Supporting Information

Bistachybotrysins L-V, Bioactive Phenylspirodrimane Dimers from

the Fungus Stachybotrys chartarum

Jimei Liu,^{‡,a} Xiaona Jia,^{‡,a} Jinlian Zhao,^{‡,a} Jiamin Feng,^a Minghua Chen,^b Ridao Chen,^a Kebo Xie,^a Dawei Chen,^a Yan Li,^a Dan Zhang,^a Ying Peng,^a Shuyi Si ^b and Jungui Dai^{*,a}

^a State Key Laboratory of Bioactive Substance and Function of Natural Medicines; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs; and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China

^b NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China

[‡] These authors contributed equally to this work.

* Corresponding author. Tel: +86 10 63165195; fax: +86 10 63017757. E-mail address: jgdai@imm.ac.cn

Table of Contents

1. Bioactivity data for compounds 1–11	S5
2. Proposed biosynthetic pathway for compounds 1–11	S6
3. X-ray crystallographic analysis of compound 1	S8
4. ECD calculations of compounds 2, 3, 5, 10, and 11	S8
5. NMR, HR-ESI-MS, IR, UV, and ECD spectra of compounds 1–11	S13
Figure S4. ¹ H NMR spectrum of compound 1 in DMSO- <i>d</i> ₆ at 600 MHz	S13
Figure S5. ¹³ C NMR spectrum of compound 1 in DMSO- d_6 at 150 MHz	S13
Figure S6. DEPT spectrum of compound 1 in DMSO- <i>d</i> ₆ at 150 MHz	S14
Figure S7 . $^{1}H-^{1}H$ COSY spectrum of compound 1 in DMSO- d_{6}	S14
Figure S8. HSQC spectrum of compound 1 in DMSO- <i>d</i> ₆	S15
Figure S9. HMBC spectrum of compound 1 in DMSO- <i>d</i> ₆	S15
Figure S10. NOE difference spectrum of compound 1 in DMSO- d_6	S16
Figure S11. HR-ESI-MS spectra of compound 1	S18
Figure S12. IR spectrum of compound 1	S18
Figure S13. UV spectrum of compound 1	S19
Figure S14. ECD spectrum of compound 1	S20

Figure S15. ¹ H NMR spectrum of compound 2 in DMSO- <i>d</i> ₆ at 600 MHz	S21
Figure S16. ¹³ C NMR spectrum of compound 2 in DMSO- <i>d</i> ₆ at 150 MHz	S21
Figure S17. DEPT spectrum of compound 2 in DMSO- d_6 at 150 MHz	S22
Figure S18 . ¹ H– ¹ H COSY spectrum of compound 2 in DMSO- <i>d</i> ₆	S22
Figure S19. HSQC spectrum of compound 2 in DMSO- d_6	S23
Figure S20. HMBC spectrum of compound 2 in DMSO- <i>d</i> ₆	S23
Figure S21. NOE difference spectrum of compound 2 in DMSO- d_6	S24
Figure S22. HR-ESI-MS spectra of compound 2	S25
Figure S23. IR spectrum of compound 2	S25
Figure S24. UV spectrum of compound 2	S26
Figure S25. ECD spectrum of compound 2	S27

Figure S26. ¹ H NMR spectrum of compound 3 in acetone- d_6 at 500 MHz	S28
Figure S27. ¹³ C NMR spectrum of compound 3 in acetone- d_6 at 125 MHz	S28
Figure S28. DEPT spectrum of compound 3 in acetone- d_6 at 125 MHz	S29
Figure S29 . $^{1}\text{H}-^{1}\text{H}$ COSY spectrum of compound 3 in acetone- d_{6}	S29
Figure S30 . HSQC spectrum of compound 3 in acetone- d_6	S30

Figure S31. HMBC spectrum of compound 3 in acetone- <i>d</i> ₆	S30
Figure S32 . NOE difference spectrum of compound 3 in acetone- d_6	S31
Figure S33. HR-ESI-MS spectra of compound 3	S32
Figure S34. IR spectrum of compound 3	S32
Figure S35. UV spectrum of compound 3	S33
Figure S36. ECD spectrum of compound 3	S34

Figure S37. ¹ H NMR spectrum of compound 4 in acetone- <i>d</i> ₆ at 600 MHz	S35
Figure S38. ¹³ C NMR spectrum of compound 4 in acetone- d_6 at 150 MHz	S35
Figure S39. DEPT spectrum of compound 4 in acetone- d_6 at 150 MHz	S36
Figure S40 . $^{1}\text{H}-^{1}\text{H}$ COSY spectrum of compound 4 in acetone- d_{6}	S36
Figure S41. HSQC spectrum of compound 4 in acetone- d_6	S37
Figure S42. HMBC spectrum of compound 4 in acetone- d_6	S37
Figure S43. NOE difference spectrum of compound 4 in acetone- d_6	S38
Figure S44. HR-ESI-MS spectra of compound 4	S39
Figure S45. IR spectrum of compound 4	S39
Figure S46. UV spectrum of compound 4	S40
Figure S47. ECD spectrum of compound 4	S41

Figure S48. ¹ H NMR spectrum of compound 5 in acetone- d_6 at 600 MHz	S42
Figure S49. ¹³ C NMR spectrum of compound 5 in acetone- d_6 at 150 MHz	S42
Figure S50. DEPT spectrum of compound 5 in acetone- d_6 at 150 MHz	S43
Figure S51 . $^{1}H-^{1}H$ COSY spectrum of compound 5 in acetone- d_{6}	S43
Figure S52 . HSQC spectrum of compound 5 in acetone- d_6	S44
Figure S53. HMBC spectrum of compound 5 in acetone- d_6	S45
Figure S54. NOE difference spectrum of compound 5 in acetone- d_6	S46
Figure S55. HR-ESI-MS spectra of compound 5	S47
Figure S56. IR spectrum of compound 5	S48
Figure S57. UV spectrum of compound 5	S48
Figure S58. ECD spectrum of compound 5	S49

Figure S59. ¹ H NMR spectrum of compound 6 in acetone- d_6 at 600 MHz	S50
Figure S60. ¹³ C NMR spectrum of compound 6 in acetone- d_6 at 150 MHz	S50
Figure S61. DEPT spectrum of compound 6 in acetone- d_6 at 150 MHz	S51
Figure S62. ¹ H– ¹ H COSY spectrum of compound 6 in acetone- d_6	S51

Figure S63. HSQC spectrum of compound 6 in acetone- <i>d</i> ₆	
Figure S64. HMBC spectrum of compound 6 in acetone- <i>d</i> ₆	S53
Figure S65 . NOE difference spectrum of compound 6 in acetone- d_6	S54
Figure S66. HR-ESI-MS spectra of compound 6	S56
Figure S67. IR spectrum of compound 6	S56
Figure S68. UV spectrum of compound 6	S57
Figure S69. ECD spectrum of compound 6	S58

Figure S70. ¹ H NMR spectrum of compound 7 in acetone- d_6 at 600 MHz	S59
Figure S71. ¹³ C NMR spectrum of compound 7 in acetone- d_6 at 150 MHz	
Figure S72. DEPT spectrum of compound 7 in acetone- d_6 at 150 MHz	S60
Figure S73 . ¹ H– ¹ H COSY spectrum of compound 7 in acetone- d_6	S60
Figure S74 . HSQC spectrum of compound 7 in acetone- d_6	S61
Figure S75. HMBC spectrum of compound 7 in acetone- d_6	S61
Figure S76. NOE difference spectrum of compound 7 in acetone- d_6	
Figure S77. HR-ESI-MS spectra of compound 7	S63
Figure S78. IR spectrum of compound 7	S64
Figure S79. UV spectrum of compound 7	S64
Figure S80. ECD spectrum of compound 7	S65

Figure S81. ¹ H NMR spectrum of compound 8 in acetone- d_6 at 600 MHz	S66
Figure S82. ¹³ C NMR spectrum of compound 8 in acetone- d_6 at 150 MHz	S66
Figure S83. DEPT spectrum of compound 8 in acetone- d_6 at 150 MHz	S67
Figure S84 . ¹ H– ¹ H COSY spectrum of compound 8 in acetone- d_6	S67
Figure S85. HSQC spectrum of compound 8 in acetone- <i>d</i> ₆	S68
Figure S86 . HMBC spectrum of compound 8 in acetone- d_6	S68
Figure S87 . NOE difference spectrum of compound 8 in acetone- d_6	S69
Figure S88. HR-ESI-MS spectra of compound 8	S70
Figure S89. IR spectrum of compound 8	S71
Figure S90. UV spectrum of compound 8	S71
Figure S91. ECD spectrum of compound 8	S72

Figure S92. ¹ H NMR spectrum of compound 9 in acetone- d_6 at 600 MHz	S73
Figure S93. ¹³ C NMR spectrum of compound 9 in acetone- d_6 at 150 MHz	S73
Figure S94. DEPT spectrum of compound 9 in acetone- d_6 at 150 MHz	S74
Figure S95. $^{1}H-^{1}H$ COSY spectrum of compound 9 in acetone- d_{6}	S74

Figure S96. HSQC spectrum of compound 9 in acetone- d_6	S75
Figure S97. HMBC spectrum of compound 9 in acetone- <i>d</i> ₆	S75
Figure S98. NOE difference spectrum of compound 9 in acetone- d_6	S76
Figure S99 . 2D NOE spectrum of compound 9 in acetone- d_6	S77
Figure S100. HR-ESI-MS spectra of compound 9	S77
Figure S101. IR spectrum of compound 9	S78
Figure S102. UV spectrum of compound 9	S79
Figure S103. ECD spectrum of compound 9	S80

Figure S104. ¹ H NMR spectrum of compound 10 in acetone- d_6 at 600 MHz	S81
Figure S105. ¹³ C NMR spectrum of compound 10 in acetone- d_6 at 150 MHz	S81
Figure S106. DEPT spectrum of compound 10 in acetone- d_6 at 150 MHz	S82
Figure S107 . ¹ H– ¹ H COSY spectrum of compound 10 in acetone- d_6	S82
Figure S108. HSQC spectrum of compound 10 in acetone- d_6	S83
Figure S109. HMBC spectrum of compound 10 in acetone- d_6	S83
Figure S110. NOE difference spectrum of compound 10 in acetone- d_6	S84
Figure S111. HR-ESI-MS spectra of compound 10	S85
Figure S112. IR spectrum of compound 10	S86
Figure S113. UV spectrum of compound 10	S87
Figure S114. ECD spectrum of compound 10	S88

Figure S115. ¹ H NMR spectrum of compound 11 in acetone- <i>d</i> ₆ at 600 MHz	S89
Figure S116. ¹³ C NMR spectrum of compound 11 in acetone- d_6 at 150 MHz	S89
Figure S117. DEPT spectrum of compound 11 in acetone- d_6 at 150 MHz	S90
Figure S118. ¹ H– ¹ H COSY spectrum of compound 11 in acetone- d_6	S90
Figure S119. HSQC spectrum of compound 11 in acetone- <i>d</i> ₆	S91
Figure S120. HMBC spectrum of compound 11 in acetone- d_6	S91
Figure S121. NOE difference spectrum of compound 11 in acetone- d_6	S92
Figure S122. HR-ESI-MS spectra of compound 11	
Figure S123. IR spectrum of compound 11	
Figure S124. UV spectrum of compound 11	S94
Figure S125. ECD spectrum of compound 11	

1. Bioactivity data for compounds 1-11

Compounds -	Cytotoxicity IC ₅₀ (µM)				
Compounds	HCT116	NCI-H460	BGC823	Daoy	HepG2
1	10.6	13.5	22.3	>50.0	18.9
2	2.5	3.5	1.8	2.4	2.2
3	64.5	8.3	12.5	61.4	56.1
4	18.8	11.5	20.5	10.7	20.1
6	18.5	8.8	55.4	17.3	14.1
7	8.5	8.2	17.8	13.1	9.3
8	8.0	11.7	8.7	11.8	6.0
9	>50	>50	>50	>50	>50
10	9.7	10.1	9.8	8.1	9.4
11	15.0	10.9	23.9	27.7	12.9
paclitaxel ^a	0.0038	0.0004	0.0020	0.0002	0.0102
^{<i>a</i>} Positive control					

 Table S1. Cytotoxicity of compounds 1-4 and 6-11

Table S2. Neuroprotective and anti-inflammatory activities of $1-10 (10 \mu M)$

	Neuroprotective	Anti-inflammatory activity Inhibitory rate on NO production	
Compounds	Increased cell viability (%)		
1	0.15	5.31	
2	17.4	26.3	
3	17.6	0.0	
4	8.4	0.0	
5	-	12.9	
6	-	10.1	
7	-	0.0	
8	6.5	54.2	
9	17.4	0.0	
10	9.3	0.0	
Resveratrol ^a	16.1		
Curcumin ^a		67.6	
Positive control; - N	Not tested		

2. Proposed biosynthetic pathway of compounds 1-11

Scheme S1. A plausible biogenetic pathway of compounds 1 and 2

Scheme S2. A plausible biogenetic pathway of compounds 3, 4, and 10

Scheme S3. A plausible biogenetic pathway of compounds 5–9

Scheme S4. A plausible biogenetic pathway of compound 11

3. X-ray crystallographic analysis of compound 1

Bistachybotrysin L (1) was colorless crystals obtained from MeOH. Crystal structure determination of crystal data $C_{47}H_{64}O_9$, M = 772.98, monoclinic, a = 16.435(10) Å, b = 7.706 (5) Å, c = 38.384(17) Å, U = 4852.4 (5) Å³, T = 111.2 (3), space group I₂ (no. 5), Z = 4, μ (Cu K α) = 0.792, 23993 reflections measured, 8941 unique (Rint = 0.0827) which were used in all calculations. The final wR (F2) was 0.1680 (all data). Crystallographic data (excluding structure factor tables) for 1 have been deposited at the Cambridge Crystallographic Data Center as supplementary publication (CCDC 1899542). Copies of the data can be obtained free of charge by application to CCDC, 12, Union Road, Cambridge CB21EZ, UK [Fax: (+44) 1223 336 033; e-mail: deposit@ccdc.cam.ac.uk].

Identification code	bistachybotrysin L
Empirical formula	$C_{47}H_{64}O_9$
Formula weight	772.98
Temperature / K	111.2(3)
Crystal system	monoclinic
Space group	I ₂
a / Å, b / Å, c / Å	16.4353(10), 7.7055(5), 38.3838(17)
$\alpha'^{\circ}, \beta'^{\circ}, \gamma'^{\circ}$	90.00, 93.400(5), 90.00
Volume / Å ³	4852.4(5)
Ζ	4
ρ_{calc} / mg mm ⁻³	1.058
μ / mm^{-1}	0.577
F(000)	1672
Crystal size / mm ³	$0.30\times0.12\times0.07$
2Θ range for data collection	5.98 to 143.62°
Index ranges	$-20 \le h \le 20, -9 \le k \le 9, -47 \le l \le 45$
Reflections collected	23993
Independent reflections	8941[R(int) = 0.0827 (inf-0.9Å)]
Data/restraints/parameters	8941/1/518
Goodness-of-fit on F ²	0.997
Final R indexes [I> 2σ (I) i.e. F_o > 4σ (F_o)]	$R_1 = 0.0621, wR_2 = 0.1592$
Final R indexes [all data]	$R_1 = 0.0711, wR_2 = 0.1680$
Largest diff. peak/hole / e Å-3	0.185/-0.231
Flack Parameters	0.0(2)
Completeness	0.9994

Table S3. Crystal data and structure refinement for bistachybotrysin L

4. ECD calculations of compounds 2, 3, 5, 10, and 11

ECD calculation of 2. Conformational analysis of the **2a** and **2b** (Figure S1) were carried out via Monte Carlo searching with the MMFF94s molecular mechanics force field using the spartan 14 software.¹ 7 of **2a** (Figure S2) and 5 of **2b** (Figure S3)

geometries having relative energies within 2 kcal/mol were optimized using DFT at the B3LYP/6-31G (d') level in vacuum with the Gaussian 09 program, respectively.² Those stable conformers with their Boltzmann distribution (>1%) also were carried out at the TDDFT CAM-B3LYP/6-31G (d') level in the methanol for ECD computation. Boltzmann statistics were performed for ECD simulations with a standard deviation of σ 0.3 eV. The final ECD spectra of **2a** and **2b** were obtained according to the Boltzmann distribution (Table S4 and S5) theory and their relative Gibbs free energy (Δ G), respectively.

2a: 3*R*, 5*S*, 8*R*, 9*R*, 10*S*, 22*R*, 23*S*, 3'*R*, 5'*S*, 8'*R*, 9'*R*, 10'*S*

HO^{MI} H

ŌН

2b: 3*R*, 5*S*, 8*R*, 9*R*, 10*S*, 22*S*, 23*R*, 3'*R*, 5'*S*, 8'*R*, 9'*R*, 10'*S*

Figure S1. The structures of 2a and 2b

2a-C1

2a-C2

2a-C3

2a-C4

2a-C5

2a-C6

2a-C7

Figure S2. B3LYP/6-31G (d') optimized 7 conformers of 2a and their relative

energies ($\Delta G \leq 2 \text{ Kcal/mol}$)

2b-C1

2b-C4 2b-C5 Figure S3. B3LYP/6-31G (d') optimized 5 conformers of **2b** and their relative energies ($\Delta G \leq 2 \text{ Kcal/mol}$)

Table S4. Free energies (ΔG), and Boltzmann distribution abundances of conformers of **2a**.

Conf	B3LYP/6-31 G (d') Gibbs free energy (298.15 K)			
	G (Hartree)	ΔG (Kcal/mol)	Boltzmann Distribution	
2a-C1	-2505.552141	0.0000	0.422	
2a-C2	-2505.551786	0.2230	0.290	
2a-C3	-2505.550523	1.0150	0.076	
2a-C4	-2505.550279	1.1680	0.059	
2a-C5	-2505.550678	0.9180	0.090	
2a-C6	-2505.549081	1.9200	0.016	
2a-C7	-2505.550069	1.3000	0.047	

Table S5. Free energies (ΔG), and Boltzmann distribution abundances of conformers of **2b.**

Conf	B3LYP/6-31 G (d') Gibbs free energy (298.15 K)			
	G (Hartree)	ΔG (Kcal/mol)	Boltzmann Distribution	
2b-C1	-2505.54943	0.233	0.283	
2b-C2	-2505.549801	0.000	0.419	
2b-C3	-2505.54875	0.660	0.138	
2b-C4	-2505.548147	1.038	0.073	
2b-C5	-2505.54832	0.929	0.087	

ECD calculations of 3 and 5. Based on the NOE difference spectral analysis and by comparison with our reported stachybotrysins $A-G^3$ and bistachybotrysins A-C,⁴ the absolute configuration of two phenylspirodrimane units was assigned to be 3R, 5S, 8R, 9R, 10S, 3'R, 5'S, 8'R, 9'R, and 10'S in **3**, and to be 2R, 3S, 5S, 8R, 9R, 10S, 3'R, 5'S, 8'R, 9'R, and 10'S in **3**, and to be 2R, 3S, 5S, 8R, 9R, 10S, 3'R, 5'S, 8'R, 9'R, and 10'S in **5**, and additionally the linkage segment in **3** had a *syn*-orientation of H₃-24, H-23 and H-23', and in **5** it showed a *syn*-orientation of H-23, H-

22' and H₂-24'. So two stereoisomers exited for **3**, (3*R*, 5*S*, 8*R*, 9*R*, 10*S*, 22*R*, 23*R*, 23'*R*, 3'*R*, 5'*S*, 8'*R*, 9'*R*, 10'*S*)-**3a** and (3*R*, 5*S*, 8*R*, 9*R*, 10*S*, 22*S*, 23*S*, 23'*S*, 3'*R*, 5'*S*, 8'*R*, 9'*R*, 10'*S*)-**3b**; and two stereoisomers exited for **5**, (2*R*, 3*S*, 5*S*, 8*R*, 9*R*, 10*S*, 23*R*, 22'*R*, 23'*S*, 3'*R*, 5'*S*, 8'*R*, 9'*R*, 10'*S*)-**5a** and (2*R*, 3*S*, 5*S*, 8*R*, 9*R*, 10*S*, 23*S*, 22'*S*, 23'*R*, 3'*R*, 5'*S*, 8'*R*, 9'*R*, 10'*S*)-**5b**. The resultant conformers were further optimized and checked as the true minima of potential energy surface by the density functional theory method at the B3LYP/6-31G(d) level, and 100 lowest electronic transitions were calculated. ECD spectra of different conformers were simulated using a Gaussian function with a half-band width of 0.3 eV. The overall theoretical ECD spectra were given on the basis of the Boltzmann weighting of each conformers. The theoretically calculated ECD spectra were compared with the experimental ECD curves, resulting in the assignment of the absolute configuration of **3** and **5**.

ECD calculations of 10 and 11. The theoretical calculations were carried out using Gaussian 09.⁵ At first, conformers were optimized at PM6 using semi-empirical theory method and subsequent Hartree-Fock calculations, which resulted in only one remaining conformer for each configuration. Compounds 10 and 11 were finally optimized at B3LYP/6-311G(d,p) in methanol using the IEFPCM model. Vibrational frequency analysis confirmed the stable structures. Under the same condition, the ECD calculation was conducted using Time-dependent Density functional theory (TD-DFT). Rotatory strengths for a total of 30 excited states were calculated. The ECD spectrum was simulated in SpecDis⁶ by overlapping Gaussian functions for each transition according to (eq. 1).

$$\Delta \varepsilon(E) = \frac{1}{2.297 \times 10^{-39}} \times \frac{1}{\sqrt{2\pi\sigma}} \sum_{i}^{A} \Delta E_{i} R_{i} e^{-\left(\frac{E-E_{i}}{2\sigma}\right)^{2}}$$

where σ represents the width of the band at 1/e height, and ΔE_i and R_i are the excitation energies and rotatory strengths for transition *i*, respectively. Parameters of σ were set 0.28, 0.16, and 0.40 eV, and UV-shift values were -2, 10, and 40 nm for compounds **10** and **11**, respectively.

- (1) Spartan 14, Wavefunction, Inc.: Irvine, CA.
- (2) Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, Revision C.01; Gaussian, Inc., Wallingford CT, 2010.
- (3) Zhao J, Feng J, Tan Z, Liu J, Zhao J, Chen R, et al. J. Nat. Prod. 2017, 80, 1819–1826.
- (4) Zhao J, Feng J, Tan Z, Liu J, Zhang M, Chen R, et al. *Bioorg. Med. Chem. Lett.* **2018**, *28*, 355–359.
- (5) Gaussian R A. 1.; MJ Frisch.; GW Trucks.; HB Schlegel.; et al., Gaussian. Inc., Wallingford CT, 2009, 121, 150–166.
- (6) Bruhn T.; Schaumlöffel A.; Hemberger Y.; et al. J. Chirality. 2013, 25, 243-249.

5. NMR, HR-ESI-MS, IR, UV, and ECD spectra of compounds 1-11

Figure S4. ¹H NMR spectrum of compound 1 in DMSO-*d*₆ at 600 MHz

Figure S5. ¹³C NMR spectrum of compound 1 in DMSO-*d*₆ at 150 MHz

Figure S6. DEPT spectrum of compound 1 in DMSO- d_6 at 150 MHz

Figure S7. $^{1}H^{-1}H$ COSY spectrum of compound 1 in DMSO- d_{6}

Figure S8. HSQC spectrum of compound 1 in DMSO- d_6

Figure S9. HMBC spectrum of compound 1 in $DMSO-d_6$

Figure S10. NOE difference spectrum of compound 1 in DMSO- d_6

Figure S10. NOE difference spectrum of compound 1 in DMSO- d_6 (continued)

Figure S10. NOE difference spectrum of compound 1 in DMSO- d_6 (continued)

Figure S10. NOE difference spectrum of compound 1 in DMSO-*d*₆(continued)

^{13 42 41 40 39 38 3.7 3.6 3.5 3.4 33 3.2 31 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2} fl(ppm)

Figure S11. HR-ESI-MS spectrum of compound 1

Figure S12. IR spectrum of compound 1

Figure S13. UV spectrum of compound 1

Figure S14. ECD spectrum of compound 1

Figure S16. ¹³C NMR spectrum of compound 2 in DMSO-*d*₆ at 150 MHz

Figure S18. ¹H–¹H COSY spectrum of compound 2 in DMSO- d_6

Figure S19. HSQC spectrum of compound 2 in DMSO-*d*₆

Figure S20. HMBC spectrum of compound 2 in DMSO- d_6

Figure S21. NOE difference spectrum of compound 2 in DMSO- d_6

Figure S21. NOE difference spectrum of compound **2** in DMSO-*d*₆(continued)

Figure S23. IR spectrum of compound 2

Figure S24. UV spectrum of compound 2

Figure S25. ECD spectrum of compound 2

Figure S26. ¹H NMR spectrum of compound 3 in acetone- d_6 at 500 MHz

Figure S27. ¹³C NMR spectrum of compound 3 in acetone- d_6 at 125 MHz

Figure S28. DEPT spectrum of compound 3 in acetone- d_6 at 125 MHz

Figure S29. ¹H–¹H COSY spectrum of compound 3 in acetone- d_6

Figure S30. HSQC spectrum of compound 3 in acetone- d_6

Figure S31. HMBC spectrum of compound 3 in acetone- d_6

Figure S32. NOE difference spectrum of compound 3 in acetone- d_6

Figure S33. HR-ESI-MS spectrum of compound 3

Figure S34. IR spectrum of compound 3

Figure S35. UV spectrum of compound 3

Figure S36. ECD spectrum of compound 3

Figure S37. ¹H NMR spectrum of compound 4 in acetone- d_6 at 600 MHz

Figure S38. ¹³C NMR spectrum of compound 4 in acetone-*d*₆ at 150 MHz

Figure S39. DEPT spectrum of compound 4 in acetone- d_6 at 150 MHz

Figure S40. ¹H–¹H COSY spectrum of compound 4 in acetone- d_6

Figure S41. HSQC spectrum of compound 4 in acetone- d_6

Figure S42. HMBC spectrum of compound 4 in acetone- d_6

Figure S43. NOE difference spectrum of compound 4 in acetone- d_6 (continued)

Figure S44. HR-ESI-MS spectrum of compound 4

Figure S45. IR spectrum of compound 4

Figure S48. ¹H NMR spectrum of compound 5 in acetone-*d*₆ at 600 MHz

Figure S49. ¹³C NMR spectrum of compound 5 in acetone- d_6 at 150 MHz

Figure S50. DEPT spectrum of compound 5 in acetone- d_6 at 150 MHz

Figure S51. $^{1}H-^{1}H$ COSY spectrum of compound 5 in acetone- d_{6}

Figure S51. Enlarged ${}^{1}\text{H}{-}^{1}\text{H}$ COSY spectrum of compound **5** in acetone- d_{6}

Figure S52. HSQC spectrum of compound 5 in acetone- d_6

Figure S53. HMBC spectrum of compound 5 in acetone- d_6

Figure S53. Enlarged HMBC spectrum of compound 5 in acetone- d_6

Figure S54. NOE difference spectrum of compound 5 in acetone- d_6

Figure S54. NOE difference spectrum of compound 5 in acetone- d_6 (continued)

Figure S54. NOE difference spectrum of compound 5 in acetone- d_6 (continued)

Figure S55. HR-ESI-MS spectrum of compound 5

Figure S56. IR spectrum of compound 5

Figure S57. UV spectrum of compound 5

Figure S59. ¹H NMR spectrum of compound 6 in acetone- d_6 at 600 MHz

Figure S60. ¹³C NMR spectrum of compound 6 in acetone-*d*₆ at 150 MHz

Figure S61. DEPT spectrum of compound 6 in acetone- d_6 at 150 MHz

3.5 3.0 f2 (ppm) 2.5

2.0

1.5

1.0

0.5

0.0

6.5

6.0

5.5

4.5

5.0

4.0

Figure S62. Enlarged $^{1}H-^{1}H$ COSY spectrum of compound 6 in acetone- d_{6}

Figure S63. HSQC spectrum of compound 6 in acetone- d_6

Figure S64. Enlarged HMBC spectrum of compound 6 in acetone- d_6

Figure S65. NOE difference spectrum of compound 6 in acetone- d_6

Figure S65. NOE difference spectrum of compound 6 in acetone- d_6 (continued)

Figure S66. HR-ESI-MS spectrum of compound 6

Figure S67. IR spectrum of compound 6

Figure S68. UV spectrum of compound 6

Figure S70. ¹H NMR spectrum of compound 7 in acetone- d_6 at 600 MHz

Figure S71. ¹³C NMR spectrum of compound 7 in acetone- d_6 at 150 MHz

Figure S72. DEPT spectrum of compound 7 in acetone- d_6 at 150 MHz

Figure S74. HSQC spectrum of compound 7 in acetone- d_6

Figure S75. HMBC spectrum of compound 7 in acetone- d_6

Figure S76. NOE difference spectrum of compound 7 in acetone- d_6

Figure S76. NOE difference spectrum of compound 7 in acetone- d_6 (continued)

Figure S76. NOE difference spectrum of compound 7 in acetone- d_6 (continued) H₃-14'_{H₃-13'}

Figure S78. IR spectrum of compound 7

Figure S79. UV spectrum of compound 7

Figure S81. ¹H NMR spectrum of compound **8** in acetone- d_6 at 600 MHz

Figure S82. ¹³C NMR spectrum of compound 8 in acetone- d_6 at 150 MHz

Figure S83. DEPT spectrum of compound 8 in acetone- d_6 at 150 MHz

Figure S84. ¹H–¹H COSY spectrum of compound 8 in acetone- d_6

Figure S86. HMBC spectrum of compound 8 in acetone- d_6

Figure S87. NOE difference spectrum of compound 8 in acetone- d_6 (continued)

Figure S87. NOE difference spectrum of compound 8 in acetone- d_6 (continued)

m/z

Figure S89. IR spectrum of compound 8

Figure S90. UV spectrum of compound 8

Figure S93. ¹³C NMR spectrum of compound 9 in acetone- d_6 at 150 MHz

10 ОН 20 0.0 30 00 40 00 50 (III (ppm) 60 70 00 0 80 90 00 100 -110 4.0 3.5 f2 (ppm) 1.5 6.5 6.0 5.5 5.0 4.5 3.0 2.5 2.0 1.0 0.5

Figure S96. HSQC spectrum of compound **9** in acetone- d_6

Figure S98. 1D NOE spectrum of compound 9 in acetone- d_6

H-22' f1 (ppm) H-23' 11 ŝ 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f2 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Figure S99. 2D NOE spectrum of compound 9 in acetone- d_6

741.4332 821.4593 C ₄₉ H₆₆ O₉ Na = 821.4599 16.5 RDBE -0.7488 ppm 100₇ 90-HO 80 70-Relative Abundance HO 60 50 40 30-20 10 844.5365 406.3303 889.4509 512.5058 559.1354 596.5990 637.3067 708.2695 957.4445 04 700 650 950 1000 500 400 450 550 600 750 800 850 900 m/z

SCE5454-44 #2285 RT: 6.83 AV: 1 NL: 3.24E7 T: FTMS + c ESI Full ms [100.00-1000.00]

Figure S101. IR spectrum of compound 9

Figure S102. UV spectrum of compound 9

Figure S103. ECD spectrum of compound 9

Figure S104. ¹H NMR spectrum of compound 10 in acetone-*d*₆ at 600 MHz

Figure S105. ¹³C NMR spectrum of compound 10 in acetone- d_6 at 150 MHz

4.0 3.5 f2 (ppm) 3.0

2.5

2.0

1.5

7.0

6.5

6.0

5.5

5.0

4.5

-7.0

1.0

0.5

Figure S108. HSQC spectrum of compound 10 in acetone- d_6

Figure S109. HMBC spectrum of compound 10 in acetone- d_6

Figure S110. 1D NOE spectrum of compound 10 in acetone- d_6

Figure S110. 1D NOE spectrum of compound 10 in acetone- d_6 (continued)

Figure S112. IR spectrum of compound 10

Figure S113. UV spectrum of compound 10

Figure S115. ¹H NMR spectrum of compound 11 in acetone-*d*₆ at 600 MHz

Figure S116. ¹³C NMR spectrum of compound 11 in acetone-*d*₆ at 150 MHz

Figure S118. ¹H–¹H COSY spectrum of compound 11 in acetone- d_6

Figure S120. HMBC spectrum of compound 11 in acetone- d_6

Figure S121. NOE difference spectrum of compound 11 in acetone- d_6

Figure S121. NOE difference spectrum of compound 11 in acetone- d_6

Figure S122. HR-ESI-MS spectrum of compound 11

SCE57374 #2033 RT: 7.43 AV: 1 NL: 1.54E4 T: FTMS + c ESI Full ms [100.00-1000.00]

Figure S123. IR spectrum of compound 11

Figure S124. UV spectrum of compound 11

