2858	-1 3205	Н	1 1 2 2 1	1 2367	-1 6572	
 Н	1 8017	1 3534	-0.3664	н	2 6014	-1.2007	-1.0572	
 	-1.0772	0.8000	0.6485	 Н	0.761	0 5035	0.6568	
H	1 6044	-0.3606	1 3344	Н	1 6469	-2 3525	0.0300	
<u>н</u>	-1 2958	_0.9128	2 2385	Н	0 1472	-0 3684	2 7657	
H	-0 3336	0.033	4 2109	H	0.9298	-1 4514	4 6206	
H	-1 4556	-2 025	4 6753	Н	0.8516	-3 8268	4 8644	
H	-0 1837	-3 1577	6 1805	H	1 0276	-5 2200	3 0741	
H	1 7474	-0 4967	4 915	Н	3 027	-2.2705	4 3508	
H	-0.5805	-5.1661	1.5341	H	-3.4459	-2.8988	2.9429	

Table S6. Optimized Z-matrixes of 18-epi-2 in the gas phase (Å) at B3LYP/6-31G(d) level

	δ_{cal}		$\delta_{ m scal}$		correc	corrected error		tribution	probability		
110.	$o_{\rm exp}$	2	18- <i>epi</i> - 2	2	18- <i>epi</i> - 2	2	18- <i>epi</i> - 2	2	18- <i>epi</i> - 2	2	18- <i>epi</i> - 2
1	165.7	172.21	168.60	163.52	163.54	-2.18	-2.16	0.82	0.82	0.18	0.18
2	124.6	128.55	125.57	120.47	119.84	-4.13	-4.76	0.95	0.97	0.05	0.03
3	138.5	150.25	146.80	141.87	141.40	3.37	2.90	0.91	0.88	0.09	0.12
4	126.5	137.74	129.35	129.53	123.68	3.03	-2.82	0.89	0.88	0.11	0.12
5	143.9	151.83	144.24	143.43	138.80	-0.47	-5.10	0.58	0.98	0.42	0.02
6	76	85.80	83.10	78.31	76.71	2.31	0.71	0.83	0.62	0.17	0.38
7	49	51.60	61.42	44.58	54.69	-4.42	5.69	0.96	0.98	0.04	0.02
8	35.1	40.57	40.91	33.70	33.87	-1.40	-1.23	0.72	0.70	0.28	0.30
9	72.9	79.59	80.37	72.19	73.94	-0.71	1.04	0.62	0.67	0.38	0.33
10	76.3	83.64	83.53	76.18	77.15	-0.12	0.85	0.52	0.64	0.48	0.36
11	48.1	59.06	56.42	51.94	49.61	3.84	1.51	0.94	0.74	0.06	0.26
12	135.7	144.21	143.16	135.91	137.70	0.21	2.00	0.54	0.80	0.46	0.20
13	132.7	142.48	139.40	134.21	133.88	1.51	1.18	0.74	0.69	0.26	0.31
14	132.8	141.13	139.59	132.87	134.08	0.07	1.28	0.51	0.70	0.49	0.30
15	127.2	135.56	133.42	127.38	127.81	0.18	0.61	0.53	0.60	0.47	0.40
16	130	140.62	137.68	132.38	132.14	2.38	2.14	0.84	0.81	0.16	0.19
17	134.2	137.62	142.61	129.42	137.15	-4.78	2.95	0.97	0.89	0.03	0.11
18	32.3	43.35	41.88	36.45	34.85	4.15	2.55	0.95	0.85	0.05	0.15
19	45	53.90	47.31	46.86	40.36	1.86	-4.64	0.78	0.97	0.22	0.03
20	18.7	20.58	21.33	14.00	13.98	-4.70	-4.72	0.97	0.97	0.03	0.03
				Product o	f probabilt	ies				3.99E-17	3.03E-18
			Baye	es's theore	em probabi	lity (%)				93	7

 Table S7. The calculated ¹³C NMR data for 2 and 18-epi-2

Figure S1. Structures of cyclamenols A-D

Figure S2. HPLC profiles of crude extracts of *Streptomyces* sp. OUCMDZ-4348. **Extract A (previous work)**: After 7 days of cultivation, the whole broth was extracted three times with EtOAc to give the crude extract A. **Extract B (this work)**: After 7 days of cultivation, XAD-16N resin (20 g/L) was added to the culture to adsorb the organic products. The resin was filtered through gauze, eluted with acetone/H₂O (80%). The acetone was removed under reduced pressure. The remaining part was extracted three times with EtOAc, and then the water layer was dried *in vacuo* to yield extract B.

Scheme S1. Chemical reactions for the identification of the absolute configuration at C-18 of 1

Figure S3. HPLC profiles of PGME amide products derived from compounds 1 and 3

Figure S4. HRESIMS spectrum of cyclamenol E (1)

Figure S5. ¹H-NMR spectrum of cyclamenol E (1) in DMSO- d_6 (500 MHz)

Figure S6. Expanded ¹H-NMR spectrum of cyclamenol E (1) in DMSO- d_6 (500 MHz)

Figure S7.	¹³ C-NMR s	spectrum of c	yclamenol E (1) ir	n DMSO- d_6	(125 MHz)	
------------	-----------------------	---------------	---------------	-------	---------------	-----------	--

Figure S8. Expanded ¹³C-NMR spectrum of cyclamenol E (1) in DMSO-*d*₆ (125 MHz)

Figure S9. HSQC spectrum of cyclamenol E (1) in DMSO- d_6 (500 × 125 MHz)

Figure S10. ¹H-¹H COSY spectrum of cyclamenol E (1) in DMSO-*d*₆ (500 MHz)

Figure S13. ¹H-NMR spectrum of cyclamenol E (1) in methanol- d_4 (500 MHz)

Figure S14. Expanded ¹H-NMR spectrum of cyclamenol E (1) in methanol- d_4 (500 MHz)

Figure S15. ¹H-¹H COSY spectrum of cyclamenol E (1) in methanol- d_4 (500 MHz)

fl (ppm)

Figure S17. HRESIMS spectrum of cyclamenol F (2)

Figure S18. ¹H-NMR spectrum of cyclamenol F (2) in DMSO-*d*₆ (600 MHz)

fl (ppm)

Figure S21. Expanded ¹³C-NMR spectrum of cyclamenol F (2) in DMSO-*d*₆ (150 MHz)

Figure S23. ¹H-¹H COSY spectrum of cyclamenol F (**2**) in DMSO-*d*₆ (600 MHz)

Figure S25. NOESY spectrum of cyclamenol F (2) in DMSO-*d*₆ (600 MHz)

S33

(mqq)

f1

Figure S27. ¹H-NMR spectrum of compound 1a in CDCl₃ (500 MHz)

Figure S28. Expanded ¹H-NMR spectrum of compound 1a in CDCl₃ (500 MHz)

Figure S33. ¹H-NMR spectrum of (S)-MTPA ester (1aa) in CDCl₃ (500 MHz)

Figure S34. ¹H-¹H COSY spectrum of (S)-MTPA ester (1aa) in CDCl₃ (500 MHz)

Figure S36. ¹H-¹H COSY spectrum of (*R*)-MTPA ester (**1ab**) in CDCl₃ (500 MHz)

S44

fl (ppm)

Figure S37. HRESIMS spectrum of compound 2a

20190903-SJJ-B-SX-1-BCHA_190903153816 #41-42 RT: 0.35-0.36 AV: 2 SB: 7 0.05-0.10 NL: 2.47E7 T: FTMS + p ESI Full ms [180.00-1000.00]

Figure S39. Expanded ¹H-NMR spectrum of compound 2a in CDCl₃ (500 MHz)

Figure S40. ¹H-¹H COSY spectrum of compound 2a in CDCl₃ (500 MHz)

Figure S41. NOESY spectrum of compound 2a in CDCl₃ (500 MHz)

Figure S42. ¹H-NMR spectrum of (S)-MTPA ester (2aa) in CDCl₃ (500 MHz)

Figure S43. ¹H-¹H COSY spectrum of (S)-MTPA ester (2aa) in CDCl₃ (500 MHz)

Figure S44. ¹H-NMR spectrum of (*R*)-MTPA ester (2ab) in CDCl₃ (500 MHz)

Figure S46. DFT-optimized structures of the lowest energy conformations for two MTPA esters of 1a

Figure S47. DFT-optimized structures of the lowest energy conformations for two MTPA esters of 2a

(R)-MTPA ester (2ab)