Electronic Supplementary Information

Spiroalanpyrroids A and B, sesquiterpene alkaloids with a unique

spiro-eudesmanolide-pyrrolizidine skeleton from Inula helenium

You-Sheng Cai,‡^a Zi Wu,‡^a Xiao-Qin Zheng,^a Cong Wang,^{b,e} Jian-Rong Wang,^c Xin-Xin Zhang,^a Guofu Qiu,^a Kongkai Zhu,^d Shugeng Cao^e and Jianqing Yu^{*a}

^aInstitute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China

^bGuangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China

[°]Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China

^dSchool of Biological Science and Technology, University of Jinan, Jinan 250022, People's Republic of China

^eDepartment of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo 96720, United States

Table of contents

No.	Contents	Page
1	Fig. S1 HRESIMS spectrum of 1.	S4
2	Fig. S2 ¹ H NMR spectrum (400 MHz) of 1 in CD ₃ OD.	S4
3	Fig. S3 ¹³ C NMR and DEPT spectra (100 MHz) of 1 in CD ₃ OD.	S5
4	Fig. S4 ¹ H- ¹ H COSY spectrum (400 MHz) of 1 in CD ₃ OD.	S5
5	Fig. S5 HSQC spectrum (400 MHz) of 1 in CD ₃ OD.	S6
6	Fig. S6 HMBC spectrum (600 MHz) of 1 in CD ₃ OD.	S6
7	Fig. S7 NOESY spectrum (600 MHz) of 1 in CD ₃ OD.	S 7
8	Fig. S8 UV spectrum of 1 in CH ₃ OH.	S 7
9	Table S1 Crystal data and structure refinement for 1.	S 8
10	Table S2 Atomic coordinates (\times 10 ⁴) and equivalent isotropic displacement	S 8
	parameters (Å $^2 \times 10^3$) for 1. U(eq) is defined as one third of the trace of the	
	orthogonalized U ^{ij} tensor.	
11	Table S3 Bond lengths for 1.	S10
12	Table S4 Bond angles for 1.	S10
13	Table S5 Anisotropic displacement parameters ($Å^2 \times 10^3$) for 1. The anisotropic	S12
	displacement factor exponent takes the form: $-2^{2}[h^{2} a^{*2}U^{11} + + 2 h k a^{*} b^{*} U^{12}]$.	
14	Table S6 Hydrogen atom coordinates (${\rm \AA}^2$ $ imes$ 10 ⁴) and isotropic displacement	S13
	parameters (Å ² × 10 ³) for 1 .	
15	Fig. S9 HRESIMS spectrum of 2.	S15
16	Fig. S10 ¹ H NMR spectrum (400 MHz) of 2 in CD_3OD .	S15
17	Fig. S11 ¹³ C NMR and DEPT spectra (100 MHz) of 2 in CD ₃ OD.	S16
18	Fig. S12 ¹ H- ¹ H COSY spectrum (400 MHz) of 2 in CD ₃ OD.	S16
19	Fig. S13 HSQC spectrum (400 MHz) of 2 in CD ₃ OD.	S17
20	Fig. S14 HMBC spectrum (600 MHz) of 2 in CD ₃ OD.	S17
21	Fig. S15 NOESY spectrum (600 MHz) of 2 in CD ₃ OD.	S18
22	Fig. S16 UV spectrum of 2 in CH ₃ OH.	S18
23	Fig. S17 HRESIMS spectrum of 3.	S19
25	Fig. S18 ¹ H NMR spectrum (400 MHz) of 3 in CDCl ₃ .	S19
26	Fig. S19 ¹³ C NMR and DEPT spectra (100 MHz) of 3 in CDCl ₃ .	S20
27	Fig. S20 ¹ H- ¹ H COSY spectrum (400 MHz) of 3 in CDCl ₃ .	S20
28	Fig. S21 HSQC spectrum (400 MHz) of 3 in CDCl ₃ .	S21
29	Fig. S22 HMBC spectrum (400 MHz) of 3 in CDCl ₃ .	S21
30	Fig. S23 NOESY spectrum (400 MHz) of 3 in CDCl ₃ .	S22
31	Fig. S24 UV spectrum of 3 in CH ₃ OH.	S22
32	Table S7 Crystal data and structure refinement for 3.	S23
33	Table S8 Atomic coordinates (\times 10 ⁴) and equivalent isotropic displacement	S23
	parameters (Å $^2 \times 10^3$) for 3. U(eq) is defined as one third of the trace of the	
	orthogonalized U ^{ij} tensor.	
34	Table S9 Bond lengths for 3.	S25
35	Table S10 Bond angles for 3.	S26

36	Table S11 Anisotropic displacement parameters ($Å^2 \times 10^3$) for 3 . The anisotropic	S26
	displacement factor exponent takes the form: -2 ${}^{2}[h^{2} a^{*2}U^{11} + + 2 h k a^{*} b^{* 12}]$	
37	Table S12 Hydrogen atom coordinates (Å $^2\times$ 10^4) and isotropic displacement	S27
	parameters (Å ² × 10 ³) for 3 .	
38	Fig. S25 HRESIMS spectrum of 4.	S28
40	Fig. S26 ¹ H NMR spectrum (400 MHz) of 4 in CDCl ₃ .	S29
41	Fig. S27 ¹³ C NMR and DEPT spectra (100 MHz) of 4 in CDCl ₃ .	S29
42	Fig. S28 ¹ H- ¹ H COSY spectrum (400 MHz) of 4 in CDCl ₃ .	S30
43	Fig. S29 HSQC spectrum (400 MHz) of 4 in CDCl ₃ .	S30
44	Fig. S30 HMBC spectrum (400 MHz) of 4 in CDCl ₃ .	S31
45	Fig. S31 NOESY spectrum (400 MHz) of 4 in CDCl ₃ .	S31
46	Fig. S32 UV spectrum of 4 in CH ₃ OH.	S32
47	Fig. S33 Dose-Effect Curve, showing the NO inhibition of 3	S32
48	Fig. S34 Dose-Effect Curve, showing the NO inhibition of 4	S33

Fig. S1 HRESIMS spectrum of 1.

Fig. S2 1 H NMR spectrum (400 MHz) of 1 in CD₃OD.

Fig. S3 ¹³C NMR and DEPT spectra (100 MHz) of 1 in CD₃OD.

Fig. S4 ¹H-¹H COSY spectrum (400 MHz) of 1 in CD₃OD.

Fig. S5 HSQC spectrum (400 MHz) of 1 in CD₃OD.

Fig. S6 HMBC spectrum (600 MHz) of 1 in CD₃OD.

Fig. S7 NOESY spectrum (600 MHz) of 1 in CD₃OD.

Fig. S8 UV spectrum of 1 in CH₃OH.

Empirical formula	C ₂₀ H ₂₇ NO ₃		
Formula weight	ght 329.42		
Temperature	100 K		
Wavelength	1.54178 Å		
Crystal system	Orthorhombic		
Space group	P212121		
Unit cell dimensions	a = 10.9662(3) Å =		
	b = 11.7770(3) Å	= 90°	
	c = 27.0642(6) Å	= 90°	
Volume	3495.31(15) Å	3	
Z	8		
Density (calculated)	1.252 g/m ³		
Absorption coefficient	0.664 mm ⁻¹		
F(000)	1424.0		
Crystal size	$0.15 \times 0.12 \times 0.08$	mm ³	
Theta range for data collection	8.188 to 148.716	5°.	
Index ranges	$-10 \le h \le 13, -14 \le k \le 13$, -33 ≤1 ≤33	
Reflections collected	21237		
Independent reflections	7061 [R(int) = 0.04	432]	
Data / restraints / parameters	7061 / 0 / 435		
Goodness-of-fit on F ²	1.050		
Final R indices [I>2sigma(I)]	$R_1 = 0.0332, wR_2 $	0.0800	
R indices (all data)	$R_1 = 0.0365, wR_2 = 0.03655, wR_2 = 0.036555, wR_2 = 0.036555, wR_2 = 0.0$	0.0823	
Flack parameter	0.02(8)		
Largest diff. peak and hole	0.21 and -0.17 e.	Å-3	

Table S1 Crystal data and structure refinement for 1.

Table S2 Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² $\times 10^3$) for **1**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

tensor.				
Atom	Х	У	Z	U(eq)
O(1)	5140.0(12)	4360.0(11)	5504.3(5)	18.8(3)
O(6)	3350.1(11)	8146.8(11)	5545.8(5)	18.1(3)
O(4)	3696.8(11)	6590.7(11)	5093.4(5)	20.5(3)
O(2)	6543.5(12)	3587.7(12)	5010.5(6)	24.1(3)
O(5)	1204.3(16)	5239.8(14)	4207.3(6)	32.5(4)
O(3)	5524.5(19)	777.8(15)	4134.3(6)	40.9(4)
N(2)	1441.4(15)	7168.6(15)	4253.2(6)	21.6(3)

N(1)	4200.6(19)	2271.5(16)	4224.6(7)	29.0(4)
C(6)	4272.1(17)	2178.4(15)	5978.5(7)	17.5(4)
C(12A)	2997.7(16)	7301.6(16)	5239.4(7)	15.1(3)
C(5)	3693.5(17)	2545.5(15)	6465.8(7)	17.6(4)
C(12)	5525.4(17)	3569.6(15)	5180.2(7)	17.7(4)
C(13A)	1066.7(16)	6275.2(15)	4995.1(7)	17.0(4)
C(7A)	1203.7(15)	8078.9(15)	5568.5(7)	14.8(3)
C(11A)	1651.7(15)	7424.4(14)	5115.6(6)	14.2(3)
C(4)	4022.9(19)	1824.6(16)	6911.0(7)	20.9(4)
C(8)	3849.1(16)	4129.4(15)	5632.4(7)	16.6(3)
C(6A)	980.7(16)	7277.2(16)	6007.6(7)	16.4(3)
C(19A)	2598.3(17)	8788.6(17)	4404.1(7)	20.9(4)
C(5A)	894.2(17)	7932.4(16)	6493.8(7)	17.3(4)
C(10A)	2105.7(17)	8565.1(16)	6613.2(7)	17.7(4)
C(7)	3738.3(17)	2853.8(16)	5544.9(7)	16.6(4)
C(10)	3956.3(18)	3816.5(16)	6584.1(7)	18.9(4)
C(20A)	1550.7(16)	8082.6(16)	4615.7(7)	16.5(3)
C(9)	3536.1(19)	4552.3(16)	6145.3(7)	20.4(4)
C(8A)	2290.5(17)	8866.7(16)	5663.5(7)	17.6(4)
C(16)	4956(2)	1451.9(18)	4391.1(8)	26.4(4)
C(9A)	2399.1(18)	9367.8(16)	6178.3(7)	20.2(4)
C(4A)	495.3(18)	7229.1(19)	6934.9(7)	22.3(4)
C(1A)	1906(2)	9294.2(18)	7080.7(7)	23.3(4)
C(2)	3449(2)	3409.8(18)	7491.6(7)	26.4(4)
C(20)	3817.2(17)	3102.2(16)	4593.3(7)	18.4(4)
C(16A)	1238.6(17)	6131.6(18)	4440.8(7)	21.9(4)
C(11)	4504.0(16)	2724.4(15)	5073.5(7)	17.1(4)
C(13)	4977.0(18)	1528.6(16)	4949.0(8)	21.6(4)
C(15)	4867(2)	1018.7(18)	6908.6(8)	27.1(4)
C(2A)	1481(2)	8597.8(18)	7523.2(7)	25.0(4)
C(19)	4093(2)	4225.4(18)	4330.9(8)	25.1(4)
C(14A)	3172.3(17)	7743.0(18)	6699.3(8)	21.3(4)
C(15A)	360(2)	6111(2)	6931.5(8)	28.3(5)
C(1)	3191(2)	4145.3(17)	7039.6(7)	24.2(4)
C(14)	5318(2)	4011.4(18)	6691.2(8)	25.2(4)
C(18A)	2381.1(19)	8687(2)	3845.1(8)	27.0(4)
C(18)	3749(2)	3948(2)	3794.0(8)	30.2(5)
C(3A)	319(2)	7931(2)	7398.1(8)	28.0(4)

C(3)	3314(2)	2142.4(18)	7368.1(7)	25.3(4)
C(17A)	1941(2)	7459(2)	3771.1(8)	30.7(5)
C(17)	4180(3)	2728(2)	3723.3(9)	45.8(7)

Table S3 Bond lengths for 1.

Bond	lengths[Å]	Bond	lengths[Å]
O(1)-C(12)	1.347(2)	C(8)-C(7)	1.526(2)
O(1)-C(8)	1.483(2)	C(8)-C(9)	1.514(3)
O(6)-C(12A)	1.352(2)	C(6A)-C(5A)	1.528(3)
O(6)-C(8A)	1.473(2)	C(19A)-C(20A)	1.529(3)
O(4)-C((12A)	1.202(2)	C(19A)-C(18A)	1.536(3)
O(2)-C(12)	1.207(2)	C(5A)-C(10A)	1.557(3)
O(5)-C(16A)	1.226(3)	C(5A)-C(4A)	1.518(3)
O(3)-C(16)	1.226(3)	C(10A)-C(9A)	1.544(3)
N(2)-C(20A)	1.461(2)	C(10A)-C(1A)	1.545(3)
C(16A)	1.341(3)	C(10A)-C(14A)	1.536(3)
N(2)-C(17A)	1.456(3)	C(7)-C(11)	1.535(3)
N(1)-C(16)	1.349(3)	C(10)-C(9)	1.541(3)
N(1)-C(20)	1.459(3)	C(10)-C(1)	1.541(3)
N(1)-C(17)	1.459(3)	C(10)-C(14)	1.539(3)
C(6)-C(5)	1.526(3)	C(8A)-C(9A)	1.518(3)
C(6)-C(7)	1.534(3)	C(16)-C(13)	1.513(3)
C(12A)-C(11A)	1.520(2)	C(4A)-C(15A)	1.325(3)
C(5)-C(4)	1.517(3)	C(4A)-C(3A)	1.514(3)
C(5)-C(10)	1.558(3)	C(1A)-C(2A)	1.525(3)
C(12)-C(11)	1.526(3)	C(2)-C(1)	1.525(3)
C(13A)-C(11A)	1.533(2)	C(2)-C(3)	1.537(3)
C(13A)-C(16A)	1.521(3)	C(20)-C(11)	1.567(3)
C(7A)-C(11A)	1.529(2)	C(20)-C(19)	1.531(3)
C(7A)-C(6A)	1.537(2)	C(11)-C(13)	1.538(2)
C(7A)-C(8A)	1.532(2)	C(2A)-C(3A)	1.535(3)
C(11A)-C(20A)	1.563(2)	C(19)-C(18)	1.536(3)
C(4)-C(15)	1.326(3)	C(18A)-C(17A)	1.537(3)
C(4)-C(3)	1.508(3)	C(18)-C(17)	1.525(3)

Table S4 Bond angles for 1.

Bond	angles [°]	Bond	angles [°]
C(12)-O(1)-C(8)	108.99(14)	C(8)-C(7)-C(6)	111.20(15)
C(12A)-O(6)-C(8A)	109.32(14)	C(8)-C(7)-C(11)	100.56(14)
C(16A)-N(2)-C(20A)	115.49(16)	C(9)-C(10)-C(5)	109.08(15)

C(16A)-N(2)-C(17A)	127.99(18)	C(9)-C(10)-C(1)	108.20(16)
C(17A)-N(2)-C(20A)	113.44(17)	C(1)-C(10)-C(5)	107.76(16)
C(16)-N(1)-C(20)	115.34(17)	C(14)-C(10)-C(5)	111.20(16)
C(16)-N(1)-C(17)	125.7(2)	C(14)-C(10)-C(9)	110.59(16)
C(20)-N(1)-C(17)	112.61(18)	C(14)-C(10)-C(1)	109.92(16)
C(5)-C(6)-C(7)	110.84(15)	N(2)-C(20A)-C(11A)	102.79(14)
O(6)-C(12A)-C(11A)	110.04(15)	N(2)-C(20A)-C(19A)	102.17(15)
O(4)-C(12A)-O(6)	122.15(16)	C(19A)-C(20A)-C(11A)	122.71(15)
O(4)-C(12A)-C(11A)	127.81(17)	C(8)-C(9)-C(10)	116.99(15)
C(6)-C(5)-C(10)	111.89(15)	O(6)-C(8A)-C(7A)	103.22(14)
C(4)-C(5)-C(6)	115.38(16)	O(6)-C(8A)-C(9A)	111.12(15)
C(4)-C(5)-C(10)	109.30(15)	C(9A)-C(8A)-C(7A)	116.79(16)
O(1)-C((12)-C((11)	110.10(15)	O(3)-C(16)-N(1)	125.9(2)
O(2)-C((12)-O(1)	121.71(17)	O(3)-C(16)-C((13)	126.6(2)
O(2)-C(12)-C(11)	128.19(17)	N(1)-C(16)-C(13)	107.47(17)
C(16A)-C(13A)-C(11A)	104.84(15)	C(8A)-C(9A)-C(10A)	116.45(15)
C(11A)-C(7A)-C(6A)	111.18(14)	C(15A)-C(4A)-C(5A)	124.7(2)
C(11A)-C(7A)-C(8A)	100.95(14)	C(15A)-C(4A)-C(3A)	122.3(2)
C(8A)-C(7A)-C(6A)	111.47(15)	C(3A)-C(4A)-C(5A)	112.98(18)
C(12A)-C(11A)-C(13A)	111.67(14)	C(2A)-C(1A)-C(10A)	112.81(16)
C(12A)-C(11A)-C(7A)	100.55(14)	C(1)-C(2)-C(3)	111.05(17)
C(12A)-C(11A)-C(20A)	107.86(14)	N(1)-C(20)-C(11)	103.79(15)
C(13A)-C((11A)-C((20A)	102.95(14)	N(1)-C((20)-C(19)	101.84(16)
C(7A)-C(11A)-C(13A)	118.76(15)	C(19)-C(20)-C(11)	122.37(16)
C(7A)-C(11A)-C(20A)	114.90(14)	O(5)-C(16A)-N(2)	126.15(19)
C(15)-C(4)-C(5)	124.25(19)	O(5)-C(16A)-C(13A)	126.84(19)
C(15)-C(4)-C(3)	122.79(19)	N(2)-C(16A)-C(13A)	107.01(16)
C(3)-C(4)-C(5)	112.94(17)	C(12)-C(11)-C(7)	100.34(14)
O(1)-C(8)-C(7)	102.71(14)	C(12)-C(11)-C(20)	108.93(15)
O(1)-C(8)-C(9)	111.75(15)	C(12)-C(11)-C(13)	113.02(15)
C(9)-C(8)-C(7)	116.62(16)	C(7)-C(11)-C(20)	113.48(14)
C(5A)-C(6A)-C(7A)	111.43(15)	C(7)-C(11)-C(13)	117.23(15)
C(20A)-C(19A)-C(18A)	102.10(16)	C(13)-C(11)-C(20)	103.91(15)
C(6A)-C(5A)-C(10A)	111.56(15)	C(16)-C(13)-C(11)	105.55(16)
C(4A)-C(5A)-C(6A)	114.82(16)	C(1A)-C(2A)-C(3A)	110.85(17)
C(4A)-C(5A)-C(10A)	110.11(15)	C(20)-C(19)-C(18)	101.93(17)
C(9A)-C(10A)-C(5A)	108.22(15)	C(2)-C(1)-C(10)	113.42(17)
C(9A)-C(10A)-C(1A)	108.28(15)	C(19A)-C(18A)-C(17A)	104.51(17)
C(1A)-C(10A)-C(5A)	108.38(15)	C(17)-C(18)-C(19)	104.06(18)
C(14A)-C(10A)-C(5A)	112.30(16)	C(4A)-C(3A)-C(2A)	110.84(17)

C(14A)-C(10A)-C(9A)	110.05(16)	C(4)-C(3)-C(2)	111.71(17)
C(14A)-C(10A)-C(1A)	109.51(16)	N(2)-C(17A)-C(18A)	102.85(17)
C(6)-C(7)-C(11)	112.07(15)	N(1)-C(17)-C(18)	103.59(18)

Table S5 Anisotropic displacement parameters ($Å^2 \times 10^3$) for 1. The anisotropicdisplacement factor exponent takes the form: -2 2 [$h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$].

anopiaee	intent factor	enponent tantes t		- L'		•		 0 0	٦.
Atom	U ¹¹	U ²²	U ³³	τ	J23		U ¹³	U ¹²	
0(1)	20.3(6)	13.8(6)	22.2(7)	-1.	.3(5)		0.9(5)	-1.8(5)	
O(6)	13.4(6)	20.7(6)	20.1(6)	-1.	.0(5)		0.0(5)	-2.4(5)	
O(4)	14.8(6)	22.5(7)	24.1(7)	0.9	9(5)		0.7(5)	4.3(5)	
O(2)	18.1(6)	24.5(7)	29.8(7)	-0.	.6(6)		3.4(6)	-0.4(5)	
O(5)	39.6(9)	28.8(8)	29.2(8)	-13	5.5(6)		5.0(7)	-5.9(7)	
O(3)	64.6(12)	28.3(8)	29.8(8)	-5.	.6(7)		12.3(8)	15.0(8)	
N(2)	22.9(7)	26.2(8)	15.8(8)	-2.	.8(6)		0.1(6)	-0.7(7)	
N(1)	45.5(11)	23.6(9)	17.9(8)	-5.	.5(7)		0.1(8)	5.4(8)	
C(6)	21.2(8)	12.9(8)	18.3(9)	0.9	9(7)		0.9(7)	-0.3(7)	
C(12A)	13.8(8)	16.4(8)	15.0(8)	3.:	5(7)		0.0(6)	-0.8(7)	
C(5)	19.6(8)	15.6(8)	17.6(9)	0.2	2(7)		-2.0(7)	-1.8(7)	
C(12)	19.4(8)	15.1(8)	18.7(9)	1.0	6(7)		-1.6(7)	1.9(7)	
C(13A)	14.7(7)	16.2(8)	20.2(9)	-2.	.3(7)		-1.0(7)	-0.2(6)	
C(7A)	13.1(7)	14.5(8)	16.8(8)	-0.	.7(7)		0.0(6)	1.7(6)	
C(11A)	11.7(7)	14.3(8)	16.4(8)	0.	6(7)		-0.3(6)	1.3(6)	
C(4)	27.2(9)	17.1(9)	18.4(9)	1.9	9(7)		-2.9(8)	-5.1(8)	
C(8)	16.8(8)	14.5(8)	18.7(8)	1.	3(7)		0.9(7)	1.3(7)	
C(6A)	14.6(7)	18.1(8)	16.6(9)	-0.	.2(7)		-0.4(7)	-2.5(7)	
C(19A)	18.9(8)	23.6(9)	20.4(9)	4.	3(7)		2.6(7)	-0.5(7)	
C(5A)	16.6(8)	20.0(9)	15.3(8)	-0.	.7(7)		0.6(7)	1.4(7)	
C(10A)	20.4(8)	16.8(8)	16.0(8)	-0.	.8(7)		-1.2(7)	-2.3(7)	
C(7)	18.9(8)	15.2(8)	15.7(8)	-0.	.4(6)		0.8(7)	-0.4(7)	
C(10)	24.4(9)	14.9(8)	17.3(9)	-1.	.4(7)		-0.9(7)	0.7(7)	
C(20A)	15.2(8)	17.9(8)	16.4(8)	0.2	2(7)		0.2(7)	3.0(7)	
C(9)	26.9(9)	14.2(8)	20.2(9)	-0.	.5(7)		1.9(8)	5.1(7)	
C(8A)	18.3(8)	15.7(8)	19.0(9)	1.	6(7)		0.9(7)	-0.7(7)	
C(16)	35.5(10)	18.9(9)	24.8(10)	-3.	.5(8)		5.4(9)	0.5(9)	
C(9A)	27.5(9)	13.4(8)	19.8(9)	-1.	.3(7)		-0.8(8)	-4.8(7)	
C(4A)	18.5(8)	32.1(10)	16.3(9)	0.2	2(8)		-0.3(7)	-4.3(8)	
C(1A)	31.3(10)	19.6(9)	19.1(9)	-4.	.0(7)		0.2(8)	-2.3(8)	
C(2)	39.7(11)	23.0(9)	16.7(9)	-0.	.8(8)		0.7(8)	1.0(9)	
C(20)	19.0(8)	19.7(9)	16.4(8)	-2.	.3(7)		1.5(7)	-0.2(7)	
C(16A)	17.0(8)	26.3(10)	22.3(9)	-5.	.6(8)		0.5(7)	-2.2(7)	

C(11)	17.6(8)	15.0(8)	18.5(9)	-0.5(7)	0.2(7)	0.4(7)
C(13)	27.2(9)	14.8(8)	22.7(9)	-2.8(7)	1.0(8)	1.7(7)
C(15)	35.3(11)	22.8(10)	23.3(9)	4.8(8)	-3.7(9)	2.5(9)
C(2A)	31.2(10)	27.2(10)	16.6(9)	-3.8(8)	-0.1(8)	1.5(9)
C(19)	30.8(10)	22.1(9)	22.4(10)	5.0(8)	-3.7(8)	0.4(8)
C(14A)	18.6(8)	22.6(9)	22.6(9)	-0.9(8)	-4.6(7)	-1.0(8)
C(15A)	32.6(11)	31.5(11)	20.8(9)	5.2(8)	-1.0(8)	-12.3(9)
C(1)	34.0(11)	18.5(9)	20.2(9)	-1.3(7)	1.7(8)	3.8(8)
C(14)	28.1(10)	21.9(9)	25.6(10)	-1.1(8)	-4.1(8)	-7.5(8)
C(18A)	24.6(9)	35.4(11)	21.1(10)	7.2(8)	2.1(8)	4.1(9)
C(18)	37.4(11)	34.1(11)	19.1(10)	3.0(8)	0.4(9)	4.8(10)
C(3A)	28.4(10)	38.4(12)	17.4(9)	-1.9(9)	3.3(8)	-2.5(9)
C(3)	36.8(11)	22.4(10)	16.9(9)	3.2(7)	0.9(8)	-1.6(9)
C(17A)	36.4(11)	40.3(13)	15.3(9)	-0.4(9)	2.6(8)	-1.0(10)
C(17)	77.2(19)	43.4(14)	16.8(11)	-1.5(10)	0.1(12)	20.3(14)

Table S6 Hydrogen atom coordinates ($Å^2 \times 10^4$) and isotropic displacement parameters ($Å^2 \times 10^3$) for **1**.

Х	У	Z	U(eq)
4124.79	1358.02	5925.74	21
5164.37	2301.32	5993.84	21
2791.18	2476.9	6421.67	21
1476.49	5655.25	5177.95	20
189.78	6276.4	5081.98	20
453.19	8525.44	5489.33	18
3316.43	4531	5388.63	20
213.97	6851.37	5953.17	20
1655.88	6721.28	6028.47	20
3400.21	8470.24	4499.17	25
2550.09	9588.61	4514.73	25
257.57	8530.06	6445.38	21
2870.69	2634.08	5483.4	20
786.62	8546.07	4614.88	20
2639.29	4636.32	6165.96	25
3894.32	5318.41	6185.21	25
2258.7	9503.96	5419.71	21
1847.37	10031.38	6199.45	24
3242.45	9651.26	6221.16	24
2679.45	9681.13	7166.21	28
	x 4124.79 5164.37 2791.18 1476.49 189.78 453.19 3316.43 213.97 1655.88 3400.21 2550.09 257.57 2870.69 786.62 2639.29 3894.32 2258.7 1847.37 3242.45 2679.45	xy4124.791358.025164.372301.322791.182476.91476.495655.25189.786276.4453.198525.443316.434531213.976851.371655.886721.283400.218470.242550.099588.61257.578530.062870.692634.08786.628546.072639.294636.323894.325318.412258.79503.961847.3710031.383242.459651.262679.459681.13	xyz4124.791358.025925.745164.372301.325993.842791.182476.96421.671476.495655.255177.95189.786276.45081.98453.198525.445489.333316.4345315388.63213.976851.375953.171655.886721.286028.473400.218470.244499.172550.099588.614514.73257.578530.066445.382870.692634.085483.4786.628546.074614.882639.294636.326165.963894.325318.416185.212258.79503.965419.711847.3710031.386199.453242.459651.266221.162679.459681.137166.21

H(1AB)	1290.97	9886.44	7008.34	28
H(2A)	2874.95	3612.58	7759.71	32
H(2B)	4287.6	3558.97	7610.52	32
H(20)	2917.99	3034.86	4647.13	22
H(13A)	5816.42	1423.38	5075.58	26
H(13B)	4444.15	941.07	5096.78	26
H(15A)	5047.19	614.12	7203.38	33
H(15B)	5292.18	845.89	6612.1	33
H(2AA)	1319.14	9110.36	7805.65	30
H(2AB)	2133.11	8062.38	7621.77	30
H(19A)	4965	4430.94	4360.1	30
H(19B)	3587.37	4851.61	4463.71	30
H(14D)	2941.13	7181.19	6949.46	32
H(14E)	3885.83	8169.02	6814.02	32
H(14F)	3370.36	7354.33	6389.36	32
H(15C)	144.27	5723.54	7226.68	34
H(15D)	477.68	5697.9	6634	34
H(1A)	3357.13	4948.48	7123.82	29
H(1B)	2315.07	4081.96	6954.65	29
H(14A)	5590.14	3480.27	6947.2	38
H(14B)	5441.29	4792.39	6805.76	38
H(14C)	5790.71	3885.71	6388.7	38
H(18C)	3144.22	8826.33	3659.38	32
H(18D)	1754.47	9235.06	3733.9	32
H(18A)	2857.32	4009.53	3743.44	36
H(18B)	4167.45	4466.29	3561.11	36
H(3AA)	107.98	7424.81	7677.43	34
H(3AB)	-366.09	8466.91	7348.76	34
H(3A)	3608.45	1684.09	7650.56	30
H(3B)	2441.18	1963.74	7316.56	30
H(17C)	1307.5	7415.58	3510.99	37
H(17D)	2625.42	6951.03	3682.01	37
H(17A)	3606.98	2296.69	3511.68	55
H(17B)	5002.1	2705.07	3572.54	55

Fig. S9 HRESIMS spectrum of 2.

Fig. S10 1 H NMR spectrum (400 MHz) of 2 in CD₃OD.

Fig. S11 ¹³C NMR and DEPT spectra (100 MHz) of 2 in CD₃OD.

Fig. S12 1 H- 1 H COSY spectrum (400 MHz) of 2 in CD₃OD.

Fig. S13 HSQC spectrum (400 MHz) of 2 in CD₃OD.

Fig. S14 HMBC spectrum (600 MHz) of 2 in CD₃OD.

Fig. S15 NOESY spectrum (600 MHz) of 2 in CD₃OD.

Fig. S16 UV spectrum of 2 in CH₃OH.

Fig. S17 HRESIMS spectrum of 3.

Fig. S18 ¹H NMR spectrum (400 MHz) of 3 in CDCl₃.

Fig. S19 13 C and DEPT NMR spectra (400 MHz) of 3 in CDCl₃.

Fig. S20 ¹H-¹H COSY spectrum (400 MHz) of 3 in CDCl₃.

Fig. S21 HSQC spectrum (400 MHz) of 3 in CDCl₃.

Fig. S22 HMBC spectrum (400 MHz) of 3 in CDCl₃.

Fig. S23 NOESY spectrum (400 MHz) of 3 in CDCl₃.

Fig. S24 UV spectrum of 3 in MeOH.

Empirical formula	$C_{21}H_{31}NO_4$	
Formula weight	361.47	
Temperature	169.98 K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombio	c
Space group	P212121	
Unit cell dimensions	a = 7.7456(10) Å	= 90°
	b = 11.2402(9) Å	= 90°
	c = 22.236(3) Å	= 90°
Volume	1935.9(4) Å ³	
Z	4	
Density (calculated)	1.240 g/m ³	
Absorption coefficient	0.681 mm ⁻¹	
F(000)	784.0	
Crystal size	0.49 imes 0.42 imes 0.38	mm ³
Theta range for data collection	7.952 to 136.70	4°.
Index ranges	$-9 \le h \le 9, -13 \le k \le 13,$	$-26 \le l \le 26$
Reflections collected	13106	
Independent reflections	3543 [R(int) = 0.0	0252]
Data / restraints / parameters	3543 / 0 / 237	7
Goodness-of-fit on F ²	1.096	
Final R indices [I>2sigma(I)]	$R_1 = 0.0317, wR_2 =$	0.0821
R indices (all data)	$R_1 = 0.0317, wR_2 =$	0.0823
Flack parameter	0.05(3)	
Largest diff. peak and hole	0.16 and -0.28 e	.Å-3

Table S7 Crystal data and structure refinement for 3.

Table S8 Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² $\times 10^3$) for **3**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Atom	Х	У	Z	U(eq)
O(1)	251.8(15)	4463.5(11)	3684.4(5)	26.0(3)
O(2)	992(2)	2770.9(13)	4138.3(6)	42.8(4)
O(3)	4369(2)	7142.7(12)	5351.2(7)	45.5(4)
O(4)	2474.7(17)	6035.8(12)	5857.6(6)	33.1(3)
N(1)	5355.1(17)	4798.1(12)	4859.5(6)	20.4(3)
N(2)	1614(3)	7050.9(18)	2140.6(9)	33.8(4)
C(1)	3013(3)	6986(2)	1659.8(9)	40.2(5)

C(2)	4819(3)	7070.0(18)	1942.2(9)	35.8(4)
C(3)	5036(2)	6182.1(16)	2445.5(8)	26.0(3)
C(4)	3655(2)	6272.2(14)	2923.2(7)	21.3(3)
C(5)	1831(2)	6111.8(15)	2640.3(7)	23.0(3)
C(6)	484(2)	6355.8(15)	3131.3(7)	26.4(4)
C(7)	750(2)	5724.2(15)	3727.2(8)	24.0(3)
C(8)	2605(2)	5682.6(14)	3963.6(7)	21.0(3)
C(9)	3915(2)	5449.2(14)	3460.1(7)	20.4(3)
C(10)	2469(2)	4627.5(15)	4400.4(7)	22.7(3)
C(11)	1199(2)	3824.7(17)	4078.2(7)	26.8(4)
C(12)	6307(2)	5394.5(18)	2450.2(8)	32.6(4)
C(13)	1593(2)	4857.8(16)	2372.4(7)	27.6(4)
C(14)	4141(2)	3992.2(14)	4568.6(7)	23.7(3)
C(15)	7138(2)	4360.4(17)	4839.2(8)	29.3(4)
C(16)	8035(2)	5100(2)	5316.8(9)	38.1(5)
C(17)	6695(3)	5148.5(19)	5817.2(9)	36.7(4)
C(18)	4939(2)	5047.8(14)	5493.4(7)	23.3(3)
C(19)	3921(2)	6198.6(15)	5546.8(7)	24.4(3)
C(20)	1465(3)	7094(2)	5972.7(10)	44.3(5)
C(21)	251.8(15)	4463.5(11)	3684.4(5)	26.0(3)

 Table S9 Bond lengths for 3.

Bond	lengths[Å]
O(1)-C(8)	1.472(2)
O(1)-C(12)	1.349(2)
O(2)-C(12)	1.203(2)
O(3)-C(20)	1.198(2)
O(4)-C(20)	1.329(2)
O(4)-C(21)	1.446(2)
N(1)-C(15)	1.457(2)
N(1)-C(16)	1.466(2)
N(1)-C(19)	1.473(2)
C(1)-C(2)	1.524(3)
C(1)-C(6)	1.542(2)
C(2)-C(3)	1.536(3)
C(3)-C(4)	1.509(2)
C(4)-C(5)	1.510(2)
C(4)-C(13)	1.324(3)
C(5)-C(6)	1.557(2)
C(5)-C(10)	1.524(2)
C(6)-C(7)	1.535(2)
C(6)-C(14)	1.541(2)
C(7)-C(8)	1.517(2)
C(8)-C(9)	1.531(2)
C(9)-C(10)	1.533(2)
C(9)-C(11)	1.537(2)
C(11)-C(12)	1.515(2)
C(11)-C(15)	1.525(2)
C(16)-C(17)	1.517(3)
C(17)-C(18)	1.523(3)
C(18)-C(19)	1.543(2)
C(19)-C(20)	1.519(2)

Table S10 Bond angles for 3.

Bond	angles [°]	Bond	angles [°]
C(12)-O(1)-C(8)	109.14(12)	O(1)-C(8)-C(9)	103.83(12)
C(20)-O(4)-C(21)	115.76(16)	C(7)-C(8)-C(9)	116.21(14)
C(15)-N(1)-C(16)	112.67(13)	C(8)-C(9)-C(10)	112.06(13)
C(15)-N(1)-C(19)	113.69(13)	C(8)-C(9)-C(11)	100.15(13)
C(16)-N(1)-C(19)	107.44(13)	C(10)-C(9)-C(11)	112.02(13)
C(2)-C(1)-C(6)	113.28(15)	C(5)-C(10)-C(9)	112.39(13)
C(1)-C(2)-C(3)	110.95(16)	C(12)-C(11)-C(9)	101.85(12)
C(4)-C(3)-C(2)	111.32(15)	C(12)-C(11)-C(15)	112.86(14)
C(3)-C(4)-C(5)	113.49(15)	C(15)-C(11)-C(9)	117.26(13)
C(13)-C(4)-C(3)	122.06(16)	O(1)-C(12)-C(11)	110.05(15)
C(13)-C(4)-C(5)	124.45(15)	O(2)-C(12)-O(1)	121.60(16)
C(4)-C(5) -C(6)	110.52(13)	O(2)-C(12)-C(11)	128.35(16)
C(4)-C(5) -C(10)	114.64(13)	N(1)-C(15)-C(11)	111.45(13)
C(10)-C(5) -C(6)	111.47(13)	N(1)-C(16)-C(17)	103.06(15)
C(1)-C(6)-C(5)	108.09(14)	C(16)-C(17)-C(18)	102.65(15)
C(7)-C(6)-C(1)	108.45(14)	C(17)-C(18)-C(19)	104.91(14)
C(7)-C(6)-C(5)	107.98(13)	N(1)-C(19)-C(18)	105.51(14)
C(7)-C(6)-C(14)	110.93(14)	N(1)-C(19)-C(20)	110.52(13)
C(14)-C(6)-C(1)	109.55(14)	C(20)-C(19)-C(18)	111.01(14)
C(14)-C(6)-C(5)	111.73(14)	O(3)-C(20)-O(4)	123.70(17)
C(8)-C(7)-C(6)	116.45(14)	O(3)-C(20)-C(19)	125.13(16)
O(1)-C(8)-C(7)	111.00(13)	O(4)-C(20)-C(19)	111.14(15)

Table S11 Anisotropic displacement parameters ($Å^2 \times 10^3$) for **3**. The anisotropicdisplacement factor exponent takes the form: -2 2 [$h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$].

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O(1)	21.4(6)	30.6(6)	25.9(6)	1.0(5)	-1.7(5)	-6.4(5)
O(2)	50.3(8)	31.9(7)	46.0(8)	8.9(6)	-15.2(7)	-17.4(6)
O(3)	54.2(9)	23.4(6)	58.7(9)	0.6(6)	18.2(8)	2.5(6)
O(4)	27.8(6)	36.1(7)	35.5(6)	-1.9(5)	8.1(6)	6.5(6)
N(1)	20.0(7)	22.3(6)	19.0(6)	-0.6(5)	1.2(5)	0.9(5)
C(1)	29.2(9)	37.0(10)	35.2(9)	12.2(8)	-7.4(8)	1.2(8)
C(2)	39.3(11)	48.5(12)	32.7(9)	19.4(9)	-1.9(8)	-3.5(9)
C(3)	32.8(10)	38.9(10)	35.8(9)	13.8(8)	2.6(8)	-5.6(8)
C(4)	23.6(8)	28.9(8)	25.3(8)	2.7(7)	-0.6(6)	-6.3(7)
C(5)	20.3(8)	19.1(7)	24.5(7)	-0.2(6)	-2.0(6)	-2.3(6)
C(6)	20.1(7)	24.1(8)	24.7(8)	2.9(7)	-3.1(6)	-1.0(6)
C(7)	20.9(8)	27.3(8)	31.0(8) S26	-0.8(7)	-2.3(7)	2.4(7)

C(8)	20.3(8)	25.4(8)	26.4(8)	-4.1(6)	1.8(6)	-0.1(7)
C(9)	20.8(7)	20.5(7)	21.8(7)	-3.2(6)	-0.4(6)	-0.8(6)
C(10)	16.9(7)	22.7(8)	21.6(7)	-0.7(6)	-0.4(6)	-0.2(6)
C(11)	22.4(8)	26.6(8)	19.1(7)	-2.1(6)	1.2(6)	-2.3(7)
C(12)	26.4(8)	31.4(9)	22.7(7)	1.2(7)	1.0(7)	-6.6(7)
C(13)	26.6(9)	40.9(10)	30.4(8)	5.0(8)	7.5(7)	0.5(8)
C(14)	27.4(8)	31.3(9)	24.1(8)	-4.0(7)	-1.8(7)	-5.4(7)
C(15)	27.7(8)	21.6(7)	21.9(7)	-0.5(6)	-1.1(6)	-0.3(7)
C(16)	21.9(8)	35.4(9)	30.6(8)	4.2(7)	5.0(7)	4.6(7)
C(17)	23.0(9)	45.5(11)	45.9(11)	6.5(9)	-5.7(8)	-3.0(8)
C(18)	33.9(10)	43.9(10)	32.2(9)	-7.6(8)	-11.9(8)	6.9(9)
C(19)	26.3(8)	24.7(8)	18.9(7)	-0.2(6)	0.2(6)	1.6(7)
C(20)	26.3(8)	26.1(8)	20.8(7)	-4.1(6)	-1.2(6)	0.4(7)
C(21)	33.6(11)	50.4(12)	48.8(11)	-13.5(9)	1.9(9)	17.1(9)

Table S12 Hydrogen atom coordinates ($Å^2 \times 10^4$) and isotropic displacement parameters ($Å^2 \times 10^3$) for **3**.

Atom	X	у	Z	U(eq)
H(1A)	473.7	6940.98	1947.53	41
H(1B)	1631.28	7852.87	2324.6	41
H(2A)	2855.16	7644.68	1369.67	48
H(2B)	2907.58	6225.98	1437.44	48
H(3A)	5702.57	6920.17	1629.53	43
H(3B)	5000.4	7883.71	2100.56	43
H(5)	3703.73	7103.66	3082.33	26
H(7A)	460.32	7223.05	3208.44	32
H(7B)	-664.28	6129.16	2973.1	32
H(8)	6.9	6115.93	4037	29
H(9)	2895.55	6431.14	4184.63	25
H(10A)	5096.78	5559.91	3620.3	24
H(10B)	3806.76	4613.22	3325.22	24
H(11)	1912.52	4916.21	4779.08	27
H(13A)	7117.84	5376.73	2129.92	39
H(13B)	6407.25	4847.18	2773.87	39
H(14A)	2515.89	4700.29	2081.53	41
H(14B)	471.64	4810.17	2169.98	41
H(14C)	1641.49	4265.7	2695.5	41
H(15A)	3876.52	3323.85	4843.62	28

H(15B)	4676.8	3658.36	4201.35	28
H(16A)	7658.59	4493.61	4438.23	35
H(16B)	7192.51	3501.83	4936.67	35
H(17A)	8310.27	5905.86	5165.5	46
H(17B)	9110.67	4711.23	5455.48	46
H(18A)	6776.99	5907.82	6040.98	44
H(18B)	6856.06	4481.32	6102.34	44
H(19)	4257.49	4374.44	5666.93	28
H(21A)	1186.46	7483.48	5590.61	66
H(21B)	2130.39	7640.7	6225.87	66
H(21C)	394.6	6873.89	6179.63	66

Fig. S25 HRESIMS spectrum of 4.

Fig. S26 ¹H NMR spectrum (400 MHz) of 4 in CDCl₃.

Fig. S27 ¹³C NMR and DEPT spectra (100 MHz) of 4 in CDCl₃.

Fig. S28 ¹H-¹H COSY spectrum (400 MHz) of 4 in CDCl₃.

Fig. S29 HSQC spectrum (400 MHz) of 4 in CDCl₃.

Fig. S30 HMBC spectrum (400 MHz) of 4 in CDCl₃.

Fig. S31 NOESY spectrum (400 MHz) of 4 in CDCl₃.

Fig. S32 UV spectrum of 4 in MeOH.

Fig. **S33** Dose-Effect Curve, showing the NO inhibition of **3**. Dose-Effect Curve is generated by Compusyn.

Fig. **S34** Dose-Effect Curve, showing the NO inhibition of **4**. Dose-Effect Curve is generated by Compusyn.