Asymmetric organocatalyzed reaction sequence to construct bridged bicyclic acetals via multicatalytic process involving iminium catalysis and anion-binding catalysis

Xiao-Qian Zhang,^a Xue-Jiao Lv,^a Jun-Ping Pei,^a Rui Tan^{*b} and Yan-Kai Liu^{*a,c} ^a Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China

^b School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.

^c Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China E-mail: liuyankai@ouc.edu.cn

Supporting Information

Content

A. General information	1
B. Optimization of the reaction conditions	3
C. Scope of the reaction	6
D. Synthetic transformations	21
E. 1 mmol scale	28
F. NMR and Control Experiments	29
G. NMR spectra and HPLC traces	36
H. Proposed mechanism for the preparation of 11	106
I. Single crystal X-Ray diffraction data	107

A. General information

The ¹H and ¹³C NMR spectra were recorded at 500 MHz or 600 MHz for ¹H and at 125 MHz for ¹³C. The chemical shifts (δ) for ¹H and ¹³C are given in ppm relative to residual signals of the solvents (CDCl₃ at 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR). Coupling constants are given in Hz. The following abbreviations are used to indicate the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. High-resolution mass spectra (HRMS) were obtained from the Waters Q-Tof Ultima Global. X-ray data were obtained from Zhongke chemical technology service center. Optical rotations are reported as follows: [α]_D²⁰ (c in g per 100 mL, solvent: CHCl₃).

Note: NMR signals containing common solvent contaminants were list. H_2O in CDCl₃ at 1.56 ppm ¹H NMR; Ethyl acetate in CDCl₃ at 2.05 (s), 4.12 (q), 1.26 (t) ppm ¹H NMR; Dichloromethane in CDCl₃ at 5.30 (s) ppm ¹H NMR; Grease in CDCl₃ at 0.86 (m), 1.26 (br, s) ppm ¹H NMR; *n*-hexane in CDCl₃ at 0.88 (t), 1.26 (m) ppm ¹H NMR.

All the reactions were set up under air and using freshly distilled solvents, without any precautions to exclude moisture, unless otherwise noted open air chemistry on the bench-top. Chromatographic purification of products was accomplished using force-flow chromatography (FC) on silica gel (300-400 mesh). For thin layer chromatography (TLC) analysis throughout this work, Merck pre-coated TLC plates (silica gel 60 GF254, 0.25 mm) were used, using UV light as the visualizing agent and an phosphomolybdic acid or basic aqueous potassium permanganate (KMnO₄) as stain developing solutions. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator.

HPLC analyses on chiral stationary phase were performed on a Hitachi Chromaste. Daicel Chiralpak IA, IC, ID, or AD columns with *n*-hexane/*i*-PrOH as the eluent were used. HPLC traces were compared to racemic samples which prepared by mixture of two enantiomeric final products obtained using (*S*) and (*R*) catalysts.

Commercial reagents and solvents were purchased from Sigma Aldrich, Fluka, and Alfa Aesar used as received, without further purification. The 2-hydroxy cinnamaldehydes **1** were prepared according to literature procedures.¹ 4-

¹ Chen, Y.-H.; Sun, X.-L.; Guan, H.-S.; Liu, Y.-K. *J. Org. Chem.* **2017**, *82*, 4774.

Hydroxycoumarins **2** were prepared according to literature procedures.²

² Nolan, K. A.; Doncaster, J. R.; Dunstan, M. S.; Scott, K. A.; Frenkel, A. D.; Siegel, D.; Ross, D.; Barnes, J.; Levy, C.; Leys, D.; Whitehead, R. C.; Stratford, I. J.; Bryce, R. A., *J. Med. Chem.* **2009**, *52*, 7142.

B. Optimization of the reaction conditions

entry ^[b]	3	4	solvent	T(°C)	$t(h)^{[c]}$	yield (%) [d]	ee (%) ^[e]
1	3a	-	CH_2Cl_2	25	24	45	28
2	3b	-	CH_2Cl_2	25	24	19	23
3	3c	-	CH_2Cl_2	25	24	17	30
4	3d	-	CH ₂ Cl ₂	25	24	23	3
5	3e	-	CH ₂ Cl ₂	25	24	18	5
6	3f	-	CH_2Cl_2	25	5	41	77
7	3g	-	CH ₂ Cl ₂	25	12	27	86
8 [/]	3f	-	CH ₂ Cl ₂	25	5	39	71

9 [g]	3f	-	CH_2Cl_2	25	5	64	77
10	3f	-	CH ₂ Cl ₂	25	5	51	79
11	3f	-	CH ₂ Cl ₂	0	72	64	95
12 ^[g]	3f	-	CH ₂ Cl ₂	0	20	85	90
131/	3f	4 a	CH_2Cl_2	0	18	73	89
14	3f	4 a	CH_2Cl_2	0	18	70	93
15	3f	4b	CH_2Cl_2	0	18	75	97
16	3f	4c	CH_2Cl_2	0	18	62	96
17	3f	4d	CH_2Cl_2	0	18	55	96
18	3f	4e	CH_2Cl_2	0	18	65	97
19	3f	4f	CH_2Cl_2	0	30	75	95
20	3f	4g	CH_2Cl_2	0	30	80	92
21	3f	4h	CH ₂ Cl ₂	0	18	62	96
22	3f	4i	CH_2Cl_2	0	24	68	94
23	3f	4 j	CH_2Cl_2	0	24	43	94
24	3f	4k	CH_2Cl_2	0	24	46	95
25	3f	41	CH_2Cl_2	0	24	68	90
26	3f	4m	CH_2Cl_2	0	24	31	80
27	3f	4b	DCE	0	36	76	96
28	3f	4b	CHCl ₃	0	48	73	96
29	3f	4b	toluene	0	48	28	77
30	3f	4b	xylene	0	48	25	80
31 ^[h]	3f	4b	CH ₂ Cl ₂	0	25	73	98
32 ^[i]	3f	4b	CH ₂ Cl ₂	0	48	68	99
33[f][h]	3f	4b	CH ₂ Cl ₂	0	24	68	73

34 ^[h]	3f	4n	CH_2Cl_2	0	22	68	95
35 ^[h] [j]	3f	4b	CH_2Cl_2	0	>120	68	86

[*a*] Unless otherwise specified, all reactions were carried out using **1a** (0.10 mmol, 1.0 equiv), **2a** (0.12 mmol, 1.2 equiv) in solvent (0.2 mL) with cat. **3** (20 mol %) and co-cat. **4** (20 mol %) at 0 °C. After full conversion of **1a** ,0.3 mL solvent was added to the solution, then BF₃•Et₂O (2.0 eq) was added in one pot. After workup, the mixture was purified by flash chromatography on silica gel to afford **5a**. [*b*] Entry 1-9 were performed by two steps After full conversion of **1a**, the crude product was obtained by flash chromatography on silica gel. Then the crude product was dissolved in 0.5 mL CH₂Cl₂, 1.0 eq BF₃•Et₂O was added to the solution and allowed to stir at 25 °C. [*c*] For the first step. [*d*] Isolated yield of **5a**. [*e*] Determined by HPLC analyses of isolated compound **5a** on chiral stationary phases. [*f*] Use BA (0.2 eq) as additive. [*g*] Use DIPEA (0.2 eq) as additive. [*h*] Reaction in solvent (1.0 mL). [*j*] Use **3f** (10 mmol %) and **4b** (10 mmol %).

TMS = trimethylsilyl	DCE = 1,2-dichloroethane
TES = triethylsilyl	BA = benzoic acid
TBS = (1,1-dimethylethyl)dimethylsilyl	DIPEA = N,N-diisopropylethylamine

C. Scope of the reaction

General procedure: A glass vial equipped with a magnetic stirring bar was charged with **1** (0.10 mmol, 1.0 equiv), catalyst **3f** (0.02 mmol, 0.2 equiv) and catalyst **4b** (0.02 mmol, 0.2 equiv) in CH₂Cl₂ (0.5 mL) and the resulting solution was stirred for about 10 min at 0 °C. Then **2** (0.12 mmol, 1.2 equiv) was added. After full conversion of first step, $BF_3 \cdot Et_2O$ (2.0 eq) was added to the reaction mixture in situ and the reaction mixture was allowed to stir at 25 °C. After completion of the reaction, the reaction mixture was purified by flash chromatography on silica gel to give product **5** for NMR and HPLC analysis. The diastereomeric ratio was determined by ¹H NMR, *dr* >**20:1**.

5a was obtained as a white solid 21.2 mg in 73% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1). ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 7.8 Hz, 1H), 7.52-7.46 (m, 2H), 7.30-7.23 (m, 2H), 7.18 – 7.11 (m, 1H), 6.94 (t, *J* = 8.0 Hz, 2H), 6.40 (d, *J* = 1.6 Hz, 1H), 4.29 (s, 1H), 2.38 – 2.31 (m, 1H), 2.28 – 2.22 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 161.7, 157.8, 152.5, 150.5, 132.1, 128.6, 128.5, 125.5, 124.2, 123.0, 122.1, 116.8, 116.4, 115.1, 106.5, 93.2, 25.5, 24.6 ppm. HRMS: [M+H]⁺ *calcd*. For C₁₈H₁₃O_{4⁺} 293.0808; found: 293.0809. [α]_p²⁰ -67.13 (c = 0.32 in CHCl₃).The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 80/20, 1 mL/min], λ = 210 nm, t_{major} = 16.01 min, t_{minor} = 18.69 min, **ee** = **98%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >**20:1**.

5b was obtained as a white solid 15 mg in 48% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1).¹H NMR (500 MHz, CDCl₃) δ 7.84-7.78 (m, 1H), 7.57 – 7.47 (m, 1H), 7.31-7.24 (m, 3H), 6.99 – 6.91 (m, 1H), 6.91-6.83 (m, 1H), 6.48 (d, *J* = 1.8 Hz, 1H), 4.33 (s, 1H), 2.39 – 2.33 (m, 1H), 2.32 – 2.25 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃). ¹³C NMR (125 MHz, CDCl₃) δ 161.3, 157.5, 152.3, 151.9, 149.9, 138.6(d, *J*_{CF} = 11.0 Hz), 132.1, 127.9, 124.1 (d, *J*_{CF} = 163.0 Hz), 123.3(d, *J*_{CF} = 3.5 Hz), 121.8(d, *J*_{CF} = 7.0 Hz), 116.6, 115.2(d, *J*_{CF} = 17.8 Hz), 114.7, 105.8, 92.6, 25.0, 24.0 (d, *J*_{CF} = 2.7 Hz) ppm. ¹⁹F NMR (400 MHz, CDCl₃) δ -135.7 ppm. HRMS: [M+H]⁺ calcd. For C₁₈H₁₂FO₄⁺ 311.0714; found:311.0711. [α]_D²⁰ -35.45 (c = 0.67 in CHCl₃). The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 80/20, 1 mL/min], λ = 210 nm, t_{major} = 15.95 min, t_{minor} = 15.05 min, **ee** = **99%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

5c was obtained as a white solid 20 mg in 61% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1).¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 7.5 Hz, 1H), 7.55 – 7.47 (m, 1H), 7.41 (d, *J* = 8.1 Hz, 1H), 7.28 (d, *J* = 7.9 Hz, 2H), 6.97 – 6.88 (m, 2H), 6.38 (d, *J* = 1.5 Hz, 1H), 4.27 (s, 1H), 2.31 (d, *J* = 13.4 Hz, 1H), 2.26 (d, *J* = 13.4 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 161.6, 157.7, 152.5, 151.2, 133.7, 132.3, 129.3, 124.3, 124.1, 123.0, 122.4, 116.9, 116.9, 115.0, 106.2, 93.0, 25.3, 24.2 ppm. HRMS: [M+H]⁺ calcd. For C₁₈H₁₂ClO₄⁺ 327.0419; found:327.0420. [α]_D²⁰ - 34.06 (c = 1.67 in CHCl₃). The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 80/20, 1 mL/min], λ = 210 nm, t_{major} = 12.61 min, t_{minor} = 11.75 min, **ee = 99%**. The diastereomeric ratio was determined by ¹H NMR,

dr >20:1.

5d was obtained as a white solid 15.4 mg in 48% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1). ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 7.8 Hz, 1H), 7.54 – 7.43 (m, 1H), 7.30-7.22 (m, 2H), 7.11 (d, *J* = 7.7 Hz, 1H), 6.90 (t, *J* = 7.9 Hz, 1H), 6.77 (d, *J* = 8.1 Hz, 1H), 6.51 (d, *J* = 1.4 Hz, 1H), 4.31 (s, 1H), 3.87 (s, 3H), 2.36 (d, *J* = 13.4 Hz, 1H), 2.24 (d, *J* = 13.4 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 161.5, 157.7, 152.3, 147.8, 139.5, 131.9, 126.3, 124.0, 122.9, 121.9, 120.3, 116.6, 114.9, 110.5, 106.2, 92.8, 55.9, 25.0, 24.2 ppm. HRMS: [M+H]⁺ calcd. For C₁₉H₁₅O₅⁺ 323.0914; found: 323.0915. [α]₀²⁰ -30.94 (c = 1.25 in CHCl₃). The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 80/20, 1 mL/min], λ = 210 nm, t_{major} = 34.49 min, t_{minor} = 31.84 min, **ee = 97%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

5e was obtained as a white solid 25.6 mg in 69% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1). ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, *J* = 7.9 Hz, 1H), 7.61 (d, *J* = 1.8 Hz, 1H), 7.51 (dd, *J* = 8.2, 7.4 Hz, 1H), 7.32 – 7.20 (m, 3H), 6.80 (d, *J* = 8.6 Hz, 1H), 6.38 (s, 1H), 4.24 (s, 1H), 2.30 (d, *J* = 13.5 Hz, 1H), 2.24 (d, *J* = 13.5 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 161.3, 157.6, 152.3, 149.5, 132.1, 131.2, 130.8, 127.3, 124.1, 122.8, 118.0, 116.7, 114.7, 114.1, 105.7, 92.8, 24.9, 24.2 ppm. HRMS: [M+H]⁺ calcd. For C₁₈H₁₂BrO₄⁺ 370.9913; found: 370.9918. [α]_D²⁰ 66.15 (c = 1.67 in CHCl₃). The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 80/20, 1 mL/min], λ = 210 nm, t_{major} = 19.55 min, t_{minor} = 17.85 min, **ee = 86%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

5f was obtained as a white solid 18.1 mg in 55% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 7.9 Hz, 1H), 7.51 (t, *J* = 7.8 Hz, 1H), 7.47 (d, *J* = 1.9 Hz, 1H), 7.34 – 7.23 (m, 2H), 7.10 (dd, *J* = 8.7, 1.8 Hz, 1H), 6.86 (d, *J* = 8.6 Hz, 1H), 6.38 (s, 1H), 4.25 (s, 1H), 2.31 (d, *J* = 13.5 Hz, 1H), 2.25 (d, *J* = 13.5 Hz, 1H) ppm. ¹³**C** NMR (125 MHz, CDCl₃) δ 161.5, 157.8, 152.6, 149.2, 132.4, 128.5, 128.2, 127.0, 127.0, 124.3, 123.0, 117.7, 116.9, 115.0, 105.9, 93.1, 25.2, 24.5 ppm. HRMS: [M+H]⁺ *calcd*. For C₁₈H₁₂ClO₄⁺ 327.0419; found: 327.0415. [**α**]_{**p**²⁰} 32.33 (c = 1.5 in CHCl₃). The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 80/20, 1 mL/min], λ = 210 nm, t_{major} = 18.48 min, t_{minor} = 16.16 min, **ee = 91%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

5g was obtained as a white solid 19.6 mg in 63% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1). ¹H NMR (500 MHz, CDCl₃) δ 7.83 – 7.74 (m, 1H), 7.54 – 7.45 (m, 1H), 7.30-7.23 (m, 2H), 7.20 (dd, *J* = 8.2, 2.7 Hz, 1H), 6.37 (d, *J* = 1.7 Hz, 1H), 4.24 (d, *J* = 1.6 Hz, 1H), 2.31 (dt, *J* = 13.4, 2.2 Hz, 1H), 2.24 (dt, *J* = 13.5, 2.5 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 161.6, 158.5, 157.9, 156.6, 152.5, 146.5, 132.3, 126.7(d, *J*_{CF}= 7.8 Hz), 124.3, 123.0, 117.3(d, *J*_{CF} = 8.1 Hz), 116.9, 115.2(d, *J*_{CF} = 47.6 Hz), 115.0, 105.9, 93.2, 25.2, 24.7 ppm. ¹⁹F NMR (400 MHz, CDCl₃) δ -121.6 ppm. HRMS: [M+H]⁺ calcd. For C₁₈H₁₂FO₄⁺ 311.0714; found: 311.0716. [α]_D²⁰ -39.76 (c = 1.58 in CHCl₃). The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 80/20, 1 mL/min], λ = 210 nm, t_{major} = 16.72 min, t_{minor} = 15.53 min, **ee = 97%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

5h was obtained as a white solid 21.6 mg in 59% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹**H** NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 2.1 Hz, 1H), 7.86 (dd, *J* = 8.5, 2.1 Hz, 1H), 7.81 (dd, *J* = 8.2, 1.5 Hz, 1H), 7.53 – 7.49 (m, 1H), 7.32 – 7.26 (m, 2H), 6.96 (d, *J* = 8.5 Hz, 1H), 6.43 (q, *J* = 1.9 Hz, 1H), 4.34 (d, *J* = 1.8 Hz, 1H), 3.88 (s, 3H), 2.37 – 2.25 (m, 2H) ppm. ¹³**C** NMR (100 MHz, CDCl₃) δ 166.5, 161.3, 157.3, 154.3, 152.4, 132.2, 130.3, 130.0, 125.3, 124.1, 124.1, 122.8, 116.7, 116.4, 114.7, 105.9, 92.9, 52.0, 25.1, 24.4 ppm. HRMS: [M+H]⁺ calcd. For C₂₀H₁₅O₆⁺ 351.0863; found: 351.0861. [α]_D²⁰ 5.76 (c = 1.67 in CHCl₃) The enantiomeric excess was determined by HPLC using Chiralpak IA column [*n*-hexane/*i*-PrOH= 70/30, 1 mL/min], λ = 210 nm, t_{major} = 25.15 min, t_{minor} = 11.96 min, **ee = 97%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

5i was obtained as a white solid 12 mg in 36% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, *J* = 2.7 Hz, 1H), 8.06 (dd, *J* = 9.0, 2.7 Hz, 1H), 7.82 (dd, *J* = 8.2, 1.5 Hz, 1H), 7.59 – 7.50 (m, 1H), 7.30 (dd, *J* = 7.7, 6.0 Hz, 2H), 7.03 (d, *J* = 9.0 Hz, 1H), 6.47 (d, *J* = 1.9 Hz, 1H), 4.40 (d, *J* = 1.8 Hz, 1H), 2.40 – 2.29 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 157.3, 155.7, 152.4, 142.3, 132.5, 126.2, 124.4, 124.3, 124.2, 122.8, 116.9, 116.9, 114.5, 105.3, 92.9, 24.8, 24.4 ppm. HRMS: [M+H]⁺ calcd. For C₁₈H₁₂NO₆⁺ 338.0659; found: 338.0656. [α]_D²⁰ -45.55 (c = 0.75 in CHCl₃). The enantiomeric excess was determined by HPLC using Chiralpak IA column [*n*-hexane/*i*-PrOH= 65/35, 1 mL/min], λ = 210 nm, t_{major} = 14.11 min, t_{minor} = 12.17 min, **ee = 99%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

5j was obtained as a white solid 20 mg in 61% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.82 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.54 – 7.47 (m, 1H), 7.31 – 7.23 (m, 2H), 7.11 – 7.01 (m, 2H), 6.85 (dd, *J* = 7.7, 1.5 Hz, 1H), 6.36 (dd, *J* = 3.7, 1.8 Hz, 1H), 4.86 (d, *J* = 1.6 Hz, 1H), 2.26 (dd, *J* = 5.0, 2.3 Hz, 2H) ppm. ¹³**C** NMR (100 MHz, CDCl₃) δ 160.8, 158.1, 152.5, 151.9, 133.2, 132.2, 128.5, 123.9, 123.7, 123.4, 122.8, 116.6, 115.1, 114.7, 105.0, 92.3, 25.5, 21.9 ppm. **HRMS:** [M+H]⁺ *calcd*. For C₁₈H₁₂ClO₄⁺ 327.0419; found: 327.0416. The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 80/20, 1 mL/min], λ = 210 nm, t_{major} = 36.76 min, t_{minor} = 31.54 min, **ee = 6%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

5k was obtained as a white solid 18 mg in 56% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.76 (m, 1H), 7.55 – 7.41 (m, 1H), 7.26 – 7.20 (m, 2H), 7.09 (t, *J* = 8.2 Hz, 1H), 6.55 (dd, *J* = 18.6, 8.2 Hz, 2H), 6.35 (d, *J* = 1.8 Hz, 1H), 4.79 (d, *J* = 1.7 Hz, 1H), 3.90 (s, 3H), 2.29 – 2.14 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 158.2, 157.0, 152.4, 151.2, 131.8, 128.2, 123.8, 122.7, 116.5, 115.0, 114.2, 109.0, 106.4, 104.4, 92.5, 56.1, 25.4, 18.1 ppm. HRMS: [M+H]⁺ calcd. For C₁₉H₁₅O₅⁺ 323.0914; found: 323.0917. The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 75/25, 1 mL/min], λ = 210 nm, t_{major} = 26.28 min, t_{minor} = 18.99 min, **ee = 23%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

51 was obtained as a white solid 16.7 mg in 50% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.52 – 7.44 (m, 1H), 7.34 (t, *J* = 8.1 Hz, 1H), 7.30 – 7.24 (m, 1H), 7.22 – 7.12 (m, 2H), 6.94 (dd, *J* = 11.5, 4.3 Hz, 2H), 6.43 (dd, *J* = 3.9, 1.9 Hz, 1H), 4.32 (dd, *J* = 4.7, 2.7 Hz, 1H), 2.32 (ddd, *J* = 13.4, 2.7, 2.1 Hz, 1H), 2.25 – 2.19 (m, 1H) ppm. ¹³**C** NMR (125 MHz, CDCl₃) δ 160.4, 158.0, 153.8, 150.3, 131.2, 130.8, 128.4, 128.4, 127.7, 125.0, 122.0, 116.3, 116.0, 113.2, 107.2, 92.6, 24.5, 24.5 ppm. HRMS: [M+H]⁺ calcd. For C₁₈H₁₂ClO₄⁺ 327.0419; found:327.0422. [*α*]_{*D*}²⁰ 50.98 (c = 1.25 in CHCl₃). The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 80/20, 1 mL/min], λ = 210 nm, t_{major} = 14.89 min, t_{minor} = 17.69 min, **ee = 95%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

5m was obtained as a white solid 21 mg in 68% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1). ¹H NMR (500 MHz, CDCl₃) δ 7.52 – 7.43 (m, 2H), 7.29 – 7.10 (m, 3H), 6.94 (t, *J* = 7.9 Hz, 2H), 6.39 (d, *J* = 1.6 Hz, 1H), 4.28 (d, *J* = 1.4 Hz, 1H), 2.38 – 2.32 (m, 1H), 2.28 – 2.21 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 161.3, 159.8, 157.9, 157.0, 150.5, 148.6(d, *J*_{CF} = 2.1 Hz), 128.6(d, *J*_{CF} = 2.3 Hz), 125.2, 122.3, 119.7(d, *J*_{CF} = 24.6 Hz), 118.5(d, *J*_{CF} = 8.3 Hz), 116.5, 116.1(d, *J*_{CF} = 9.0 Hz), 108.9(d, *J*_{CF} = 25.5 Hz), 107.3, 93.3, 25.4, 24.6 ppm. ¹⁹F NMR (400 MHz, CDCl₃) δ -117.0 ppm. HRMS: [M+H]⁺ calcd. For C₁₈H₁₂FO₄⁺ 311.0714; found: 311.0718. [α]_D²⁰ - 33.54 (c = 1.75 in CHCl₃). The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 80/20, 1 mL/min], λ = 210 nm, t_{major} = 13.83 min, t_{minor} = 16.99 min, **ee = 92%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

5n was obtained as a white solid 21 mg in 68% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1). ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, *J* = 7.5 Hz, 1H), 7.23 (d, *J* = 2.9 Hz, 1H), 7.20 (d, *J* = 9.0 Hz, 1H), 7.17-7.12 (m,1H), 7.07 (dd, *J* = 9.0, 3.0 Hz, 1H), 6.94 (t, *J* = 7.7 Hz, 2H), 6.40 (d, *J* = 1.8 Hz, 1H), 4.29 (d, *J* = 1.6 Hz, 1H), 3.85 (s, 3H), 2.38 – 2.31 (m, 1H), 2.27 – 2.21 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 161.6, 157.3, 155.9, 150.3, 146.8, 128.4, 128.3, 125.3, 122.0, 120.4, 117.8, 116.2, 115.2, 106.5, 104.2, 93.0, 55.8, 25.2, 24.4 ppm. HRMS: [M+H]⁺ calcd. For C₁₉H₁₅O₅⁺ 323.0914; found: 323.0912. [α]_D²⁰ 16.49 (c = 1.83 in CHCl₃).The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 80/20, 1 mL/min], λ = 210 nm, t_{major} = 23.89 min, t_{minor} = 30.70 min, **ee = 91%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

50 was obtained as a white solid 17.4 mg in 56% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1). ¹H NMR (500 MHz, CDCl₃) δ 7.61 (s, 1H), 7.48 (dd, *J* = 7.4, 1.3 Hz, 1H), 7.29 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.19 – 7.11 (m, 2H), 6.93 (t, *J* = 8.2 Hz, 2H), 6.38 (d, *J* = 1.9 Hz, 1H), 4.28 (d, *J* = 1.7 Hz, 1H), 2.39 (s, 3H), 2.36 – 2.31 (m, 1H), 2.26 – 2.21 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 161.7, 157.5, 150.4, 150.3, 133.7, 132.9, 128.4, 128.2, 125.4, 122.4, 121.9, 116.4, 116.2, 114.6, 106.2, 93.0, 25.3, 24.4, 20.9 ppm. HRMS: [M+H]⁺ *calcd*. For C₁₉H₁₅O₄⁺ 307.0965; found: 307.0969. **[α]**_D²⁰ -7.33 (c = 1.42 in CHCl₃). The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 80/20, 1 mL/min], λ = 210 nm, t_{major} = 18.69 min, t_{minor} = 22.43 min, **ee = 97%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

5p was obtained as a white solid 15.2 mg in 48% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, CDCl₃). δ 8.16 (d, *J* = 1.9 Hz, 1H), 7.75 (dd, *J* = 8.6, 2.0 Hz, 1H), 7.45 (d, *J* = 7.4 Hz, 1H), 7.36 (d, *J* = 8.6 Hz, 1H), 7.17 (td, *J* = 7.8, 1.6 Hz, 1H), 6.96 (t, *J* = 7.5 Hz, 2H), 6.43 (d, *J* = 1.8 Hz, 1H), 4.28 (d, *J* = 1.7 Hz, 1H), 2.49 – 2.30 (m, 1H), 2.33 – 2.20 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 160.1, 156.2, 154.4, 150.2, 134.8, 128.7, 128.4, 127.9, 124.6, 122.2, 118.0, 117.7, 116.5, 115.9, 108.2, 107.9, 93.3, 25.1, 24.4 ppm. HRMS: [M+H]⁺ calcd. For C₁₉H₁₂NO₄⁺ 318.0761; found: 318.0763. [α]_p²⁰ 60.17 (c = 0.75 in CHCl₃). The enantiomeric excess was determined by HPLC using Chiralpak IA column [*n*-hexane/*i*-PrOH= 75/25, 1 mL/min], λ = 210 nm, t_{major} = 15.87 min, t_{minor} = 21.07 min, **ee = 97%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

5q was obtained as a white solid 21.6 mg in 69% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1). ¹H NMR (500 MHz, CDCl₃) δ 7.85 – 7.76 (m, 1H), 7.47 (d, *J* = 7.5 Hz, 1H), 7.15 (t, *J* = 7.7 Hz, 1H), 7.05-6.89 (m, 4H), 6.39 (s, 1H), 4.26 (s, 1H), 2.34 (d, *J* = 13.4 Hz, 1H), 2.24 (d, *J* = 13.4 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 165.8, 163.8, 161.5, 157.5, 153.7, 150.5, 128.6(d, *J*_{CF} = 3.6 Hz), 125.4, 124.9(d, *J*_{CF} = 10.3 Hz), 122.3, 116.5, 112.5(d, *J*_{CF} = 22.8 Hz), 111.8, 105.5, 104.4(d, *J*_{CF} = 25.7 Hz), 93.3, 25.5, 24.5 ppm. ¹⁹F NMR (400 MHz, CDCl₃) δ -105.1 ppm. HRMS: [M+H]⁺ calcd. For C₁₈H₁₂FO₄⁺ 311.0714; found:311.0717. [α]_D²⁰ -50.03 (c = 2.08 in CHCl₃).The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 80/20, 1 mL/min], λ = 210 nm, t_{major} = 13.09 min, t_{minor} = 16.88 min, **ee** = 82%. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

5r was obtained as a white solid 31 mg in 82% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1). ¹H NMR (500 MHz, CDCl₃) δ 7.66 (dd, *J* = 8.2, 5.2 Hz, 1H), 7.50 – 7.42 (m, 2H), 7.38 (dd, *J* = 8.4, 1.3 Hz, 1H), 7.19 – 7.12 (m, 1H), 6.99 – 6.89 (m, 2H), 6.38 (d, *J* = 1.6 Hz, 1H), 4.26 (d, *J* = 1.4 Hz, 1H), 2.37 – 2.30 (m, 1H), 2.24 (dt, *J* = 13.4, 2.3 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 161.0, 157.4, 152.6, 150.4, 128.6, 127.7, 126.0, 125.2, 124.1, 122.3, 120.0, 116.5, 114.2, 110.2, 106.7, 93.3, 25.4, 24.6 ppm. HRMS: [M+H]⁺ *calcd*. For C₁₈H₁₂BrO₄⁺ 370.9913; found: 370.9916. [*α*]_{*D*}²⁰ -86.13 (c = 0.41 in CHCl₃).The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 80/20, 1 mL/min], λ = 210 nm, t_{major} = 15.51 min, t_{minor} = 20.97 min, **ee = 82%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

5s was obtained as a white solid 16.1 mg in 51% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1).¹**H** NMR (500 MHz, CDCl₃) δ 7.67 (d, *J* = 8.4 Hz, 1H), 7.48 (d, *J* = 7.5 Hz, 1H), 7.18-7.11 (m, 1H), 7.10-7.03 (m, 2H), 6.94 (t, *J* = 8.0 Hz, 2H), 6.37 (d, *J* = 1.8 Hz, 1H), 4.27 (d, *J* = 1.5 Hz, 1H), 2.41 (s, 3H), 2.33 (dt, *J* = 13.3, 2.3 Hz, 1H), 2.27 – 2.20 (m, 1H) ppm. ¹³**C** NMR (125 MHz, CDCl₃) δ 161.9, 157.9, 152.6, 150.5, 143.3, 128.6, 128.4, 125.7, 125.4, 122.6, 122.1, 116.9, 116.4, 112.6, 105.5, 93.2, 25.5, 24.6, 21.9 ppm. HRMS: [M+H]⁺ calcd. For C₁₉H₁₅O₄⁺ 307.0965; found: 307.0966. [α]_D²⁰ -64.90 (c = 1.25 in CHCl₃). The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 80/20, 1 mL/min], λ = 210 nm, t_{major} = 20.90 min, t_{minor} = 29.97 min, **ee = 89%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

5t was obtained as a white solid 14.3 mg in 44% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1).¹**H** NMR (500 MHz, CDCl₃) δ 7.71 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.54 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.48 (dd, *J* = 7.5, 1.1 Hz, 1H), 7.22 – 7.11 (m, 2H), 6.98 – 6.90 (m, 2H), 6.40 (d, *J* = 1.7 Hz, 1H), 4.30 (d, *J* = 1.6 Hz, 1H), 2.41 – 2.32 (m, 1H), 2.25 (dt, *J* = 13.4, 2.5 Hz, 1H). ¹³**C** NMR (125 MHz, CDCl₃) δ 160.3, 157.2, 150.2, 148.0, 132.2, 128.4, 128.4, 125.0, 124.1, 122.1, 121.6, 121.3, 116.4, 116.3, 106.8, 93.1, 25.1, 24.4 ppm. HRMS: [M+H]⁺ *calcd*. For C₁₈H₁₂ClO₄⁺ 327.0419; found:327.0416. [**α**]_{**D}²⁰** -104.00 (c = 1.17 in CHCl₃).The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 80/20, 1 mL/min], λ = 210 nm, t_{major} = 20.60 min, t_{minor} = 23.01 min, **ee = 82%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.</sub>

5u was obtained as a white solid 14 mg in 36% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1).¹**H** NMR (500 MHz, CDCl₃) δ 7.61 (dd, *J* = 5.0, 1.7 Hz, 2H), 7.31 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.23 (dd, *J* = 8.6, 2.4 Hz, 1H), 7.18 (d, *J* = 8.4 Hz, 1H), 6.80 (d, *J* = 8.6 Hz, 1H), 6.37 (d, *J* = 1.8 Hz, 1H), 4.24 (d, *J* = 1.7 Hz, 1H), 2.40 (s, 3H), 2.33 – 2.26 (m, 1H), 2.26 – 2.20 (m, 1H) ppm. ¹³**C** NMR (125 MHz, CDCl₃) δ 161.7, 157.8, 150.7, 149.8, 134.1, 133.4, 131.4, 131.1, 127.6, 122.7, 118.2, 116.7, 114.6, 114.4, 105.8, 93.0, 25.2, 24.5, 21.1 ppm. HRMS: [M+H]⁺ calcd. For C₁₉H₁₄BrO₄⁺ 385.0070; found: 385.0072. [α]_D²⁰ 42.69 (c = 1.00 in CHCl₃). The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 90/10, 1 mL/min], λ = 210 nm, t_{major} = 43.09 min, t_{minor} = 37.95 min, **ee = 85%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

5v was obtained as a white solid 20 mg in 59% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1). ¹H NMR (500 MHz, CDCl₃) δ 7.60 (s, 1H), 7.40 (d, *J* = 8.1 Hz, 1H), 7.31 (dd, *J* = 8.4, 1.5 Hz, 1H), 7.17 (d, *J* = 8.4 Hz, 1H), 6.98 – 6.88 (m, 2H), 6.37 (d, *J* = 1.8 Hz, 1H), 4.25 (d, *J* = 1.5 Hz, 1H), 2.40 (s, 3H), 2.34 – 2.27 (m, 1H), 2.27 – 2.21 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 161.8, 157.6, 151.2, 150.7, 134.1, 133.6, 133.3, 129.3, 124.2, 122.6, 122.3, 116.8, 116.7, 114.6, 106.1, 93.0, 25.3, 24.2, 21.1 ppm. HRMS: [M+H]⁺ *calcd*. For C₁₉H₁₄ClO₄⁺ 341.0575; found: 341.0572. [α]₀²⁰ - 26.69 (c = 1.5 in CHCl₃). The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 90/10, 1 mL/min], λ = 210 nm, t_{major} = 25.91 min, t_{minor} = 24.59 min, **ee = 99%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

5w was obtained as a white solid 18 mg in 46% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1). ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, *J* = 8.5 Hz, 1H), 7.46 (d, *J* = 1.7 Hz, 1H), 7.41 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.25 (d, *J* = 7.7 Hz, 1H), 7.00 – 6.92 (m, 1H), 6.92-6.84 (m, 1H), 6.47 (dd, *J* = 3.7, 1.9 Hz, 1H), 4.31 (s, 1H), 2.39 – 2.33 (m, 1H), 2.27 (ddd, *J* = 13.6, 3.0, 2.2 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 160.7, 157.2, 152.5, 127.6, 127.6, 126.1, 124.0, 123.3(d, *J*_{CF} = 3.7 Hz), 121.9(d, *J*_{CF} = 6.9 Hz), 119.9, 115.3(d, *J*_{CF} = 17.8 Hz), 113.7, 110.0, 106.1, 92.6, 24.9, 24.1 ppm. ¹⁹F NMR (400 MHz, CDCl₃) δ -135.6 ppm. HRMS: [M+H]⁺ calcd. For C₁₈H₁₁BrFO₄⁺ 388.9819; found: 388.9820. [α]_D²⁰ -38.12 (c = 1.33 in CHCl₃). The enantiomeric excess was determined by HPLC using Chiralpak IA column [*n*-hexane/*i*-PrOH= 90/10, 1 mL/min], λ = 210 nm, t_{maior} = 19.73 min, t_{minor} = 14.82 min, **ee = 96%**. The

diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

5x was obtained as a white solid 20 mg in 58% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1). ¹**H** NMR (500 MHz, CDCl₃) δ 9.26 (d, *J* = 8.8 Hz, 1H), 7.92 (d, *J* = 9.0 Hz, 1H), 7.84 (t, *J* = 8.7 Hz, 1H), 7.65 (t, *J* = 7.8 Hz, 1H), 7.58 – 7.49 (m, 2H), 7.40 (d, *J* = 8.9 Hz, 1H), 7.16 (t, *J* = 7.7 Hz, 1H), 6.96 (t, *J* = 8.7 Hz, 2H), 6.60 (s, 1H), 4.41 (s, 1H), 2.40 (d, *J* = 13.3 Hz, 1H), 2.31 (d, *J* = 13.3 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 161.3, 161.1, 153.1, 150.2, 133.7, 130.8, 128.9, 128.8, 128.5, 128.3, 128.3, 126.5, 125.8, 125.4, 122.0, 117.1, 116.2, 108.6, 106.4, 92.9, 24.7, 24.5 ppm. HRMS: [M+H]⁺ calcd. For C₂₂H₁₅O₄⁺ 343.0965; found: 343.0961. [α]_D²⁰ 68.06 (c = 1.33 in CHCl₃). The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 80/20, 1 mL/min], λ = 210 nm, t_{major} = 31.32 min, t_{minor} = 41.45 min, **ee = 95%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

5y was obtained as a white solid 13 mg in 51% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1). ¹H NMR (500 MHz, CDCl₃) δ 7.52 – 7.32 (m, 1H), 7.19 – 7.08 (m, 1H), 7.00 – 6.83 (m, 2H), 6.17 (d, *J* = 1.8 Hz, 1H), 5.83 (s, 1H), 4.11 (s, 1H), 2.23 (dt, *J* = 13.2, 2.3 Hz, 1H), 2.16 (s, 3H), 2.14 – 2.08 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 163.4, 162.3, 161.0, 150.5, 128.5, 128.3, 125.9, 122.1, 116.4, 103.8, 99.9, 93.0, 25.4, 24.0, 20.1 ppm. HRMS: [M+H]⁺ calcd. For C₁₅H₁₃O₄⁺ 257.0808; found: 257.0804. [α]_D²⁰ -140.09 (c = 0.67 in CHCl₃).The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 80/20, 1 mL/min], λ = 210 nm, t_{major} = 15.41 min, t_{minor} = 18.39 min, **ee = 72%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

5z was obtained as a yellow solid 6.7 mg in 22% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1). ¹H NMR (500 MHz, CDCl₃) δ 8.07 (t, *J* = 6.7 Hz, 2H), 7.74 – 7.63 (m, 2H), 7.40 (d, *J* = 7.6 Hz, 1H), 7.14 (t, *J* = 7.7 Hz, 1H), 6.92 (dd, *J* = 14.8, 7.6 Hz, 2H), 6.38 (s, 1H), 4.45 (s, 1H), 2.35 - 2.25 (m, 1H), 2.17 – 2.10 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 182. 6, 179.1, 152.5, 150.7, 134.1, 133.4, 131.6, 130.8, 128.7, 128.4, 126.5, 126.2, 125.0, 124.2, 121.8, 116.5, 92.9, 24.4, 23.3 ppm. HRMS: [M+H]⁺ *calcd*. For C₁₉H₁₃O₄⁺ 305.0808; found: 305.0809. [**α**]_D²⁰ -192.8 (c = 0.50 in CHCl₃).The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 80/20, 1 mL/min], λ = 210 nm, t_{major} = 45.30 min, t_{minor} = 22.72 min, **ee** = **86%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >**20:1**.

5'z was obtained as an orange solid 20 mg in 65% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 7/1). ¹**H** NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 7.4 Hz, 1H), 7.84 (d, *J* = 7.6 Hz, 1H), 7.63 (t, *J* = 7.3 Hz, 1H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.41 (d, *J* = 7.3 Hz, 1H), 7.14 (t, *J* = 7.5 Hz, 1H), 6.93 (d, *J* = 6.6 Hz, 2H), 6.42 (s, 1H), 4.34 (d, *J* = 31.2 Hz, 1H), 2.31 (d, *J* = 13.2 Hz, 1H), 2.22 (d, *J* = 13.2 Hz, 1H) ppm. ¹³**C** NMR (125 MHz, CDCl₃) δ 179.1, 176.8, 160.5, 150.1, 135.0, 131.2, 131.1, 129.8, 129.1, 128.6, 128.3, 125.2, 124.6, 122.0, 118.4, 116.2, 93.5, 25.0, 23.0 ppm. HRMS: [M+H]⁺ calcd. For C₁₉H₁₃O₄⁺ 305.0808; found: 305.0806. [α]_D²⁰ -138.74 (c = 0.83 in CHCl₃).The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH/dichloromethane = 75/20/5, 1 mL/min], λ = 210 nm, t_{major} = 22.81 min, t_{minor} = 24.36 min, **ee = 87%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

D. Synthetic transformations

(8R,14S)-4-((trimethylsilyl)ethynyl)-1H,14H-8,14-

methanobenzo[7,8][1,3]dioxocino [5,4-c]chromen-1-one (6)

A round Schlenk flask equipped with a stirring bar was charged with 50 (25 mg, 0.07 mmol), trimethylsilyl acetylene (15 μ L, 0.11 mmol) and 1 mL of freshly distilled dry triethylamine. A mixture of [(PPh₃)₂PdCl₂] (1.5 mg, 0.002 mmol), and CuI (0.5 mg, 0.003 mmol) was added under N₂. Then the suspension was allowed to stir at 70 °C. After completion of the reaction, it was allowed to cool down to room temperature and then was diluted with ethyl acetate, washed with saturated aqueous NH₄Cl solution and brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the desired product 8.(17 mg, 65%). ¹H NMR (500 MHz, CDCl₃) δ 7.76 – 7.68 (m, 1H), 7.47 (dd, / = 7.5, 1.5 Hz, 1H), 7.36-7.29 (m, 2H), 7.19-7.12 (m, 1H), 6.99 -6.90 (m, 2H), 6.43 – 6.33 (m, 1H), 4.28 (d, J = 1.7 Hz, 1H), 2.37 – 2.30 (m, 1H), 2.28 – 2.19 (m, 1H), 0.33 – 0.20 (m, 9H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 161.4, 157.3, 152.1, 150.5, 128.7, 128.6, 127.8, 127.0, 125.3, 122.8, 122.2, 119.9, 116.5, 115.1, 106.9, 103.5, 98.5, 93.3, 25.4, 24.6, 0.0 ppm. **HRMS:** [M+H]⁺ *calcd*. For C₂₃H₂₁O₄Si⁺ 389.1204; found: 389.1207. $[\alpha]_{D}^{20}$ -0.25 (c = 1.08 in CHCl₃). The diastereometric ratio was determined by ¹H NMR, *dr* >20:1.

(8*R*,14*S*)-4-(furan-3-yl)-1*H*,14*H*-8,14-methanobenzo[7,8][1,3]dioxocino[5,4*c*]chromen-1-one (7)

A round Schlenk flask equipped with a stirring bar was charged with 50 (25 mg, 0.07 mmol), phenylboronic acid (9 mg, 0.08 mmol), Pd(PPh₃)₄ (3.1 mg, 0.003 mmol), and K_2CO_3 (20 mg, 0.15 mmol). The component solvent of dioxane and H_2O (1 mL, 1:1 v/v) was added under N₂ at room temperature. Then the reaction mixture was moved to stir at 110 °C. After the reaction was completed, it was allowed to cool down to room temperature and was concentrated under reduced pressure. Then the residue was diluted with ethyl acetate, washed with saturated aqueous NH₄Cl solution and brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 8:1) to give the desired product **7**. (13 mg, 54%).¹**H NMR** (500 MHz, $CDCl_3$) δ 7.84 – 7.75 (m, 2H), 7.53 – 7.46 (m, 2H), 7.42 – 7.34 (m, 2H), 7.20-7.10 (m, 1H), 7.00-6.90 (m, 2H), 6.74 – 6.68 (m, 1H), 6.40 (d, J = 1.8 Hz, 1H), 4.29 (d, J = 1.7 Hz, 1H), 2.38 – 2.31 (m, 1H), 2.29 – 2.22 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 161.5, 157.5, 152.8, 150.3, 144.2, 139.8, 136.5, 128.4, 128.3, 125.3, 125.2, 123.2, 122.0, 121.6, 116.2, 113.5, 113.2, 108.5, 105.8, 93.0, 25.3, 24.4 ppm. **HRMS:** [M+H]⁺ calcd. For C₂₂H₁₅O₅⁺ 359.0914; found: 359.0916. $[\alpha]_{D}^{20}$ -0.54 (c = 1.08 in CHCl₃). The diastereometric ratio was determined by ¹H NMR, *dr* >20:1.

(8*R*,14*S*)-4-phenyl-1*H*,14*H*-8,14-methanobenzo[7,8][1,3]dioxocino[5,4*c*]chromen-1-one (8)

A round Schlenk flask equipped with a stirring bar was charged with 50 (23 mg, 0.06 mmol), phenylboronic acid (9.2 mg, 0.07 mmol), Pd(PPh₃)₄ (2.9 mg, 0.002 mmol), and K_2CO_3 (19 mg, 0.14 mmol). The component solvent of dioxane and H_2O (1 mL, 1:1 v/v) was added under N₂ at room temperature. Then the reaction mixture was moved to stir at 110 °C. After the reaction was completed, it was allowed to cool down to room temperature and was concentrated under reduced pressure. The residue was diluted with ethyl acetate, washed with saturated aqueous NH₄Cl solution and brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. Then the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 8:1) to give the desired product **6.** (18.4 mg, 81%). ¹**H** NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.2 Hz, 1H), 7.60 (d, J = 7.4 Hz, 2H), 7.55 – 7.43 (m, 5H), 7.40 (t, J = 7.3 Hz, 1H), 7.16 (t, J = 7.2 Hz, 1H), 6.95 (t, J = 7.5 Hz, 2H), 6.41 (d, J = 1.4 Hz, 1H), 4.31 (s, 1H), 2.36 (d, J = 13.4 Hz, 1H), 2.26 (d, J = 13.4 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 161.8, 157.7, 152.9, 150.5, 145.3, 139.4, 129.3, 128.7, 128.6, 128.5, 127.4, 125.6, 123.3, 123.1, 122.2, 116.4, 115.0, 114.0, 106.3, 93.2, 25.5, 24.6 ppm. **HRMS:** [M+H]⁺ *calcd*. For C₂₄H₁₇O₄⁺ 369.1121; found: 369.1125. $[\alpha]_{D}^{20}$ -3.70 (c = 1.50 in CHCl₃). The diastereometric ratio was determined by ¹H NMR, *dr* >20:1.

(8*R*,14*S*)-12-bromo-1*H*,14*H*-8,14-methanobenzo[7,8][1,3]dioxocino[5,4*c*]chromen-1-one (5e)

To a solution of **5a** (20 mg, 0.068 mmol) in CH₃OH (1 mL) was added Nbromosuccinimide (1.2 equiv.), then the reaction mixture was allowed to stir at 40 °C. Until the starting material **5a** was consumed completely, the solvent was removed under vacuum and the crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 8:1) to obtain **5e** as a white solid. (18 mg, 71%). **¹H NMR** (500 MHz, CDCl₃) δ 7.80 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.61 (d, *J* = 2.3 Hz, 1H), 7.55 – 7.48 (m, 1H), 7.32 – 7.20 (m, 3H), 6.81 (d, *J* = 8.6 Hz, 1H), 6.38 (d, *J* = 1.8 Hz, 1H), 4.24 (d, *J* = 1.7 Hz, 1H), 2.33 – 2.27 (m, 1H), 2.24 (ddd, *J* = 13.5, 2.9, 2.3 Hz, 1H) ppm. ¹³C **NMR** (125 MHz, CDCl₃) δ 161.5, 157.8, 152.5, 149.7, 132.4, 131.4, 131.0, 127.5, 124.3, 123.0, 118.2, 116.9, 114.9, 114.4, 105.9, 93.1, 25.2, 24.5 ppm. **HRMS:** [M+H]⁺ *calcd.* For C₁₈H₁₂BrO₄⁺ 370.9913; found: 370.9910. [**α**]_D²⁰ 79.49 (c = 1.50 in CHCl₃).The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 80/20, 1 mL/min], λ = 210 nm, t_{major} = 19.89 min, t_{minor} = 18.21 min, **ee = 97%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1. 2-((2*R*,6*S*)-5-(hydroxymethyl)-6*H*-2,6-methanobenzo[*d*][1,3]dioxocin-4-yl)phenol(9)

To a magnetically stirred suspension of LiAlH₄ (20 mg, 0.52 mmol) in 0.5 mL of anhydrous tetrahydrofuran (THF), was added dropwise a solution of **5a** (30 mg, 0.10 mmol) in anhydrous tetrahydrofuran (0.5 mL) at 0 °C. After the reaction was completed , the mixture was added dropwise a small amount of 15 % KOH solution. Then the white suspension was filtered, the filtrate was evaporated and the crude product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 2/1) to get the desired product **9** .(20 mg, 66%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.26 – 7.22 (m, 2H), 7.21-7.14 (m, 2H), 6.98 (d, *J* = 8.0 Hz, 1H), 6.94-6.84 (m, 3H), 6.60 (s, 1H), 6.12 (d, *J* = 1.7 Hz, 1H), 4.04 (s, 2H), 3.73 (s, 1H), 2.29 (ddd, *J* = 13.0, 3.1, 1.9 Hz, 1H), 2.13 (dt, *J* = 13.1, 2.2 Hz, 1H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 154.4, 151.9, 145.6, 131.0, 130.6, 128.2, 127.5, 126.9, 121.3, 120.3, 120.1, 117.0, 116.4, 116.2, 92.5, 61.9, 28.3, 26.1 ppm. **HRMS:** [M-H]⁻ *calcd*. For C₁₈H₁₅O₄⁻ 295.0976; found: 295.0978. **[α]**_D²⁰ -27.06 (c = 1.08 in CHCl₃). The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

(8*R*,14*S*)-1,1-dimethyl-1*H*,14*H*-8,14-methanobenzo[7,8][1,3]dioxocino[5,4*c*]chromene (10)

To a stirred solution of **5a** (18 mg, 0.062 mmol) in 0.5 mL anhydrous of tetrahydrofuran (THF), a solution of methyl magnesium chloride (3 M in tetrahydrofuran, 206 μ L, 0.62 mmol) was added at 0 °C under N₂. Then the reaction mixture was allowed to stir at room temperature .After stirring for about 30 min (TLC monitoring), the reaction mixture was poured into water. The organic phase was separated and the aqueous phase was extracted with ethyl acetate. The combined organic phases were washed with water and brine, dried with Na₂SO₄, and concentrated in vacuo. The residue was purified by chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). The obtained product was dissolved in CH₂Cl₂ (0.5 mL), then *p*-TsOH (11 mg, 0.062 mmol) was added to the solution. The reaction mixture was allowed to stir at 25 °C until the reaction was completed. The product was purified by chromatography on silica gel (petroleum ether/ethyl acetate = 50/1) to afford the desired product **10**. (11 mg, 60% for two steps). ¹**H NMR** (500 MHz, CDCl₃) δ 7.42 (dd, J = 7.7, 1.5 Hz, 1H), 7.19 – 7.09 (m, 3H), 6.95 (d, J = 7.9 Hz, 1H), 6.92-6.85 (m, 2H), 6.76 (d, J = 8.0 Hz, 1H), 6.15 (d, J = 1.7 Hz, 1H), 3.51 (s, 1H) 2.18 (ddd, J = 12.9, 3.1, 2.0 Hz, 1H), 2.06 (dt, J = 12.9, 2.5 Hz, 1H), 1.65 (s, 3H), 1.26 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 152.7, 151.6, 139.2, 129.5, 127.9, 127.2, 126.4, 121.7, 120.7, 120.7, 118.4, 116.5, 116.1, 112.8, 91.4, 79.1, 27.1, 26.8, 26.7, 26.6 ppm. HRMS: $[M+H]^+$ calcd. For C₂₀H₁₉O₃⁺ 307.1329; found: 307.1325. $[\alpha]_D^{20}$ -37.52 (c = 0.92 in CHCl₃). The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

(5-bromo-5,6-dihydro-4H-2,6-methanobenzo[d][1,3]dioxocin-5-yl)(2-

hydroxyphenyl)methanone (11)

To a stirred solution of **10** (38 mg, 0.13 mmol) in 1.0 mL CH₂Cl₂, was added bromosuccinimide (27.4 mg, 0.15 mmol) at 0 °C. After the full conversion of **10**, The product was purified by chromatography on silica gel (petroleum ether/ethyl acetate = 25/1) to afford the desired product **11** (42 mg, 86%).¹H **NMR** (600 MHz, CDCl₃) δ 11.65 (s, 1H), 8.47 (d, *J* = 8.3 Hz, 1H), 7.56 – 7.49 (m, 1H), 7.37 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.33 – 7.28 (m, 1H), 7.14 – 7.07 (m, 1H), 7.04 - 6.99 (m, 1H), 6.99 – 6.93 (m, 2H), 5.60 (s, 1H), 4.51 (dd, *J* = 12.2, 1.0 Hz, 1H), 4.12 (s, 1H), 3.81 (d, *J* = 12.1 Hz, 1H), 2.11 (d, *J* = 13.8 Hz, 1H), 2.00 (ddd, *J* = 13.9, 4.1, 1.7 Hz, 1H) ppm. ¹³C **NMR** (125 MHz, CDCl3) δ 198.2, 163.6, 154.9, 136.7, 132.0, 131.2, 129.8, 120.5, 120.2, 119.8, 118.4, 116.1, 115.7, 91.6, 64.3, 63.7, 37.2, 28.4 ppm. **HRMS:** [M+Na]⁺ *calcd*. For C₁₈H₁₅BrNaO₄⁺ 397.0046; found: 397.0048. [α]_p²⁰ -90.51 (c = 0.67 in CHCl₃). The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

E. 1 mmol scale

A glass vial equipped with a magnetic stirring bar was charged with **1a** (1.0 mmol, 1.0 equiv), catalyst **3f** (0.2 mmol, 0.2 equiv) and catalyst **4b** (0.2 mmol, 0.2 equiv) in CH_2Cl_2 (5.0 mL) and the resulting solution was stirred for about 10 min at 0 °C. Then **2a** (1.2 mmol, 1.2 equiv) was added. After full conversion of first step, $BF_3 \cdot Et_2O$ (2.0 eq) was added to the reaction mixture in situ and the reaction mixture was allowed to stir at 25 °C. After completion of the reaction, the reaction mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 8/1) to give product **5a** 220 mg with 75% yield and 96% ee.

F. NMR and Control Experiments

NMR experiments

1)

General procedure: To a solution of catalyst **3a** (0.05 mmol) in CDCl_3 (0.4 ml) was added **1a** (0.05 mmol), and the mixture was allowed at room temperature for about 5 min. Then the system was monitored by ¹H NMR (500 MHz). The result showed that a high concentration of aminal **Int-1** was generated quickly.

General procedure: To a solution of catalyst **3a** (0.05 mmol) and **4q** (0.05 mmol) in $CDCl_3$ (0.4 ml) was added **1a** (0.05 mmol), and the mixture was allowed at room temperature for about 5 min. Then the system was monitored by ¹H NMR (500 MHz).The result showed that tertiary amine has little effect on **Int-1**.

General procedure: To a solution of catalyst **3a** (0.05 mmol) and **4o** (0.05 mmol) in $CDCl_3$ (0.4 ml) was added **1a** (0.05 mmol), and the mixture was allowed at room temperature for about 5 min. Then the system was monitored by ¹H NMR (500 MHz). The result showed that thiourea has significant effect on **Int-1**. Addition of thiourea results in disappearance of **Int-1**.

General procedure: To a solution of **2a** (0.05 mmol) in CDCl₃ (0.5 ml) was added catalyst **4b** (0.05 mmol), the solution was changed immediately from turbidity to clarification Then the system was monitored by ¹H NMR (400 MHz). A dramatic proton shift of catalyst **4b** showed that **4b** has great interaction with **2a**.

General procedure: To a solution of **2a** (0.05 mmol) in CDCl_3 (0.5 ml) was added catalyst **4r** (0.05 mmol), the solution was also changed immediately from turbidity to clarification Then the system was monitored by ¹H NMR (400 MHz). A similar dramatic proton shift of catalyst **4r** showed that amine has significant effect on **2a**.

Control experiments:

1)

These results clearly indicated the important role of the phenolic hydroxyl group of substrates **1** in the developed multicatalytic system.

2)

These results emphasized the crucial role of bifunctional thiourea-tertiary amine catalysts for the superior efficiency of this multicatalytic system. It should be noted that base cocatalysts should be beneficial for stereochemical induction in this multicatalytic. system.

3)

The results demonstrated the reaction intermediate of the Michael addition step.

Experiment procedure of **16** :
A glass vial equipped with a magnetic stirring bar was charged with 1 (0.10 mmol, 1.0 mmol)equiv), catalyst 3e (0.02 mmol, 0.2 equiv) and catalyst 4b (0.02 mmol, 0.2 equiv) in CH_2Cl_2 (0.5 mL) and the resulting solution was stirred for about 10 min at 0 °C. Then 2 (0.12 mmol, 1.2 equiv) was added. After full conversion of **1**, the crude product was purified by chromatography on silica gel (dichloromethane/ methanol = 20/1). The crude product was dissolved with CH₂Cl₂, then imidazole (0.3 mmol, 3.0 eq) and tertbutyldimethylchlorosilane (0.03 mmol, 3.0 eq) was added to the solution. The reaction mixture was allowed to stir at 25 °C until the reaction was completed. Then water was dropped to the mixture. The organic phase was separated and the aqueous phase was extracted with ethyl acetate. The combined organic phases were washed with water and brine, dried with Na₂SO₄, and concentrated in vacuo. The residue was purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to afford compound **12** (17 mg, 40% for two steps). ¹**H NMR** (500 MHz, CDCl₃) δ 8.73 (s, 1H), 7.74 (dd, J = 7.9, 1.2 Hz, 1H), 7.56 – 7.47 (m, 1H), 7.33 (d, J = 8.3 Hz, 1H), 7.22 (dd, J = 16.6, 8.4 Hz, 2H), 7.08 (d, J = 7.8 Hz, 1H), 6.93 (dd, J = 7.5, 4.8 Hz, 2H), 5.71 (t, J = 2.4 Hz, 1H), 4.80 (d, J = 10.2 Hz, 1H), 2.72 (ddd, J = 13.6, 10.5, 2.7 Hz, 1H), 2.16 (d, J = 14.7 Hz, 1H), 0.85 (s, 12H), 0.21 (s, 3H), 0.12 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 164.5, 160.4, 152.5, 151.0, 131.8, 129.4, 128.6, 123.8, 123.5, 122.5, 121.7, 118.5, 116.8, 116.2, 108.9, 90.7, 34.9, 26.2, 25.5, 18.3, -4.9, -5.5 ppm. **HRMS:** [M+Na]⁺ calcd. For C₂₄H₂₈NaO₅Si⁺ 447.1598; found: 447.1596. $[\alpha]_D^{20}$ -39.91 (c = 1.33 in CHCl₃). The enantiomeric excess was determined by HPLC using Chiralpak IC column [*n*-hexane/*i*-PrOH= 80/20, 1 mL/min], λ = 210 nm, t_{major} = 10.44 min, t_{minor} = 9.55 min, **ee = 97%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

G. NMR spectra and HPLC traces

The ¹H NMR spectrum of 5a (500 MHz, CDCl₃)

The HPLC of racemic 5a

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	15.780 18.453	1303446 1307389	49.924 50.076	BB BB
		2610835	100.000	

The HPLC of chiral 5a

Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	16.013	5318612	98.910	BB
2	18.693	58636	1.090	BB
		5377248	100.000	

The ¹H NMR spectrum of 5b (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5b (125 MHz, CDCl₃)

The ¹⁹F NMR spectrum of 5b (400 MHz, CDCl₃)

The HPLC of racemic 5b

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	15.047 15.973	5724215 5780074	Area % 15 49.757 174 50.243 89 100 000	BV VB
		11504289	100.000	

The HPLC of chiral 5b

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	15.047	100381	0.742	BB
2	15.947	13431073	99.258	BB
		13531454	100.000	

The ¹H NMR spectrum of 5c (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5c (125 MHz, CDCl₃)

The HPLC of racemic 5c

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	12.073 12.953	4902172 4997680	49.518 50.482	BV VB
		9899852	100.000	

The HPLC of chiral 5c

The ¹H NMR spectrum of 5d (500 MHz, CDCl₃)

18101353

100.000

The ¹³C NMR spectrum of 5d (125 MHz, CDCl₃)

The HPLC of racemic 5d

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	31.927	2196554	50.078	BV
2	34.720	2189700	50.078 49.922	VB
		4386254	100.000	

The HPLC of chiral 5d

No.	RT	Area	Area %	BC
1	31.840	91060	1.291	BB
2	34.487	6960956	98.709	BB
		7052016	100.000	

The ¹H NMR spectrum of 5e (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5e (125 MHz, CDCl₃)

The HPLC of racemic 5e

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	17.853	4165400	50.104	BB
2	19.593	4148168	49.896	BB
-		8313568	100.000	
-				

The HPLC of chiral 5e

The ¹H NMR spectrum of 5f (500 MHz, CDCl₃)

25395668

100.000

The ¹³C NMR spectrum of 5f (125 MHz, CDCl₃)

The HPLC of racemic 5f

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	16.053 18.393	10357464 10373818	49.961 50.039	BB BB
		20731282	100.000	

The HPLC of chiral 5f

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	16.160 18.487	1075830 21960921	4.670 95.330	BB BB
		23036751	100.000	

The ¹H NMR spectrum of 5g (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5g (125 MHz, CDCl₃)

The ¹⁹F NMR spectrum of 5g (400 MHz, CDCl₃)

The HPLC of racemic 5g

No.	RT	Area	Area %	BC
1 2	15.553 16.760	2954491 2949952	50.038 49.962	BV VB
		5904443	100.000	

The HPLC of chiral 5g

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	15.533 16.720	200852 14870878	1.333 98.667	BB BB
		15071730	100.000	

The ¹H NMR spectrum of 5h (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 5h (100 MHz, CDCl₃)

The HPLC of racemic 5h

The HPLC of chiral 5h

The ¹H NMR spectrum of 5i (400 MHz, CDCl₃)

100.000

9696591

The ¹³C NMR spectrum of 5i (100 MHz, CDCl₃)

The HPLC of racemic 5i

100.000

The HPLC of chiral 5i

Chrom Type: Fixed WL Chromatogram, 210 nm 0.8 14.107 0.7 0-1 0.6 62 0735 1, Absorbance (AU) 0.5 5i 0.4 0.3 12.167 0.2 3868, 0.1 0.0 -15 16 17 18 10 11 12 13 14 19 20 Retention Time (min)

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	12.167	13868	0.223	BB
2	14.107	6207351	99.777	BB
		6221219	100.000	

The ¹H NMR spectrum of 5j (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 5j (100 MHz, CDCl₃)

The HPLC of racemic 5j

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	31.447	2406888	50.332	BB
2	36.793	2375122	49.668	BB
		4782010	100.000	

The HPLC of chiral 5j

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	31.540	7010640	46.822	BB
2	36.760	7962275	53.178	BB
		14972915	100.000	

The ¹H NMR spectrum of 5k (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 5k (100 MHz, CDCl₃)

The HPLC of racemic 5k

		112 0 0	in our o	20
1	18.900	10455472	49.891	BB
2	26.167	10501271	50.109	BB
		20956743	100.000	

The HPLC of chiral 5k

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	18.987	5602844	38.306	BB
2	26.280	9023639	61.694	BB
		14626483	100.000	

The ¹H NMR spectrum of 5l (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5l (125 MHz, CDCl₃)

The HPLC of racemic 51

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	14.913	1721916	50.008	BB
2	17.700	1721347	49.992	BB
		3443263	100.000	

The HPLC of chiral 51

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	14.893	17267384	97.555	BB
2	17.687	432747	2.445	BB
		17700131	100.000	

The ¹H NMR spectrum of 5m (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5m (125 MHz, CDCl₃)

The ¹⁹F NMR spectrum of 5m (400 MHz, CDCl₃)

The HPLC of racemic 5m

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	13.833 16.953	1861541 1867600	49.919 50.081	BB BB
-		3729141	100.000	

The HPLC of chiral 5m

The ¹H NMR spectrum of 5n (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5n (125 MHz, CDCl₃)

The HPLC of racemic 5n

The HPLC of chiral 5n

Chrom Type: Fixed WL Chromatogram, 210 nm

The ¹H NMR spectrum of 50 (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 50 (125 MHz, CDCl₃)

The HPLC of racemic 50

Chrom Type: Fixed WL Chromatogram, 210 nm

Peak Quantitation: AREA Calculation Method: AREA

No.	RT	Area	Area %	BC
1	18.680	9650408	49.899	BB
2	22.407	9689312	50.101	BB
		19339720	100.000	

The HPLC of chiral 50

The ¹³C NMR spectrum of 5p (100 MHz, CDCl₃)

The HPLC of racemic 5p

The HPLC of chiral 5p

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	15.867 21.067	26054197 476905	98.202 1.798	BB BB
		26531102	100.000	
The ¹H NMR spectrum of 5q (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5q (125 MHz, CDCl₃)

The ¹⁹F NMR spectrum of 5q (400 MHz, CDCl₃)

The HPLC of racemic 5q

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	12.927 16.680	1166581 1168653	49.956 50.044	BB BB
).		2335234	100.000	

The HPLC of chiral 5q

Chrom Type: Fixed WL Chromatogram, 210 nm 2.0 1.5 Absorbance (AU) 5q 1.0 1874824, 16.880 0.5 0.0 ավաղափակափակակակակակակակակակակակակակա 15 10 11 12 13 14 16 17 19 20 18 Retention Time (min)

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	13.093	18932893	90.990	BB
2	16.880	1874824	9.010	BB
		20807717	100.000	

The ¹³C NMR spectrum of 5r (125 MHz, CDCl₃)

74

The HPLC of racemic 5r

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	15.767 21.240	1884148 1879001	50.068 49.932	BB BB
5		3763149	100.000	

The HPLC of chiral 5r

Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	15.507	23535838	90.882	BB
2	20.973	2361204	9.118	BB
		25897042	100.000	

The ¹H NMR spectrum of 5s (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5s (125 MHz, CDCl₃)

The HPLC of racemic 5s

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	20.913 30.013	4539215 4544377	49.972 50.028	BB BB
		9083592	100.000	

The HPLC of chiral 5s

No.	RT	Area	Area %	BC		
1	20.900	4266223	94.570	BB		
2	29.967	244939	5.430	BB		
		4511162	100.000			

The ¹H NMR spectrum of 5t (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5t (125 MHz, CDCl₃)

The HPLC of racemic 5t

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	20.620 22.987	844472 876564	49.068 50.932	BB BB
		1721036	100.000	

The HPLC of chiral 5t

No.	RT	Area	Area %	BC
1	20.600	13997571	91.166	BB
	23.013	15353976	100.000	

The ¹H NMR spectrum of 5u (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5u (125 MHz, CDCl₃)

The HPLC of racemic 5u

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	37.967	1892562	49.999	BB
2	43.187	1892650	50.001	BB
		3785212	100.000	

The HPLC of chiral 5u

No.	RT	Area	Area %	BC
1	37.953	678710	7.488	BB
2	43.087	8385742	92.512	BB
		9064452	100.000	

The ¹H NMR spectrum of 5v (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5v (125 MHz, CDCl₃)

The HPLC of racemic 5v

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	24.640	2921628	49.936	BV
2	26.053	2929078	50.064	VB
		5850706	100.000	

The HPLC of chiral 5v

No.	RT	Area	Area %	BC
1 2	24.587 25.913	213651 29299169	0.724 99.276	BV VB
		29512820	100.000	

The ¹H NMR spectrum of 5w (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5w (125 MHz, CDCl₃)

The ¹⁹F NMR spectrum of 5w (400 MHz, CDCl₃)

The HPLC of racemic 5w

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	15.027	7342908	50.342	BB
2	19.993	7243022	49.658	BB
		14585930	100.000	

The HPLC of chiral 5w

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	14.820	245535	2.028	BB
2	19.727	11860966	97.972	BB
		12106501	100.000	

The ¹H NMR spectrum of 5x (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5x (125 MHz, CDCl₃)

The HPLC of racemic 5x

No.	RT	Area	Area %	BC
1	31.320	471753	50.193	BB
2	41.440	468132	49.807	BB
		939885	100.000	

The HPLC of chiral 5x

The ¹H NMR spectrum of 5y (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5y (125 MHz, CDCl₃)

The HPLC of racemic 5y

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	15.473 18.427	918835 919659	49.978 50.022	BB BB
		1838494	100.000	

The HPLC of chiral 5y

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	15.413	10009060	86.067	BB
2	18.387	1620313	13.933	BB
		11629373	100.000	

The ¹H NMR spectrum of 5z (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5z (125 MHz, CDCl₃)

The HPLC of racemic 5z

Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	22.627	2529815	50.469	BB
2	45.260	2482784	49.531	BB
		5012599	100.000	

The HPLC of chiral 5z

No.	RT	Area	Area %	BC
1	22.720	213811	7.135	BB
2	45.300	2782730	92.865	BB
		2996541	100.000	

The ¹³C NMR spectrum of 5'z (125 MHz, CDCl₃)

The HPLC of racemic 5'z

0.5 0.4 22.167 23.580 Absorbance (AU) ő 0.3 rac-5'z 2568240, 2584078, 0.2 0.1 0.0h....h.uh....h....h.....h mp т Т 16 17 18 19 20 21 22 23 24 25 26 Retention Time (min) Chrom Type: Fixed WL Chromatogram, 260 nm Peak Quantitation: AREA Calculation Method: AREA% No. RT Area Area % BC 1 22.167 2568240 49.846 BV 2 23.580 2584078 50.154 VB

5152318

100.000

100.000

Chrom Type: Fixed WL Chromatogram, 260 nm

The HPLC of chiral 5'z

Chrom Type: Fixed WL Chromatogram, 260 nm 2.0 22.813 1.5 Absorbance (AU) 9074, 1.0 403 5'z 50276, 24.367 0.5 0.0 16 17 25 18 19 20 21 22 23 24 26 Retention Time (min) Chrom Type: Fixed WL Chromatogram, 260 nm Peak Quantitation: AREA Calculation Method: AREA% Area % No. RT BC Area 1 22.813 14039074 93.660 BB 2 24.367 950276 6.340 BB

14989350

The ¹H NMR spectrum of 6 (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 6 (125 MHz, CDCl₃)

The ¹H NMR spectrum of 7 (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 7 (125 MHz, CDCl₃)

The ¹H NMR spectrum of 8 (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 8 (125 MHz, CDCl₃)

The HPLC of racemic 5e

The HPLC of chiral 5e

The ¹H NMR spectrum of 9 (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 9 (125 MHz, CDCl₃)

The ¹H NMR spectrum of 10 (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 10 (125 MHz, CDCl₃)

The HMBC spectrum of 10 (500 MHz, CDCl₃)

The ¹H NMR spectrum of 11 (600 MHz, CDCl₃)

The ¹³C NMR spectrum of 11 (125 MHz, CDCl₃)

The ¹H NMR spectrum of 16 (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 16 (125 MHz, CDCl₃)

The HPLC of racemic 16

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	9.273	7103923	49.241	BV
2	10.320	7322860	50.759	VB
		14426783	100.000	

The HPLC of chiral 16

Chrom Type: Fixed WL Chromatogram, 210 nm 0.8 0.7 447 0.6 10. όн Absorbance (AU) 1148 086, OTBS 0.5 16 0.4 -0.3 9.547 0.2 9663, 0.1 0.0 1111 1111 -----10 12 13 9 11 8 Retention Time (min) Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA% No. RT Area Area % BC 1 9.547 59663 1.418 2 10.447 98.582 4148086 4207749 100.000

BB

BB

(S)

C

HC

11

Re-face attack

OH

Βr

C

II HO

H. Proposed mechanism for the preparation of 11

The reaction of the enantiopure dihydroxy compound **10** with NBS formed the electrophilic bromonium ion **I**, which could be converted into oxocarbenium ion **II** via electron transfer. Subsequently, the intramolecular *Re*-face attack of the aliphatic hydroxyl to the oxocarbenium ion moiety gave the new bicyclic acetal compound **11** with the proposed absolute configuration.
I. Single crystal X-Ray diffraction data

[CCDC 1959362 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif.</u>].

Absolute configuration of **5t**

	5t	F	
Bond precision:	C-C = 0.0063 A	Wavelength=1.54184	
Cell:	a=9.2599(2) alpha=90	b=12.5261(3) beta=90	c=12.6868(4) gamma=90
Volume Space group Hall group Moiety formula Sum formula Mr Dx,g cm-3 Z Mu (mm-1) F000 F000' h,k,lmax Nref Tmin,Tmax Tmin'	Calculated 1471.55(7) P 21 21 21 P 2ac 2ab C18 H10 Br F O4 C18 H10 Br F O4 389.16 1.757 4 4.115 776.0 775.60 11,14,15 2631[1524] 0.641,0.636 0.581	Report 1471 P 21 P 2ac ? C18 H 389.1 1.75 4 4.115 776.0 11,14 2633 0.688	rted .54(6) 21 21 2 2ab H10 Br F O4 17 7 5 0 4,15 8,1.000
Correction meth AbsCorr = MULTI	od= # Reported T -SCAN	Limits: Tmin=0.	688 Tmax=1.000
Data completeness= 1.73/1.00 Theta(max) = 67.195 R(reflections) = 0.0320(2427) wR2(reflections) = 0.0803(2633)			
S = 1.063 Npar= 218			

ECD analysis of compound 5c, 5j and 5t

ECD spectrum were recorded in methanol on JASCO J-815 spectropolarim eter (JASCO Corporation, Tokyo, Japan).

The nearly identical ECD spectra of **5t**, **5c** and **5j** indicate that they display same stereochemistry.