Supplementary Information

Selective assembly of N1- and N2-alkylated 1,2,3triazoles via copper-catalyzed decarboxylative cycloaddition of alkynyl carboxylic acids with ethers and azidotrimethylsilane

Pengli Bao, ${ }^{\text {a }}$ Na Meng, ${ }^{\text {a }}$ Yufen Lv, ${ }^{* a}$ Huilan Yue, ${ }^{* b}$ Jiang-Sheng Li, ${ }^{\text {c }}$ Wei Weia ${ }^{\text {b, }}{ }^{*}$${ }^{a}$ School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong,
China. E-mail: weiweiqfnu@163.com; yufenlv06@163.com
${ }^{b}$ Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan
Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai
810008, China.E-mail: hlyue@nwipb.cas.cn
${ }^{c}$ School of Chemistry and food Engineering, Changsha University of Science and Technology,
Changsha, 410114, P. R. China
Contents

1. General information S2
2. General procedure for the selective synthesis of N^{1}-and N^{2}-alkylated 1,2,3-triazoles from alkynyl carboxylic acid, ether and TMSN_{3} S3
3. Preliminary mechanistic studies S3-S6
4. Crystallographic data of product $\mathbf{4 j} \mathbf{a}$ S7-S8
5. Characterization data of products 4aa-5af S8-S22
6. Copies of NMR spectra for 4a-5af. S23-S66

1. General information

All commercially available reagent grade chemicals were purchased from Aldrich, Acros, Alfa Aesar and Energy Chemical Company and used as received without further purification unless otherwise stated. All solvents were dried according to standard procedures. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded in CDCl_{3} on a Bruker Avance III 400 spectrometer with TMS as internal standard ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 125 \mathrm{MHz}{ }^{13} \mathrm{C}$) at room temperature, the chemical shifts (δ) were expressed in ppm and J values were given in Hz . The following abbreviations are used to indicate the multiplicity: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of triplets (dt), and multiplet (m). All first order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted were designated as multiplet (m). Mass analyses and HRMS were obtained on a FinniganLCQDECA mass spectrometer and a Bruker Daltonics Bio-TOF-Q mass spectrometer by the ESI method, respectively. Column chromatography was performed on silica gel (200-300 mesh).

2 General procedure for the selective synthesis of N1-and N2-alkylated 1,2,3triazoles from alkynyl carboxylic acid, ether and TMSN $\mathbf{3}$.

2.1 General procedure for the synthesis of N1-alkylated 1,2,3-triazoles.

In a tube (15 mL), $\mathrm{CuCl}_{2}(5 \mathrm{~mol} \%, 1.4 \mathrm{mg})$, alkynyl carboxylic acid $\mathbf{1}(0.2 \mathrm{mmol})$, ether $\mathbf{2}(2 \mathrm{~mL}), \mathrm{TMSN}_{3} \mathbf{3}(0.3 \mathrm{mmol}, 42 \mu \mathrm{~L})$, and TBHP $(0.4 \mathrm{mmol}, 56 \mu \mathrm{~L})$ were added. Then, the tube was sealed and the reaction vessel was allowed to stir at $80^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, the solution was concentrated in vacuum, the crude mixtures were purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired N1-alkylated 1,2,3-triazole 4.
2.2 General procedure for the synthesis of N2-alkylated 1,2,3-triazoles.

In a tube $(15 \mathrm{~mL}), \mathrm{CuCl}_{2}(20 \mathrm{~mol} \%, 5.4 \mathrm{mg})$, alkynyl carboxylic acid $\mathbf{1}(0.2 \mathrm{mmol})$, ether $\mathbf{2}(2 \mathrm{~mL}), \mathrm{TMSN}_{3} \mathbf{3}(0.3 \mathrm{mmol}, 42 \mu \mathrm{~L})$, and TBHP $(0.4 \mathrm{mmol}, 56 \mu \mathrm{~L})$ were added. Then, the tube was sealed and the reaction vessel was allowed to stir at $80^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, the solution was concentrated in vacuum, the crude mixtures were purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired N2-alkylated 1,2,3-triazole 5.

3. Preliminary mechanistic studies

3.1 The Reaction of THF ether with TMSN $_{3}$ under the standard conditions.

In a tube $(15 \mathrm{~mL}), \mathrm{CuCl}_{2}(1.4 \mathrm{mg}), \mathrm{TBHP}(0.4 \mathrm{mmol}, 56 \mu \mathrm{~L}), \mathrm{TMSN}_{3} 3(0.3 \mathrm{mmol}$, $42 \mu \mathrm{~L})$, and THF (2 mL) were added. The reaction vessel was allowed to stir at $80^{\circ} \mathrm{C}$ for 6 h . After completion of the reaction, the solution was concentrated in vacuum, the alkylated azide $\mathbf{6 a}$ was detected by LC-MS (Figure S3).

Figure S3. LC-MS spectra of oxyalkylated azide $\mathbf{6 a}$.
3.2 The addition of TEMPO in the model reaction system.

In a tube $(15 \mathrm{~mL}), \mathrm{CuCl}_{2}(5 \mathrm{~mol} \%, 1.4 \mathrm{mg})$, TEMPO $(0.4 \mathrm{mmol}, 62.8 \mathrm{mg})$, phenylpropynic acid 1a $(0.2 \mathrm{mmol}, 29.2 \mathrm{mg})$, THF $\mathbf{2 a}(2 \mathrm{ml}), \mathrm{TMSN}_{3} \mathbf{3}(0.3 \mathrm{mmol}, 42$ $\mu \mathrm{L}$), and TBHP ($0.4 \mathrm{mmol}, 56 \mu \mathrm{~L}$) were added. Then, the tube was sealed and the reaction vessel was allowed to stir at $80^{\circ} \mathrm{C}$ for 12 h . The reaction was extremely restrained and TEMPO-trapped complex (TEMPO-THF) was detected by LC-MS analysis (Figure S4).

Figure S4. LC-MS spectra of TEMPO-THF.
3.3The model reaction was carried out in the absence of TBHP.

In a tube $(15 \mathrm{~mL}), \mathrm{CuCl}_{2}(20 \mathrm{~mol} \%, 5.4 \mathrm{mg}), 3$-phenylpropiolic acid $\mathbf{1 a}(0.2 \mathrm{mmol}$, $29.2 \mathrm{mg}), \mathrm{TMSN}_{3} 3(0.3 \mathrm{mmol}, 42 \mu \mathrm{~L})$, and THF (2 mL) were added. Then, the tube was sealed and the reaction vessel was allowed to stir at $80^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, the solution was concentrated in vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired product $\mathbf{8 a}$ in 10% yield.

3.4 The reactions of 4-phenyl-1H-1,2,3-triazole with THF under the standard conditions.

In a tube $(15 \mathrm{~mL}), \mathrm{CuCl}_{2}(5 \mathrm{~mol} \%, 1.4 \mathrm{mg}), 4$-phenyl-1H-1,2,3-triazole 10a (0.2 $\mathrm{mmol}, 29 \mathrm{mg})$, THF $\mathbf{3 a}(2 \mathrm{ml})$, and TBHP $(0.4 \mathrm{mmol}, 56 \mu \mathrm{~L})$ were added. Then, the tube was sealed and the reaction vessel was allowed to stir at $80^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, the solution was concentrated in vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired product 4aa in $\mathbf{3 8 \%}$ yield (10.3 mg), and product 5aa in 14% yield (4.5 mg).

3.5 The transformation of product 4aa to product 5aa under the standard conditions.

In a tube (15 mL), 4-phenyl-1-(tetrahydrofuran-2-yl)-1H-1,2,3-triazole 4aa (0.1 mmol, 21.5 mg), $\mathrm{CuCl}_{2}(20 \mathrm{~mol} \%, 2.7 \mathrm{mg})$, and THF (1 mL) were added. Then, the tube was sealed and the reaction vessel was allowed to stir at $80^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, the solution was concentrated in vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the product $\mathbf{5 a}$ in 88% yield $(18.9 \mathrm{mg})$ and product $\mathbf{4 a} \mathbf{a}$ was remained in 10% yield.

4. Crystallographic data of product $\mathbf{4 j a}$.

CCDC-1949074
Table S1. Crystallographic data and structure refinement for complex $\mathbf{4 j a}$.

Identification code	Complex
formula	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{O}$
MW	293.65
cryst	White block
Cryst size(mm)	$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$
$\lambda(\AA)$	0.71073
temp(K)	298(2) K
cryst syst	Triclinic
space group	P-1
a (\AA)	10.2294(8)
b (A)	10.6907(8)
c (\AA)	11.7250(9)
$\alpha\left({ }^{\circ}\right)$	98.227(2)
$\beta\left({ }^{\circ}\right)$	103.378(3)
$\gamma\left({ }^{\circ}\right)$	91.2920(10)
$\operatorname{vol}\left(\AA^{3}\right)$	1232.54(16)
Z	4
Density(cale)($\mathrm{Mg} \mathrm{m}^{-3}$)	1.582
Abs coeff (mm^{-1})	3.322
F(000)	590
θ range (deg)	2.89 to 25.02
Index ranges	$-12<=\mathrm{h}<=11,-10<=\mathrm{k}<=12,-13<=\mathrm{l}<=10$
Reflns collected	5903
Indep reflns	$4092[\mathrm{R}(\mathrm{int})=0.0486$
Date/restraints/params	4092 / 0 / 308
Final R indices	$\mathrm{R} 1=0.0935$
[1>2 ${ }^{\text {(1) }}$]	$\mathrm{wR} 2=0.1995$
R indices (all date)	$\mathrm{R} 1=0.1778, \mathrm{wR} 2=0.2262$
GOF	1.060
Largest diff.peak and hole(e \AA^{-3})	0.864 and -1.118

Table S2. Selected Bond Lengths (\AA) and Angles (deg) for complex $\mathbf{4 j a}$.

Bond/angle	Complex
$\mathrm{Br}(1)-\mathrm{C}(10)$	$1.904(8)$
$\mathrm{N}(1)-\mathrm{C}(5)$	$1.317(10)$
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.365(9)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.489(11)$
$\mathrm{N}(2)-\mathrm{N}(3)$	$1.301(9)$
$\mathrm{N}(3)-\mathrm{C}(6)$	$1.364(9)$
$\mathrm{O}(1)-\mathrm{C}(4)$	$1.392(10)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.403(10)$
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{N}(2)$	$110.9(7)$
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)$	$128.2(7)$
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(1)$	$120.3(7)$
$\mathrm{N}(3)-\mathrm{N}(2)-\mathrm{N}(1)$	$160.4(6)$
$\mathrm{N}(2)-\mathrm{N}(3)-\mathrm{C}(6)$	$110.2(6)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	$108.6(8)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$113.6(7)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(1)$	108.8
$\mathrm{~N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$106.0(7)$
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{H}(5)$	127.0
$\mathrm{~N}(3)-\mathrm{C}(6)-\mathrm{C}(5)$	$106.5(7)$

5.Characterization data of products 4aa-5af

4-phenyl-1-(tetrahydrofuran-2-yl)-1H-1,2,3-triazole, Compound 4aa was obtained in 92% yield $(38.7 \mathrm{mg})$ according to the general procedure $(0.2 \mathrm{mmol})$. Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.70(\mathrm{~s}, 1 \mathrm{H}), 7.94-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=4.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.39-6.27(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.95(\mathrm{~m}$, $1 \mathrm{H}), 2.51-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.01(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 146.8,130.9,129.1,128.2,125.5,120.0,89.1,69.2,31.9,24.0$. HRMS calc. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}, 238.0956$; found, 238.0959.

4-(4-methoxyphenyl)-1-(tetrahydrofuran-2-yl)-1H-1,2,3-triazole, Compound 4ba was obtained in 80% yield $(39.2 \mathrm{mg})$ according to the general procedure $(0.2 \mathrm{mmol})$. White solid, $\mathrm{mp}=51 . \mathrm{A}^{\circ} \mathrm{C}-51.8{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.21(\mathrm{~s}, 1 \mathrm{H})$, $7.78(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.31-6.29(\mathrm{~m}, 1 \mathrm{H}), 4.03-4.00(\mathrm{~m}$, $1 \mathrm{H}), 3.99-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.09$ $-2.00(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- $\left.d_{6}\right) \delta 160.0,147.6,131.8,127.6,122.9$, $114.9,92.1,69.3,55.7,40.3,40.2,40.0,39.8,39.7,31.3,24.7$. HRMS calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$, 268.1062; found, 268.1071.

4-(4-tert-butylphenyl)-1-(tetrahydrofuran-2-yl)-1H-1,2,3-triazole, Compound 4ca was obtained in 70% yield $(37.9 \mathrm{mg})$ according to the general procedure $(0.2 \mathrm{mmol})$. Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.63(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.36-6.34(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.94(\mathrm{~m}, 1 \mathrm{H})$, $2.50-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 150.9,147.0,128.4,126.1,125.5,119.9,89.2,69.4,40.3,40.2$,
$40.0,39.8,39.7,34.8,32.1,31.6,24.3$. HRMS calc. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$, 294.1582; found, 294.1581.

1-(tetrahydrofuran-2-yl)-4-p-tolyl-1H-1,2,3-triazole, Compound 4da was obtained in 76% yield $(34.8 \mathrm{mg})$ according to the general procedure $(0.2 \mathrm{mmol})$. Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.62(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 6.35-6.33(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.92(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.38(\mathrm{~m}$, 2H), $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 147.0,137.7,129.8,128.4,125.6,119.8,89.2,69.4,32.1,24.3,21.3$. HRMS calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}, 252.1113$; found, 252.1115.

1-(tetrahydrofuran-2-yl)-4-m-tolyl-1H-1,2,3-triazole, Compound 4ea was obtained in 70% yield (32.1 mg) according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.38-6.36(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.94(\mathrm{~m}$, $1 \mathrm{H}), 2.51-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 147.1, 138.5, 131.1, 129.2, 129.0, 126.3, 122.9, 120.1, 89.3, 69.4, 32.1, 24.3, 21.5. HRMS calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}, 252.1113$; found, 252.1109 .

1-(tetrahydrofuran-2-yl)-4-o-tolyl-1H-1,2,3-triazole, Compound 4fa was obtained in 75% yield $(34.4 \mathrm{mg})$ according to the general procedure $(0.2 \mathrm{mmol})$. White solid, $\mathrm{mp}=$ $52.2{ }^{\circ} \mathrm{C}-52.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.71(\mathrm{~m}, 1 \mathrm{H})$, $7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.40-6.39(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.96(\mathrm{~m}, 1 \mathrm{H}), 2.61$

- $2.48(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.01(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 146.3,135.5,131.3,130.4,128.9,128.3,126.5,122.2,89.1,69.4$, 32.0, 24.4, 21.5. HRMS calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$, 252.1113; found, 252.1117.

4-(3-fluorophenyl)-1-(tetrahydrofuran-2-yl)-1H-1,2,3-triazole, Compound 4ga was obtained in 75% yield $(35.0 \mathrm{mg})$ according to the general procedure $(0.2 \mathrm{mmol})$. Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.77$ (s, 1H), 7.75 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.71-7.68$ (m, 1H), $7.51-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.38(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.08$ $(\mathrm{m}, 1 \mathrm{H}), 3.99-3.95(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.03(\mathrm{~m}$, 1 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 164.38$ (d, $J=242.5 \mathrm{~Hz}$), 147.23 ($\mathrm{q}, ~ J=2.5$ $\mathrm{Hz}), 134.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 132.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 123.02(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 122.27$, $116.40(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 113.62(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 90.75,70.83,33.48,25.49$; ${ }^{19} \mathrm{~F}$ NMR (470 MHz, DMSO- d_{6}) $\delta-112.82$. HRMS calc. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{FN}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$, 256.0862; found, 256.0863.

4-(4-fluorophenyl)-1-(tetrahydrofuran-2-yl)-1H-1,2,3-triazole, Compound 4ha was obtained in 66% yield (30.8 mg) according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 8.70$ (s, 1H), $7.95-7.92$ (m, 2H), $7.32-7.28$ $(\mathrm{m}, 2 \mathrm{H}), 6.37(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.07(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.95(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.43$ (m, 2H), $2.23-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.04(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ $167.04(\mathrm{~d}, J=242.5 \mathrm{~Hz}), 150.88,132.46(\mathrm{q}, J=22.5 \mathrm{~Hz}), 132.45,124.90(\mathrm{~d}, J=25.0$ $\mathrm{Hz}), 121.01(\mathrm{~d}, ~ J=22.5 \mathrm{~Hz})$, 94.08, 74.20, 36.85, 28.97. ${ }^{19} \mathrm{~F}$ NMR (470 MHz , DMSO- d_{6}) $\delta-114.08$. HRMS calc. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{FN}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$, 256.0862; found, 256.0859.

4-(4-chlorophenyl)-1-(tetrahydrofuran-2-yl)-1H-1,2,3-triazole, Compound 4ia was obtained in 80% yield (39.8 mg) according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.75$ (s, 1H), $7.93-7.91$ (m, 2H), $7.53-7.51$ $(\mathrm{m}, 2 \mathrm{H}), 6.37(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.95(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.44$ $(\mathrm{m}, 2 \mathrm{H}), 2.22-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.03(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ $145.9,132.8,130.1,129.4,127.4,120.6,89.4,69.5,32.1,24.2$. HRMS calc. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{3} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}, 250.0747$; found, 250.0756.

4-(4-bromophenyl)-1-(tetrahydrofuran-2-yl)-1H-1,2,3-triazole, Compound $\mathbf{4 j a}$ was obtained in 82% yield (48.1 mg) according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $_{6}$) $\delta 8.75$ (s, 1H), 7.84 (d, $J=6.3,2 \mathrm{H}$), 7.64 (d, $J=$ $4.7,2 H), 6.38-6.36(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.94(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.43$ $(\mathrm{m}, 2 \mathrm{H}), 2.20-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ $145.9,132.3,130.4,127.7,121.4,120.6,89.4,69.5,32.1,24.2$. HRMS calc. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrN}_{3} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$, 294.0242; found, 294.0243.

4-(1-(tetrahydrofuran-2-yl)-1H-1,2,3-triazol-4-yl)benzonitrile, Compound 4ka was obtained in 68% yield (32.6 mg) according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $_{6}$) $\delta 8.89$ (s, 1H), $8.09-8.07$ (m, 2H), $7.92-7.91$ $(\mathrm{m}, 2 \mathrm{H}), 6.39(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.07(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.95(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.44$ $(\mathrm{m}, 2 \mathrm{H}), 2.20-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- $\left.d_{6}\right) \delta$ 145.4, 135.6, 133.4, 126.3, 122.0, 119.3, 110.6, 89.5, 69.6, 32.2, 24.1. HRMS calc. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$, 263.0903; found, 263.0901.

1-(tetrahydrofuran-2-yl)-4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazole,
Compound 4la was obtained in 65% yield (36.8 mg) according to the general procedure (0.2 mmol). Yellow solid, $\mathrm{mp}=55.4^{\circ} \mathrm{C}-55.7^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) δ
$8.83(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.36-6.34(\mathrm{~m}, 1 \mathrm{H})$, $4.07-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.90(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.11(\mathrm{~m}, 1 \mathrm{H})$, 2.13 - $1.98(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 145.60, 135.11, $128.48(\mathrm{q}, J=$ 32.5 Hz), 126.33 ($\mathrm{q}, ~ J=3.8 \mathrm{~Hz}$), 126.20, 123.64, 121.56, 89.48, 69.54, 31.16, 24.17. ${ }^{19}$ F NMR (470 MHz , DMSO- d_{6}) $\delta-60.98$. HRMS calc. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$, 306.0830; found, 306.0833.

4-(biphenyl-4-yl)-1-(tetrahydrofuran-2-yl)-1H-1,2,3-triazole, Compound 4ma was obtained in 57% yield (33.2 mg) according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.76$ (s, 1H), 7.98 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.78-7.72$ (m, 4H), $7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50-6.22(\mathrm{~m}, 1 \mathrm{H}), 4.13-$ $4.08(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{q}, ~ J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.09$ - $2.04(\mathrm{~m}, 1 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 146.6, 140.1, 140.0, 130.3, 129.5, 128.0, 127.6, 127.0, 126.3, 120.4, 89.3, 69.5, 32.1, 24.3. HRMS calc. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$ $(\mathrm{M}+\mathrm{H})^{+}, 292.1450$; found, 292.1451 .

4-(naphthalen-2-yl)-1-(tetrahydrofuran-2-yl)-1H-1,2,3-triazole, Compound 4na was obtained in 61% yield $(32.3 \mathrm{mg})$ according to the general procedure $(0.2 \mathrm{mmol})$. Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 8.79$ - $8.75(\mathrm{~m}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.05-$ $8.01(\mathrm{~m}, 1 \mathrm{H}), 8.00-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 6.58$ - $6.21(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.94(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.26-$ $2.13(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.98(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 147.1, 133.6, 133.1, 129.0, 128.4, 128.2, 127.1, 126.7, 124.1, 124.1, 120.6, 89.4, 69.5, 32.1, 24.3. HRMS calc. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$, 288.1113; found, 288.1122.

1-(tetrahydrofuran-2-yl)-4-(thiophen-3-yl)-1H-1,2,3-triazole, Compound 4oa was obtained in 75% yield $(36.6 \mathrm{mg})$ according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 8.55$ (s, 1H), $7.87-7.86$ (m, 1H), $7.66-7.64$ $(\mathrm{m}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 1 \mathrm{H}), 6.47-6.18(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.94(\mathrm{~m}$, 1H), $2.48-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 143.5,132.5,127.6,126.3,121.4,120.0,89.2,69.4,32.1,24.2$. HRMS calc. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{NaOS}(\mathrm{M}+\mathrm{Na})^{+}, 244.0521$; found, 244.0527.

4-pentyl-1-(tetrahydrofuran-2-yl)-1H-1,2,3-triazole, Compound 4pa was obtained in 60% yield $(25.0 \mathrm{mg})$ according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-dб): $\delta 7.94$ (s, 1H), 6.25 (t, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.01-3.97$ (m, $1 \mathrm{H}), 3.93-3.89(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.09(\mathrm{~m}$, $1 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}$, 3 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d6): $\delta 147.6,120.7,88.8,69.2,31.9,31.3,29.1,25.4$, 24.4, 22.3, 14.4. HRMS calc. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$, 232.1426; found, 232.1431.

1-(1,4-dioxan-2-yl)-4-phenyl-1H-1,2,3-triazole, Compound 4ab was obtained in 40\% yield (18.5 mg) according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 8.81(\mathrm{~s}, 1 \mathrm{H}), 7.92-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38$ - $7.35(\mathrm{~m}, 1 \mathrm{H}), 6.01-5.99(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.83-$ $3.79(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.70(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) δ 151.6, 135.6, 134.2, 133.3, 130.6, 125.9, 86.6, 72.2, 70.6, 69.3. HRMS calc. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO}_{2}$ $(\mathrm{M}+\mathrm{Na})^{+}, 254.0905$; found, 254.0914.

4-phenyl-1-(tetrahydro-2H-pyran-2-yl)-1H-1,2,3-triazole, Compound 4ac was obtained in 60% yield $(27.5 \mathrm{mg})$ according to the general procedure $(0.2 \mathrm{mmol})$.

Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 8.76$ (s, 1H), 7.90 - 7.78 (m, 2H), 7.44 ($\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.33 ($\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.82-5.79(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74-3.69(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.92(\mathrm{~m}$, $1 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.55(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}): δ 146.9, 131.1, 129.4, 128.4, 125.7, 120.4, 86.0, 67.4, 30.3, 24.9, 21.9. HRMS calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{H})^{+}$, 252.1113; found, 252.1110 .

1-(1,2-dimethoxyethyl)-4-phenyl-1H-1,2,3-triazole, Compound 4ad was obtained in 40% yield (18.6 mg) according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.79$ (s, 1H), $7.90-7.89$ (m, 2H), 7.47 (t, $J=7.6 \mathrm{~Hz}$, 2H), $7.36(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}$, $1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 147.3$, $131.0,129.4,128.5,125.7,120.1,88.8,72.2,59.0,56.6$. HRMS calc. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$, 256.1062; found, 256.1067.

1-(1-ethoxyethyl)-4-phenyl-1H-1,2,3-triazole, Compound 4ae was obtained in 71\% yield (30.6 mg) according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.81(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.35(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.27(\mathrm{~m}$, 1 H), 1.71 (d, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.08 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO$\left.d_{6}\right) \delta 147.3,131.1,129.4,128.5,125.7,119.2,86.2,64.2,21.8,15.1$. HRMS calc. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}, 218.1293$; found, 218.1297.

Characterization data of products 5aa-5af:

4-phenyl-2-(tetrahydrofuran-2-yl)-2H-1,2,3-triazole, Compound 5aa was obtained in 85% yield $(36.6 \mathrm{mg})$ according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.38-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.35-6.32(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.03-4.09(\mathrm{~m}, 1 \mathrm{H})$, $2.74-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 148.1,131.4,130.4,128.8,128.5,126.1,92.4,69.6,31.4,24.5$. HRMS calc. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}, 238.0956$; found, 238.0955.

4-(4-methoxyphenyl)-2-(tetrahydrofuran-2-yl)-2H-1,2,3-triazole, Compound 5ba was obtained in 80% yield $(39.2 \mathrm{mg})$ according to the general procedure $(0.2 \mathrm{mmol})$. Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.72(\mathrm{~m}, 2 \mathrm{H}), 6.96-$ $6.95(\mathrm{~m}, 2 \mathrm{H}), 6.33-6.31(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 2.71-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 159.5,147.6,130.6,127.0,122.7,113.9,91.9,61.9,54.9,30.9,24.2$. HRMS calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$, 268.1062; found, 268.1071.

4-(4-tert-butylphenyl)-2-(tetrahydrofuran-2-yl)-2H-1,2,3-triazole, Compound 5ca was obtained in 71% yield $(38.5 \mathrm{mg})$ according to the general procedure $(0.2 \mathrm{mmol})$. Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.46$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.33-6.32(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.03(\mathrm{~m}, 1 \mathrm{H}), 2.72$ - $2.65(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.9,147.3,131.5,127.7,125.0,124.9,91.5,68.7,33.9,30.6,30.5$, 23.7. HRMS calc. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$, 294.1582; found, 294.1579 .

2-(tetrahydrofuran-2-yl)-4-p-tolyl-2H-1,2,3-triazole, Compound 5da was obtained in 80% yield $(36.6 \mathrm{mg})$ according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 H), 6.34-6.33(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.16(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.03(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.65(\mathrm{~m}$, $1 \mathrm{H}), 2.52-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.04(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 138.4,131.3,129.5,127.5,126.0,92.3,69.6,31.4,24.5,21.3$. HRMS calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$, 252.1113, found, 252.1117.

2-(tetrahydrofuran-2-yl)-4-m-tolyl-2H-1,2,3-triazole, Compound 5ea was obtained in 76% yield $(34.8 \mathrm{mg})$ according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.34-6.32(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.18(\mathrm{~m}, 1 \mathrm{H})$, $4.08-4.04(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.06$ ($\mathrm{m}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.2,138.5,131.5,130.2,129.3,128.7,126.7$, 123.2, $92.3,69.6,31.4,24.5,21.4$. HRMS calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$, 252.1113, found, 252.1115 .

2-(tetrahydrofuran-2-yl)-4-o-tolyl-2H-1,2,3-triazole, Compound 5fa was obtained in 75% yield (34.4 mg) according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H})$, $6.37-6.35(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.18(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.04(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.67(\mathrm{~m}, 1 \mathrm{H})$, $2.48(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 148.0, 136.2, 133.7, 131.0, 129.8, 129.1, 128.4, 126.0, 92.3, 69.6, 31.4, 24.5, 21.3. HRMS calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}, 252.1113$, found, 252.1111.

4-(3-fluorophenyl)-2-(tetrahydrofuran-2-yl)-2H-1,2,3-triazole, Compound 5ga was obtained in 75% yield $(35.0 \mathrm{mg})$ according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.50$ $(\mathrm{m}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.34-6.32(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.18(\mathrm{~m}$, $1 \mathrm{H}), 4.09-4.05(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.09(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 163.11(\mathrm{~d}, J=245.0 \mathrm{~Hz}), 146.97,132.47(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}), 131.50,130.39(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 121.61(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 115.31(\mathrm{~d}, J=21.2 \mathrm{~Hz})$, $112.92(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 92.43,69.62,31.37,24.41 .{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ 112.66. HRMS calc. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{FN}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}, 256.0862$; found, 256.0865.

4-(4-chlorophenyl)-2-(tetrahydrofuran-2-yl)-2H-1,2,3-triazole, Compound 5ha was obtained in 70% yield $(34.9 \mathrm{mg})$ according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}$, $2 H), 6.29-6.27(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.13(\mathrm{~m}, 1 \mathrm{H}), 4.04-3.99(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.59(\mathrm{~m}$, $1 \mathrm{H}), 2.45-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 147.6$, $134.9,131.9,129.4,127.8,90.3,70.2,32.9,25.0$. HRMS calc. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{3} \mathrm{O}$ $(\mathrm{M}+\mathrm{H})^{+}, 250.0747$; found, 250.0752.

4-(4-bromophenyl)-2-(tetrahydrofuran-2-yl)-2H-1,2,3-triazole, Compound 5ia was obtained in 71% yield $(41.6 \mathrm{mg})$ according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.33-6.32(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.03(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.66$ $(\mathrm{m}, 1 \mathrm{H}), 2.48-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.04(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta$ $147.1,132.0,131.4,129.3,127.6,122.5,92.4,69.6,31.4,24.5$. HRMS calc. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrN}_{3} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$, 294.0242; found, 294.0239.

4-(4-fluorophenyl)-2-(tetrahydrofuran-2-yl)-2H-1,2,3-triazole, Compound 5ja was obtained in 79% yield $(36.8 \mathrm{mg})$ according to the general procedure $(0.2 \mathrm{mmol})$. Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.33-6.31(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.04(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.66(\mathrm{~m}$, $1 \mathrm{H}), 2.48-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.9$ (d, $J=246.3 \mathrm{~Hz}$), $147.25,131.17,127.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 126.58(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 115.86$ (d, $J=21.3 \mathrm{~Hz}$), 92.37, 69.61, 31.37, 24.5. ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.02$. HRMS calc. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{FN}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}, 256.0862$; found, 256.0861.

2-(tetrahydrofuran-2-yl)-4-(4-(trifluoromethyl)phenyl)-2H-1,2,3-triazole,
Compound $\mathbf{5 k} \mathbf{k}$ was obtained in 70% yield (39.6 mg) according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.36-6.34(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.18(\mathrm{~m}, 1 \mathrm{H})$, $4.11-4.06(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.71,133.81,131.78,130.35(\mathrm{q}, J=32.50 \mathrm{~Hz}), 126.21$, $125.84(\mathrm{q}, ~ J=3.75 \mathrm{~Hz}), 124.07(\mathrm{q}, J=270 \mathrm{~Hz}), 92.59,69.72,31.45,24.45 .{ }^{19} \mathrm{~F}$ NMR (470 MHz, CDCl_{3}) $\delta-62.66$. HRMS calc. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$, 306.0830; found, 306.0833.

4-(2-(tetrahydrofuran-2-yl)-2H-1,2,3-triazol-4-yl)benzonitrile, Compound 5la was obtained in 70% yield (33.6 mg) according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.72-7.70(\mathrm{~m}, 2 \mathrm{H}), 6.11-$ $6.09(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.81(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.24-$ $2.16(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.86(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.4,134.9,132.9$,
132.1, 126.6, 118.8, 112.1, 92.9, 69.9, 31.6, 24.6. HRMS calc. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{NaO}$ $(\mathrm{M}+\mathrm{Na})^{+}, 263.0909$; found, 263.0914 .

4-(biphenyl-4-yl)-2-(tetrahydrofuran-2-yl)-2H-1,2,3-triazole, Compound 5ma was obtained in 56% yield (32.6 mg) according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.83-7.79(\mathrm{~m}, 3 \mathrm{H}), 7.67-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.29-6.27(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.02$ - $3.98(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.17-1.93(\mathrm{~m}, 1 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl3) $\delta 152.0,146.8,140.3,139.5,130.5,128.3,127.8,126.5$, 126.0, 125.4, 91.4, 68.6, 30.4, 23.5. HRMS calc. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$, 292.1450; found, 292.1453 .

4-(naphthalen-2-yl)-2-(tetrahydrofuran-2-yl)-2H-1,2,3-triazole, Compound 5na was obtained in 60% yield $(31.8 \mathrm{mg})$ according to the general procedure $(0.2 \mathrm{mmol})$. Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.25$ (s, 1H), 7.99 (s, 1H), 7.93 (d, J = 8.6 $\mathrm{Hz}, 1 \mathrm{H}), 7.91-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.40(\mathrm{~m}, 2 \mathrm{H}), 6.37-6.36(\mathrm{~m}$, $1 \mathrm{H}), 4.24-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.04(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.34(\mathrm{~m}$, 2H), 2.17 - 1.97 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 148.1,133.5,133.4,131.7$, 128.6, 128.2, 127.8, 127.8, 126.5, 126.3, 124.9, 124.0, 92.5, 69.7, 31.4, 24.6. HRMS calc.for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$, 288.1113; found, 288.1120.

2-(tetrahydrofuran-2-yl)-4-(thiophen-3-yl)-2H-1,2,3-triazole, Compound 50a was obtained in 73% yield (32.3 mg) according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.45(\mathrm{~m}$, $1 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 1 \mathrm{H}), 6.32-6.30(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.14(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.01(\mathrm{~m}$,

1H), $2.75-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.04(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.3,131.7,131.6,126.4,126.0,121.8,92.3,69.6,31.3,24.5$. HRMS calc. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}, 244.0521$; found, 244.0529.

4-pentyl-2-(tetrahydrofuran-2-yl)-2H-1,2,3-triazole, Compound 5pa was obtained in 70% yield (29.1 mg) according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39(\mathrm{~s}, 1 \mathrm{H}), 6.24-6.22(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.04$ - $3.99(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.61(\mathrm{~m}, 3 \mathrm{H}), 2.41-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.42-$ $1.34(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.2,133.2$, $91.8,69.3,31.5,31.1,28.9,25.5,24.6,22.4,14.0$. HRMS calc. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{NaO}$ $(\mathrm{M}+\mathrm{Na})^{+}, 232.1426$; found, 232.1433.

5-phenyl-2-(tetrahydro-2H-pyran-2-yl)-2H-1,2,3-triazole, Compound 5ab was obtained in 66% yield (30.2 mg) according to the general procedure (0.2 mmol). Yellow solid, $\mathrm{mp}=69.7^{\circ} \mathrm{C}-70.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.0(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.74(\mathrm{~m}, 1 \mathrm{H}), 4.09$ - $3.94(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.68(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.90-$ $1.55(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.7,130.6,128.8,128.2,125.8,117.9$, 86.4, 67.4, 30.8, 24.8, 21.6. HRMS calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}, 252.1113$; found, 252.1117

2-(2-methyltetrahydrofuran-2-yl)-4-phenyl-2H-1,2,3-triazole, Compound 5ac was obtained in 40% yield $(18.3 \mathrm{mg})$ according to the general procedure $(0.2 \mathrm{mmol})$. Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.11$ (m, 1H), $4.07-3.98$ (m, 1H), $3.14-3.11$ (m, 1H), 2.26-2.10(m, 3H), $1.99(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 147.7, 130.9,
130.6, 128.8, 128.4, 126.0, 100.3, 69.6, 37.5, 26.0, 24.8. HRMS calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}$ $(\mathrm{M}+\mathrm{Na})^{+}, 252.1113$; found, 252.1112.

2-(1-butoxybutyl)-4-phenyl-2H-1,2,3-triazole, Compound 5ad was obtained in 41\% yield (22.4 mg) according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 2 \mathrm{H})$, $7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.68-5.64(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.02$ $-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.22(\mathrm{~m}, 3 \mathrm{H}), 0.91-$ $0.87(\mathrm{~m}, 3 \mathrm{H}), 0.82-0.79(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.3,128.9,128.5$, 128.3, 125.7, 116.1, 90.3, 69.2, 38.1, 31.3, 19.2, 18.0, 13.7, 13.5. HRMS calc. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}, 296.1739$; found, 296.1743.

2-(1,2-dimethoxyethyl)-4-phenyl-2H-1,2,3-triazole, Compound 5ae was obtained in 40% yield (18.6 mg) according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.88-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.35$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.3,130.4,128.9,128.3,125.8,117.7,89.4$, 73.2, 59.7, 57.1. HRMS calc. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$, 256.1062; found, 256.1064.

2-(1-methoxy-2-phenylethyl)-4-phenyl-2H-1,2,3-triazole, Compound 5af was obtained in 68% yield (37.9 mg) according to the general procedure (0.2 mmol). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 2 \mathrm{H}), 5.85-$
$5.82(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.28(\mathrm{~m}, 3 \mathrm{H}), 3.26(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 148.2,134.7,130.5,129.5,128.9,128.6,128.3,127.3$, 125.8, 116.8, 92.1, 57.0, 42.4. HRMS calc. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$, 302.1296; found, 302.1299.
6. Copies of NMR Spectra for 4aa-5af

毛落

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20
								fl (ppm)								

orivir visiviv

¢5.	∞	
¢̊®	80	¢
11	I	-r V

$$
\begin{aligned}
& \boxed{\circ} \\
& \stackrel{y}{j} \\
& \stackrel{1}{2}
\end{aligned}
$$

					$\begin{aligned} & 1+ \\ & \hline-1 \end{aligned}$		$\begin{array}{ll} 1 \\ \hline \end{array}$			$\begin{aligned} & \stackrel{\rightharpoonup}{8} \\ & -1 \end{aligned}$										
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	${ }_{f 1}^{5.0}(\mathrm{ppm})$	4.5	4.0	3.5	3.0	2.5	2.0	1.5		0.5	0.0

|
|
< N
< N

[^0]

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

190	180	170	160	150	140	130	120	${ }_{\mathrm{fl}}^{110}(\mathrm{ppm})$	90	80	70	60	50	40	30	20
						$\hat{H}_{\hat{B}}^{2}$					-			$\underset{\sim}{N}$		

									$\begin{aligned} & \frac{T}{0} \\ & \vdots \\ & \text { in } \end{aligned}$										$\begin{aligned} & T \\ & \hline 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TT } \\ & \hline \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{T}{0} \\ & \hdashline \end{aligned}$	
2． 0	11.5	11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	${ }_{\mathrm{f}}^{\mathrm{f}} \mathrm{f}$	$\begin{gathered} 6.5 \\ (\mathrm{ppm}) \end{gathered}$	6.0	5． 5	5.0	4.5	4.0	3.5	3.0		2.5	2.0	1.5

1 婯辛
产

\qquad

[^0]: | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 10 |
 | :--- |
 | $\mathrm{fl}(\mathrm{ppm})$ | 90 | 80 | 70 | 1 | | | | | |

