Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Supporting Information

Rhodium-Catalyzed Homodimerization-Cyclization Reaction of Two Vinyl Isocyanides: A General Route to 2-(Isoquinolin-1-yl)oxazole

Zhuo Wang, Xiang-He Meng, Pei Liu, Wan-Ying Hu, and Yu-Long Zhao*

Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China; e-mail: zhaoyl351@nenu.edu.cn

Table of contents

I. General Information	S2
II. General Procedure for the Preparation of 2 (2a as Example)	S3-S13
III. General Procedure for the Preparation of 3 (3a as Example)	S14-S15
IV. General Procedure for the Preparation of 4 (4a as Example)	S16-S17
V. ORTEP Drawing of Compound 2k	S18
VI. Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectra of Compounds 2-4	S19-S41

I. General Information:

Unless stated otherwise, all reactions were carried out in glassware under air. All glassware and stirrers were dried in an oven at 85 °C overnight. All reagents were commercially available and were used without further purification. The vinyl isocyanides 1 were prepared according to the previous method reported. 1 Elevated temperatures were maintained by an IKA heating block for 1 dram vials. The chromatographic purification of the products was performed on silica gel 300-400 mesh. NMR-spectra were measured in the given solvent at room temperature on a Bruker Avance (600 MHz, ¹H; 151 MHz, ¹³C) instrument. Data for ¹H NMR and ¹³C NMR are reported in terms of chemical shift (δ, ppm) . High-resolution mass spectra (HRMS) were obtained using a Bruker microTOF II focus spectrometer (ESI). The compound 2k was glued on a glass fiber. Data were collected at 293 Kusing graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) and IP technique in the range $2.19^{\circ} < \theta < 27.48^{\circ}$. Empirical absorption correction was applied. The structures were solved by the direct method and refined by the full-matrix least-squares method on F² using the SHELXS 97 crystallographic software package. Anisotropic thermal parameters were used to refine all non-hydrogen atoms. Hydrogen atoms were located from difference Fourier maps.

1. H. Jiang, Y. Cheng, R. Wang, Y. Zhang, S. Yu, Chem. Commun. 2014, 50, 6164-6167.

II. General Procedure for the Preparation of 2 (2a as Example):

$$R^{1} \stackrel{\square}{ \sqcup} \qquad NC \qquad R^{2} \stackrel{(C_{6}H_{5})_{3}P]_{3}RhCl (1 \text{ mol } \%)}{\text{toluene, } 160 \, ^{0}C} \qquad R^{2} \stackrel{\square}{ \swarrow} \qquad XR^{2}$$

To a solution of ethyl 2-isocyano-3,3-diphenylacrylate $\bf 1a$ (0.2 mmol, 55.4 mg) in toluene (2.0 mL) was added the $[(C_6H_5)_3P]_3RhCl$ (1.8 mg, 0.002 mmol). The reaction mixture was stirred for 12 h at 160 °C in a 10 mL sealed tube. After the reaction was complete, the reaction mixture was poured into saturated aqueous NaCl (5.0 mL) and extracted with CH_2Cl_2 (2.0 mL \times 3). The combined organic extracts were dried over anhydrous Mg_2SO_4 , filtered and concentrated under reduced pressure to yield the crude product, which was purified by chromatography (ethyl acetate/petroleum ether = 1/5, V/V) to give $\bf 2a$ (82.1 mg, 74%) as a yellow solid.

A gram-scale synthesis of compound 2d:

To a solution of ethyl 2-isocyano-3,3-di-p-tolylacrylate $\mathbf{1d}$ (4.0 mmol, 1.22 g) in toluene (12.0 mL) was added the $[(C_6H_5)_3P]_3RhCl$ (36.0 mg, 0.04 mmol). The reaction mixture was stirred for 12 h at 160 °C in a 35 mL sealed tube. After the reaction was complete, the reaction mixture was poured into saturated aqueous NaCl (100.0 mL) and extracted with CH_2Cl_2 (40.0 mL \times 3). The combined organic extracts were dried over anhydrous Mg_2SO_4 , filtered and concentrated under reduced pressure to yield the crude product, which was purified by chromatography (ethyl acetate/petroleum ether = 1/5, V/V) to give $\mathbf{2d}$ (1.49 g, 61%) as a yellow solid.

Ethyl 1-(4-benzhydryl-5-ethoxyoxazol-2-yl)-4-phenylisoquinoline-3-carboxylate (2a):

Eluent: ethyl acetate/petroleum ether (1/5). Yellow solid (82.1 mg, 74%), mp. 60–61 $^{\rm o}$ C; R_f = 0.45 (ethyl acetate/petroleum ether = 3/10); $^{\rm 1}$ H NMR (600 MHz, CDCl₃) δ : 9.58 (d, J = 8.5 Hz, 1H),

7.72–7.69 (m, 1H), 7.67–7.64 (m, 2H), 7.49 (d, J = 7.2 Hz, 3H), 7.41 (d, J = 7.8 Hz, 4H), 7.36–7.35 (m, 2H), 7.32 (t, J = 7.7 Hz, 4H), 7.23 (t, J = 7.3 Hz, 2H), 5.47 (s, 1H), 4.27 (q, J = 7.1 Hz, 2H), 4.14 (q, J = 7.1 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H), 0.99 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 166.95, 155.86, 150.09, 144.27, 142.72, 141.63, 136.64, 136.08, 134.13, 130.73, 129.87, 129.41, 129.00, 128.29, 128.22, 128.09, 127.94, 126.55, 126.46, 126.38, 120.34, 70.29, 61.37, 47.22, 15.02, 13.69; HRMS(ESI-TOF): [M + Na]⁺ calculated for C₃₆H₃₀N₂NaO₄⁺: 577.2098, found: 577.2104.

Ethyl 1-(4-(bis(4-chlorophenyl)methyl)-5-ethoxyoxazol-2-yl)-7-chloro-4-(4-chlorophenyl)iso-quinoline-3-carboxylate (2b):

$$C_6H_4CI-4$$
 CO_2Et
 O
 N
 EtO
 C_6H_4CI-4
 CO_6H_4CI-4

Eluent: ethyl acetate/petroleum ether (1/5). Yellow solid (108.0 mg, 78%), mp. 96–97 $^{\circ}$ C; $R_f = 0.45$ (ethyl acetate/petroleum ether = 3/10); 1 H NMR (600 MHz, CDCl₃) δ : 9.59 (d, J = 1.9 Hz, 1H), 7.62–7.60 (m, 1H), 7.56 (d, J = 9.1 Hz, 1H), 7.49 (d, J = 8.3 Hz, 2H), 7.34 (s, 1H), 7.32 (d, J = 5.3 Hz, 6H), 7.30 (s, 1H), 7.28 (d, J = 8.3 Hz, 2H), 5.37 (s, 1H), 4.36 (q, J = 7.1 Hz, 2H), 4.19 (q, J = 7.1 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H); 13 C NMR (151 MHz, CDCl₃) δ : 166.26, 155.78, 149.55, 143.12, 140.70, 136.05, 134.87, 134.61, 133.89, 132.87, 132.62, 131.94, 131.07, 130.13, 128.65, 128.59, 127.96, 127.11, 126.70, 119.12, 70.28, 61.68, 45.60, 15.01, 13.74; HRMS(ESI-TOF): [M + Na]⁺ calculated for $C_{36}H_{26}Cl_4N_2NaO_4^+$: 713.0539, found: 713.0532.

Ethyl 1-(4-(bis(4-fluorophenyl)methyl)-5-ethoxyoxazol-2-yl)-7-fluoro-4-(4-fluorophenyl)isoquinoline-3-carboxylate (2c):

$$\begin{array}{c|c} C_6H_4F-4 \\ \hline \\ CO_2Et \\ \hline \\ N \\ \hline \\ CO_2Et \\ \hline \\ O \\ N \\ \hline \\ EtO \\ \hline \\ C_6H_4F-4 \\ \hline \\ 4-FC_6H_4 \\ \end{array}$$

Eluent: ethyl acetate/petroleum ether (1/5). Yellow solid (96.5 mg, 77%), mp. 112–114 $^{\circ}$ C; R_f = 0.50 (ethyl acetate/petroleum ether = 3/10); 1 H NMR (600 MHz, CDCl₃) δ : 9.31–9.29 (m, 1H), 7.66–7.64 (m, 1H), 7.46–7.43 (m, 1H), 7.36 (d, J = 1.8 Hz, 1H), 7.35 (d, J = 3.2 Hz, 2H), 7.34 (t, J = 2.0 Hz, 1H), 7.32 (d, J = 3.3 Hz, 1H), 7.31 (d, J = 2.1 Hz, 1H), 7.23–7.20 (m, 2H), 7.04–7.00 (m, 4H), 5.41 (s, 1H), 4.32 (q, J = 7.1 Hz, 2H), 4.18 (q, J = 7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H), 1.07 (t, J = 7.1 Hz, 3H); 13 C NMR (151 MHz, CDCl₃) δ : 166.49, 162.44 (d, J = 54.0 Hz), 161.95 (d, J = 57.8 Hz), 161.57 (d, J = 245.2 Hz), 160.81, 155.65, 149.82, 143.35 (d, J = 5.6 Hz), 138.16, 138.13 (d, J = 3.2 Hz), 133.80, 133.05, 131.50 (d, J = 8.1 Hz), 131.44, 130.27 (d, J = 7.9 Hz), 130.22, 129.33 (d, J = 8.8 Hz), 129.27, 127.39 (d, J = 10.3 Hz), 121.44 (d, J = 25.4 Hz), 121.27, 119.79 (d, J = 24.6 Hz), 115.52 (d, J = 21.7 Hz), 115.38, 115.23, 115.08, 112.00, 111.84, 70.24, 61.54, 45.52, 14.96, 13.74; 19 F NMR (565 MHz, CDCl₃) δ : -106.84—106.88 (m, 1F), -112.23—114.49 (m, 1F), -115.46—119.21 (m, 2F); HRMS(ESI-TOF): [M + Na]⁺ calculated for C₃₆H₂₆F₄N₂NaO₄⁺: 649.1721, found: 649.1729.

Ethyl 1-(4-(di-*p*-tolylmethyl)-5-ethoxyoxazol-2-yl)-7-methyl-4-(*p*-tolyl)isoquinoline-3-carboxylate (2d):

$$C_6H_4Me-4$$
 CO_2Et
 N
 O
 N
 EtO
 C_6H_4Me-4
 $4-MeC_6H_4$

Eluent: ethyl acetate/petroleum ether (1/5). Yellow solid (83.1 mg, 68%), mp. 84–85 $^{\circ}$ C; R_f = 0.45 (ethyl acetate/petroleum ether = 3/10); 1 H NMR (600 MHz, CDCl₃) δ : 9.31 (s, 1H), 7.58 (d, J = 8.7 Hz, 1H), 7.47–7.45 (m, 1H), 7.32 (d, J = 8.0 Hz, 4H), 7.29 (d, J = 7.8 Hz, 2H), 7.23 (t, J = 6.4

Hz, 2H), 7.12 (d, J = 8.0 Hz, 4H), 5.37 (s, 1H), 4.30 (q, J = 7.1 Hz, 2H), 4.16 (q, J = 7.1 Hz, 2H), 2.53 (s, 3H), 2.45 (s, 3H), 2.32 (s, 6H), 1.34 (t, J = 7.1 Hz, 3H), 1.04 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ: 167.02, 155.42, 149.99, 140.72, 140.11, 139.53, 137.65, 135.77, 134.99, 134.35, 133.16, 132.7, 129.62, 128.89, 128.81, 128.75, 126.95, 126.62, 126.38, 120.36, 70.27, 61.25, 46.06, 22.10, 21.31, 20.99, 15.03, 13.68; HRMS(ESI-TOF): [M + Na]⁺ calculated for $C_{40}H_{38}N_2NaO_4^+$: 633.2724, found: 633.2731.

Ethyl 1-(4-(bis(4-methoxyphenyl)methyl)-5-ethoxyoxazol-2-yl)-7-methoxy-4-(4-methoxyphenyl)isoquinoline-3-carboxylate (2e):

$$C_6H_4OMe-4$$
 CO_2Et
 N
 O
 N
 EtO
 C_6H_4OMe-4
 $4-MeOC_6H_4$

Eluent: ethyl acetate/petroleum ether (1/5). Yellow solid (85.0 mg, 63%), mp. 107–108 °C; $R_f = 0.45$ (ethyl acetate/petroleum ether = 3/10); 1 H NMR (600 MHz, CDCl₃) δ : 9.02 (d, J = 2.3 Hz, 1H), 7.59 (d, J = 9.3 Hz, 1H), 7.29 (d, J = 8.6 Hz, 4H), 7.26–7.24 (m, 3H), 7.02 (d, J = 8.4 Hz, 2H), 6.82 (d, J = 8.6 Hz, 4H), 5.36 (s, 1H), 4.34 (q, J = 7.0 Hz, 2H), 4.17 (q, J = 7.2 Hz, 2H), 3.88 (s, 3H), 3.78 (s, 9H), 1.36 (t, J = 7.1 Hz, 3H), 1.07 (t, J = 7.2 Hz, 3H); 13 C NMR (151 MHz, CDCl₃) δ : 167.11, 160.13, 159.45, 158.05, 135.38, 134.19, 132.36, 130.91, 129.76, 128.35, 128.14, 128.02, 123.70, 120.54, 113.70, 113.63, 113.53, 105.34, 70.32, 61.20, 55.46, 55.31, 55.19, 45.00, 15.08, 13.81; HRMS(ESI-TOF): [M + Na]⁺ calculated for $C_{40}H_{38}N_2NaO_8^+$: 697.2520, found: 697.2545.

 $Ethyl\ 4-(4-chlorophenyl)-1-(4-((4-chlorophenyl)(phenyl)methyl)-5-ethoxyoxazol-2-yl) is oquinoline-3-carboxylate\ (2f):$

Ethyl 7-chloro-1-(4-((3-chlorophenyl)(phenyl)methyl)-5-ethoxyoxazol-2-yl)-4-phenylisoquinoline-3-carboxylate (2f'):

$$CI$$
 CO_2Et
 CO_2E

Eluent: ethyl acetate/petroleum ether (1/5). According to the 1 H NMR, the ratio of isomer (**2f/2f'**) was approximately 2:1; Red solid (89.8 mg, 72%); $R_f = 0.50$ (ethyl acetate/petroleum ether = 3/10); 1 H NMR (600 MHz, CDCl₃) δ : 9.64 (s, 1H×0.34), 9.55 (d, J = 8.5 Hz, 1H×0.66), 7.70 (t, J = 7.6 Hz, 1H), 7.64 (t, J = 7.5 Hz, 1H×0.66), 7.61–7.59 (m, 1H), 7.57–7.55 (m, 1H×0.34), 7.49–7.47 (m, 2H), 7.42 (d, J = 7.6 Hz, 1H), 7.39 (s, 1H), 7.38 (s, 1H), 7.35 (s, 1H), 7.34 (s, 2H), 7.32–7.29 (m, 4H), 7.25–7.22 (m, 1H), 5.44 (s, 1H×0.66), 5.41 (s, 1H×0.34), 4.33 (q, J = 7.2 Hz, 2H×0.34), 4.29 (q, J = 7.1 Hz, 2H×0.66), 4.18 (q, J = 7.1 Hz, 2H×0.66), 4.13 (q, J = 7.1 Hz, 2H×0.34), 1.34 (t, J = 7.1 Hz, 3H×0.34), 1.31 (t, J = 7.0 Hz, 3H×0.66), 1.08 (t, J = 7.1 Hz, 3H×0.66), 0.98 (t, J = 7.1 Hz, 3H×0.34); 13 C NMR (151 MHz, CDCl₃) δ : 166.50, 166.44, 155.74, 155.66, 149.90, 149.56, 144.24, 142.91, 142.13, 142.08, 141.87, 141.28, 141.16, 141.10, 136.38, 135.66, 135.34, 134.87, 134.42, 134.18, 133.78, 132.96, 132.26, 132.20, 131.59, 131.10, 130.86, 130.23, 130.18, 129.66, 129.53, 128.73, 128.68, 128.40, 128.39, 128.37, 128.30, 128.28, 128.23, 128.14, 127.78, 126.99, 126.65, 126.62, 126.58, 126.17, 70.21, 70.13, 61.43, 61.36, 46.43, 46.16, 14.94, 14.91, 13.68, 13.56.

Ethyl 1-(5-ethoxy-4-(phenyl(p-tolyl)methyl)oxazol-2-yl)-7-methyl-4-phenylisoquinoline-3-carboxylate (2g):

Ethyl 1-(5-ethoxy-4-(phenyl(p-tolyl)methyl)oxazol-2-yl)-4-(p-tolyl)isoquinoline-3-carboxylate (2g'):

$$CO_2Et$$
 CO_2Et
 C

Eluent: ethyl acetate/petroleum ether (1/5). According to the 1 H NMR, the ratio of isomer (**2g/2g'**) was approximately 4:1; Red solid (76.9 mg, 66%); $R_{\rm f} = 0.45$ (ethyl acetate/petroleum ether = 3/10); 1 H NMR (600 MHz, CDCl₃) δ : 9.58 (d, J = 8.4 Hz, 1H×0.8), 9.46 (d, J = 8.8 Hz, 1H×0.2), 7.69 (d, J = 8.0 Hz, 1H), 7.65–7.63 (m, 1H), 7.53–7.47 (m, 1H), 7.41 (d, J = 7.8 Hz, 2H), 7.39–7.35 (m, 1H), 7.31 (t, J = 7.6 Hz, 2H), 7.27 (s, 1H), 7.24 (d, J = 5.5 Hz, 1H), 7.22–7.21 (m, 3H), 7.17–7.14 (m, 2H), 7.05–7.04 (m, 1H), 5.42 (s, 1H×0.8), 5.41 (s, 1H×0.2), 4.27 (q, J = 7.0 Hz, 2H), 4.18–4.11 (m, 2H), 2.43 (s, 3H×0.2), 2.42 (3H×0.8), 2.34 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H), 1.02–0.97 (m, 3H); 13 C NMR (151 MHz, CDCl₃) δ : 166.96, 155.75, 149.99, 142.79, 142.56, 141.60, 137.76, 136.60, 135.87, 134.19, 130.60, 130.41, 129.84, 129.70, 129.25, 128.91, 128.75, 128.20, 128.15, 128.12, 128.05, 127.89, 127.17, 126.96, 126.57, 126.33, 126.02, 120.33, 70.22, 61.26, 47.06, 21.51, 21.41, 14.97, 13.64.

Ethyl 1-(5-ethoxy-4-(1-phenylethyl)oxazol-2-yl)-4-methylisoquinoline-3-carboxylate (2h):

Eluent: ethyl acetate/petroleum ether (1/7). Yellow liquid (64.6 mg, 75%); $R_f = 0.50$ (ethyl acetate/petroleum ether = 1/4); 1 H NMR (600 MHz, CDCl₃) δ : 9.58 (d, J = 8.4 Hz, 1H), 8.15 (d, J = 8.3 Hz, 1H), 7.81–7.75 (m, 2H), 7.42 (d, J = 7.6 Hz, 2H), 7.30 (t, J = 7.5 Hz, 2H), 7.20 (t, J = 7.3 Hz, 1H), 4.52 (q, J = 7.1 Hz, 2H), 4.32–4.24 (m, 2H), 4.16 (q, J = 7.2 Hz, 1H), 2.87 (s, 3H), 1.72 (d, J = 7.2 Hz, 3H), 1.48 (t, J = 7.1 Hz, 3H), 1.35 (t, J = 7.0 Hz, 3H); 13 C NMR (151 MHz,

CDCl₃) δ : 167.25, 154.58, 145.22, 141.30, 136.86, 130.58, 129.88, 129.22, 128.28, 127.34, 126.19, 126.15, 124.21, 122.21, 70.16, 61.71, 36.08, 20.91, 15.05, 14.65, 14.28; HRMS(ESI-TOF): [M + Na]⁺ calculated for $C_{26}H_{26}N_2NaO_4^+$: 453.1785, found: 453.1694.

Ethyl 1-(5-ethoxy-4-(1-(p-tolyl)ethyl)oxazol-2-yl)-4,7-dimethylisoquinoline-3-carboxylate (2i):

$$H_3C$$
 OEt
 N
 OEt
 N
 EtO
 N
 C_6H_4Me-4

Eluent: ethyl acetate/petroleum ether (1/7). Yellow liquid (58.7 mg, 64%); $R_f = 0.50$ (ethyl acetate/petroleum ether = 1/4); ${}^{1}H$ NMR (600 MHz, CDCl₃) δ : 9.29 (s, 1H), 8.00 (d, J = 8.7 Hz, 1H), 7.57 (d, J = 8.7 Hz, 1H), 7.36 (d, J = 7.9 Hz, 2H), 7.13 (d, J = 7.8 Hz, 2H), 4.51 (q, J = 7.1 Hz, 2H), 4.33–4.25 (m, 2H), 4.13 (q, J = 7.2 Hz, 1H), 2.84 (s, 3H), 2.57 (s, 3H), 2.32 (s, 3H), 1.70 (d, J = 7.3 Hz, 3H), 1.47 (t, J = 7.1 Hz, 3H), 1.37 (t, J = 7.1 Hz, 3H); ${}^{13}C$ NMR (151 MHz, CDCl₃) δ : 167.29, 142.46, 142.29, 140.41, 139.48, 135.63, 135.14, 132.70, 130.19, 128.96, 127.30, 127.29, 126.50, 124.12, 122.34, 70.23, 61.65, 35.63, 22.17, 21.10, 20.98, 15.08, 14.65, 14.30; HRMS(ESI-TOF): $[M + H]^+$ calculated for $C_{28}H_{31}N_2O_4^+$: 459.2278, found: 459.2289.

Ethyl 7-chloro-1-(4-(4-chlorobenzyl)-5-ethoxyoxazol-2-yl)isoquinoline-3-carboxylate (2j):

$$CI$$
 O
 N
 EtO
 C_6H_4CI-4

Eluent: ethyl acetate/petroleum ether (1/7). Yellow solid (68.8 mg, 73%), mp. 86–87 $^{\circ}$ C; R_f = 0.50 (ethyl acetate/petroleum ether = 1/4); 1 H NMR (600 MHz, CDCl₃) δ : 9.35–9.33 (m, 1H), 8.55 (s, 1H), 8.02–7.99 (m, 1H), 7.60–7.56 (m, 1H), 7.32–7.28 (m, 2H), 7.00 (t, J = 8.7 Hz, 2H), 4.53 (q, J = 7.1 Hz, 2H), 4.39 (q, J = 7.1 Hz, 2H), 3.90 (s, 2H), 1.50 (t, J = 7.1 Hz, 3H), 1.42 (t, J = 7.1 Hz,

3H); 13 C NMR (151 MHz, CDCl₃) δ : 165.09, 145.26, 141.82, 136.67, 134.89, 132.74, 131.06, 130.40, 130.28, 129.36, 128.22, 127.76, 127.12, 126.75, 120.62, 116.15, 70.17, 62.17, 28.91, 15.06, 14.35; HRMS(ESI-TOF): [M + Na]⁺ calculated for $C_{24}H_{20}Cl_2N_2NaO_4^+$: 493.0692, found: 493.0681.

Ethyl 1-(5-ethoxy-4-(4-fluorobenzyl)oxazol-2-yl)-7-fluoroisoquinoline-3-carboxylate (2k):

Eluent: ethyl acetate/petroleum ether (1/7). Yellow solid (67.5 mg, 77%), mp. 127–129 °C; $R_f = 0.50$ (ethyl acetate/petroleum ether = 1/4); ¹H NMR (600 MHz, CDCl₃) δ : 9.35–9.32 (m, 1H), 8.54 (s, 1H), 8.01–7.99 (m, 1H), 7.59–7.56 (m, 1H), 7.32–7.30 (m, 2H), 7.01–6.98 (m, 2H), 4.53 (q, J = 7.1 Hz, 2H), 4.39 (q, J = 7.1 Hz, 2H), 3.90 (s, 2H), 1.50 (t, J = 7.1 Hz, 3H), 1.42 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 165.20, 162.24 (d, J = 237.7 Hz), 161.48 (d, J = 229.2 Hz), 155.73, 149.73, 144.19 (d, J = 5.8 Hz), 140.49, 134.89 (d, J = 3.2 Hz), 134.87, 133.88, 131.06 (d, J = 9.1 Hz), 131.00, 129.96 (d, J = 7.8 Hz), 129.90, 128.21 (d, J = 10.3 Hz), 124.15, 121.74 (d, J = 25.9 Hz), 121.56, 117.72, 115.23 (d, J = 21.3 Hz), 115.09, 112.38 (d, J = 24.5 Hz), 112.22, 70.18, 62.01, 30.34, 15.06, 14.32; ¹⁹F NMR (565 MHz, CDCl₃) δ : -96.00—112.05 (m, 1F), -109.37—121.37 (m, 1F); HRMS(ESI-TOF): [M + Na]⁺ calculated for $C_{24}H_{20}F_{2}N_{2}NaO_{4}^{+}$: 461.1283, found: 461.1299.

Ethyl 1-(5-ethoxy-4-(2-fluorobenzyl)oxazol-2-yl)-5-fluoroisoquinoline-3-carboxylate (2l):

Eluent: ethyl acetate/petroleum ether (1/7). Yellow solid (50.0 mg, 57%), mp. 91–93 °C; $R_f = 0.50$ (ethyl acetate/petroleum ether = 1/4); ¹H NMR (600 MHz, CDCl₃) δ : 9.38 (d, J = 8.6 Hz, 1H),

8.79 (s, 1H), 7.75–7.71 (m, 1H), 7.47–7.44 (m, 1H), 7.32 (t, J = 7.4 Hz, 1H), 7.21 (q, J = 6.2 Hz, 1H), 7.10–7.03 (m, 2H), 4.55 (q, J = 7.1 Hz, 2H), 4.39 (q, J = 7.1 Hz, 2H), 3.97 (s, 2H), 1.50 (t, J = 7.1 Hz, 3H), 1.41 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 164.98, 160.93 (d, J = 245.7 Hz), 158.33 (d, J = 255.9 Hz), 156.12, 149.70, 144.69, 141.13, 130.64 (d, J = 4.5 Hz), 130.61, 130.54, 130.49 (d, J = 7.9 Hz), 128.06 (d, J = 8.1 Hz), 128.01, 127.75 (d, J = 3.4 Hz), 124.02 (d, J = 4.4 Hz), 123.98, 123.96, 117.18 (d, J = 5.0 Hz), 116.59, 115.22 (d, J = 21.9 Hz), 115.07, 114.64, 114.52 (d, J = 18.6 Hz), 70.25, 62.11, 24.22, 24.20, 15.03, 14.34; ¹⁹F NMR (565 MHz, CDCl₃) δ : -118.09—118.15 (m, 1F), -120.14-120.17 (m, 1F); HRMS(ESI-TOF): [M + Na]⁺ calculated for $C_{24}H_{20}F_{2}N_{2}NaO_{4}^{+}$: 461.1283, found: 461.1298.

Ethyl 5-bromo-1-(4-(2-bromobenzyl)-5-ethoxyoxazol-2-yl)isoquinoline-3-carboxylate (2m):

Eluent: ethyl acetate/petroleum ether (1/7). Yellow solid (49.3 mg, 44%), mp. 65–67 °C; $R_f = 0.50$ (ethyl acetate/petroleum ether = 1/4); ¹H NMR (600 MHz, CDCl₃) δ : 9.63 (d, J = 8.6 Hz, 1H), 8.92 (s, 1H), 8.06 (d, J = 7.5 Hz, 1H), 7.63–7.61 (m, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.31 (d, J = 7.3 Hz, 1H), 7.24 (d, J = 7.5 Hz, 1H), 7.10 (t, J = 7.1 Hz, 1H), 4.56 (q, J = 7.1 Hz, 2H), 4.38 (q, J = 7.0 Hz, 2H), 4.06 (s, 2H), 1.51 (t, J = 7.1 Hz, 3H), 1.39 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 156.37, 145.36, 142.05, 138.35, 136.09, 134.88, 132.69, 130.72, 130.44, 128.49, 128.02, 127.82, 127.39, 124.52, 123.29, 123.24, 116.15, 70.16, 62.18, 31.62, 15.07, 14.35; HRMS(ESI-TOF): [M + Na]⁺ calculated for $C_{24}H_{20}Br_2N_2NaO_4^+$: 580.9682, found: 580.9670.

Ethyl 1-(5-ethoxy-4-(4-methoxybenzyl)oxazol-2-yl)-7-methoxyisoquinoline-3-carboxylate (2n):

Eluent: ethyl acetate/petroleum ether (1/7). Yellow solid (62.0 mg, 67%), mp. 76–77 °C; $R_f = 0.51$ (ethyl acetate/petroleum ether = 1/4); 1 H NMR (600 MHz, CDCl₃) δ : 8.99 (d, J = 2.3 Hz, 1H), 8.49 (s, 1H), 7.85 (d, J = 9.0 Hz, 1H), 7.40–7.38 (m, 1H), 7.28 (d, J = 8.5 Hz, 2H), 6.83 (d, J = 8.6 Hz, 2H), 4.52 (q, J = 7.1 Hz, 2H), 4.42 (q, J = 7.1 Hz, 2H), 3.87 (s, 3H), 3.85 (s, 2H), 3.78 (s, 3H), 1.49 (t, J = 7.1 Hz, 3H), 1.45 (t, J = 7.1 Hz, 3H); 13 C NMR (151 MHz, CDCl₃) δ : 165.59, 161.26, 158.10, 155.18, 139.01, 132.34, 131.64, 129.85, 129.72, 128.94, 124.45, 124.16, 118.03, 113.74, 105.80, 70.31, 61.82, 55.48, 55.27, 30.28, 15.16, 14.39; HRMS(ESI-TOF): [M + Na]⁺ calculated for $C_{26}H_{26}N_2NaO_6^+$: 485.1683, found: 485.1689.

Ethyl 7-(5-ethoxy-4-(furan-2-ylmethyl)oxazol-2-yl)furo[2,3-c]pyridine-5-carboxylate (20):

Eluent: ethyl acetate/petroleum ether (1/8). Brown liquid (32.1 mg, 42%); $R_f = 0.50$ (ethyl acetate/petroleum ether = 1/4); ${}^{1}H$ NMR (600 MHz, CDCl₃) δ : 8.30 (s, 1H), 7.87 (d, J = 2.0 Hz, 1H), 7.65 (s, 1H), 7.34 (s, 1H), 6.31 (d, J = 2.1 Hz, 1H), 6.11 (d, J = 2.8 Hz, 1H), 4.52 (q, J = 7.1 Hz, 2H), 4.39 (q, J = 7.1 Hz, 2H), 3.92 (s, 2H), 1.49 (t, J = 7.1 Hz, 3H), 1.41 (t, J = 7.1 Hz, 3H); ${}^{13}C$ NMR (151 MHz, CDCl₃) δ : 165.11, 160.47, 155.76, 152.52, 148.80, 143.48, 141.33, 139.85, 124.82, 115.81, 110.38, 109.42, 107.68, 106.17, 70.58, 62.18, 24.45, 15.03, 14.33; HRMS(ESI-TOF): $[M + Na]^{+}$ calculated for $C_{20}H_{18}N_2NaO_6^{+}$: 405.1057, found: 405.1065.

Methyl 1-(4-benzhydryl-5-methoxyoxazol-2-yl)-4-phenylisoquinoline-3-carboxylate (2p):

Eluent: ethyl acetate/petroleum ether (1/7). Brown liquid (75.8 mg, 72%); $R_f = 0.45$ (ethyl acetate/petroleum ether = 1/4); ${}^{1}H$ NMR (600 MHz, CDCl₃) δ : 9.56 (d, J = 8.6 Hz, 1H), 7.73–7.70 (m, 1H), 7.65 (d, J = 3.5 Hz, 2H), 7.53–7.48 (m, 3H), 7.41 (d, J = 7.4 Hz, 4H), 7.36–7.30 (m, 6H), 7.25–7.22 (m, 2H), 5.47 (s, 1H), 3.99 (s, 3H), 3.73 (s, 3H); ${}^{13}C$ NMR (151 MHz, CDCl₃) δ : 142.61, 140.69, 136.80, 135.95, 134.99, 130.82, 129.65, 129.63, 128.94, 128.33, 128.26, 128.13, 127.89, 126.76, 126.51, 126.49, 119.59, 60.77, 52.48, 47.15; HRMS(ESI-TOF): [M + Na]⁺ calculated for $C_{34}H_{26}N_2NaO_4^+$: 549.1785, found: 549.1789.

(1-(4-Benzhydryl-5-morpholinooxazol-2-yl)-4-phenylisoquinolin-3-yl)(morpholino)methanone (2q):

Eluent: acetone/petroleum ether (1/10). Brown liquid (87.9 mg, 69%); $R_f = 0.50$ (acetone/petroleum ether = 2/5); 1 H NMR (600 MHz, CDCl₃) δ : 9.45–9.43 (m, 1H), 7.76–7.74 (m, 1H), 7.69–7.67 (m, 1H), 7.65–7.63 (m, 2H), 7.53–7.50 (m, 3H), 7.49–7.47 (t, J = 6.3 Hz, 3H), 7.42 (d, J = 7.7 Hz, 3H), 7.33 (t, J = 7.6 Hz, 4H), 7.24 (d, J = 7.3 Hz, 1H), 5.52 (s, 1H), 3.77–3.75 (m, 4H), 3.62–3.60 (m, 2H), 3.50–3.49 (m, 2H), 3.26–3.24 (m, 2H), 3.17–3.13 (m, 6H); 13 C NMR (151 MHz, CDCl₃) δ : 167.36, 142.90, 136.01, 134.64, 132.08, 130.77, 130.69, 130.55, 129.05, 128.68, 128.62, 128.54, 128.46, 128.34, 127.94, 126.51, 126.11, 125.73, 66.82, 66.50, 50.79, 47.76, 46.90, 41.74; HRMS(ESI-TOF): [M + Na]⁺ calculated for $C_{40}H_{36}N_4NaO_4^+$: 659.2629, found: 659.2639.

III. General Procedure for the Preparation of 3 (3a as Example):

Ar O

$$R^{1}$$
 OEt 1) NaOH (2.0 eq.)
 R^{2} HCl R^{1} OH R^{1

To a suspension solution of 2a (0.5 mmol, 277.3 mg) in a C_2H_5OH/H_2O (10 mL, v/v = 1/1) was added the NaOH (40.0 mg, 1.0 mmol). The reaction mixture was stirred for 8 h under refluxing until compound 2a was consumed (monitored by TLC). The reaction mixture was poured into saturated aqueous NaCl (15.0 mL), followed by acidification with HCl solution to adjust the pH value of the solution to 4, and extracted with CH_2Cl_2 (6 mL \times 3). The combined organic extracts were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure to yield the product 3a (260.7 mg, 99%), which may be used in the next step without purification.

1-(4-Benzhydryl-5-ethoxyoxazol-2-yl)-4-phenylisoquinoline-3-carboxylic acid (3a):

Yellow solid (260.7 mg, 99%); mp. 179–180 °C; $R_f = 0.45$ (acetone/acetic acid/petroleum ether = 1/1/5); ¹H NMR (600 MHz, DMSO- d_6) δ: 13.17 (s, 1H), 9.43 (d, J = 7.5 Hz, 1H), 7.85–7.77 (m, 2H), 7.59 (d, J = 7.4 Hz, 1H), 7.55–7.50 (m, 3H), 7.44 (d, J = 6.3 Hz, 4H), 7.41–7.38 (m, 2H), 7.35 (s, 4H), 7.24 (s, 2H), 5.51 (s, 1H), 4.30–4.22 (m, 2H), 1.24 (s, 3H); ¹³C NMR (151 MHz, DMSO- d_6) δ: 168.33, 155.66, 143.31, 142.99, 136.30, 135.42, 131.95, 131.83, 130.38, 129.89, 129.09, 128.82, 128.78, 128.72, 127.23, 126.94, 126.43, 125.64, 120.66, 71.27, 46.66, 15.23; HRMS(ESI-TOF): [M + Na]⁺ calculated for $C_{34}H_{26}N_2NaO_4^+$: 549.1785, found: 549.1760.

1-(4-(Di-*p*-tolylmethyl)-5-ethoxyoxazol-2-yl)-7-methyl-4-(*p*-tolyl)isoquinoline-3-carboxylic acid (3d):

$$C_6H_4Me-4$$
 $COOH$
 N
 O
 N
 EtO
 C_6H_4Me-4
 $COOH$
 $COOH$

Yellow solid (285.5 mg, 98%); mp. 185–186 °C; $R_f = 0.45$ (acetone/acetic acid/petroleum ether = 1/1/5); ${}^{1}H$ NMR (600 MHz, DMSO- d_6) δ : 8.90 (s, 1H), 7.36 (d, J = 8.5 Hz, 1H), 7.31 (d, J = 8.6 Hz, 1H), 7.17 (d, J = 7.5 Hz, 4H), 7.14 (d, J = 7.4 Hz, 2H), 7.10 (d, J = 7.3 Hz, 2H), 7.00 (d, J = 7.5 Hz, 4H), 5.21 (s, 1H), 4.12 (q, J = 6.8 Hz, 2H), 2.32 (s, 3H), 2.24 (s, 3H), 2.12 (s, 6H), 1.12 (t, J = 6.9 Hz, 3H); ${}^{13}C$ NMR (151 MHz, DMSO- d_6) δ : 171.54, 154.87, 151.10, 140.49, 137.06, 136.74, 135.82, 134.93, 134.19, 132.62, 130.68, 129.27, 128.91, 128.85, 127.54, 125.83, 125.71, 120.44, 71.16, 45.61, 22.03, 21.35, 21.05, 15.26; HRMS(ESI-TOF): [M + Na]⁺ calculated for $C_{38}H_{34}N_2NaO_4^+$: 605.2411, found: 605.2408.

IV. General Procedure for the Preparation of 4 (4a as Example):

To a solution of thionyl chloride (0.6 mmol) in CH_2Cl_2 (15.0 mL) was slowly added the **3a** (0.5 mmol, 263 mg) under nitrogen atmosphere at room temperature. After the reaction mixture was stirred for 12 h at room temperature, $AlCl_3$ (0.6 mmol, 80.0 mg) was added in one-pot. After the reaction mixture was stirred at room temperature for 1 h, the mixture was poured into saturated aqueous NaCl (15.0 mL), followed by basification with saturated aqueous NaHCO₃ solution to adjust the pH value of the solution to 7, and extracted with CH_2Cl_2 (6 mL × 3). The combined organic extracts were dried over anhydrous $MgSO_4$, filtered and concentrated under reduced pressure to yield the crude product, which was purified by chromatography (acetone/petroleum ether = 3:10, V/V) to give **4a** (144.9 mg, 57%) as a red solid.

5-(4-Benzhydryl-5-ethoxyoxazol-2-yl)-7*H*-indeno[2,1-*c*]isoquinolin-7-one (4a):

Eluent: acetone/petroleum ether (1/4). Red solid (144.9 mg, 57%), mp. 92–94 °C; $R_f = 0.45$ (acetone/petroleum ether = 2/5); 1 H NMR (600 MHz, CDCl₃) δ : 9.60 (d, J = 8.6 Hz, 1H), 8.44 (d, J = 8.4 Hz, 1H), 7.99 (d, J = 7.5 Hz, 1H), 7.82 (t, J = 7.6 Hz, 1H), 7.76–7.72 (m, 2H), 7.56 (t, J = 7.5 Hz, 1H), 7.40 (d, J = 7.5 Hz, 4H), 7.37 (t, J = 7.4 Hz, 1H), 7.32 (t, J = 7.6 Hz, 4H), 7.24 (t, J = 7.3 Hz, 2H), 5.47 (s, 1H), 4.30 (q, J = 7.1 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H); 13 C NMR (151 MHz, CDCl₃) δ : 192.48, 155.92, 150.13, 145.76, 145.17, 142.64, 142.06, 136.74, 135.00, 133.01, 132.15, 131.69, 130.62, 129.75, 129.71, 128.95, 128.40, 128.27, 126.46, 124.49, 124.02, 123.86, 120.39, 70.29, 47.16, 14.95; HRMS(ESI-TOF): [M + Na]⁺ calculated for $C_{34}H_{24}N_2NaO_3^+$: 531.1679, found: 531.1668.

5-(4-(Di-p-tolylmethyl)-5-ethoxyoxazol-2-yl)-3,9-dimethyl-7H-indeno[2,1-c] isoquinolin-7-one (4d):

$$C_6H_4Me-4$$
 C_6H_4Me-4
 OEt

Eluent: acetone/petroleum ether (1/4). Red solid (149.6 mg, 53%), mp. 112–114 °C; $R_f = 0.45$ (acetone/petroleum ether = 2/5); 1 H NMR (600 MHz, CDCl₃) δ : 9.27 (s, 1H), 8.21 (d, J = 8.6 Hz, 1H), 7.74 (d, J = 7.6 Hz, 1H), 7.57 (d, J = 8.5 Hz, 1H), 7.48 (s, 1H), 7.31 (d, J = 8.0 Hz, 4H), 7.27 (d, J = 7.7 Hz, 1H), 7.13 (d, J = 7.9 Hz, 4H), 5.37 (s, 1H), 4.34 (q, J = 7.0 Hz, 2H), 2.51 (s, 3H), 2.36 (s, 3H), 2.32 (s, 6H), 1.34 (t, J = 7.1 Hz, 3H); 13 C NMR (151 MHz, CDCl₃) δ : 192.77, 155.52, 150.16, 144.63, 144.44, 141.05, 140.10, 140.07, 139.16, 137.16, 135.84, 135.02, 133.57, 133.33, 130.03, 128.93, 128.78, 128.69, 125.15, 123.82, 123.54, 120.43, 70.34, 46.02, 22.32, 21.33, 21.00, 15.03; HRMS(ESI-TOF): [M + Na] + calculated for $C_{38}H_{32}N_2NaO_3^+$: 587.2305, found: 587.2302.

V. ORTEP Drawing of Compound 2k:

Figure 1. Crystal ORTEP drawing of compound 2k

VI. Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR Spectra of Compounds 2-4:

Figure 2. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 2a

Figure 3. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 2b

•

Figure 4. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of compound 2c

Figure 5. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 2d

Figure 6. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 2e

Figure 7. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound **2f** and **2f'**

Figure 8. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 2g and 2g'

Figure 9. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 2h

Figure 10. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 2i

Figure 11. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 2j

Figure 12. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of compound 2k

Figure 13. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of compound 21

Figure 14. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 2m

Figure 15. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 2n

Figure 16. $^{1}\text{H-}$ (upper) and $^{13}\text{C-NMR}$ (lower) spectra of compound 20

Figure 17. $^{1}\text{H-}$ (upper) and $^{13}\text{C-NMR}$ (lower) spectra of compound 2p

Figure 18. $^{1}\text{H-}$ (upper) and $^{13}\text{C-NMR}$ (lower) spectra of compound 2q

Figure 19. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3a

Figure 20. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3d

Figure 21. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 4a

Figure 22. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 4d