Supporting Information

Rhodium-Catalyzed Homodimerization-Cyclization Reaction of Two Vinyl Isocyanides: A General Route to 2-(Isoquinolin-1-yl)oxazole
Zhuo Wang, Xiang-He Meng, Pei Liu, Wan-Ying Hu, and Yu-Long Zhao*
Jilin Province Key Laboratory of Organic Functional Molecular Design \& Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China; e-mail: zhaoyl351@nenu.edu.cn

Table of contents

\qquad
I. General Information S2
II. General Procedure for the Preparation of 2 (2a as Example) S3-S13
III. General Procedure for the Preparation of 3 (3a as Example) S14-S15
IV. General Procedure for the Preparation of 4 (4a as Example). S16-S17
V. ORTEP Drawing of Compound $\mathbf{2 k}$ S18
VI. Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR Spectra of Compounds 2-4 S19-S41

I. General Information:

Unless stated otherwise, all reactions were carried out in glassware under air. All glassware and stirrers were dried in an oven at $85^{\circ} \mathrm{C}$ overnight. All reagents were commercially available and were used without further purification. The vinyl isocyanides $\mathbf{1}$ were prepared according to the previous method reported. ${ }^{1}$ Elevated temperatures were maintained by an IKA heating block for 1 dram vials. The chromatographic purification of the products was performed on silica gel 300-400 mesh. NMR-spectra were measured in the given solvent at room temperature on a Bruker Avance ($600 \mathrm{MHz},{ }^{1} \mathrm{H} ; 151 \mathrm{MHz},{ }^{13} \mathrm{C}$) instrument. Data for ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (δ, ppm). High-resolution mass spectra (HRMS) were obtained using a Bruker microTOF II focus spectrometer (ESI). The compound $\mathbf{2 k}$ was glued on a glass fiber. Data were collected at 293 Kusing graphite-monochromated Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA$) and IP technique in the range $2.19^{\circ}<\theta<27.48^{\circ}$. Empirical absorption correction was applied. The structures were solved by the direct method and refined by the full-matrix least-squares method on F^{2} using the SHELXS 97 crystallographic software package. Anisotropic thermal parameters were used to refine all non-hydrogen atoms. Hydrogen atoms were located from difference Fourier maps.

[^0]
II. General Procedure for the Preparation of 2 (2a as Example):

To a solution of ethyl 2-isocyano-3,3-diphenylacrylate $\mathbf{1 a}(0.2 \mathrm{mmol}, 55.4 \mathrm{mg})$ in toluene (2.0 mL) was added the $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{3} \mathrm{RhCl}(1.8 \mathrm{mg}, 0.002 \mathrm{mmol})$. The reaction mixture was stirred for 12 h at $160{ }^{\circ} \mathrm{C}$ in a 10 mL sealed tube. After the reaction was complete, the reaction mixture was poured into saturated aqueous $\mathrm{NaCl}(5.0 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL} \times 3)$. The combined organic extracts were dried over anhydrous $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to yield the crude product, which was purified by chromatography (ethyl acetate/petroleum ether $=1 / 5, \mathrm{~V} / \mathrm{V})$ to give $\mathbf{2 a}(82.1 \mathrm{mg}, 74 \%)$ as a yellow solid.

A gram-scale synthesis of compound 2d:

To a solution of ethyl 2-isocyano-3,3-di-p-tolylacrylate $\mathbf{1 d}(4.0 \mathrm{mmol}, 1.22 \mathrm{~g})$ in toluene $(12.0 \mathrm{~mL})$ was added the $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{3} \mathrm{RhCl}(36.0 \mathrm{mg}, 0.04 \mathrm{mmol})$. The reaction mixture was stirred for 12 h at $160{ }^{\circ} \mathrm{C}$ in a 35 mL sealed tube. After the reaction was complete, the reaction mixture was poured into saturated aqueous $\mathrm{NaCl}(100.0 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40.0 \mathrm{~mL} \times 3)$. The combined organic extracts were dried over anhydrous $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to yield the crude product, which was purified by chromatography (ethyl acetate/petroleum ether $=1 / 5, \mathrm{~V} / \mathrm{V})$ to give $\mathbf{2 d}(1.49 \mathrm{~g}, 61 \%)$ as a yellow solid.

Ethyl 1-(4-benzhydryl-5-ethoxyoxazol-2-yl)-4-phenylisoquinoline-3-carboxylate (2a):

Eluent: ethyl acetate/petroleum ether (1/5). Yellow solid (82.1 mg, 74\%), mp. $60-61{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.45$ (ethyl acetate/petroleum ether $=3 / 10) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.72-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H})$, $7.36-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 166.95,155.86,150.09,144.27,142.72,141.63,136.64,136.08,134.13,130.73$, 129.87, 129.41, 129.00, 128.29, 128.22, 128.09, 127.94, 126.55, 126.46, 126.38, 120.34, 70.29, 61.37, 47.22, 15.02, 13.69; HRMS(ESI-TOF): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{4}{ }^{+}: 577.2098$, found: 577.2104.

Ethyl 1-(4-(bis(4-chlorophenyl)methyl)-5-ethoxyoxazol-2-yl)-7-chloro-4-(4-chlorophenyl)iso-quinoline-3-carboxylate (2b):

Eluent: ethyl acetate/petroleum ether (1/5). Yellow solid (108.0 mg, 78\%), mp. 96-97 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=$ 0.45 (ethyl acetate/petroleum ether $=3 / 10) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.59(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.62-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J$ $=5.3 \mathrm{~Hz}, 6 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ $166.26,155.78,149.55,143.12,140.70,136.05,134.87,134.61,133.89,132.87,132.62,131.94$, 131.07, 130.13, 128.65, 128.59, 127.96, 127.11, 126.70, 119.12, 70.28, 61.68, 45.60, 15.01, 13.74; HRMS(ESI-TOF): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{NaO}_{4}{ }^{+}$: 713.0539, found: 713.0532.

Ethyl 1-(4-(bis(4-fluorophenyl)methyl)-5-ethoxyoxazol-2-yl)-7-fluoro-4-(4-fluorophenyl)isoq-uinoline-3-carboxylate (2c):

Eluent: ethyl acetate/petroleum ether (1/5). Yellow solid (96.5 mg, 77\%), mp. $112-114{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=$ 0.50 (ethyl acetate/petroleum ether $=3 / 10) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.31-9.29(\mathrm{~m}, 1 \mathrm{H})$, $7.66-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.00(\mathrm{~m}$, $4 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.07$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 166.49,162.44(\mathrm{~d}, J=54.0 \mathrm{~Hz}), 161.95(\mathrm{~d}, J=$ $57.8 \mathrm{~Hz}), 161.57(\mathrm{~d}, J=245.2 \mathrm{~Hz}), 160.81,155.65,149.82,143.35(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 138.16,138.13$ $(\mathrm{d}, J=3.2 \mathrm{~Hz}), 133.80,133.05,131.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 131.44,130.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 130.22$, $129.33(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 129.27,127.39(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 121.44(\mathrm{~d}, J=25.4 \mathrm{~Hz}), 121.27,119.79(\mathrm{~d}$, $J=24.6 \mathrm{~Hz}), 115.52(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 115.38,115.23,115.08,112.00,111.84,70.24,61.54,45.52$, 14.96, 13.74; ${ }^{19}$ F NMR (565 MHz, CDCl_{3}) $\delta:-106.84-106.88(\mathrm{~m}, 1 \mathrm{~F}),-112.23-114.49(\mathrm{~m}, 1 \mathrm{~F})$, -115.46-119.21 (m, 2F); HRMS(ESI-TOF): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{NaO}_{4}{ }^{+}$: 649.1721, found: 649.1729.

Ethyl 1-(4-(di-p-tolylmethyl)-5-ethoxyoxazol-2-yl)-7-methyl-4-(p-tolyl)isoquinoline-3-carboxylate (2d):

Eluent: ethyl acetate/petroleum ether (1/5). Yellow solid (83.1 mg, 68%), mp. $84-85{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.45$ (ethyl acetate/petroleum ether $=3 / 10) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.31(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=6.4$
$\mathrm{Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.53(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 167.02,155.42,149.99,140.72,140.11,139.53,137.65,135.77,134.99$, $134.35,133.16,132.7,129.62,128.89,128.81,128.75,126.95,126.62,126.38,120.36,70.27$, $61.25,46.06,22.10,21.31,20.99,15.03,13.68$; HRMS(ESI-TOF): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{NaO}_{4}{ }^{+}: 633.2724$, found: 633.2731.

Ethyl 1-(4-(bis(4-methoxyphenyl)methyl)-5-ethoxyoxazol-2-yl)-7-methoxy-4-(4-methoxyphe-nyl)isoquinoline-3-carboxylate (2e):

Eluent: ethyl acetate/petroleum ether (1/5). Yellow solid ($85.0 \mathrm{mg}, 63 \%$), mp. $107-108{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=$ 0.45 (ethyl acetate/petroleum ether $=3 / 10) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.02(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.88$ $(\mathrm{s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 167.11,160.13,159.45,158.05,135.38,134.19,132.36,130.91,129.76,128.35,128.14$, $128.02,123.70,120.54,113.70,113.63,113.53,105.34,70.32,61.20,55.46,55.31,55.19,45.00$, 15.08, 13.81; HRMS(ESI-TOF): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{NaO}_{8}{ }^{+}: 697.2520$, found: 697.2545.

Ethyl 4-(4-chlorophenyl)-1-(4-((4-chlorophenyl)(phenyl)methyl)-5-ethoxyoxazol-2-yl)isoqui-noline-3-carboxylate (2f):

Ethyl 7-chloro-1-(4-((3-chlorophenyl)(phenyl)methyl)-5-ethoxyoxazol-2-yl)-4-phenylisoquin-oline-3-carboxylate (2f'):

Eluent: ethyl acetate/petroleum ether (1/5). According to the ${ }^{1} \mathrm{H} N M R$, the ratio of isomer ($\mathbf{2 f} / \mathbf{2} \mathbf{f}^{\prime}$) was approximately $2: 1$; Red solid $(89.8 \mathrm{mg}, 72 \%) ; \mathrm{R}_{\mathrm{f}}=0.50$ (ethyl acetate/petroleum ether $=$ $3 / 10) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.64(\mathrm{~s}, 1 \mathrm{H} \times 0.34), 9.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H} \times 0.66), 7.70(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H} \times 0.66), 7.61-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 1 \mathrm{H} \times 0.34)$, 7.49-7.47 (m, 2H), $7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 2 \mathrm{H})$, $7.32-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H} \times 0.66), 5.41(\mathrm{~s}, 1 \mathrm{H} \times 0.34), 4.33(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H} \times 0.34), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H} \times 0.66), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H} \times 0.66), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H} \times 0.34), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \times 0.34), 1.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H} \times 0.66), 1.08(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H} \times 0.66), 0.98(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \times 0.34) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 166.50,166.44,155.74$, $155.66,149.90,149.56,144.24,142.91,142.13,142.08,141.87,141.28,141.16,141.10,136.38$, $135.66,135.34,134.87,134.42,134.18,133.78,132.96,132.26,132.20,131.59,131.10,130.86$, $130.23,130.18,129.66,129.53,128.73,128.68,128.40,128.39,128.37,128.30,128.28,128.23$, $128.14,127.78,126.99,126.65,126.62,126.58,126.17,70.21,70.13,61.43,61.36,46.43,46.16$, 14.94, 14.91, 13.68, 13.56.

Ethyl 1-(5-ethoxy-4-(phenyl(p-tolyl)methyl)oxazol-2-yl)-7-methyl-4-phenylisoquinoline-3-carboxylate (2 g):

Ethyl 1-(5-ethoxy-4-(phenyl(p-tolyl)methyl)oxazol-2-yl)-4-(p-tolyl)isoquinoline-3-carboxylate ($2 \mathrm{~g}^{\prime}$):

$2 g$

2g'

Eluent: ethyl acetate/petroleum ether (1/5). According to the ${ }^{1} \mathrm{H}$ NMR, the ratio of isomer ($\mathbf{2 g} / \mathbf{2 g}$ ') was approximately $4: 1$; Red solid $(76.9 \mathrm{mg}, 66 \%) ; \mathrm{R}_{\mathrm{f}}=0.45$ (ethyl acetate/petroleum ether $=$ $3 / 10) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H} \times 0.8), 9.46(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H} \times 0.2)$, $7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.39-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.21(\mathrm{~m}$, $3 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.04(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H} \times 0.8), 5.41(\mathrm{~s}, 1 \mathrm{H} \times 0.2), 4.27(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.18-4.11(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H} \times 0.2), 2.42(3 \mathrm{H} \times 0.8), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 1.02-0.97 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 166.96,155.75,149.99,142.79,142.56$, $141.60,137.76,136.60,135.87,134.19,130.60,130.41,129.84,129.70,129.25,128.91,128.75$, $128.20,128.15,128.12,128.05,127.89,127.17,126.96,126.57,126.33,126.02,120.33,70.22$, 61.26, 47.06, 21.51, 21.41, 14.97, 13.64.

Ethyl 1-(5-ethoxy-4-(1-phenylethyl)oxazol-2-yl)-4-methylisoquinoline-3-carboxylate (2h):

Eluent: ethyl acetate/petroleum ether (1/7). Yellow liquid ($64.6 \mathrm{mg}, 75 \%$); $\mathrm{R}_{\mathrm{f}}=0.50$ (ethyl acetate/petroleum ether $=1 / 4) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.32-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H})$, $1.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (151 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta: 167.25,154.58,145.22,141.30,136.86,130.58,129.88,129.22,128.28,127.34,126.19$, $126.15,124.21,122.21,70.16,61.71,36.08,20.91,15.05,14.65,14.28 ;$ HRMS(ESI-TOF): [M + $\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{4}{ }^{+}$: 453.1785 , found: 453.1694 .

Ethyl 1-(5-ethoxy-4-(1-(p-tolyl)ethyl)oxazol-2-yl)-4,7-dimethylisoquinoline-3-carboxylate

 (2i):

Eluent: ethyl acetate/petroleum ether (1/7). Yellow liquid ($58.7 \mathrm{mg}, 64 \%$); $\mathrm{R}_{\mathrm{f}}=0.50$ (ethyl acetate/petroleum ether $=1 / 4) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.29(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.33-4.25(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.70$ $(\mathrm{d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right)$ $\delta: 167.29,142.46,142.29,140.41,139.48,135.63,135.14,132.70,130.19,128.96,127.30,127.29$, $126.50,124.12,122.34,70.23,61.65,35.63,22.17,21.10,20.98,15.08,14.65,14.30$; HRMS(ESI-TOF): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}$: 459.2278, found: 459.2289.

Ethyl 7-chloro-1-(4-(4-chlorobenzyl)-5-ethoxyoxazol-2-yl)isoquinoline-3-carboxylate (2j):

Eluent: ethyl acetate/petroleum ether (1/7). Yellow solid ($68.8 \mathrm{mg}, 73 \%$), mp. $86-87^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.50$ (ethyl acetate/petroleum ether $=1 / 4) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.35-9.33(\mathrm{~m}, 1 \mathrm{H}), 8.55(\mathrm{~s}$, $1 \mathrm{H}), 8.02-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 1.50(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{t}, J=7.1 \mathrm{~Hz}$,
$3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta: 165.09,145.26,141.82,136.67,134.89,132.74,131.06$, $130.40,130.28,129.36,128.22,127.76,127.12,126.75,120.62,116.15,70.17,62.17,28.91$, 15.06, 14.35; HRMS(ESI-TOF): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{4}{ }^{+}: 493.0692$, found: 493.0681.

Ethyl 1-(5-ethoxy-4-(4-fluorobenzyl)oxazol-2-yl)-7-fluoroisoquinoline-3-carboxylate (2k):

Eluent: ethyl acetate/petroleum ether (1/7). Yellow solid ($67.5 \mathrm{mg}, 77 \%$), mp. $127-129{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}=$ 0.50 (ethyl acetate/petroleum ether $=1 / 4) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.35-9.32(\mathrm{~m}, 1 \mathrm{H})$, $8.54(\mathrm{~s}, 1 \mathrm{H}), 8.01-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.98(\mathrm{~m}, 2 \mathrm{H}), 4.53$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 1.50(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 165.20,162.24(\mathrm{~d}, J=237.7 \mathrm{~Hz}), 161.48(\mathrm{~d}, J=229.2$ $\mathrm{Hz}), 155.73,149.73,144.19(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 140.49,134.89(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 134.87,133.88$, $131.06(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 131.00,129.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 129.90,128.21(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 124.15$, $121.74(\mathrm{~d}, J=25.9 \mathrm{~Hz}), 121.56,117.72,115.23(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 115.09,112.38(\mathrm{~d}, J=24.5 \mathrm{~Hz})$, 112.22, 70.18, 62.01, 30.34, 15.06, 14.32; ${ }^{19} \mathrm{~F}$ NMR $\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-96.00-112.05(\mathrm{~m}, 1 \mathrm{~F})$, -109.37-121.37 (m, 1F); HRMS(ESI-TOF): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{4}{ }^{+}$: 461.1283, found: 461.1299.

Ethyl 1-(5-ethoxy-4-(2-fluorobenzyl)oxazol-2-yl)-5-fluoroisoquinoline-3-carboxylate (21):

Eluent: ethyl acetate/petroleum ether (1/7). Yellow solid ($50.0 \mathrm{mg}, 57 \%$), mp. $91-93{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.50$ (ethyl acetate/petroleum ether $=1 / 4) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.38(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$8.79(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{q}, J=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 1.50(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 164.98,160.93(\mathrm{~d}, J=$ $245.7 \mathrm{~Hz}), 158.33(\mathrm{~d}, J=255.9 \mathrm{~Hz}), 156.12,149.70,144.69,141.13,130.64(\mathrm{~d}, J=4.5 \mathrm{~Hz})$, $130.61,130.54,130.49(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 128.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 128.01,127.75(\mathrm{~d}, J=3.4 \mathrm{~Hz})$, $124.02(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 123.98,123.96,117.18(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 116.59,115.22(\mathrm{~d}, J=21.9 \mathrm{~Hz})$, $115.07,114.64,114.52(\mathrm{~d}, J=18.6 \mathrm{~Hz}), 70.25,62.11,24.22,24.20,15.03,14.34 ;{ }^{19} \mathrm{~F}$ NMR (565 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-118.09-118.15(\mathrm{~m}, 1 \mathrm{~F}),-120.14-120.17(\mathrm{~m}, 1 \mathrm{~F}) ;$ HRMS(ESI-TOF): $[\mathrm{M}+\mathrm{Na}]^{+}$ calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{4}^{+}$: 461.1283 , found: 461.1298 .

Ethyl 5-bromo-1-(4-(2-bromobenzyl)-5-ethoxyoxazol-2-yl)isoquinoline-3-carboxylate (2m):

Eluent: ethyl acetate/petroleum ether (1/7). Yellow solid (49.3 mg, 44\%), mp. $65-67{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.50$ (ethyl acetate/petroleum ether $=1 / 4) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.63(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.92(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 1.51(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 156.37,145.36,142.05,138.35,136.09,134.88,132.69,130.72,130.44,128.49,128.02$, $127.82,127.39,124.52,123.29,123.24,116.15,70.16,62.18,31.62,15.07,14.35$; HRMS(ESI-TOF): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{4}{ }^{+}$: 580.9682, found: 580.9670.

Ethyl

1-(5-ethoxy-4-(4-methoxybenzyl)oxazol-2-yl)-7-methoxyisoquinoline-3-carboxylate (2n):

S11

Eluent: ethyl acetate/petroleum ether (1/7). Yellow solid (62.0 mg, 67\%), mp. $76-77{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.51$ (ethyl acetate/petroleum ether $=1 / 4) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.99(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.49(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 4.52(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $1.49(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 165.59,161.26$, $158.10,155.18,139.01,132.34,131.64,129.85,129.72,128.94,124.45,124.16,118.03,113.74$, 105.80, 70.31, 61.82, 55.48, 55.27, 30.28, 15.16, 14.39; HRMS(ESI-TOF): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{6}{ }^{+}: 485.1683$, found: 485.1689 .

Ethyl 7-(5-ethoxy-4-(furan-2-ylmethyl)oxazol-2-yl)furo[2,3-c]pyridine-5-carboxylate (20):

Eluent: ethyl acetate/petroleum ether (1/8). Brown liquid (32.1 mg, 42\%); $\mathrm{R}_{\mathrm{f}}=0.50$ (ethyl acetate/petroleum ether $=1 / 4) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.39(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 1.49(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13}$ C NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 165.11,160.47,155.76,152.52,148.80,143.48,141.33,139.85$, $124.82,115.81,110.38,109.42,107.68,106.17,70.58,62.18,24.45,15.03,14.33$; HRMS(ESI-TOF): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{6}{ }^{+}$: 405.1057, found: 405.1065.

Methyl 1-(4-benzhydryl-5-methoxyoxazol-2-yl)-4-phenylisoquinoline-3-carboxylate (2p):

Eluent: ethyl acetate/petroleum ether (1/7). Brown liquid ($75.8 \mathrm{mg}, 72 \%$); $\mathrm{R}_{\mathrm{f}}=0.45$ (ethyl acetate/petroleum ether $=1 / 4) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.56(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.70$ $(\mathrm{m}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 6 \mathrm{H})$, 7.25-7.22(m, 2H), $5.47(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 142.61$, $140.69,136.80,135.95,134.99,130.82,129.65,129.63,128.94,128.33,128.26,128.13,127.89$, 126.76, 126.51, 126.49, 119.59, 60.77, 52.48, 47.15; HRMS(ESI-TOF): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{4}{ }^{+}: 549.1785$, found: 549.1789.

(1-(4-Benzhydryl-5-morpholinooxazol-2-yl)-4-phenylisoquinolin-3-yl)(morpholino)methano-

 ne (2q):

Eluent: acetone/petroleum ether (1/10). Brown liquid (87.9 mg, 69\%); $\mathrm{R}_{\mathrm{f}}=0.50$ (acetone/petroleum ether $=2 / 5) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.45-9.43(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.74(\mathrm{~m}$, $1 \mathrm{H}), 7.69-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.47(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$, $7.42(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.24(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 3.77-3.75$ $(\mathrm{m}, 4 \mathrm{H}), 3.62-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.26-3.24(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.13(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 167.36,142.90,136.01,134.64,132.08,130.77,130.69,130.55,129.05$, $128.68,128.62,128.54,128.46,128.34,127.94,126.51,126.11,125.73,66.82,66.50,50.79$, 47.76, 46.90, 41.74; HRMS(ESI-TOF): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{NaO}_{4}{ }^{+}: 659.2629$, found: 659.2639.

III. General Procedure for the Preparation of 3 (3a as Example):

1) NaOH (2.0 eq.)

2a, $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{1}=\mathrm{H}$
3a, $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{1}=\mathrm{H}, 99 \%$
2d, $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p, \mathrm{R}^{1}=\mathrm{Me}$
3d, $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p}, \mathrm{R}^{1}=\mathrm{Me}, 98 \%$

To a suspension solution of $\mathbf{2 a}(0.5 \mathrm{mmol}, 277.3 \mathrm{mg})$ in a $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=1 / 1)$ was added the $\mathrm{NaOH}(40.0 \mathrm{mg}, 1.0 \mathrm{mmol})$. The reaction mixture was stirred for 8 h under refluxing until compound 2a was consumed (monitored by TLC). The reaction mixture was poured into saturated aqueous $\mathrm{NaCl}(15.0 \mathrm{~mL})$, followed by acidification with HCl solution to adjust the pH value of the solution to 4 , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL} \times 3)$. The combined organic extracts were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure to yield the product $3 \mathbf{3}(260.7 \mathrm{mg}, 99 \%)$, which may be used in the next step without purification.

1-(4-Benzhydryl-5-ethoxyoxazol-2-yl)-4-phenylisoquinoline-3-carboxylic acid (3a):

Yellow solid ($260.7 \mathrm{mg}, 99 \%$); mp. $179-180^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.45$ (acetone/acetic acid/petroleum ether $=$ 1/1/5); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 13.17(\mathrm{~s}, 1 \mathrm{H}), 9.43(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.77(\mathrm{~m}$, 2H), $7.59(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 2 \mathrm{H})$, $7.35(\mathrm{~s}, 4 \mathrm{H}), 7.24(\mathrm{~s}, 2 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 4.30-4.22(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , DMSO- d_{6}) $\delta: 168.33,155.66,143.31,142.99,136.30,135.42,131.95,131.83,130.38,129.89$, $129.09,128.82,128.78,128.72,127.23,126.94,126.43,125.64,120.66,71.27,46.66,15.23$; HRMS(ESI-TOF): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{4}{ }^{+}: 549.1785$, found: 549.1760.

1-(4-(Di-p-tolylmethyl)-5-ethoxyoxazol-2-yl)-7-methyl-4-(p-tolyl)isoquinoline-3-carboxylic acid (3d):

Yellow solid ($285.5 \mathrm{mg}, 98 \%$); mp. $185-186{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.45$ (acetone/acetic acid/petroleum ether $=$ $1 / 1 / 5) ;{ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) $\delta: 8.90(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 4 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 6 \mathrm{H}), 1.12(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 171.54,154.87,151.10,140.49,137.06$, $136.74,135.82,134.93,134.19,132.62,130.68,129.27,128.91,128.85,127.54,125.83,125.71$, 120.44, 71.16, 45.61, 22.03, 21.35, 21.05, 15.26; HRMS(ESI-TOF): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{NaO}_{4}{ }^{+}: 605.2411$, found: 605.2408 .

IV. General Procedure for the Preparation of 4 (4a as Example):

4a, $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{1}=\mathrm{H}, 57 \%$
4d, $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p, \mathrm{R}^{1}=\mathrm{Me}, 53 \%$
To a solution of thionyl chloride (0.6 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15.0 \mathrm{~mL})$ was slowly added the $\mathbf{3 a}$ (0.5 $\mathrm{mmol}, 263 \mathrm{mg}$) under nitrogen atmosphere at room temperature. After the reaction mixture was stirred for 12 h at room temperature, $\mathrm{AlCl}_{3}(0.6 \mathrm{mmol}, 80.0 \mathrm{mg})$ was added in one-pot. After the reaction mixture was stirred at room temperature for 1 h , the mixture was poured into saturated aqueous $\mathrm{NaCl}(15.0 \mathrm{~mL})$, followed by basification with saturated aqueous NaHCO_{3} solution to adjust the pH value of the solution to 7 , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL} \times 3)$. The combined organic extracts were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure to yield the crude product, which was purified by chromatography (acetone/petroleum ether $=3: 10, \mathrm{~V} / \mathrm{V})$ to give $\mathbf{4 a}(144.9 \mathrm{mg}, 57 \%)$ as a red solid.

5-(4-Benzhydryl-5-ethoxyoxazol-2-yl)-7H-indeno[2,1-c]isoquinolin-7-one (4a):

Eluent: acetone/petroleum ether (1/4). Red solid (144.9 mg, 57%), mp. $92-94{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.45$ (acetone/petroleum ether $=2 / 5) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.60(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.24(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 192.48,155.92,150.13,145.76,145.17,142.64,142.06,136.74,135.00,133.01,132.15$, $131.69,130.62,129.75,129.71,128.95,128.40,128.27,126.46,124.49,124.02,123.86,120.39$, 70.29, 47.16, 14.95; HRMS(ESI-TOF): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{3}{ }^{+}: 531.1679$, found: 531.1668.

5-(4-(Di-p-tolylmethyl)-5-ethoxyoxazol-2-yl)-3,9-dimethyl-7H-indeno[2,1-c]isoquinolin-7-one

 (4d):

Eluent: acetone/petroleum ether (1/4). Red solid (149.6 mg, 53\%), mp. $112-114{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.45$ (acetone/petroleum ether $=2 / 5) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.27(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.27$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H})$, $2.36(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 192.77,155.52$, $150.16,144.63,144.44,141.05,140.10,140.07,139.16,137.16,135.84,135.02,133.57,133.33$, $130.03,128.93,128.78,128.69,125.15,123.82,123.54,120.43,70.34,46.02,22.32,21.33,21.00$, 15.03; HRMS(ESI-TOF): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{3}{ }^{+}$: 587.2305, found: 587.2302.
V. ORTEP Drawing of Compound $2 k$:

Figure 1. Crystal ORTEP drawing of compound $2 k$

VI. Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR Spectra of Compounds 2-4:

$\left.\begin{array}{llllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \begin{array}{c}90 \\ \mathrm{f} 1 \\ (\mathrm{ppm})\end{array} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right) 0$
Figure 2. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 2a

Figure 3. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 2b

$\begin{array}{lllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{c}100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} & 90 \\ 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

Figure 4. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra of compound 2c

Figure 5. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (lower) spectra of compound 2d

Figure 6. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 2e

Nべ

$\begin{array}{llllllll}138 & 136 & 134 & \begin{array}{llll}132 & 130 \\ \mathrm{f} 1 & (\mathrm{ppm})\end{array} & 128 & 126 & 124\end{array}$

220	200	180	160	140	120	$\begin{gathered} 100 \\ \mathrm{f1}(\mathrm{ppm}) \end{gathered}$	80	60	40	20	0	-20

Figure 7. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound $\mathbf{2 f}$ and $\mathbf{2 f} \mathbf{f}^{\prime}$

Figure 8. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound $\mathbf{2 g}$ and $\mathbf{2 g}{ }^{\prime}$

Figure 9. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound $\mathbf{2 h}$

$\begin{array}{llllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \underset{\substack{9 \\ f 1 \\(\mathrm{ppm})}}{90} 80 & 70 & 60 & 50 & 40 & 30 & 20 \\ 10 & 0 & -10\end{array}$

Figure 10. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound $\mathbf{2 i}$

Figure 11. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound $\mathbf{2 j}$

dododododocici

Figure 12. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra of compound $\mathbf{2 k}$

Figure 13. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra of compound 21

Figure 14. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (lower) spectra of compound $\mathbf{2 m}$

Figure 15. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound $\mathbf{2 n}$

Figure 16. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound $\mathbf{2 0}$

Figure 17. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound $\mathbf{2 p}$

Figure 18. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound $\mathbf{2 q}$

Figure 19. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 3a

Figure 20. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound $\mathbf{3 d}$

Figure 21. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound $\mathbf{4 a}$

Figure 22. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound $4 \mathbf{d}$

[^0]: 1. H. Jiang, Y. Cheng, R. Wang, Y. Zhang, S. Yu, Chem. Commun. 2014, 50, 6164-6167.
