## Ag-Catalyzed cycloisomerization of 1,6-enynamide: an

# intramolecular Type II Alder-ene Reaction

Mei-Hua Shen\*, Yu-Mei Zhang, Chun Jiang, Hua-Dong Xu and Defeng Xu\* No.1 Middle Gehu Rd., Changzhou, Jiangsu Province, 213164, China. Email: shenmh@cczu.edu.cn; markxu@cczu.edu.cn

# **Supporting Information**

### Contents

| I. General information and material                             | 2  |
|-----------------------------------------------------------------|----|
| II. Preparation and characterization of substrates              | 3  |
| III. Alder Ene reaction                                         | 8  |
| IV. References                                                  | 13 |
| V. Crystal data and structure refinement for <b>2n</b>          | 14 |
| VI. <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compounds | 15 |

#### I. General information and material

NMR spectra were recorded using Bruker AV-300 / AV-400 spectrometers. The data are reported as follows: chemical shift in ppm from internal tetramethylsilane on the  $\delta$  scale, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, t d = triplet of doublets), coupling constants (Hz) and integration. High resolution mass spectra were acquired on an agilent 6230 spectrometer and were obtained by peak matching. Analytical thin layer chromatography was performed on 0.25 mm extra hard silica gel plates with UV254 fluorescent indicator and/or by exposure to phosphormolybdic acid/cerium (IV) sulfate/ninhydrine followed by brief heating with a heat gun. Liquid chromatography (flash chromatography) was performed on 60Å (40 – 60 µm) mesh silica gel (SiO2). All reactions were carried out under nitrogen or argon with anhydrous solvents in oven-dried glassware, unless otherwise noted. All reagents were commercially obtained and, where appropriate, purified prior to use.

#### **II. Preparation and characterization of substrates**

General procedure for the synthesis of enynamide compounds



S1 were obtained following literature protocols.<sup>1-4</sup>

S2 were obtained following the method reported by Feng and co-workers.<sup>5</sup>

A 25 mL round-bottom flask were charged with S1 (3.0 mmol), S2 (3.9 mmol),  $K_2CO_3$  (6.0 mmol),  $CuSO_4 \cdot 5H_2O$  (0.3 mmol) and 1,10-Phen (0.6 mmol) and PhMe (10.0 ml). The mixture was heated at 65 °C under N<sub>2</sub> for 20 h. The reaction was monitored by TLC. Upon disappearance of the starting material, the resulting reaction solution was concentrated under reduced pressure. Purification via column chromatography on silica gel afforded enynamides 1.



**1a:** oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (d, J = 8.1 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.3 Hz, 2H), 5.45 (s, 1H), 3.47 (t, J = 7.5 Hz, 2H), 2.45 (s, 3H), 2.29 (t, J = 7.4 Hz, 2H), 2.00 – 1.89 (m, 4H), 1.64 – 1.57 (m, 2H), 1.56 – 1.48 (m, 2H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  144.8, 134.9, 133.4, 132.8, 131.6, 129.9, 127.8, 124.4, 122.1, 121.9, 83.7, 70.1, 50.4, 36.5, 28.3, 25.4, 22.9, 22.3, 21.8. HRMS (ESI) *m/z* Calculated for C<sub>23</sub>H<sub>25</sub>BrNO<sub>2</sub>S<sup>+</sup> [M + H]<sup>+</sup> 458.0784, found 458.0777.



**1b:** oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (d, *J* = 7.7 Hz, 2H), 7.42 – 7.33 (m, 4H), 7.32 – 7.27 (m, 3H), 5.46 (s, 1H), 3.47 (t, *J* = 7.5 Hz, 2H), 2.45 (s, 3H), 2.31 (t, *J* = 7.4 Hz, 2H), 2.00 – 1.90 (m, 4H), 1.64 – 1.59 (m, 2H), 1.56 – 1.49 (m, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  144.66, 134.85, 133.42, 131.42, 129.85, 128.36, 127.81, 127.76, 124.32, 123.07, 82.53, 70.09, 50.40, 36.44, 28.27, 25.34, 22.89, 22.29, 21.76. HRMS (ESI) *m*/*z* Calculated for C<sub>23</sub>H<sub>25</sub>NNaO<sub>2</sub>S<sup>+</sup> [M + Na]<sup>+</sup> 402.1498, found 402.1495.



**1c:** oil. <sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  7.82 (d, J = 8.3 Hz, 2H), 7.50 (d, J = 8.1 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 5.40 (s, 1H), 3.44 (t, J = 7.1 Hz, 2H), 2.41 (s, 3H), 2.29 (s, 3H), 2.22 (t, J = 6.9 Hz, 2H), 1.95 – 1.83 (m, 4H), 1.57 – 1.39 (m, 4H). <sup>13</sup>C NMR (100 MHz, DMSO-d6)  $\delta$  144.9, 137.8, 133.9, 133.2, 131.0, 130.1, 129.3, 127.4, 123.5, 119.0, 81.8, 70.2, 49.8, 35.8, 27.4, 24.7, 22.3, 21.8, 21.1, 21.0. HRMS (ESI) *m/z* Calculated for C<sub>24</sub>H<sub>28</sub>NO<sub>2</sub>S<sup>+</sup> [M + H]<sup>+</sup> 394.1835, found 394.1836.



1d: oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (d, *J* = 7.9 Hz, 2H), 7.37 (d, *J* = 7.9 Hz, 2H), 7.32 – 7.24 (m, 4H), 5.47 (s, 1H), 3.48 (t, *J* = 7.5 Hz, 2H), 2.46 (s, 3H), 2.31 (t, *J* = 7.4 Hz, 2H), 2.01 – 1.89 (m, 4H), 1.65 – 1.50 (m, 4H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  144.8, 134.9, 133.8, 133.4, 132.6, 129.9, 128.7, 127.8, 124.4, 121.6, 83.5, 70.0, 50.4, 36.5, 28.3, 25.4, 22.9, 22.3, 21.8. HRMS (ESI) *m/z* Calculated for C<sub>23</sub>H<sub>25</sub>ClNO<sub>2</sub>S<sup>+</sup> [M + H]<sup>+</sup> 414.1289, found 414.1283.



**1e:** oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (d, J = 8.3 Hz, 2H), 7.48 (t, J = 1.6 Hz, 1H), 7.41 – 7.33 (m, 3H), 7.30 – 7.26 (m, 1H), 7.15 (t, J = 7.9 Hz, 1H), 5.45 (s, 1H), 3.47 (t, J = 7.5 Hz, 2H), 2.45 (s, 3H), 2.29 (t, J = 7.4 Hz, 2H), 2.00 – 1.89 (m, 4H), 1.64 – 1.48 (m, 4H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  144.8, 134.8, 133.8, 133.2, 130.8, 129.9, 129.8, 129.7, 127.7, 125.1, 124.4, 122.1, 83.9, 69.8, 50.3, 36.4, 28.2, 25.3, 22.9, 22.2, 21.7. HRMS (ESI) *m/z* Calculated for C<sub>23</sub>H<sub>25</sub>BrNO<sub>2</sub>S<sup>+</sup> [M + H]<sup>+</sup> 458.0784, found 458.0780.



**1f:** oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.89 (d, J = 8.3 Hz, 2H), 7.54 (dd, J = 8.1, 0.7 Hz, 1H), 7.39 (dd, J = 7.7, 1.6 Hz, 1H), 7.35 (d, J = 8.2 Hz, 2H), 7.26 – 7.21 (m, 1H), 7.11 (td, J = 7.8, 1.6 Hz, 1H), 5.48 (s, 1H), 3.51 (t, J = 7.6 Hz, 2H), 2.44 (s, 3H), 2.36 (t, J = 7.5 Hz, 2H), 1.99 – 1.90 (m, 4H), 1.64 – 1.58 (m, 2H), 1.56 – 1.47 (m, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 144.8, 134.9, 133.4, 132.6, 132.4, 129.9, 128.6, 127.8, 127.1, 125.5, 124.7, 124.5, 87.1, 70.3, 50.6, 36.3, 28.3, 25.4, 22.9, 22.3, 21.8. HRMS (ESI) *m/z* Calculated for C<sub>23</sub>H<sub>25</sub>BrNO<sub>2</sub>S<sup>+</sup> [M + H]<sup>+</sup> 458.0784, found 458.0777.



**1g:** oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.8 Hz, 2H) 6.82 (d, J = 8.8 Hz, 2H), 5.45 (s, 1H), 3.80 (s, 3H), 3.45 (t, J = 7.5 Hz, 2H), 2.45 (s, 3H), 2.29 (t, J = 7.5 Hz, 2H), 1.98 – 1.89 (m, 4H), 1.63 – 1.58 (m, 2H), 1.55 – 1.49 (m, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.55, 144.54, 134.90, 133.54, 133.50, 129.80, 127.79, 124.22, 115.00, 114.00, 81.01, 70.46, 55.42, 50.48, 36.42, 28.30, 25.36, 22.91, 22.31, 21.77. HRMS (ESI) *m/z* Calculated for C<sub>24</sub>H<sub>28</sub>NO<sub>3</sub>S<sup>+</sup> [M + H]<sup>+</sup> 410.1784, found 410.1783.



**1h:** oil. <sup>1</sup>H NMR (300 MHz, DMSO-d6)  $\delta$  7.80 (d, J = 8.3 Hz, 2H), 7.73 (dd, J = 1.8, 0.6 Hz, 1H), 7.51 (d, J = 8.1 Hz, 2H), 6.80 (dd, J = 3.4, 0.6 Hz, 1H), 6.55 (dd, J = 3.4, 1.9 Hz, 1H), 5.38 (s, 1H), 3.49 (t, J = 7.0 Hz, 2H), 2.43 (s, 3H), 2.18 (t, J = 6.9 Hz, 2H), 1.96 – 1.81 (m, 4H), 1.56 – 1.40 (m, 4H). <sup>13</sup>C NMR (75 MHz, DMSO)  $\delta$  145.3, 145.2, 135.6, 134.0, 133.1, 130.3, 127.3, 123.8, 117.7, 111.6, 86.5, 61.1, 49.9, 35.9, 27.3, 24.8, 22.3, 21.8, 21.2. HRMS (ESI) *m/z* Calculated for C<sub>21</sub>H<sub>24</sub>NO<sub>3</sub>S<sup>+</sup> [M + H]<sup>+</sup> 370.1471, found 370.1468.



**1i:** oil. <sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  7.80 (d, J = 8.2 Hz, 2H), 7.61 (d, J = 5.0 Hz, 1H), 7.51 (d, J = 8.2 Hz, 2H), 7.26 (d, J = 3.3 Hz, 1H), 7.07 (dd, J = 5.0, 3.8 Hz, 1H), 5.38 (s, 1H), 3.47 (t, J = 7.0 Hz, 2H), 2.43 (s, 3H), 2.19 (t, J = 6.8 Hz, 2H), 1.96 – 1.81 (m, 4H), 1.57 – 1.41 (m, 4H). <sup>13</sup>C NMR (75 MHz, DMSO-d6)  $\delta$  145.1, 133.9, 133.4, 133.1, 130.2, 129.2, 127.7, 127.3, 123.7, 121.7, 86.0, 63.5, 49.9, 36.0, 27.3,

24.8, 22.3, 21.8, 21.2. HRMS (ESI) m/z Calculated for  $C_{21}H_{24}NO_2S_2^+$  [M + H]<sup>+</sup> 386.1243, found 386.1243.



**1j:** oil. <sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  7.83 (d, J = 8.2 Hz, 2H), 7.50 (d, J = 8.1 Hz, 2H), 7.35 (s, 5H), 5.37 (s, 1H), 3.46 (t, J = 7.0 Hz, 2H), 2.41 (s, 3H), 2.24 (t, J = 6.7 Hz, 2H), 2.04 – 1.87 (m, 4H), 1.65 – 1.58 (m, 1H), 1.54 – 1.49 (m, 1H), 1.14 – 1.07 (m, 1H), 0.86 (d, J = 6.0 Hz, 3H). <sup>13</sup>C NMR (100 MHz, DMSO-d6)  $\delta$  145.0, 133.9, 132.8, 130.9, 130.1, 128.7, 128.0, 127.4, 123.1, 122.1, 82.5, 70.3, 49.8, 35.4, 33.3, 30.5, 27.6, 27.4, 21.5, 21.1. HRMS (ESI) *m/z* Calculated for C<sub>24</sub>H<sub>27</sub>NNaO<sub>2</sub>S<sup>+</sup> [M + Na]<sup>+</sup> 416.1655, found 416.1654.



**1k:** oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.85 (d, J = 8.2 Hz, 2H), 7.38 – 7.34 (m, 2H), 7.33 – 7.28 (m, 5H), 7.17 – 7.09 (m, 3H), 6.99 – 6.93 (m, 1H), 6.24 (s, 1H), 3.63 (t, J = 7.3 Hz, 2H), 2.81 (t, J = 8.1 Hz, 2H), 2.61 (t, J = 7.2 Hz, 2H), 2.44 (s, 3H), 2.26 (t, J = 8.0 Hz, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  144.8, 136.9, 134.7, 134.5, 134.4, 131.6, 129.9, 128.4, 128.0, 127.8, 127.3, 126.7, 126.5, 125.8, 125.2, 122.9, 82.3, 71.2, 50.1, 36.0, 28.0, 27.2, 21.8. HRMS (ESI) *m/z* Calculated for C<sub>27</sub>H<sub>26</sub>NO<sub>2</sub>S<sup>+</sup> [M + H]<sup>+</sup> 428.1679, found 428.1681.



**11:** oil. <sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  7.84 (d, J = 8.2 Hz, 2H), 7.50 (d, J = 8.2 Hz, 2H), 7.35 (s, 5H), 5.41 (s, 1H), 3.51 (t, J = 7.1 Hz, 2H), 2.43 – 2.37 (m, 5H), 2.20 (t, J = 7.4 Hz, 4H), 1.82 – 1.68 (m, 2H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  145.0, 139.8, 133.7, 130.9, 130.1, 128.6, 128.1, 127.4, 125.8, 122.1, 82.4, 70.3, 49.7, 34.3, 32.1, 29.1, 22.7, 21.1. HRMS (ESI) *m/z* Calculated for C<sub>22</sub>H<sub>24</sub>NO<sub>2</sub>S<sup>+</sup> [M + H]<sup>+</sup> 366.1522, found 366.1527.



**1m:** oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.80 (d, J = 8.3 Hz, 2H), 7.39 – 7.28 (m, 7H), 7.26 – 7.21 (m, 3H), 7.13 (td, J = 7.1, 1.7 Hz, 1H), 6.56 (s, 1H), 3.70 (t, J = 7.2 Hz, 2H), 3.32 (s, 2H), 2.90 (t, J = 7.1 Hz, 2H), 2.42 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  145.14, 145.05, 144.79, 143.21, 134.60, 131.58, 129.87, 129.02, 128.41, 128.00, 127.73, 126.44, 124.26, 123.61, 122.85, 120.45, 82.04, 71.42, 50.94, 41.10, 29.82, 21.79. HRMS (ESI) *m/z* Calculated for C<sub>26</sub>H<sub>23</sub>NNaO<sub>2</sub>S<sup>+</sup> [M + Na]<sup>+</sup> 436.1342, found 436.1344.



**1n:** oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.41 (d, *J* = 8.6 Hz, 2H), 8.14 (d, *J* = 8.6 Hz, 2H), 7.42 – 7.28 (m, 5H), 5.48 (s, 1H), 3.54 (t, *J* = 7.4 Hz, 2H), 2.33 (t, *J* = 7.3 Hz, 2H), 2.02 – 1.85 (m, 4H), 1.65 – 1.57 (m, 2H), 1.56 – 1.48 (m, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  150.66, 143.21, 132.98, 131.70, 128.96, 128.54, 128.47, 124.88, 124.53, 122.23, 81.08, 71.55, 50.91, 36.51, 28.24, 25.37, 22.86, 22.25. HRMS (ESI) *m/z* Calculated for C<sub>22</sub>H<sub>22</sub>KN<sub>2</sub>O<sub>4</sub>S<sup>+</sup> [M + K]<sup>+</sup> 449.0932, found 449.0931.



**10:** oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.77 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 5.42 (s, 1H), 3.32(t, J = 7.6 Hz, 2H), 2.43 (s, 3H), 2.28 – 2.18 (m, 4H), 1.97 – 1.87 (m, 4H), 1.62 – 1.55 (m, 2H), 1.54 – 1.42 (m, 4H), 1.38 – 1.24 (m, 6H), 0.88 (t, J = 6.9 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  144.3, 134.9, 133.7, 129.7, 127.7, 124.0, 73.1, 70.5, 50.3, 36.3, 31.5, 29.0, 28.6, 28.3, 25.3, 22.9, 22.7, 22.3, 21.7, 18.6, 14.2.



**1p:** oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.85 (d, J = 8.3 Hz, 2H), 7.43 – 7.34 (m, 4H),

7.33 – 7.26 (m, 3H), 4.84 – 4.79 (m, 1H), 4.75 (s, 1H), 3.53 (t, J = 7.5 Hz, 2H), 2.46 (s, 3H), 2.41 (t, J = 7.3 Hz, 2H), 1.76 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  144.8, 141.3, 134.6, 131.4, 129.9, 128.4, 127.9, 127.8, 122.9, 113.0, 82.3, 71.0, 50.1, 36.0, 22.4, 21.8.

#### **III.** Alder-Ene reaction



#### **General procedure**

To a 10 mL sealed tube equipped with a stir bar were added 1 (0.2 mmol),  $Ag_2SO_4$  (0.04 mmol) and anhydrous DCE (2.0 ml). The mixture was heated at 80 °C (the temperature of oil bath) under N<sub>2</sub> for 10 h. When completed as indicated by TLC, the resulting reaction solution was concentrated under reduced pressure. Purification via column chromatography on silica gel afforded 2 in 40 ~ 70% yields.



**2a:** half solid. Yield 55%. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 (d, J = 8.3 Hz, 2H), 7.20 (d, J = 8.5 Hz, 2H), 7.07 – 6.98 (m, 4H), 6.23 (d, J = 2.0 Hz, 1H), 5.54 – 5.44 (m, 1H), 4.20 – 4.05 (m, 1H), 3.23 – 3.01 (m, 2H), 2.61 – 2.46 (m, 1H), 2.37 (s, 3H), 2.21 – 2.12 (m, 1H), 2.06 – 1.94 (m, 3H), 1.84 – 1.73 (m, 1H), 1.73 – 1.52 (m, 2H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  143.4, 140.5, 137.7, 135.5, 134.9, 131.1, 130.4, 129.3, 127.4, 123.8, 122.7, 120.9, 49.1, 42.4, 34.0, 26.7, 25.4, 21.7, 21.3. HRMS (ESI) *m/z* Calculated for C<sub>23</sub>H<sub>25</sub>BrNO<sub>2</sub>S<sup>+</sup> [M + H]<sup>+</sup> 458.0784, found 458.0786.



**2b:** oil. Yield: 53%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.37 (d, J = 7.8 Hz, 2H), 7.23 – 7.11 (m, 5H), 7.01 (d, J = 7.9 Hz, 2H), 6.33 (s, 1H), 5.48 (s, 1H), 4.08 (dd, J = 13.6, 4.6 Hz, 1H), 3.23 – 3.03 (m, 2H), 2.53 (t, J = 14.2 Hz, 1H), 2.32 (s, 3H), 2.14 (d, J = 14.1 Hz, 1H), 2.06 – 1.94(m, 3H), 1.84 – 1.67 (m, 2H), 1.57 – 1.50 (m, 1H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  143.1, 139.3, 137.4, 136.1, 135.9, 129.2, 128.9, 128.1, 127.7,

127.0, 125.2, 122.5, 48.8, 42.2, 33.8, 26.7, 25.5, 21.6, 21.3. HRMS (ESI) m/z Calculated for C<sub>23</sub>H<sub>25</sub>NNaO<sub>2</sub>S<sup>+</sup> [M + Na]<sup>+</sup> 402.1498, found 402.1496.



**2c:** solid, mp 129~133 °C. Yield: 60%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.40 (d, J = 8.2 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 7.02 (d, J = 8.1 Hz, 2H), 6.94 (d, J = 8.0 Hz, 2H), 6.30 (s, 1H), 5.46 (s, 1H), 4.10 (dd, J = 13.2, 4.2 Hz, 1H), 3.26 – 3.10 (m, 1H), 3.09 – 3.00 (m, 1H), 2.55 – 2.45 (m, 1H), 2.33 (s, 3H), 2.30 (s, 3H), 2.16 – 2.10 (m, 1H), 2.05 – 1.95 (m, 3H), 1.83 – 1.76 (m, 1H), 1.74 – 1.67 (m, 1H), 1.58 – 1.49 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  142.91, 138.54, 137.79, 136.70, 135.88, 133.05, 129.11, 128.72, 128.67, 127.60, 124.97, 122.34, 48.80, 42.12, 33.77, 26.63, 25.43, 21.54, 21.32, 21.27. HRMS (ESI) *m/z* Calculated for C<sub>24</sub>H<sub>27</sub>NNaO<sub>2</sub>S<sup>+</sup> [M + Na]<sup>+</sup> 416.1655, found 416.1653.



**2d:** solid, mp 122~124 °C. Yield: 61%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 (d, J = 8.3 Hz, 2H), 7.10 (d, J = 8.6 Hz, 2H), 7.07 – 7.01 (m, 4H), 6.25 (d, J = 1.9 Hz, 1H), 5.48 (s, 1H), 4.13 (dd, J = 13.3, 4.3 Hz, 1H), 3.24 – 3.03 (m, 2H), 2.58 – 2.46 (m, 1H), 2.35 (s, 3H), 2.19 – 2.12 (m, 1H), 2.06 – 1.95 (m, 3H), 1.84 – 1.76 (m, 1H), 1.74 – 1.64 (m, 1H), 1.58 – 1.47 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  143.3, 140.3, 137.8, 135.6, 134.5, 132.7, 130.0, 129.3, 128.2, 127.4, 123.7, 122.7, 49.1, 42.4, 34.0, 26.7, 25.4, 21.6, 21.3. HRMS (ESI) *m/z* Calculated for C<sub>23</sub>H<sub>24</sub>ClNNaO<sub>2</sub>S<sup>+</sup> [M + Na]<sup>+</sup> 436.1108, found 436.1107.



**2e:** oil. Yield: 56%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.38 (d, J = 8.2 Hz, 2H), 7.24 – 7.18 (m, 2H), 7.13 (d, J = 7.7 Hz, 1H), 7.05 – 6.97 (m, 3H), 6.22 (d, J = 1.8 Hz, 1H), 5.49 (s, 1H), 4.13 (dd, J = 13.5, 4.3 Hz, 1H), 3.21 – 3.05 (m, 2H), 2.67 – 2.51 (m, 1H), 2.33 (s, 3H), 2.20 – 2.13 (m, 1H), 2.06 – 1.95 (m, 3H), 1.83 – 1.76(m, 1H), 1.72 – 1.65 (m, 1H), 1.59 – 1.51 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  143.3, 141.0, 138.1, 137.1, 135.5, 131.6, 129.8, 129.5, 129.3, 127.5, 127.4, 123.6, 122.8, 122.2, 49.0, 42.3, 34.0, 26.7, 25.4, 21.6, 21.3. HRMS (ESI) *m/z* Calculated for C<sub>23</sub>H<sub>24</sub>BrNNaO<sub>2</sub>S<sup>+</sup> [M +



**2f:** solid, mp 145~149 °C. Yield: 41%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 – 7.31 (m, 3H), 7.21 (dd, J = 7.7, 1.3 Hz, 1H), 7.07 – 7.01 (m, 1H), 7.00 – 6.93 (m, 3H), 6.40 (d, J = 1.9 Hz, 1H), 5.50 (s, 1H), 4.17 – 4.09 (m, 1H), 3.21 – 3.11 (m, 2H), 2.66 – 2.53 (m, 1H), 2.30 (s, 3H), 2.22 – 2.16 (m, 1H), 2.12 – 2.05 (m, 1H), 2.03 – 1.96 (m, 2H), 1.85 – 1.78 (m, 1H), 1.75 – 1.68 (m, 1H), 1.61 – 1.52 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  142.9, 140.8, 136.7, 136.3, 135.6, 132.2, 130.3, 129.2, 128.3, 127.5, 126.9, 124.7, 124.4, 122.7, 49.1, 42.1, 34.0, 26.7, 25.4, 21.6, 21.3. HRMS (ESI) *m/z* Calculated for C<sub>23</sub>H<sub>24</sub>BrNNaO<sub>2</sub>S<sup>+</sup> [M + Na]<sup>+</sup> 480.0603, found 480.0605.



**2g:** half solid. Yield: 45%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.44 (d, J = 8.2 Hz, 2H), 7.19 (d, J = 8.6 Hz, 2H), 7.04 (d, J = 8.1 Hz, 2H), 6.67 (d, J = 8.7 Hz, 2H), 6.25 (d, J = 0.92 Hz, 1H), 5.45 (s, 1H), 4.12 (dd, J = 13.2, 4.2 Hz, 1H), 3.77 (s, 3H), 3.16 (t, J = 12.3 Hz, 1H), 3.08 – 2.98 (m, 1H), 2.33 (s, 3H), 2.15 – 2.08 (m, 1H), 2.03 – 1.94 (m, 3H), 1.82 – 1.75 (m, 1H), 1.73 – 1.65(m, 1H), 1.55 – 1.47 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  158.6, 143.0, 137.8, 137.6, 135.9, 130.0, 129.1, 128.4, 127.6, 124.5, 122.3, 113.4, 55.2, 48.7, 41.9, 33.7, 26.6, 25.4, 21.5, 21.2. HRMS (ESI) *m/z* Calculated for C<sub>24</sub>H<sub>28</sub>NO<sub>3</sub>S<sup>+</sup> [M+H]<sup>+</sup> 410.1784, found 410.1790.



**2h:** half solid. Yield: 40%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, J = 8.2 Hz, 2H), 7.29 – 7.22 (m, 3H), 6.72 (d, J = 3.4 Hz, 1H), 6.35 (dd, J = 3.3, 1.8 Hz, 1H), 6.32 (d, J = 1.8 Hz, 1H), 5.36 (s, 1H), 4.11 – 4.02 (m, 1H), 3.17 (td, J = 13.1, 2.6 Hz, 1H), 2.88 – 2.79 (m, 1H), 2.40 (s, 3H), 2.10 – 1.99 (m, 1H), 1.97 – 1.87 (m, 4H), 1.81 – 1.72 (m, 1H), 1.69 – 1.62 (m, 1H), 1.51 – 1.39 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  150.9, 143.5, 141.3, 138.5, 137.1, 135.4, 129.7, 127.8, 122.4, 115.4, 111.6, 110.4, 48.2, 41.1, 32.5, 26.4, 25.3, 21.7, 21.1. HRMS (ESI) *m*/*z* Calculated for C<sub>21</sub>H<sub>24</sub>NO<sub>3</sub>S<sup>+</sup> [M + H]<sup>+</sup> 370.1471, found 370.1468.



**2i:** solid, mp 125~128 °C. Yield: 42%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, *J* = 8.2 Hz, 2H), 7.25 – 7.18 (m, 3H), 7.03 (d, *J* = 3.4 Hz, 1H), 6.89 (dd, *J* = 5.0, 3.7 Hz, 1H), 6.60 (d, *J* = 1.8 Hz, 1H), 5.36 (s, 1H), 4.17 (dd, *J* = 13.9, 4.8 Hz, 1H), 3.21 (td, *J* = 13.4, 3.0 Hz, 1H), 2.91 – 2.82 (m, 1H), 2.40 (s, 3H), 2.23 – 2.11 (m, 1H), 2.00 – 1.88 (m, 4H), 1.80 – 1.73 (m, 1H), 1.71 – 1.64 (m, 1H), 1.51 – 1.41 (m, 1H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  143.7, 138.3, 138.2, 136.9, 135.6, 129.7, 128.8, 128.1, 126.6, 125.8, 122.3, 120.2, 48.4, 40.7, 32.4, 26.3, 25.3, 21.7, 21.1. HRMS (ESI) *m/z* Calculated for C<sub>21</sub>H<sub>23</sub>NNaO<sub>2</sub>S<sup>+</sup> [M + Na]<sup>+</sup> 408.1062, found 408.1059.



**2j:** oil. Yield: 53%. Major: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.41 – 7.34 (m, 2H), 7.25 – 7.12 (m, 5H), 7.04 – 6.97 (m, 2H), 6.29 (s, 1H), 5.44 (s, 1H), 4.19 – 4.11 (m, 1H), 3.23 – 3.00 (m, 2H), 2.47 – 2.38 (m, 1H), 2.32 (s, 3H), 2.19 – 1.90 (m, 4H), 1.69 – 1.56 (m, 2H), 0.97 (d, *J* = 6.6 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  143.06, 139.21, 137.32, 135.94, 135.83, 129.14, 128.75, 128.01, 127.58, 126.89, 124.11, 120.90, 49.53, 41.12, 34.07, 33.29, 28.47, 24.98, 21.46, 20.71. Minor: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.41 – 7.34 (m, 2H), 7.25 – 7.12 (m, 5H), 7.04 – 6.97 (m, 2H), 6.33 (s, 1H), 5.44 (s, 1H), 4.11 – 4.02 (m, 1H), 3.23 – 3.00 (m, 2H), 2.47 – 2.38 (m, 1H), 2.31 (s, 3H), 2.19 – 1.90 (m, 4H), 1.69 – 1.56 (m, 2H), 1.03 (d, *J* = 6.3 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  142.99, 139.16, 137.18, 135.74, 135.18, 129.09, 128.70, 127.96, 127.58, 126.81, 124.11, 120.90, 48.33, 41.12, 34.15, 32.82, 28.47, 24.98, 22.27, 21.46. HRMS (ESI) *m/z* Calculated for C<sub>24</sub>H<sub>27</sub>NNaO<sub>2</sub>S<sup>+</sup> [M + Na]<sup>+</sup> 416.1655, found 416.1651.



**2k:** solid, mp 132~135 °C. Yield: 70%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.62 (d, J = 7.7 Hz, 2H), 7.40 – 7.26 (m, 3H), 7.24 – 7.10 (m, 8H), 5.87 (s, 1H), 5.63 (s, 1H), 4.39 (dd, J = 13.5, 5.1 Hz, 1H), 4.23 – 4.16 (m, 1H), 3.51 – 3.39 (m, 1H), 3.38 – 3.27 (m, 2H), 2.57 – 2.47 (m, 1H), 2.34 (s, 3H), 2.29 (dd, J = 13.2, 2.9 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  143.4, 140.4, 137.7, 135.2, 135.1, 134.4, 132.2, 130.5, 129.5, 128.9,

128.6, 128.0, 127.7, 127.3, 127.1, 126.7, 126.4, 117.8, 50.5, 48.1, 34.5, 29.6, 21.6. HRMS (ESI) m/z Calculated for  $C_{27}H_{25}NNaO_2S^+$  [M + Na]<sup>+</sup> 450.1498, found 450.1495.



**21:** half solid. Yield: 55%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.40 (d, J = 8.3 Hz, 2H), 7.22 – 7.18 (m, 2H), 7.15 – 7.10 (m, 3H), 7.00 (d, J = 8.1 Hz, 2H), 6.23 (d, J = 2.4 Hz, 1H), 5.45 – 5.37 (m, 1H), 4.18 (ddd, J = 13.8, 5.4, 1.5 Hz, 1H), 3.52 – 3.44 (m, 1H), 3.07 (ddd, J = 13.7, 12.5, 4.2 Hz, 1H), 2.49 – 2.34 (m, 3H), 2.31 (s, 3H), 2.28 – 2.06 (m, 2H), 1.93 – 1.83 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  143.1, 141.1, 140.2, 137.6, 135.9, 129.3, 128.7, 128.1, 127.7, 126.9, 124.9, 123.1, 49.4, 48.1, 30.7, 27.9, 27.6, 21.6. HRMS (ESI) *m*/*z* Calculated for C<sub>22</sub>H<sub>23</sub>NNaO<sub>2</sub>S<sup>+</sup> [M + Na]<sup>+</sup> 388.1342, found 388.1344.



**2m:** oil. Yield: 56%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.67 (d, *J* = 7.0 Hz, 1H), 7.57 (d, *J* = 8.2 Hz, 2H), 7.37 – 7.27 (m, 3H), 7.21 – 7.16 (m, 2H), 7.14 – 7.10 (m, 3H), 7.06 (d, *J* = 8.1 Hz, 2H), 6.53 – 6.42 (m, 2H), 4.44 (dd, *J* = 13.6, 5.8 Hz, 1H), 4.20 (s, 1H), 3.21 (td, *J* = 13.0, 3.6 Hz, 1H), 2.89 (td, *J* = 13.0, 5.8 Hz, 1H), 2.73 (dd, *J* = 13.8, 3.2 Hz, 1H), 2.33 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  147.9, 144.7, 143.5, 141.9, 137.3, 136.2, 134.8, 129.4, 128.9, 128.0, 127.7, 127.5, 127.4, 125.7, 125.4, 124.4, 123.8, 121.4, 55.1, 50.3, 28.8, 21.6. HRMS (ESI) *m/z* Calculated for C<sub>26</sub>H<sub>23</sub>NNaO<sub>2</sub>S<sup>+</sup> [M + Na]<sup>+</sup> 436.1342, found 436.1348.



**2n:** solid, mp 122~125 °C. Yield: 40%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.90 (d, J = 8.6 Hz, 2H), 7.51 (d, J = 8.6 Hz, 2H), 7.08 – 6.92 (m, 5H), 6.32 (s, 1H), 5.55 (s, 1H), 4.23 (dd, J = 12.2, 3.3 Hz, 1H), 3.31 – 3.09 (m, 2H), 2.78 – 2.60 (m, 1H), 2.29 (d, J = 14.1 Hz, 1H), 2.13 – 1.98 (m, 3H), 1.85 – 1.77 (m, 1H), 1.77 – 1.67 (m, 1H), 1.63 – 1.54 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  149.5, 146.0, 139.6, 135.6, 135.1, 128.6, 128.5, 128.2, 127.2, 125.1, 123.6, 123.4, 49.9, 42.9, 34.9, 26.7, 25.5, 21.3. HRMS (ESI) *m/z* Calculated for C<sub>22</sub>H<sub>23</sub>N<sub>2</sub>O<sub>4</sub>S<sup>+</sup> [M + H]<sup>+</sup> 411.1373, found 411.1388.

## **IV. References**

- 1. Dobbs, Adrian P.; Guesne, Sebastien J. J.; Org. Biomol. Chem. 2010, 8, 1064.
- 2. He, Y.; Zang, Z. L. Org. Lett. 2016, 18, 5014.
- 3. Ellingboe, J. W.; Alessi, T. R. J. Med. Chem. 1992, 35, 1176.
- 4. Maria, C. M.; Valerio, C. Synthesis. 2006, 16, 2760.
- 5. Xu, H. J.; Feng, Y. S. Org. Lett. 2013, 7, 1472.

# V. Crystal data and structure refinement for 2n (CCDC 1951227)



| Bond precision:               | C-C = 0.00                                | .0025 A         |                                 | Wavelength=0.71073 |                 |  |  |
|-------------------------------|-------------------------------------------|-----------------|---------------------------------|--------------------|-----------------|--|--|
| Cell: a=7.3192(14)            | ell: a=7.3192(14) b=11.674(2) c=23.041(4) |                 |                                 |                    |                 |  |  |
| alpha=90 beta=95.3            | 45(6)                                     | gamm            | na=9                            | 0                  |                 |  |  |
| Temperature: 296 K            |                                           |                 |                                 |                    |                 |  |  |
|                               |                                           | Calculated      |                                 |                    | Reported        |  |  |
| Volume                        |                                           | 1960.2(6)       |                                 |                    | 1960.2(7)       |  |  |
| Space group                   |                                           | P 21/n          |                                 |                    | P 21/n          |  |  |
| Hall group                    |                                           | -P 2yn          |                                 |                    | -P 2yn          |  |  |
| Moiety formula                |                                           | C22 H22 N2 O4 S |                                 |                    | ?               |  |  |
| Sum formula                   |                                           | C22 H22 N2 O4 S |                                 |                    | C22 H22 N2 O4 S |  |  |
| Mr                            |                                           | 410.48          |                                 |                    | 410.47          |  |  |
| Dx,g cm-3                     |                                           | 1.391           |                                 |                    | 1.391           |  |  |
| Z                             |                                           | 4               |                                 |                    | 4               |  |  |
| Mu (mm-1)                     |                                           | 0.198           |                                 |                    | 0.198           |  |  |
| F000                          |                                           | 864.0           |                                 |                    | 864.0           |  |  |
| F000'                         |                                           | 864.88          |                                 |                    |                 |  |  |
| h,k,lmax                      |                                           | 8,13,27         |                                 |                    | 8,13,27         |  |  |
| Nref                          |                                           | 3463            |                                 |                    | 3456            |  |  |
| Tmin, Tmax                    |                                           | 0.950, 0.957    |                                 |                    |                 |  |  |
| Tmin'                         |                                           | 0.950           |                                 |                    |                 |  |  |
| Correction method=            | = Not give                                | n               |                                 |                    |                 |  |  |
| Data completeness=            | = 0.998                                   | Т               | het                             | a(max)= 25.009     |                 |  |  |
| R(reflections)= 0.0368( 2982) |                                           | v               | wR2(reflections)= 0.0942( 3456) |                    |                 |  |  |
| S = 1.017                     |                                           | Npar= 262       |                                 |                    |                 |  |  |

# VI. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of Compounds











<sup>1</sup>H NMR (400 MHz, CDCI<sub>3</sub>)

















Image: state state





















200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fi (ppm)







-Br 2a <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)









<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)







- 142 91 - 142 91 - 142 91 - 142 93 - 142 93 - 142 93 - 142 93 - 142 91 - 142 93 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142 91 - 142









180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)





<sup>1</sup>H NMR (400 MHz, CDCI<sub>3</sub>)















<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)



1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1122.4165 1125.4165 1125.4165 1125.4165 1125.4











<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)



- 18, 88 - 18, 97 - 18, 98 - 18, 98 - 18, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 19, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 10, 98 - 1











NT ٦ 21 <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)









143.08 143.08 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 133.29 13









143, 45 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 68 140, 6



























