Supporting Information

Nickel(II)-Catalyzed C-C, N-C Cascade Coupling of Ketonitriles into

Substituted Pyrroles and Pyridines

Qianqian Zhen,^{†a} Renhao Li,^{†b,*} Linjun Qi,^a Kun Hu,^a Xinrong Yao,^a Yinlin Shao,^a and Jiuxi Chen^{a,*}

E-mail:lirh@wmu.edu.cn; E-mail: jiuxichen@wzu.edu.cn

Table of Contents

1.	General Information	S2
2.	Experimental Section	.S2
	2.1 Optimization of Reaction Conditions	.S2
	2.2 Preparation of reactant	S4
	2.3 Typical Procedure	.S5
3.	Analytical Data for All Products	.S7
4.	NMR Spectra for All Products	S20

1. General Information

Melting points are uncorrected. ¹H NMR and ¹³C NMR spectra were measured on a 500 MHz spectrometer using DMSO- d_6 or CDCl₃ as the solvent with tetramethylsilane (TMS) as an internal standard at room temperature. Chemical shifts are given in δ relative to TMS, and the coupling constants J are given in hertz. High-resolution mass spectrometry (HRMS) was recorded on an ESI-Q-TOF mass spectrometer. 2-(Cyanomethyl)benzonitriles and methyl 2-(cyanomethyl)benzoates were synthesized according to the literature procedures. Other commercially obtained reagents were used without further purification. Column chromatography was performed using EM silica gel 60 (300–400 mesh).

2. Experimental Section

2.1 Preparation of reactant

2.1.1 General Procedure for the Synthesis of 3-benzoyl-4-oxopentanenitrile diverties^a

To a reaction tube equipped with a magnetic stirring bar were added FeCl₃ (20 mmol %) and PPh₃ (20 mmol %). Under a nitrogen atmosphere, 1,3-Dicarbonyls (10 mmol), DTBP (3.0 equiv), CH₃CN (80 mL) were added. The resulting mixture was heated at 100 °C for 36 h. The reaction mixture was concentrated under vacuum and the crude product was purified by column chromatography on silica gel (300-400 mesh) with PE - EtOAc (8:1) as eluent to give the desired product 1.

2.1.2 General Procedure for the Synthesis of 4-oxo-4-phenylbutanenitrile diverties

A sealed reaction tube was charged with succinonitrile (40 mmol) and Aryl boric acid (20 mmol), Pd(acac)₂ (5 mmol %), bpy (10 mmol %), TsOH-H₂O (2 equiv) were stirred at tolune (100 mL), H₂O (20 mL), 80 °C for 24 h. The reaction mixture was added to brine (20 mL) and extracted with ethyl acetate (5×10 mL). The reaction mixture was concentrated under vacuum and the crude product was purified by column chromatography

^a C. Wang, Y. Li, M. Gong, Q. Wu, J. Zhang, J. K. Kim, M. Huang, Y. Wu. Org. Lett. 2016, 18, 4151-4153.

on silica gel (300-400 mesh) with PE - EtOAc (5:1) as eluent to give the desired product 4a.

2.1.3 General Procedure for the Synthesis of 5-oxo-5-phenylpentanenitrile diverties

A sealed reaction tube was charged with glutaronitrile (40 mmol) and Aryl boric acid (20 mmol), Pd(acac)₂ (5 mmol %), bpy (10 mmol %), TsOH-H₂O (2 equiv) were stirred at tolune (100 mL), H₂O (20 mL), 80 °C for 24 h. The reaction mixture was added to brine (20 mL) and extracted with ethyl acetate (5×10 mL). The reaction mixture was concentrated under vacuum and the crude product was purified by column chromatography on silica gel (300-400 mesh) with PE - EtOAc (10:1) as eluent to give the desired product **5a**.

2.2 Typical Procedure

2.2.1 General Procedure for the Synthesis of 3

Ethyl 2-(cyanomethyl)-3-oxo-3-phenylpropanoate 1 (0.4mmol), arylboronic acid 2 (1.2 mmol), Ni(dppe)Cl₂ (10 mol %), ZnCl₂ (0.8 mmol), and THF (1.5 mL) were successively added in to a Schlenk reaction tube under air. The reaction mixture was stirred vigorously at 100 °C for 24 h. After the reaction equilibrium, the mixture was poured into ethyl acetate, which was washed with saturated NaHCO₃ (2×10 mL). After the aqueous layer was extracted with ethyl acetate, the combined organic layers were dried over

anhydrous Na_2SO_4 and evaporated under a vacuum. The residue was purified by flash column chromatography PE - EtOAc (8:1) to afford the desired products **3**.

2.2.2 General Procedure for the Synthesis of 6

4-oxo-4-phenylbutanenitrile **4** (0.4mmol), arylboronic acid **2** (0.8 mmol), Ni(dppe)Cl₂ (10 mol %), ZnCl₂ (0.8 mmol), and THF (1.5 mL) were successively added in to a Schlenk reaction tube under air. The reaction mixture was stirred vigorously at 100 °C for 24 h. After the reaction equilibrium, the mixture was poured into ethyl acetate, which was washed with saturated NaHCO₃ (2×10 mL). After the aqueous layer was extracted with ethyl acetate, the combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under a vacuum. The residue was purified by flash column chromatography PE - EtOAc (10:1) to afford the desired products **6**.

2.2.3 General Procedure for the Synthesis of 7

5-oxo-5-phenylpentanenitrile **5** (0.4mmol), arylboronic acid **2** (0.8 mmol), Ni(dppe)Cl₂ (10 mol %), ZnCl₂ (1.2 mmol), and THF (2.0 mL) were successively added in to a Schlenk reaction tube under air. The reaction mixture was stirred vigorously at 100 °C for 48 h. After the reaction equilibrium, the mixture was poured into ethyl acetate, which was washed with saturated NaHCO₃ (2×10 mL) After the aqueous layer was extracted with

ethyl acetate, the combined organic layers were dried over anhydrous Na_2SO_4 and evaporated under a vacuum. The residue was purified by flash column chromatography PE

- EtOAc (15:1) to afford the desired products 7.

2.3 Optimization of the amount of arylboronic acid

Table S1 Optimization of the amount of arylboronic acid

Ph CN COOEt +	PhB(OH) ₂ 2a	Ni(dppe)Cl ₂ , ZnCl ₂	EtOOC Ph N Ph H 3a
Entry	2a (equiv.)		Yeild (%) ^[b]
1		1	81
2		2	98
3		3	95

^[a]Reaction conditions: **1a** (0.4 mmol), **2a**, Ni(dppe)Cl₂ (10 mol%), ZnCl₂ (1.0 equiv), THF (1.5 mL), air, 100 °C, 24 h. ^[b]Isolated yield.

3. Analytical Data for All Products

ethyl 2,5-diphenyl-1H-pyrrole-3-carboxylate (3a): White solid (114.1 mg, 98%), mp 159.4-161.2°C (lit.¹ 167-170 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.59 (s, 1H), 7.66-7.64 (m, 2H), 7.53-7.52 (m, 2H), 7.45-7.39 (m, 5H), 7.29-7.26 (m, 1H), 7.03-7.02 (m, 1H), 4.24 (q, *J* = 7.0 Hz, 2H), 1.28 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.8, 137.7, 132.0, 131.8, 131.6, 129.1, 129.0, 128.4, 128.2, 127.1, 124.0, 113.9, 109.2, 59.8, 14.3.

ethyl 5-phenyl-2-(o-tolyl)-1H-pyrrole-3-carboxylate (3b): White solid (98.8 mg, 81%), mp 140.1-142.9 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.61 (s, 1H), 7.60-7.58 (m, 2H), 7.37-7.30 (m, 4H), 7.25-7.19 (m, 3H), 6.77-6.76 (m, 1H), 4.16 (q, *J* = 7.0 Hz, 2H), 2.46 (s, 3H), 1.22 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.0, 136.9, 135.4, 131.9, 131.5, 131.0, 131.0, 128.9, 128.1, 128.0, 127.4, 126.0, 112.9, 112.0, 59.7, 21.0, 14.3. HRMS calcd for C₂₀H₂₀NO₂ [M+H]⁺: 306.1489, found 306.1496.

ethyl 5-*phenyl*-2-(*m*-tolyl)-1*H*-*pyrrole*-3-*carboxylate* (3*c*): White solid (108.7 mg, 89%), mp 140.6-141.3 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.58 (s, 1H), 7.66-7.65 (m, 2H), 7.43-7.29 (m, 6H), 7.10-7.08 (m, 1H), 7.01-7.00 (m, 1H), 4.24 (q, *J* = 7.0 Hz, 2H), 2.40 (s, 3H), 1.28 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.8, 138.7, 137.5, 132.0, 131.9, 131.5, 129.0, 129.0, 128.4, 128.2, 127.9, 124.8, 121.2, 113.8, 109.1, 59.8, 21.5, 14.3. HRMS calcd for C₂₀H₂₀NO₂ [M+H]⁺: 306.1489, found 306.1496.

*ethyl 5-phenyl-2-(p-tolyl)-1H-pyr*role-3-c*arboxylate (3d)*: White solid (109.9 mg, 90%), mp 166.0-167.3 °C (lit.¹ 173-175 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.88 (s, 1H), 7.63-7.61 (m, 2H), 7.44-7.34 (m, 5H), 7.21-7.19 (m, 2H), 6.96-6.95 (m, 1H), 4.19 (q, *J* = 8.0 Hz, 2H), 2.37 (s, 3H), 1.26 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.0, 137.4, 136.7, 132.0, 131.9, 129.6, 129.0, 128.8, 128.1, 128.0, 124.0, 113.5, 108.5, 59.7, 21.1, 14.2. HRMS calcd for C₂₀H₂₀NO₂ [M+H]⁺: 306.1489, found 306.1496.

ethyl 2-(naphthalen-2-yl)-5-phenyl-1H-pyrrole-3-carboxylate (3e): White solid (112.0 mg, 82%), mp 164.1-165.8 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.84 (s, 1H), 7.90-7.86 (m, 2H), 7.83-7.81 (m, 2H), 7.70-7.67 (m, 3H), 7.50-7.38 (m, 5H), 7.15-7.14 (m, 1H), 4.25 (q, J = 7.0 Hz, 2H), 1.30 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.8, 138.1, 133.7, 132.5, 131.9, 131.8, 129.1, 128.9, 128.8, 128.5, 128.2, 127.8, 127.8, 126.7, 125.9, 123.0, 121.6, 114.0, 109.8, 59.9, 14.3. HRMS calcd for C₂₃H₂₀NO₂ [M+H]⁺: 342.1489, found 342.1491.

ethyl 2-(naphthalen-1-yl)-5-phenyl-1H-pyrrole-3-carboxylate (3f): White solid (117.4 mg, 86%), mp 163.3-164.6 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.79 (s, 1H), 8.31-8.30 (m, 1H), 7.91-7.83 (m, 2H), 7.67-7.66 (m, 2H), 7.54-7.47 (m, 4H), 7.41-7.35 (m, 3H), 6.98 (s, 1H), 4.22 (q, *J* = 8.0 Hz, 2H), 1.28 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.0, 137.4, 133.9, 131.9, 131.3, 130.3, 130.1, 129.0, 128.5, 128.2, 128.2, 128.1, 126.6, 126.4, 126.1, 125.3, 125.3, 113.2, 112.7, 59.7, 14.2. HRMS calcd for C₂₃H₂₀NO₂ [M+H]⁺: 342.1489, found 342.1491.

ethyl 2-(4-fluorophenyl)-5-phenyl-1H-pyrrole-3-carboxylate (**3g**): White solid (79.2 mg, 64%), mp 147.8-148.6 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.03 (s, 1H), 7.58-7.57 (m, 2H), 7.49-7.46 (m, 2H), 7.36-7.31 (m, 3H), 7.08-7.04 (m, 2H), 6.89-6.88 (m, 1H), 4.15 (q, *J* = 7.0 Hz, 2H), 1.23 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.0, 161.9 (d, *J* = 246.6 Hz), 137.9, 131.8, 131.0, 129.0, 128.2, 128.0, 125.8 (d, *J*_{CF} = 8.0 Hz), 124.0, 115.8

(d, $J_{CF} = 21.8$ Hz), 113.6, 108.9, 59.8, 14.2. HRMS calcd for $C_{19}H_{17}FNO_2$ [M+H]⁺: 310.1238, found 310.1238.

ethyl 2-(4-chlorophenyl)-5-phenyl-1H-pyrrole-3-carboxylate (**3h**): White solid (82.1 mg, 63%), mp 205.0-206.3 °C (lit.¹ 203-205 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.66 (s, 1H), 7.63-7.61 (m, 2H), 7.45-7.35 (m, 7H), 6.99-6.98 (m, 1H), 4.22 (q, *J* = 8.0 Hz, 2H), 1.27 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.7, 138.0, 132.7, 131.8, 130.6, 130.1, 129.2, 129.0, 128.5, 128.2, 125.2, 124.0, 114.0, 109.6, 59.9, 14.3. HRMS calcd for C₁₉H₁₇ClNO₂ [M+H]⁺: 326.0948 and 328.0918, found 326.0943 and 328.0913.

ethyl 2-(4-bromophenyl)-5-phenyl-1H-pyrrole-3-carboxylate (**3i**): White solid (88.6 mg, 60%), mp 213.5-213.7 °C (lit.¹ 213-215 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.63 (s, 1H), 7.63-7.62 (m, 2H), 7.52-7.51 (m, 2H), 7.44-7.38 (m, 5H), 7.01-7.00 (m, 1H), 4.22 (q, *J* = 7.0 Hz, 2H), 1.27 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.6, 138.1, 132.1, 131.8, 130.6, 130.5, 129.0, 128.5, 128.2, 125.5, 120.7, 114.1, 109.7, 59.9, 14.3. HRMS calcd for C₁₉H₁₇BrNO₂ [M+H]⁺:370.0443 and 372.0422, found 370.0443 and 372.0422.

ethyl 2-(4-iodophenyl)-5-phenyl-1H-pyrrole-3-carboxylate (**3j**): White solid (83.4 mg, 50%), mp 204.7-206.2 °C.¹H NMR (500 MHz, CDCl₃) δ 8.66 (s, 1H), 7.71-7.69 (m, 2H), 7.62-7.60 (m, 2H), 7.41-7.36 (m, 3H), 7.28-7.27 (m, 2H), 7.00-3.99 (m, 1H), 4.20 (q, J = 8.0 Hz, 2H), 1.27 (t, J = 8.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.7, 138.2, 138.0, 131.7, 131.0, 130.7, 129.0, 128.5, 128.2, 125.7, 124.0, 113.9, 109.7, 91.8, 59.9, 14.3. HRMS calcd for C₁₉H₁₆INO₂Na [M+Na]⁺: 440.0124, found 440.0131.

ethyl 2-(3-fluorophenyl)-5-phenyl-1H-pyrrole-3-carboxylate (3k): White solid (70.5 mg, 57%), mp 170.1-170.4 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.90 (s, 1H), 7.60-7.58 (m, 2H), 7.39-7.28 (m, 5H), 7.23-7.21 (m, 1H), 7.00-6.99 (m, 1H), 6.96-6.92 (m, 1H), 4.19 (q, J = 8.0 Hz, 2H), 1.25 (t, J = 8.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.8, 164.3 (d, $J_{CF} = 245.8$ Hz), 138.3, 133.7 (d, $J_{CF} = 8.3$ Hz), 131.7, 130.5, 130.5, 129.1, 128.5, 128.1, 119.6 (d, $J_{CF} = 2.7$ Hz), 113.8, 113.7 (d, $J_{CF} = 21.3$ Hz), 111.0 (d, $J_{CF} = 22.9$ Hz), 110.0, 59.9, 14.2. HRMS calcd for C₁₉H₁₇FNO₂ [M+H]⁺: 310.1238, found 310.1238.

ethyl 2-(3-chlorophenyl)-5-phenyl-1H-pyrrole-3-carboxylate (**3l**): White solid (52.0 mg, 40%), mp 118.3-119.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.25 (s, 1H), 7.67-7.66 (m, 2H), 7.62-7.60 (m, 1H), 7.45-7.37 (m, 4H), 7.32-7.29 (m, 1H), 7.23-7.20 (m, 1H), 7.09-7.08 (m, 1H), 4.25 (q, *J* = 7.0 Hz, 2H), 1.29 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.7, 137.5, 131.8, 130.8, 130.2, 129.9, 129.5, 129.0, 128.9, 128.5, 128.2, 127.4, 113.1, 112.8, 59.8, 14.3. HRMS calcd for C₁₉H₁₇ClNO₂ [M+H]⁺: 326.0948 and 328.0918, found 326.0943 and 328.0913.

ethyl 5-*phenyl*-2-(4-(*trifluoromethyl*)*phenyl*)-1*H*-*pyrrole*-3-*carboxylate* (**3m**): Yellow Oil (44.5 mg, 31%), ¹H NMR (500 MHz, CDCl₃) δ 9.21 (s, 1H), 7.60-7.55 (m, 6H), 7.35-7.32 (m, 3H), 7.05-7.04 (m, 1H), 4.15 (q, *J* = 7.0 Hz, 2H), 1.23 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.9, 138.9, 134.8, 131.5, 130.3, 129.1, 128.6, 128.1, 125.9 (q, *J*_{CF} = 3.7Hz), 125.3, 124.0, 123.1, 114.0, 110.7, 60.0, 14.2. HRMS calcd for C₂₀H₁₆F₃NO₂Na [M+Na]⁺: 382.1031, found 382.1029.

ethyl 2-(4-methoxyphenyl)-5-phenyl-1H-pyrrole-3-carboxylate (3n): White solid (109.3 mg, 85%), mp 155.0-156.0 °C (lit.¹ 158-160 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.55 (s, 1H), 7.64-7.63 (m, 2H), 7.46-7.40 (m, 4H), 7.38-7.35 (m, 1H), 6.95-6.6.93 (m, 2H), 6.90-6.89 (m, 1H), 4.23 (q, *J* = 7.0 Hz, 2H), 3.83 (s, 3H), 1.27 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.9, 158.9, 137.2, 132.1, 131.8, 129.0, 128.3, 128.2, 125.5, 124.5, 114.5, 113.7, 108.1, 59.7, 55.4, 14.3. HRMS calcd for C₂₀H₂₀NO₃ [M+H]⁺: 322.1438, found 322.1442.

2,5-diphenyl-1H-pyrrole (6a): White solid (78.8 mg, 90%), mp 139.7-140.2 °C (lit.² 143 °C). ¹H NMR (500 MHz, DMSO) δ 11.25 (s, 1H), 7.77-7.76 (m, 4H), 7.39-7.36 (m, 4H), 7.20-7.17 (m, 2H), 6.61-6.60 (m, 2H); ¹³C NMR (125 MHz, DMSO) δ 133.0, 132.5, 128.5, 125.7, 123.9, 107.6.

2-phenyl-5-(o-tolyl)-1H-pyrrole (**6b**): White solid (84.8 mg, 91%; 81.2 mg, 87%), mp 126.5-127.7 °C (lit.³ 125-127 °C).¹H NMR (500 MHz, DMSO) δ 11.22 (s, 1H), 7.78-7.76 (m, 2H), 7.62 (s, 1H), 7.57-7.56 (m, 1H), 7.39-7.35 (m, 2H), 7.27-7.24 (m, 1H), 7.1-7.16 (m, 1H), 7.01-6.99 (m, 1H), 6.60-6.58 (m, 2H), 2.35 (s, 3H); ¹³C NMR (125 MHz, DMSO) δ 137.6, 133.1, 132.9, 132.6, 132.5, 128.5, 128.4, 126.4, 125.7, 124.5, 123.9, 121.2, 107.6, 107.5, 21.1.

2-phenyl-5-(m-tolyl)-1H-pyrrole (6c): White solid (80.2 mg, 86%; 80.3 mg, 81%), mp 124.4-124.5 °C (lit.³ 132-133 °C).¹H NMR (500 MHz, DMSO) δ 11.22 (s, 1H), 7.78-7.77 (m, 2H), 7.62-7.56 (m, 2H), 7.39-7.36 (m, 2H), 7.28-7.17 (m, 2H), 7.01-7.00 (m, 1H), _{S11} 6.59-6.58 (m, 2H), 2.35 (s, 3H) ; ¹³C NMR (125 MHz, DMSO) δ 137.6, 133.1, 132.9, 132.6, 132.5, 128.5, 128.4, 126.4, 125.7, 124.5, 123.9, 121.2, 107.6, 107.5, 21.1.

phenyl-5-(p-tolyl)-1H-pyrrole (6d): White solid (72.8 mg, 78%; 68.1 mg, 73%), mp 144.3-144.9 °C (lit.³ 142-143 °C).¹H NMR (500 MHz, DMSO) δ 11.18 (s, 1H), 7.75 (d, *J* = 7.5 Hz, 2H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.38-7.35 (m, 2H), 7.19-7.15 (m, 3H), 6.58-6.53 (m, 2H), 2.30 (s, 3H); ¹³C NMR (125 MHz, DMSO) δ134.8, 133.1, 132.6, 132.5, 129.8, 129.0, 128.5, 125.5, 123.8, 123.8, 107.5, 107.0, 20.6.

2-(4-(tert-butyl)phenyl)-5-phenyl-1H-pyrrole (6e): White solid (85.8 mg, 78%; 82.6 mg, 75%), mp 141.2-142.0 °C. ¹H NMR (500 MHz, DMSO) δ 11.20 (s, 1H), 7.76-7.67 (m, 4H), 7.40-7.35 (m, 4H), 7.18-7.15 (m, 1H), 6.58-6.52 (m, 2H), 1.30 (s, 9H); ¹³C NMR (125 MHz, DMSO) δ 148.2, 133.1, 132.7, 132.6, 129.9, 128.5, 125.6, 125.2, 123.9, 123.8, 107.5, 107.1, 34.2, 31.1. HRMS calcd for C₂₀H₂₂N [M+H]⁺: 276.1747, found 276.1748.

2-(3,5-dimethylphenyl)-5-phenyl-1H-pyrrole (6f): White solid (47.5 mg, 48%; 68.3 mg, 69%), mp 120.4-123.0 °C. ¹H NMR (500 MHz, DMSO) δ 11.17 (s, 1H), 7.77-7.76 (m, 2H), 7.40-7.35 (m, 4H), 7.19-7.16 (m, 1H), 6.82 (s, 1H), 6.58-6.54 (m, 2H), 2.30 (s, 6H); ¹³C NMR (125 MHz, DMSO) δ 137.4, 133.2, 132.7, 132.6, 132.4, 128.5, 127.3, 125.6, 123.9, 121.8, 107.5, 107.4, 21.0. HRMS calcd for C₁₈H₁₈N [M+H]⁺: 248.1434, found 248.1429.

(naphthalen-1-yl)-5-phenyl-1H-pyrrole (6g): White solid (91.5 mg, 85%; 85.1 mg, 79%), mp 160.3-161.9 °C. ¹H NMR (500 MHz, DMSO) δ 11.41 (s, 1H), 8.31-8.30 (m, 1H), 7.95-7.81 (m, 6H), 7.52-7.49 (m, 1H), 7.45-7.39 (m, 3H), 7.22-7.19 (m, 1H), 6.76 (s, 1H), 6.66 S12 (s, 1H); ¹³C NMR (126 MHz, DMSO) δ 133.6, 132.7, 132.5, 131.3, 131.1, 130.8, 128.6, 128.3, 127.0, 126.4, 126.3, 125.9, 125.6, 125.4, 123.8, 111.0, 106.9. HRMS calcd for C₂₀H₁₆N [M+H]⁺: 270.1277, found 270.1276.

2-(*naphthalen-2-yl*)-5-*phenyl-1H-pyrrole* (**6***h*): White solid (99.0 mg, 92%; 86.2 mg, 80%), mp 157.9-158.2 °C (lit.³ 162-163 °C). ¹H NMR (500 MHz, DMSO) δ 11.43 (s, 1H), 8.32 (s, 1H), 7.95-7.82 (m, 6H), 7.52-7.39 (m, 4H), 7.22-7.19 (m, 1H), 6.77 (s, 1H), 6.66 (s, 1H); ¹³C NMR (126 MHz, DMSO) δ 133.5, 133.5, 133.0, 132.5, 131.5, 130.0, 128.6, 128.0, 127.6, 127.5, 126.4, 125.9, 125.1, 124.0, 123.5, 120.9, 108.6, 107.9.

2-(4-fluorophenyl)-5-phenyl-1H-pyrrole (6i): Yellow solid (71.1 mg, 75%; 77.8 mg, 82%), mp 150.2-150.6 °C (lit.³ 148-149 °C). ¹H NMR (500 MHz, DMSO) δ 11.25 (s, 1H), 7.81-7.75 (m, 4H), 7.39-7.36 (m, 2H), 7.24-7.17 (m, 3H), 6.60-6.56 (m, 2H); ¹³C NMR (125 MHz, DMSO) δ 160.2 (d, *J* = 237.5 Hz), 133.0, 132.5, 132.1, 129.2, 128.6, 125.8, 125.7 (d, *J* = 12.5 Hz), 123.9, 115.4 (d, *J*_{CF} = 25.0 Hz), 107.6, 107.6.

2-(4-chlorophenyl)-5-phenyl-1H-pyrrole (6j): Yellow solid (72.8 mg, 73%; 73.8 mg, 74%), mp 155.1-156.1 °C (lit.³ 153-154 °C). ¹H NMR (500 MHz, DMSO) δ 11.31 (s, 1H), 7.81-7.76 (m, 4H), 7.44-7.36 (m, 4H), 7.21-7.18 (m, 1H), 6.65-6.60 (m, 2H); ¹³C NMR (125 MHz, DMSO) δ 133.5, 132.4, 131.7, 131.4, 129.9, 128.6, 128.5, 125.9, 125.5, 124.0, 108.3, 107.8.

2-(4-bromophenyl)-5-phenyl-1H-pyrrole (6k): White solid (59.6 mg, 50%; 79.9 mg, 67%), mp 161.9-162.3 °C. ¹H NMR (500 MHz, DMSO) δ 11.31 (s, 1H), 7.77-7.73 (m, 4H), 7.56-7.55 (m, 2H), 7.39-7.36 (m, 2H), 7.21-7.18 (m, 1H), 6.66-6.60 (m, 2H); ¹³C NMR (125 MHz, DMSO) δ 133.5, 132.3, 131.7, 131.3, 128.5, 125.9, 125.7, 124.0, 118.3, 108.3, 107.8. S13 HRMS calcd for $C_{16}H_{13}BrN$ [M+H]⁺: 298.0231 and 300.0211, found 298.0230 and 300.0210.

2-(4-iodophenyl)-5-phenyl-1H-pyrrole (6l): White solid (67.6 mg, 49%; 85.6 mg, 62%), mp 179.0-181.4 °C. ¹H NMR (500 MHz, DMSO) δ 11.30 (s, 1H), 7.77-7.71 (m, 4H), 7.61-6.59 (m, 2H), 7.39-7.36 (m, 2H), 7.21-7.18 (m, 1H), 6.65-6.60 (m, 2H); ¹³C NMR (125 MHz, DMSO) δ 137.2, 133.5, 132.3, 132.0, 131.8, 128.5, 125.9, 124.0, 108.3, 107.8, 90.6. HRMS calcd for C₁₆H₁₃IN [M+H]⁺: 346.0087, found 346.0087.

2-(4-methoxyphenyl)-5-phenyl-1H-pyrrole (**6m**): White solid (69.8 mg, 70%; 57.8 mg, 58%), mp 163.4-164.5 °C (lit.³ 162-163 °C). ¹H NMR (500 MHz, DMSO) δ 11.13 (s, 1H), 7.75-7.69 (m, 4H), 7.37-7.34 (m, 2H), 7.17-7.14 (m, 1H), 6.96 (d, *J* = 7.5 Hz, 2H), 6.57-6.56 (m, 1H), 6.46-6.45 (m, 1H), 3.78 (s, 3H); ¹³C NMR (125 MHz, DMSO) δ 157.6, 133.1, 132.7, 132.1, 128.5, 125.5, 125.4, 125.3, 123.7, 114.0, 107.4, 106.3, 55.0.

2-(3-methoxyphenyl)-5-phenyl-1H-pyrrole (**6n**): White solid (62.7 mg, 63%; 55.9 mg, 56%), mp 134.9-135.9 °C. ¹H NMR (500 MHz, DMSO) δ 11.49 (s, 1H), 8.40 (s, 1H), 8.04-8.02 (m, 1H), 7.81-7.86 (m, 3H), 7.53-7.50 (m, 1H), 7.40-7.37 (m, 2H), 6.70-6.63 (m, 2H), 3.90 (s, 3H); ¹³C NMR (125 MHz, DMSO) δ 166.4, 133.7, 133.1, 132.4, 131.9, 130.2, 129.0, 128.5, 126.2, 126.0, 124.2, 124.1, 108.5, 107.9, 52.1. HRMS calcd for C₁₇H₁₆NO [M+H]⁺: 250.1227, found 250.1225.

2-(*benzo[d]*[1,3]*dioxol-5-yl*)-5-*phenyl-1H-pyrrole* (**6***o*): White solid (70.5 mg, 67%), mp 146.1-147.3 °C. ¹H NMR (500 MHz, DMSO) δ 11.10 (s, 1H), 7.75-7.74 (m, 2H), 7.39-7.35 (m, 3H), 7.28-7.26 (m, 1H), 7.18-7.15 (m, 1H), 6.95-6.93 (m, 1H), 6.56-6.49 (m, 2H), 6.03 (s, 2H); ¹³C NMR (125 MHz, DMSO) δ 147.6, 145.4, 133.0, 132.6, 132.4, 128.5, 127.1, S14 125.5, 123.8, 117.5, 108.5, 107.5, 107.0, 104.8, 100.8. HRMS calcd for C₁₇H₁₄NO₂ [M+H]⁺: 264.1019, found 264.1028.

2-(4-phenoxyphenyl)-5-phenyl-1H-pyrrole (**6p**): White solid (58.5 mg, 47%; 99.6 mg, 80%), mp 157.1-158.1 °C. ¹H NMR (500 MHz, DMSO) δ 11.23 (s, 1H), 7.80-7.75 (m, 4H), 7.42-7.36 (m, 4H), 7.19-7.13 (m, 2H), 7.06-7.03 (m, 4H), 6.59-6.54 (m, 2H); ¹³C NMR (125 MHz, DMSO) δ 157.0, 154.5, 132.8, 132.6, 130.0, 128.5, 128.4, 125.6, 123.8, 123.2, 119.1, 118.2, 107.6, 107.3. HRMS calcd for C₂₂H₁₈NO [M+H]⁺: 312.1383, found 312.1385.

2-phenyl-5-(4-(trifluoromethyl)phenyl)-1H-pyrrole (6q): White solid (46.0 mg, 40%), mp 167.6-168.4 °C (lit.³ 168-169 °C). ¹H NMR (500 MHz, DMSO) δ 11.47 (s, 1H), 7.99-7.98 (m, 2H), 7.81-7.79 (m, 2H), 7.72-7.70 (m, 2H), 7.42-7.38 (m, 2H), 7.24-7.21 (m, 1H), 6.80-6.79 (m, 1H), 6.66-6.65 (m, 1H); ¹³C NMR (125 MHz, DMSO) δ 136.2, 134.4, 132.1, 131.3, 128.6, 126.2, 125.6, 125.5 (q, J_{CF} = 3.8 Hz), 125.3, 124.2, 123.9, 109.7, 108.1. HRMS calcd for C₁₇H₁₃F₃N [M+H]⁺: 288.0995, found 288.0989.

ethyl 4-(5-phenyl-1H-pyrrol-2-yl)benzoate (**6***r*): White solid (87.3 mg, 75%), mp 139.7-140.1 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.80 (s, 1H), 8.05-8.04 (m, 2H), 7.58-7.57 (m, 4H), 7.42-7.39 (m, 2H), 7.27-7.25 (m, 1H), 6.72 (s, 1H), 6.62 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 166.5, 136.4, 134.5, 132.1, 131.9, 130.3, 129.0, 127.7, 126.8, 124.1, 123.0, 109.8, 108.4, 60.9, 14.3. HRMS calcd for C₁₉H₁₇NO₂ [M+H]⁺: 292.1332, found 292.1332.

3,5-diphenylpyridine (7a): Yellow solid (74.9 mg, 81%), mp 78.9-79.6 °C (lit.⁴ 79-80 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.17-8.15 (m, 4H), 7.84-7.81 (m, 1H), 7.71-7.69 (m, 2H), 7.52-7.49 (m, 4H), 7.45-7.42 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 156.9, 139.5, 137.5, 129.0, 128.7, 127.0, 118.6.

3-phenyl-5-(o-tolyl)pyridine (7b): Yellow oil (54.0 mg, 55%; 52.0 mg, 53%), mp 62.7-62.9 °C (lit.⁴ 63-64 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.09-8.07 (m, 2H), 7.84-7.81 (m, 1H), 7.71-7.69 (m, 1H), 7.50-7.46 (m, 3H), 7.42-7.39 (m, 1H), 7.37-7.36 (m, 1H), 7.31-7.29 (m, 3H), 2.49 (s, 3H); ¹C NMR (125 MHz, CDCl₃) δ 159.8, 156.5, 140.5, 139.4, 137.0, 136.2, 130.9, 129.8, 128.9, 128.7, 128.3, 127.1, 125.9, 122.4, 118.3, 20.7.

3-phenyl-5-(m-tolyl)pyridine (7c): Yellow oil (65.7 mg, 67%; 58.9, 60%) mp 66.1-66.5 °C (lit.⁴ 66-67 °C). ¹H NMR (500 MHz, DMSO) δ 8.21-8.20 (m, 2H), 8.12-8.00 (m, 2H), 7.95-7.89 (m, 3H), 7.54-7.45 (m, 3H), 7.34-7.33 (m, 2H), 2.37 (s, 3H); ¹C NMR (125 MHz, CDCl₃) δ 155.6, 155.5, 138.8, 138.7, 138.2, 135.9, 129.3, 129.1, 128.7, 126.6, 126.5, 118.8, 118.5, 118.4, 20.8.

3-phenyl-5-(p-tolyl)pyridine (7d): White solid (73.6 mg, 75%; 65.8 mg, 67%), mp 88.6-89.5 °C (lit.⁴ 91-92 °C). ¹H NMR (500 MHz, DMSO) δ 8.21-8.20 (m, 2H), 8.02-7.89 (m, 5H), 7.55-7.52 (m, 2H), 7.48-7.45 (m, 1H), 7.43-7.40 (m, 1H), 7.28-7.27 (m, 1H), 2.43 (s, 3H); ¹C NMR (125 MHz, CDCl₃) δ 155.8, 155.6, 138.7, 138.2, 137.9, 129.8, 129.1, 128.7, 128.6, 127.1, 126.6, 126.5, 123.8, 118.9, 118.8, 21.2.

3-(3,5-dimethylphenyl)-5-phenylpyridine (7e): White solid (68.5 mg, 66%; 70.5 mg, 68%),

mp 86.5-87.1 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.15-8.13 (m, 2H), 7.79 (t, *J* = 8.0 Hz, 1H), 7.75 (s, 2H), 7.67-7.65 (m, 2H), 7.50 (t, *J* = 7.5 Hz, 2H), 7.44-7.41 (m, 1H), 7.07 (s, 1H), 2.42 (s, 6H); ¹C NMR (125 MHz, CDCl₃) δ 157.3, 156.8, 139.6, 139.5, 138.2, 137.4, 130.7, 128.9, 128.7, 127.1, 124.9, 118.8, 118.6, 21.5. HRMS calcd for C₁₉H₁₈N [M+H]⁺: 260.1434, found 260.1434.

3-([1,1'-biphenyl]-4-yl)-5-phenylpyridine (7f): White solid (62.7 mg, 51%; 76.2 mg, 62%), mp 146.9-147.1 °C (lit.⁴ 149-150 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.26-8.24 (m, 2H), 8.20-8.18 (m, 2H), 7.86-7.82 (m, 1H), 7.76-7.72 (m, 4H), 7.70-7.68 (m, 2H), 7.54-7.43 (m, 5H), 7.40-7.37 (m, 1H); ¹C NMR (125 MHz, CDCl₃) δ 156.9, 156.5, 141.8, 140.8, 139.5, 138.4, 137.5, 129.0, 128.8, 128.7, 127.5, 127.4, 127.4, 127.1, 127.0, 118.6, 118.5.

3-(naphthalen-2-yl)-5-phenylpyridine (7g): Colorless oil (68.6 mg, 61%; 72.0 mg, 64%) (lit.⁴ Oil). ¹H NMR (500 MHz, CDCl₃) δ 8.27-8.25 (m, 1H), 8.14-8.12 (m, 2H), 7.95-7.89 (m, 3H), 7.81-7.80 (m, 1H), 7.72-7.70 (m, 1H), 7.60-7.47 (m, 6H), 7.44-7.42 (m, 1H); ¹C NMR (125 MHz, CDCl₃) δ 158.9, 156.9, 139.2, 138.5, 137.3, 134.0, 131.3, 129.0, 128.9, 128.7, 128.3, 127.9, 127.7, 127.1, 126.3, 125.9, 125.8, 125.3, 123.5, 118.7.

3-(naphthalen-1-yl)-5-phenylpyridine (7h): Colorless oil (78.8 mg, 70%; 65.3 mg, 58%) (lit.⁵ Oil). ¹H NMR (500 MHz, CDCl₃) δ 8.34-8.34 (m, 1H), 8.19-8.17 (m, 2H), 7.98-7.96 (m, 2H), 7.91-7.87 (m, 1H), 7.82-7.80 (m, 1H), 7.75-7.73 (m, 1H), 7.63-7.60 (m, 1H), 7.58-7.50 (m, 5H), 7.47-7.44 (m, 1H); ¹C NMR (125 MHz, CDCl₃) δ 159.0, 156.8, 139.4, 138.7, 137.1, 134.0, 131.3, 128.9, 128.8, 128.7, 128.3, 127.6, 127.0, 126.3, 125.9, 125.8, 125.3, 123.3, 118.5.

3-(4-fluorophenyl)-5-phenylpyridine (7i): Yellow solid (56.8 mg, 57%; 62.8 mg, 63%), mp 84.4-86.1 °C (lit.⁴ 94-95 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.17-8.13 (m, 4H), 7.84-7.80 (m,1H), 7.71-7.68 (m, 1H), 7.66-7.64 (m, 1H), 7.53-7.49 (m, 2H), 7.46-7.42 (m, 1H), 7.20-7.16 (m, 2H); ¹C NMR (125 MHz, CDCl₃) δ 163.7 (d, *J*_{CF} = 248.4 Hz), 156.9, 155.9, 139.3, 137.7, 135.6, 129.1, 128.8 (d, *J*_{CF} = 8.4 Hz), 128.7, 127.1, 127.0, 118.4 (d, *J*_{CF} = 37.5 Hz), 115.6 (d, *J*_{CF} = 21.5 Hz).

3-(4-chlorophenyl)-5-phenylpyridine (7j): Yellow solid (65.9 mg, 62%; 61.7 mg, 58%), mp 105.8-106.2 °C (lit.⁴ 104-105 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.17-8.10 (m, 4H), 7.84-7.81 (m, 1H), 7.72-7.66 (m, 2H), 7.52-7.43 (m, 5H); ¹C NMR (125 MHz, CDCl₃) δ 157.0, 155.6, 139.2, 137.9, 137.7, 135.2, 129.1, 129.1, 128.9, 128.7, 128.3, 127.1, 127.0, 119.0, 118.8, 118.4.

3-(4-bromophenyl)-5-phenylpyridine (7k): Yellow solid (65.8 mg, 53%; 63.3 mg, 51%), mp 112.9-113.2 °C (lit.⁴ 115-116 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.15-8.12 (m, 2H), 8.05-8.02 (m, 2H), 7.85-7.81 (m, 1H), 7.72-7.70 (m, 1H), 7.68-7.61 (m, 3H), 7.53-7.49 (m, 2H), 7.46-7.42 (m, 1H); ¹C NMR (125 MHz, CDCl₃) δ 157.1, 155.7, 139.3, 138.4, 137.7, 131.8, 129.1, 128.7, 128.7, 128.6, 127.1, 127.0, 123.5, 119.0, 118.4.

3-(4-iodophenyl)-5-phenylpyridine (7l): Yellow solid (42.9 mg, 30%; 40.0 mg, 28%), mp 138.7-139.4 °C (lit.⁴ 139-141 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, *J* = 8.0 Hz, 2H), 7.88-7.87 (m, 2H), 7.82-7.77 (m, 3H), 7.69-7.68 (m, 1H), 7.63-7.62 (m, 1H), 7.51-7.48 (m,

2H), 7.44-7.41 (m, 1H); ¹C NMR (125 MHz, CDCl₃) δ 157.0, 155.7, 139.2, 138.9, 137.8, 137.6, 129.1, 128.7, 128.7, 127.1, 127.0, 119.0, 118.3, 95.3.

3-(4-methoxyphenyl)-5-phenylpyridine (7m): White solid (62.7 mg, 60%; 45.0 mg, 43%), mp 131.5-131.9 °C (lit.⁴ 132-133 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.17-8.12 (m, 4H), 7.79-7.75 (m, 1H), 7.65-7.62 (m, 2H), 7.53-7.49 (m, 2H), 7.45-7.42 (m, 1H), 7.05-7.02 (m, 2H), 3.88 (s, 3H); ¹C NMR (125 MHz, CDCl₃) δ 160.6, 156.7, 156.5, 139.6, 137.4, 132.2, 128.9, 128.6, 128.3, 127.0, 117.9, 117.9, 114.1, 55.4.

3-(4-phenoxyphenyl)-5-phenylpyridine (7**n**): Yellow oil (58.2 mg, 45%; 64.7 mg, 50%). ¹H NMR (500 MHz, DMSO) δ 8.25-8.20 (m, 3H), 7.95-7.89 (m, 2H), 7.54-7.42 (m, 4H), 7.21-7.09 (m, 4H); ¹C NMR (125 MHz, DMSO) δ 157.8, 156.2, 155.6, 155.0, 138.7, 138.3, 133.8, 130.1, 129.1, 128.7, 128.4, 126.6, 123.8, 119.0, 118.4, 118.5, 118.4. HRMS calcd for C₂₃H₁₈NO [M+H]⁺: 324.1383, found 324.1386.

3-(benzo[d][1,3]dioxol-5-yl)-5-phenylpyridine (70): Colorless oil (69.4 mg, 63%). ¹H NMR (500 MHz, CDCl₃) δ 8.16-8.14 (m, 2H), 7.79-7.74 (m, 2H), 7.66-7.64 (m, 2H), 7.60-7.58 (m, 1H), 7.52-7.48 (m, 2H), 7.45-7.41 (m, 1H), 6.94-6.92 (m, 1H), 6.03 (s, 2H); ¹C NMR (125 MHz, CDCl₃) δ 156.7, 156.3, 148.5, 148.3, 139.5, 137.4, 134.0, 129.0, 128.7, 127.0, 121.0, 118.2, 118.0, 108.4, 107.5, 101.3. HRMS calcd for C₁₈H₁₄NO₂ [M+H]⁺: 276.1019, found 276.1021.

3-phenyl-5-(4-(trifluoromethyl)phenyl)pyridine (7p): Yellow solid (57.5 mg, 48%), mp

S19

109.0-110.2 °C (lit.⁴ 117-118 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.27-8.25 (m, 2H), 8.15-8.13 (m, 2H), 7.87-7.83 (m, 1H), 7.76-7.71 (m, 4H), 7.53-7.43 (m, 3H); ¹C NMR (125 MHz, CDCl₃) δ 157.2, 155.3, 142.8, 139.2, 137.7, 129.2, 128.8, 127.3, 127.0, 125.6 (q, *J* = 3.8Hz), 125.4, 123.2, 119.5, 118.9.

Reference

- (1) N. Naresh Kumar Reddy, D. Rawat, S. Adimurthy. J. Org. Chem., 2018, 83, 9412–9421.
- (2) H. Rao, S. Jothilingam, H. Scheeren. Tetrahedron., 2004, 60, 1625–1630.
- (3) J. Cen, Y. Wu, J. Li, L. Huang, W. Wu, Z. Zhu, S. Yang, H. Jiang, Org. Lett., 2019, 21, 2090–2094.
- (4) Y. Shen, J. Chen, M. Liu, J. Ding, W. Gao, X. Huang, H. Wu, *Chem. Commun.*, 2014, 50, 4292–4295.
- (5) J. Zhan, M. Wu, D. Wei, B. Wei, Y. Jiang, W. Yu, B. Han, ACS Catal., 2019, 9, 4179-4188.

4. NMR Spectra for All Products

Figure S1. ¹H NMR of 3a (500 MHz,CDCl₃) and ¹³C NMR of 3a (125 MHz, CDCl₃)

Figure S2. ¹H NMR of 3b (500 MHz, CDCl₃) and ¹³C NMR of 3b (125 MHz, CDCl₃)

S23

S25

S26

S28

S30

S31

S32

Figure S13. ¹H NMR of 3m (500 MHz, CDCl₃) and ¹³C NMR of 3m (125 MHz, CDCl₃)

S34

Figure S15. ¹H NMR of 5a (500 MHz, DMSO) and ¹³C NMR of 5a (125 MHz, DMSO)

S36

Figure S17. ¹H NMR of 5c (500 MHz, DMSO) and ¹³C NMR of 5c (125 MHz, DMSO)

Figure S18. ¹H NMR of 5d (500 MHz, DMSO) and ¹³C NMR of 5d (125 MHz, DMSO)

Figure S19. ¹H NMR of 5e (500 MHz, DMSO) and ¹³C NMR of 5e (125 MHz, DMSO)

S41

S42

S43

Figure S24. ¹H NMR of 5j (500 MHz, DMSO) and ¹³C NMR of 5j (125 MHz, DMSO)

S45

Figure S27. ¹H NMR of 5m (500 MHz, DMSO) and ¹³C NMR of 5m (125 MHz, DMSO)

S48

Figure S29. ¹H NMR of 50 (500 MHz, DMSO) and ¹³C NMR of 50 (125 MHz, DMSO)

S50

Figure S31. ¹H NMR of 5q (500 MHz, DMSO) and ¹³C NMR of 5q (125 MHz, DMSO)

S55

S56

S58

S59

S62

S63

S65

S66

S67

S68