Supporting Information

Azidofluoromethane: Synthesis, Stability and Reactivity in [3 + 2] Cycloadditions

Svatava Voltrová, a Josef Filgas, a, b Petr Slavíček b and Petr Beier*a

^{a.} Institute of Organic Chemistry and Biochemistry AS CR, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic.
^{b.} University of Chemistry and Technology, Technická 5, 160 00 Prague 6, Czech Republic.

General information	SI1
Preparation of azidofluoromethane 1	SI1
Optimization of the synthesis of 1 (Table 1)	SI2
Azidofluoromethane stability studies	SI2
Synthesis of 4-substituted 1-fluoromethyl triazoles 2a-2h by azide-alkyne cycloaddition	SI2
Synthesis of 4,5-disubstituted 1H-1,2,3-triazoles 4 via 5-iodotriazole 3	SI4
Synthesis of 4,5-disubstituted 1H-1,2,3-triazoles 5a-5h by the azide-ketone [3+2] cycloaddition	SI4
Synthesis of 5-substituted 1H-1,2,3-triazole-4-carboxylic acids 6a,d,e,f	SI6
Synthesis of 1-fluoromethyl-5-substituted 1H-1,2,3-triazoles 7a,d,e,f	SI7
Computational studies	SI8
Copies of NMR spectra	SI13

General information

Reactions with air-sensitive materials were carried out under nitrogen atmosphere using standard Schlenk techniques. THF was dried with sodium and distilled under nitrogen. All other solvents were dried by activated molecular sieves (3 Å) and stored under argon. All commercially available chemicals were used as received unless stated otherwise. Automated flash column chromatography was performed on Teledyne ISCO CombiFlash Rf+ Lumen Automated Flash Chromatography System with UV/Vis detection using standard manufacturer's RediSep Rf columns, eluent cyclohexane-ethyl acetate. The melting points are uncorrected. ¹H, ¹³C, and ¹⁹F NMR spectra were measured at ambient temperature using 5 mm diameter NMR tubes. ¹³C NMR spectra were proton decoupled. The chemical shift values (δ) are reported in ppm relative to internal Me₄Si (0 ppm for ¹H and ¹³C NMR) or residual solvents and internal CFCl₃ (0 ppm for ¹⁹F NMR). Coupling constants (*J*) are reported in Hertz. UPLC-MS analyses were performed on Acquity UPLC Instrument (Waters Corporation). High resolution MS spectra (HRMS) were recorded on an LTQ Orbitrap XL using electrospray ionization (ESI), on a Waters Micromass AutoSpec Ultima or Agilent 7890A GC coupled with Waters GCT Premier orthogonal acceleration time of flight detector using electron impact (EI) ionization, and on a Bruker solariX 94 ESI/MALDI-FT-ICR using dual ESI/MALDI ionization.

Preparation of azidofluoromethane 1

Bromofluoromethane (0.826 g, 7.31 mmol) was dissolved in degassed NMP (2.558 g) and cooled to 10 °C. Sodium azide (0.951 g, 14.62 mmol) was suspended in NMP (3.141 g) in a 10 mL round-bottomed

flask with glass cup and stirred at rt. Safety shield and metal safety clamp was used. The cooled bromide solution was added at once to the sodium azide suspension, the reaction vessel was closed and stirred for 2 h to complete conversion (NMR control). No overpressure was observed. Then THF (5 mL) was added to the reaction flask and co-distilled with the azide (temp. up to rt, 4 Torr, 20 min). The distillate (2.902 g) was collected in a cold trap cooled to -70 °C and contained azidofluoromethane **1** (6.17 mmol, 84% yield) dissolved in THF. Other solvents (DCE, DCM, CDCl₃ etc.) were used similarly. Fresh (10-30 min) azidofluoromethane-containing CDCl₃ distillate was used for NMR analysis. ¹H NMR (401 MHz, CDCl₃) δ 5.15 (d, *J* = 51.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 91.40 (d, *J* = 211.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -169.28 (t, *J* = 52.0 Hz); HRMS (EI⁺) *m/z* calcd for CH₂N₃F [M]⁺: 75.0233, found 75.0234.

Optimization of the synthesis of 1 (Table 1)

Bromofluoromethane (approximately 1 mmol) was dissolved in degassed solvent (2.0 g) and weighed. Sodium azide (1.5 eq.) was suspended in water and the mixture was stirred at rt. The bromofluoromethane solution was added to the azide suspension, the reaction vessel was closed and stirred at a given temperature for a given time.

Azidofluoromethane stability studies

To the NMP solution of the crude azidofluoromethane, $CDCI_3$ (1.0 mL) was added and co-distilled with the azide to a trap cooled to -70 °C. The solution was transferred to NMR tube and warmed to rt. After storage for 60 min at rt all ¹H, ¹⁹F and ¹³C NMR signals corresponding to the azide disappeared. Signals at 6.6 ppm (¹H NMR) and 108.7 ppm (¹³C NMR) were assigned to HCN (see spectrum - p. SI14).

Synthesis of 4-substituted 1-fluoromethyl triazoles 2a-2h by azide-alkyne cycloaddition

Method A. DMF (0.4 mL) was saturated with FCH₂Br (0.5 mmol) and cooled. Alkyne (0.5 mmol), NaN₃ (65 mg, 1.0 mmol) in H₂O (1.0 mL) and copper(I) 3-methylsalicylate (2.1 mg, 0.01 mmol, 2 mol%) were placed in a 10 mL screw-cap glass tube and the DMF solution of the bromide was added. The flask was closed and stirred at 40 °C for 20 h. Et₂O (20 mL) was added and the organic phase was washed with water (10 mL), aqueous LiCl solution (1M, 10 mL) and brine (6 x 10 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by automated flash column chromatography on silica gel.

Method B. Alkyne (1.0 mmol) in THF (1 mL) was placed in a 10 mL screw-cap glass tube and a cold solution of FCH₂N₃ (1.0 mmol) in THF (approx. 0.5 mL) was added. Subsequently, copper(I) 3-methylsalicylate (4.2 mg, 0.02 mmol, 2 mol%) was added, the flask was closed and stirred at 40 °C for 20 h. THF was removed under reduced pressure, Et₂O (20 mL) was added and the organic phase was washed with aqueous NaHCO₃ solution (5%, 2 × 10 mL), water (10 mL), aqueous LiCl solution (1M, 10 mL) and brine (10 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by automated flash column chromatography on silica gel.

1-(Fluoromethyl)-4-phenyl-1H-1,2,3-triazole (2a): Method A, yield: 93%, colorless crystalline solid, m.p.

N^{≥N}, F 106–107 °C; ¹H NMR (401 MHz, CDCl₃) δ 8.01 (s, 1H), 7.86 (d, J = 6.3 Hz, 2H), 7.51 – 7.42 (m, 2H), 7.42 – 7.35 (m, 1H), 6.33 (d, J = 51.1 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 149.26, 129.84, 129.12, 128.90, 126.12, 120.23, 85.36 (d, J = 205.7 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -167.52 (t, J = 51.2 Hz); HRMS (EI) m/z calcd for C₉H₈N₃F [M]⁺: 177.0702, found 177.0703.

1-(*Fluoromethyl*)-4-(p-*tolyl*)-1H-1,2,3-triazole (**2b**): Method A, yield: 64%, colorless crystalline solid, N = N, F, m.p. 133–134 °C; ¹H NMR (401 MHz, CDCl₃) δ 7.97 (s, 1H), 7.74 (d, J = 8.2 Hz, 2H), 7.25 (d, J = 7.9 Hz, 2H), 6.30 (d, J = 51.2 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 149.25, 138.79, 129.75, 126.97, 125.96, 119.95, 85.30 (d, J = 205.5 Hz), 21.42; ¹⁹F NMR (377 MHz, CDCl₃) δ -167.38 (t, J = 51.2 Hz); HRMS (EI) m/z calcd for

C₁₀H₁₀N₃F [M]⁺: 191.0859, found 191.0862.

1-(*Fluoromethyl*)-4-(p-*trifluoromethyl*)-1H-1,2,3-triazole (**2c**): Method A, yield: 89%, light-yellow crystalline solid, m.p. 126–127 °C; ¹H NMR (401 MHz, CDCl₃) δ 8.11 (s, 1H), 7.97 (d, J = 8.1 Hz, 2H), 7.70 (d, J = 8.3 Hz, 2H), 6.34 (d, J = 50.9 Hz, 2H).; ¹³C NMR (101 MHz, CDCl₃) δ 147.70, 133.12, 132.19, 130.62 (q, J = 32.5 Hz), 126.14, 125.99 (q, J = 3.7 Hz), 121.01, 85.25 (d, J = 206.5 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -62.72 (s, 3F), -

167.38 (t, J = 50.9 Hz, 1F); HRMS (ESI) m/z calcd for $C_{10}H_7N_3F_4$ [M]⁺: 245.0576, found 245.0578.

1-(*Fluoromethyl*)-4-(4-methoxyphenyl)-1H-1,2,3-triazole (**2d**): Method A, yield: 93%, method B, yield: N²N, F 77%, white crystalline solid, m.p. 121–123 °C; ¹H NMR (401 MHz, CDCl₃) δ 7.92 (s, 1H), 7.83 – 7.72 (m, 2H), 7.02 – 6.90 (m, 2H), 6.30 (d, J = 51.2 Hz, 2H), 3.85 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.15, 149.08, 127.42, 122.47, 119.41, 114.50, 85.33 (d, J = 205.6 Hz), 55.48; ¹⁹F NMR (377 MHz, CDCl₃) δ -167.37 (t, J = 51.3 Hz); HRMS (ESI) m/z calcd for C₁₀H₁₀N₃OF [M]⁺: 207.0808, found 207.0807.

1-(Fluoromethyl)-4-(p-fluorophenyl)-1H-1,2,3-triazole (**2e**): Method A, yield: 51%, white crystalline solid, m.p. 120–122 °C; ¹H NMR (401 MHz, CDCl₃) δ 7.97 (s, 1H), 7.87 – 7.78 (m, 2H), 7.18 – 7.11 (m, 2H), 6.32 (d, J = 51.1 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 163.16 (d, J = 248.3 Hz), 148.39, 127.92 (d, J = 8.3 Hz), 126.09, 119.99, 116.17 (d, J = 21.9 Hz), 85.37 (d, J = 206.0 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -113.08 (tt, J = 8.6, 5.3 Hz, 1F),

-167.65 (t, J = 51.1 Hz, 1F); HRMS (ESI) m/z calcd for C₉H₇N₃F₂ [M]⁺: 195.0605, found 195.0608.

1-(*Fluoromethyl*)-4-(p-*nitrophenyl*)-1H-1,2,3-triazole (**2f**): Method A, yield: 59%, method B, yield 71%, yellow crystalline solid, m.p. 198–199 °C; ¹H NMR (401 MHz, DMSO- d_6) δ 9.16 (s, 1H), 8.35 – 8.31 (m, 2H), 8.19 – 8.15 (m, 2H), 6.55 (d, *J* = 50.7 Hz, 2H); ¹³C NMR (101 MHz, DMSO- d_6) δ 146.99, 145.33, 136.25, 126.34, 124.87, 124.42, 85.62 (d, *J* = 199.2 Hz); ¹⁹F NMR (377 MHz, DMSO- d_6) δ -166.97 (t, *J* = 50.7 Hz); HRMS (ESI)

m/z calcd for C₉H₇N₄O₂F [M]⁺: 222.0553, found 222.0552.

(1-(Fluoromethyl)-1H-1,2,3-triazol-4-yl)methyl benzoate (2g): Method B, yield: 81%, white crystalline solid, m.p. 72–73 °C; ¹H NMR (401 MHz, CDCl₃) δ 8.03 – 7.99 (m, 2H), 7.98 (s, 1H), 7.56 – 7.51 (m, 1H), 7.43 – 7.37 (m, 2H), 6.26 (d, *J* = 50.9 Hz, 2H), 5.48 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.42, 144.31, 133.40, 129.77, 129.57,

128.50, 125.02, 85.14 (d, J = 205.9 Hz), 57.76; ¹⁹F NMR (377 MHz, CDCl₃) δ -167.63 (t, J = 50.8 Hz); HRMS (ESI+) m/z calcd for C₁₁H₁₁N₃O₂F [M + H]⁺: 236.08298, found 236.08313.

4-Dodecyl-1-(fluoromethyl)-1H-1,2,3-triazole (**2h**): Method B, yield: 89%, white crystalline solid, m.p. 71–72 °C; ¹H NMR (401 MHz, CDCl₃) δ 7.52 (s, 1H), 6.21 (d, *J* = 51.4 Hz, 2H), 2.75 – 2.69 (m, 2H), 1.66 (p, *J* = 7.8 Hz, 2H), 1.36 – 1.27 (m, 4H), 1.24 (s, 14H), 0.89 – 0.81 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 149.93, 121.42, 85.10 (d, *J* = 204.5 Hz), 32.00, 29.75, 29.72 (2xC), 29.62, 29.44 (2xC), 29.30, 29.29, 25.58, 22.77, 14.19; ¹⁹F NMR (377 MHz, CDCl₃) δ - 166.82 (t, *J* = 51.4 Hz); HRMS (EI) *m/z* calcd for C₁₅H₂₈N₃F [M]⁺: 269.2267, found 269.2273.

Synthesis of 4,5-disubstituted 1H-1,2,3-triazoles 4 via 5-iodotriazole 3

1-(Fluoromethyl)-5-iodo-4-(p-tolyl)-1H-1,2,3-triazole (3): To the THF solution of azidofluoromethane

(1) (0.5 mmol, approx. 0.3 mL), 4-ethynyl toluene (58 mg, 0.5 mmol) in THF (1.0 mL), Et_3N (60 mg, 0.6 mmol, 1.2 equiv.), ICI (81 mg, 0.5 mmol) and CuI (95 mg, 0.5 mmol) were added. The reaction mixture was stirred at rt under nitrogen for 20 h (UPLC-MS control). The reaction mixture was then poured into water (10 mL) and extracted with Et_2O . The organic solution was dried over MgSO₄, filtered and evaporated to dryness,

and purified by flash column chromatography to obtain white crystalline compound (142 mg, 90%), m.p. 164–165 °C. ¹H NMR (401 MHz, CDCl₃) δ 7.88 – 7.83 (m, 2H), 7.32 – 7.28 (m, 2H), 6.37 (d, *J* = 51.0 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.20, 151.26, 139.23, 129.52, 127.56, 126.66, 85.37 (d, *J* = 207.7 Hz), 21.52; ¹⁹F NMR (377 MHz, CDCl₃) δ -170.19 (t, *J* = 51.0 Hz); HRMS (ESI⁺) *m/z* calcd for C₁₀H₁₀N₃FI [M]⁺: 317.98980, found 317.98955.

1-(Fluoromethyl)-5-(4-methoxyphenyl)-4-(p-tolyl)-1H-1,2,3-triazole (4): To a 10 mL screw-cap glass

tube were added the iodo derivative **3** (43 mg, 0.13 mmol), 4methoxyphenylboronic acid (27 mg, 0.17 mmol), K_2CO_3 (90 mg, 0.65 mmol), and wet THF (1.5 mL). Then Pd(OAc)₂ (4.5 mg, 0.02 mmol) was added and the reaction mixture was stirred at 50 °C under N₂ for 18 h (UPLC-MS control). The reaction mixture was then poured into water (10 mL) and extracted with Et₂O (3 × 10 mL). The organic phase was dried over MgSO₄, filtered and evaporated to dryness, and

purified by flash column chromatography to obtain yellow crystalline compound (22 mg, 58%), m.p. 96–98 °C. ¹H NMR (401 MHz, CDCl₃) δ 7.50–7.48 (m, 2H), 7.35–7.33 (m, 2H), 7.13–7.11 (m, 2H), 7.03–7.01 (m, 2H), 6.10 (d, *J* = 51.4 Hz, 2H), 3.88 (s, 3H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.06, 144.95, 138.12, 134.50, 131.50, 129.40, 127.59, 127.11, 118.27, 114.99, 83.47 (d, *J* = 204.3 Hz), 55.52, 21.37; ¹⁹F NMR (377 MHz, CDCl₃) δ -164.60 (t, *J* = 51.4 Hz); HRMS (ESI⁺) *m/z* calcd for (C₁₇H₁₇ON₃F) [M+H]⁺: 298.13502, found 298.13508.

Synthesis of 4,5-disubstituted 1H-1,2,3-triazoles 5a-5h by the azide-ketone [3+2] cycloaddition

In a 10 mL screw-cap glass tube containing a cold solution of crude azidofluoromethane (1) in NMP (1.5 mmol, approx. 1 mL), ketone (1.5 mmol) and pyrrolidine (21 mg, 0.3 mmol) were added and the mixture was stirred at 45 °C for 20 h (UPLC-MS control). After reaching the complete conversion, the crude reaction mixture was purified by automated flash column chromatography on silica gel.

Ethyl 1-(fluoromethyl)-5-phenyl-1H-1,2,3-triazole-4-carboxylate (5a): Yield: 67%, colorless oil, ¹H NMR

(401 MHz, CDCl₃) δ 7.59 – 7.45 (m, 5H), 6.10 (d, J = 50.7 Hz, 2H), 4.32 (q, J = 7.1 Hz, 2H), 1.27 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.57, 142.79, 130.93, 130.21, 128.80, 124.39, 83.43 (d, J = 206.5 Hz), 61.44, 14.15; ¹⁹F NMR (377 MHz, CDCl₃) δ -165.51 (t, J = 50.6 Hz); HRMS (ESI) m/z calcd for C₁₂H₁₃N₃O₂F [M + H]⁺:

250.0992, found 250.0993.

Isobutyl 1-(fluoromethyl)-5-methyl-1H-1,2,3-triazole-4-carboxylate (5b): Yield: 70%, colorless oil, ¹H NMR (401 MHz, CDCl₃) δ 6.25 (d, J = 50.9 Hz, 2H), 4.10 (d, J = 6.8 Hz, 2H), 2.64 (s, 3H), 2.07 (dp, J = 13.4, 6.7 Hz, 1H), 0.97 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) 161.17, 139.57, 137.35, 83.41 (d, *J* = 204.8 Hz), 71.10, 27.70, 19.06, 8.50;

¹⁹F NMR (377 MHz, CDCl₃) δ -172.20 (t, J = 50.8 Hz); HRMS (ESI⁺) m/z calcd for C₉H₁₅N₃O₂F [M + H]⁺: 216.11428, found 216.11424.

Benzyl 1-(fluoromethyl)-5-methyl-1H-1,2,3-triazole-4-carboxylate (5c): Yield: 76%, colorless crystalline solid, m.p. 62–64 °C, ¹H NMR (401 MHz, CDCl₃) δ 7.47 – 7.43 (m, 2H), 7.40 – 7.30 (m, 3H), 6.25 (d, J = 50.9 Hz, 2H), 5.40 (s, 2H), 2.65 (s, 3H); ¹³C NMR (101 MHz,

CDCl₃) δ 161.10, 140.07, 137.27, 135.53, 128.72, 128.57, 128.54, 83.41 (d, J = 205.6 Hz), 66.92, 8.62; ¹⁹F NMR (377 MHz, CDCl₃) δ -172.60 (t, J = 50.8 Hz); HRMS (EI) m/z calcd for C₁₂H₁₂N₃O₂F [M]⁺: 249.0914, found 249.0915.

Ethyl 5-(3,4-dimethoxyphenyl)-1-(fluoromethyl)- 1H-1,2,3-triazole-4-carboxylate (5d): Yield: 89%,

colorless crystalline solid, m.p. 111–112 °C, ¹H NMR (401 MHz, CDCl₃) δ 7.10 (dd, J = 8.3, 2.0 Hz, 1H), 7.04 (d, J = 1.9 Hz, 1H), 6.99 (d, J = 8.3 Hz, 1H), 6.12 (d, J = 50.8 Hz, 2H), 4.34 (q, J = 7.1 Hz, 2H), 3.93 (s, 3H), 3.88 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.75, 151.16, 148.97, 142.87, 136.76, 123.46, 116.19, 113.22, 111.10, 83.49 (d, J = 205.6 Hz), 61.44, 56.13, 56.09, 14.29; ¹⁹F

NMR (377 MHz, CDCl₃) δ -164.87 (t, J = 50.6 Hz); HRMS (EI) m/z calcd for C₁₄H₁₆N₃O₄F [M]⁺: 309.1125, found 309.1123.

Ethyl 1-(fluoromethyl)-5-(p-tolyl)-1H-1,2,3-triazole-4-carboxylate (5e): Yield: 63%, colorless crystalline

solid, m.p. 30–32 °C, ¹H NMR (401 MHz, CDCl₃) δ 7.38 (dt, J = 8.3, 1.9 Hz, 2H), 7.31 (dt, J = 8.0, 1.8 Hz, 2H), 6.08 (d, J = 50.7 Hz, 2H), 4.31 (q, J = 7.1 Hz, 2H), 2.42 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.64, 142.98, 141.30, 136.94, 130.06, 129.49, 121.22, 83.38 (d, J = 206.0 Hz), 61.37, 21.54, 14.17; ¹⁹F NMR (377

MHz, CDCl₃) δ -165.42 (t, J = 50.7 Hz); HRMS (ESI⁺) m/z calcd for C₁₃H₁₅N₃O₂F [M + H]⁺: 264.11428, found 264.11401.

Ethyl 5-(4-chlorophenyl)-1-(fluoromethyl)- 1H-1,2,3-triazole-4-carboxylate (5f): Yield: 52%, colorless crystalline solid, m.p. 77–78 °C, ¹H NMR (401 MHz, CDCl₃) δ 7.53 – 7.50 (m, 2H), 7.48 - 7.45 (m, 2H), 6.11 (d, J = 50.7 Hz, 2H), 4.34 (q, J = 7.1 Hz, 2H), 1.40 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.39, 141.65, 137.42, 137.25, 131.57, 129.14, 122.67, 83.39 (d, J = 206.6 Hz), 61.55, 14.13; ¹⁹F NMR (377 MHz, CDCl₃) δ -164.79 (t, J = 50.6 Hz); HRMS (ESI⁺) m/z calcd for C₁₂H₁₂N₃O₂CIF [M + H]⁺: 284.05966,

found 284.05924.

Ethyl 1-(fluoromethyl)-5-propyl-1H-1,2,3-triazole-4-carboxylate (**5g**): Yield: 71%, colorless oil, ¹H NMR N=N, F (401 MHz, CDCl₃) δ 6.24 (d, J = 50.9 Hz, 2H), 4.37 (q, J = 7.1 Hz, 2H), 3.04 – 2.93 (m, 2H), 1.72 – 1.58 (m, 2H), 1.36 (t, J = 7.1 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H; ¹³C NMR (101 MHz, CDCl₃) δ 161.07, 143.90, 137.09, 83.29 (d, J = 205.5 Hz), 61.20, 24.71, 22.43, 14.25, 13.73; ¹⁹F NMR (377 MHz, CDCl₃) δ -169.95 (t, J = 50.9 Hz); HRMS (EI) m/z calcd for C₉H₁₄N₃O₂F [M]⁺: 215.1070, found 215.1072.

(1-(Fluoromethyl)-5-methyl-1H-1,2,3-triazol-4-yl)(phenyl)methanone (**5h** $): Yield: 90%, yellowish oil, ¹H NMR (401 MHz, CDCl₃) <math>\delta$ 8.32 – 8.29 (m, 2H), 7.63 – 7.57 (m, 1H), 7.54 – 7.48 (m, 2H), 6.32 (d, *J* = 50.9 Hz, 2H), 2.75 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) 187.32, 144.14, 140.91 (d, *J* = 1.5 Hz), 137.10, 133.29, 130.66, 128.45, 83.35 (d, *J* = 205.6 Hz), 9.12;

¹⁹F NMR (377 MHz, CDCl₃) δ -172.70 (t, *J* = 50.9 Hz); HRMS (EI) *m/z* calcd for C₁₁H₁₀N₃OF [M]⁺: 219.0808, found 219.0807.

Synthesis of 5-substituted 1H-1,2,3-triazole-4-carboxylic acids 6a,d,e,f

Ester **5** (0.2 mmol) was dissolved in THF (1 mL) and the solution of $LiOH \cdot H_2O$ (16.8 mg, 0.4 mmol) in water (0.5 mL) was slowly added. The reaction mixture was stirred at rt for 45 min. 1M HCl solution (0.6 mL) was then added, the mixture was stirred for 10 min (UPLC control), poured to 1M LiCl solution (15 mL) and Et_2O (15 mL) in a separatory funnel. After vigorous shaking, the organic layer was separated and dried with MgSO₄ overnight. After evaporation to dryness, white crystals of the acid were obtained.

1-(Fluoromethyl)-5-phenyl-1H-1,2,3-triazole-4-carboxylic acid (6a): Yield: 86%, colorless crystals, m.p.

172-174 °C (dec.), ¹H NMR (401 MHz, DMSO- d_6) δ 7.61 – 7.50 (m, 5H), 6.26 (d, *J*=50.8, 2H), 3.36 (br s, 1H); ¹³C NMR (101 MHz, DMSO- d_6) δ 161.44, 141.82, 137.39, 130.34, 130.09, 128.51, 124.75, 84.12 (d, *J* = 199.9 Hz); ¹⁹F NMR (377 MHz, DMSO- d_6) δ -166.31 (t, *J* = 50.8 Hz); HRMS (ESI-) *m/z* calcd for C₁₀H₇N₃O₂F [M – H]⁺: 220.05278, found

220.05283.

5-(3,4-Dimethoxyphenyl)-1-(fluoromethyl)-1H-1,2,3-triazole-4-carboxylic acid (6d): Yield: 60%, colorless crystals, m.p. 168-169 °C (dec.), ¹H NMR (401 MHz, Acetone- d_6) δ 7.21 – 7.13 (m, 3H), 6.33 (d, J = 51.0 Hz, 2H), 3.90 (s, 3H), 3.84 (s, 3H); ¹³C NMR (101 MHz, Acetone- d_6) δ 161.89, 152.08, 149.98, 137.55, 124.05, 117.68, 114.76, 114.75, 112.23, 85.01 (d, J = 200.6 Hz), 56.20, 56.10; ¹⁹F NMR (377 MHz, DMSO- d_6) δ -166.31 (t, J = 50.8 Hz); HRMS (ESI⁻) m/z calcd for C₁₂H₁₁N₃O₄F [M – H]⁺: 280.07391, found

280.07394.

 $\begin{array}{c} 1-(Fluoromethyl)-5-(p-tolyl)-1H-1,2,3-triazole-4-carboxylic acid ($ **6e** $): Yield: 88%, colorless crystals, m.p. \\ & \\ N=N \\ HO \\ & \\ P \\ & \\ O \\$

280.07391, found 280.07394.

5-(4-Chlorophenyl)-1-(fluoromethyl)-1H-1,2,3-triazole-4-carboxylic acid (**6f**): Yield: 91%, colorless $HO + N = N + N = N + K = Crystals, m.p. 178-180 °C (dec.), ¹H NMR (401 MHz, Acetone-d₆) <math>\delta$ 7.63 (s, 4H), 6.34 (d, J = 50.9 Hz, 2H); ¹³C NMR (101 MHz, Acetone-d₆) δ 161.65, 142.32, 138.18, 137.03, 132.94, 129.59, 124.86, 85.03 (d, J = 201.3 Hz).; ¹⁹F NMR (377 MHz, Acetone-d₆) δ - 166.58 (t, J = 50.9 Hz); HRMS (ESI⁻) m/z calcd for C₁₀H₆N₃O₂CIF [M - H]⁺: 254.01381, found 254.01386.

Synthesis of 1-fluoromethyl-5-substituted 1H-1,2,3-triazoles 7a,d,e,f

Carboxylic acid **6** (0.1 mmol) was heated for 10 min above its m.p. (180-215 °C) in an open 2 mL sample vial (oil bath). CO_2 evolution was observed. The obtained light brown oil was dried at low vacuum overnight and purified by automated flash column chromatography on silica gel.

1-(*Fluoromethyl*)-5-phenyl-1H-1,2,3-triazole (**7a**): Yield: 97%, colorless crystals, m.p. 58–60 °C, ¹H NMR N=N F (401 MHz, CDCl₃) δ 7.80 (s, 1H), 7.53 (s, 5H), 6.24 (d, J = 51.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 139.68, 133.28, 130.31, 129.49, 128.81, 125.66, 83.49 (d, J = 204.4 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -163.96 (t, J = 51.2 Hz); HRMS (Cl⁺) m/z calcd for C₉H₉N₃F [M + H]⁺: 178.0781, found 178.0782.

5-(3,4-Dimethoxyphenyl)-1-(fluoromethyl)-1H-1,2,3-triazole (**7d**): Yield: 63%, colorless crystals, m.p. N=N, F 138–140 °C, ¹H NMR (401 MHz, CDCl₃) δ 7.75 (s, 1H), 7.10 (dd, J = 8.3, 2.0 Hz, 1H), 7.02 – 6.98 (m, 2H), 6.23 (d, J = 51.4 Hz, 2H), 3.94 (s, 3H), 3.92 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.76, 149.63, 139.75, 132.91, 121.78, 118.01, 111.75, 111.67, 83.53 (d, J = 203.5 Hz), 56.17; ¹⁹F NMR (377 MHz, CDCl₃) δ -163.62 (t, J = 51.4 Hz); HRMS (Cl⁺) *m/z* calcd for C₁₁H₁₃N₃O₂F [M + H]⁺: 238.0992, found 238.0990.

1-(*Fluoromethyl*)-5-(p-tolyl)-1H-1,2,3-triazole (**7e**): Yield: 81%, colorless crystals, m.p. 44–46 °C, ¹H N=N F NMR (401 MHz, CDCl₃) δ 7.76 (s, 1H), 7.42 – 7.40 (m, 2H), 7.33 – 7.31 (m, 2H), 6.22 (d, J = 51.3 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 140.60, 139.74, 133.06, 130.17, 128.67, 122.69, 83.46 (d, J = 203.9 Hz), 21.46; ¹⁹F NMR (377 MHz, CDCl₃) δ -163.96 (t, J = 51.3 Hz); HRMS (Cl⁺) m/z calcd for C₁₀H₁₁N₃F [M + H]⁺: 192.0937, found 192.0939.

5-(4-Chlorophenyl)-1-(fluoromethyl)-1H-1,2,3-triazole (**7f**): Yield: 85%, colorless crystals, m.p. 62–63 °C, ¹H NMR (401 MHz, CDCl₃) δ 7.78 (s, 1H), 7.54 – 7.44 (m, 4H), 6.22 (d, J = 51.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 138.58, 136.70, 133.42, 130.06, 129.82, 124.08, 83.48 (d, J = 204.3 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -163.84 (t, J = 51.3 Hz); HRMS (Cl⁺) m/z calcd for C₉H₈N₃ClF [M + H]⁺: 212.0391, found 212.0387.

Computational studies

Cartesian coordinates of transition states and ground state minima of the fluorinated azidomethanes localized at the PBE0/6-31+g* level. Gaussian 09, revision D.01 was used for the calculations. CH_3N_3 Azidomethane

ΤS			
7			
С	0.000000	0.000000	0.000000
Ν	0.000000	0.000000	1.364307
Ν	1.910072	0.000000	2.055970
Ν	2.566234	0.000000	2.944375
Н	-1.130257	0.000000	0.095884
Н	0.261762	0.919655	-0.557338
Н	0.261762	-0.919655	-0.557338

S0 minimum

/			
С	-0.049040	0.000000	0.039257
Ν	0.171604	0.000000	1.485723
Н	0.936731	0.000000	-0.426200
Н	-0.594347	-0.894414	-0.287129
Н	-0.594347	0.894414	-0.287129
Ν	-0.841737	0.000000	2.177554
Ν	-1.702670	0.000000	2.922257

CFH₂N₃ Azidofluoromethane

15			
7			
С	0.000000	0.000000	0.000000
F	0.000000	0.000000	1.407152
Ν	1.143361	0.000000	-0.666548
Ν	1.886934	-1.763797	-0.620117
Ν	2.760955	-2.417214	-0.789096
Н	-0.144427	1.065952	-0.359437
Н	-0.874309	-0.596434	-0.296444

S0 minimum

7			
С	0.035601	-0.046825	-0.054628
Н	0.091132	-0.031637	1.033623
Н	1.032269	-0.121400	-0.505172
F	-0.505877	1.157878	-0.475324
Ν	-0.812521	-1.152768	-0.409912
Ν	-0.870309	-1.405121	-1.619539
Ν	-1.023446	-1.738317	-2.690789

*CF*₂*HN*₃ *Azidodifluoromethane*

TS 7 C 0.000000 0.000000 0.000000 N 0.000000 0.000000 1.312210 F 1.143402 0.000000 -0.740861 F -0.888339 0.719876 -0.740861 N 0.615320 1.736647 1.855376 Ν 0.875128 2.469916 2.637341 H -0.381850 -1.077714 0.164048 S0 minimum 7 C -0.056022 -0.059327 0.013986 H -0.180225 -0.116063 1.101201 F 1.250823 -0.010631 -0.282989 F -0.626967 1.104136 -0.406814 N -0.599034 -1.179038 -0.696921 N -1.773640 -1.442523 -0.417761 N -2.838972 -1.787829 -0.256910 *CF*₃*N*₃ *Azidotrifluoromethane* ΤS 7 С 0.000000 0.000000 0.000000 Ν 0.000000 0.000000 1.360192 F 1.398058 0.000000 0.165941 F -0.371628 -1.066991 -0.701278 F -0.371974 1.066963 -0.701060 N -3.464767 0.002454 -0.411204 N -4.353862 0.002922 -1.062177 S0 minimum 7 С 0.085007 0.157289 -0.115471 F -0.160853 -0.588693 0.951682 F 1.381202 0.518330 -0.097270 F -0.632993 1.290991 -0.022277 Ν -0.250827 -0.606892 -1.265922 -0.063791 Ν -0.018002 -2.341510 Ν 0.054796 0.389984 -3.386505

Cartesian coordinates of transition states and ground state minima of the fluorinated azidomethanes localized at the CASPT2/6-31g* level. We have considered an active space of 6 electrons in 5 orbitals. The transition states were localized with MOLPRO2012 package (www.molpro.net).

CH₃N	³ Azidomethane		
TS			
7			
С	-0.3835302327	0.0000012924	-1.8037612282
Ν	0.6618617987	-0.0000001660	-0.8650113208
Ν	-0.1670291654	-0.0000052510	0.8790166972
Ν	-0.0435897600	0.0000037024	1.9966435449
Н	0.3031331684	0.0000115566	-2.6789377829
Н	-1.0017321465	-0.9065426970	-1.8837357478
Н	-1.0017422407	0.9065395670	-1.8837222224
S0 m	inimum		
7			
С	0.000000946	0.3629563809	-1.6241505002

Ν	0.000007241	-0.6153829767	-0.5171838341
Ν	-0.000000278	-0.0908714949	0.6173410284
Ν	-0.0000006438	0.2599216149	1.7159295700
Н	-0.0000004905	-0.2224328612	-2.5416450603
Н	-0.8927046372	0.9960259432	-1.6010894570
Н	0.8927049805	0.9960257623	-1.6010904933

CFH₂N₃ Azidofluoromethane

TS		indire	
7			
С	-0.3484839193	-0.4297708003	1.2094120032
F	0.1400742808	0.7881744492	1.7196688900
Ν	0.3181629610	-1.0202858895	0.1818121642
Ν	-0.1242686907	0.0377312805	-1.3557109471
Ν	0.0245368016	0.3954527123	-2.4177004760
Н	-0.0847206469	-1.2495516020	1.9194003324
Н	-1.4382328784	-0.3266519437	1.1653499209
S0 m	inimum		
7			
С	-0.5014505409	0.3741751299	-1.0806647940
F	0.7246631398	-0.1174702979	-1.5141810169
Ν	-0.9054730587	-0.2336129093	0.1735480563
Ν	-0.0737125316	-0.0417610266	1.1025101955
Ν	0.5905569013	0.0315715636	2.0347605942
Н	-1.2674437209	0.1043319393	-1.8059517864
Н	-0.4048622498	1.4614731541	-0.9966875219
CF₂H	N ₃ Azidodifluorom	ethane	
ΤS			
7			
С	0.0007858997	-0.3560727471	-0.9881073673
F	1.0826305567	0.4530311852	-1.2216325302
Ν	0.0055020991	-1.2305762972	0.0233251920
F	-1.0876333207	0.4455458965	-1.2175766116
Ν	0.0024954925	0.0187993962	1.5935878807
Ν	-0.0020531456	0.3879056273	2.6605585573
Н	0.0023245552	-1.2451356126	-1.6906026300
S 0 m	inimum		
7			
С	0.0002710032	-0.4236309980	-0.9178394995
F	1.0944531038	0.3742871521	-1.1147432873
N	0.0001092026	-1.0023534986	0.3923239679
Ν	-0.0001271634	-0.1179806378	1.3048470863
N	-0.0003580303	0.5448347423	2.2358911036
F	-1.0941435465	0.3738457897	-1.1152109358
Н	0.0005907173	-1.2302534535	-1.6474509952

CF₃N₃ Azidotrifluoromethane

ΤS

S0 minimum

/			
С	0.0000357107	-0.0338503446	-0.6396408912
Ν	0.0007153405	-0.9011939561	0.4954688651
Ν	0.0002472328	-0.2494733520	1.5869199993
Ν	-0.0000731771	0.1740334096	2.6477694850
F	-0.0002673585	-0.8024955778	-1.7288705393
F	-1.0848295656	0.7726837874	-0.6757774399
F	1.0845276349	0.7731324542	-0.6767431044

Table S1: Activation energies $\Delta E^{\#}$ for the thermal decomposition of fluorinated azidomethanes calculated at different electronic structure levels. All activation energies are shown in eV units.

	CH_3N_3	CFH_2N_3	CF_2HN_3	CF_3N_3
PBE0/6-31+g*	2.29	1.83	2.01	2.92
CCSD(T)/aug-cc-pVQZ ^a	1.84	1.48	1.65	2.42
CASPT2(6,5)/6-31g*	2.11	1.56	1.73	_ b
CCSD(T)/aug-cc-pVTZ ^c	1.82	1.47	1.64	<u> </u>

^a energies for structures optimized at the PBE0/6-31+g* level

 $^{\rm b}$ We were not able to localize the transition state for CF_3N_3 at the CASPt2 level.

^c energies for structures optimized at the CASPT2/6-31g* level

Table S2: Energy position of singlet-triplet crossing points with respect to the ground singlet electronic state of the azidomethanes. All energies are shown in eV units.

	CH_3N_3	CFH_2N_3	CF_2HN_3	CF_3N_3
CASSCF(6,5)/6-31g*	1.92	1.86	2.72	2.98
CCSD(T)/aug-cc-pVTZ (S) ^c	1.50	1.34	1.90	1.84
CCSD(T)/aug-cc-pVTZ (T) ^d	1.31	1.43	2.07	2.16

^c energies for singlet MECI structures optimized on CASSCF/6-31g* level

^d energies for triplet MECI structures optimized on CASSCF/6-31g* level

The Cartesian coordinates of the minimum energy crossing points between singlet and triplet states were localized at the CASSCF/6-31g* level, using and active space comprising of 6 electrons in 5 orbitals. We have considered averaging over one singlet and one triplet state.

orbi	tals. We have consid	dered averaging ov	er one singlet and
CH₃	N ₃ Azidomethane		
MEC	CP		
7			
С	-0.0084114012	0.0243481665	-0.2283267089
Ν	-0.8022320578	0.0608155269	0.8529945572
Ν	2.3596832893	-0.3150353636	2.7572435652
Ν	2.6812523142	0.2394763801	3.6400049966
Н	-1.0726140798	0.0953291816	-0.6754458631
Н	0.4125684323	-0.9142984683	-0.5964267015
Н	0.5236145031	0.9093645769	-0.5833378455

CFH₂N₃ Azidofluoromethane

-			
MEC	P		
7			
С	1.8425131782	-0.2956572620	0.0456795920
Ν	1.4551464655	0.9137028306	0.1421523941
Ν	-1.6605138034	-0.1294170063	0.0320493013
Ν	-2.6981535267	-0.2489701564	-0.2285083621

Н	2.9003435406	0.0734278517	-0.1277367520
Н	1.5661697704	-0.8979653850	-0.7968667426
F	1.8487123755	-1.1302858727	1.1490825694

 CF_2HN_3 Azidodifluoromethane

IVIEC	5		
7			
С	1.6246456942	-0.3383915972	0.0021850793
F	1.5773767587	-1.0875735128	1.1139352817
Ν	0.7918219511	0.8105884023	0.0393930815
Ν	-0.8871518552	-0.0417140551	-0.0355861271
Ν	-1.9482810841	-0.2193871286	-0.0557991359
F	2.8244611520	0.2470847911	-0.0514346025
Н	1.5011473832	-1.0055908997	-0.8345155771

CF₃N₃ Azidotrifluoromethane

MECI	Р		
7			
С	1.6217041971	-0.3319340447	-0.0033160893
F	2.8224458939	0.2103341769	-0.0094847114
F	1.4969979168	-1.0920993761	1.0682572157
Ν	0.8038495092	0.8181981929	-0.0333395707
Ν	-0.8657652231	-0.0364158799	-0.0224962067
Ν	-1.9191010394	-0.2518541432	-0.0229462628
F	1.5076167454	-1.1396039259	-1.0407773748

Table S3: Energetics for a subsequent decomposition of azidomethanes. Nitrene intermediate and imine products are considered. All structures were optimized at the PBE0/6-31+g* level and recalculated with the CCSD(T)/aug-cc-pVTZ level. Nitrene intermediate is stable in a triplet state and also in a singlet state for azidotrifluoromethane. The energies of singlet states of methylnitrene, fluoromethylnitrene and difluoromethylnitrene are shown for structures optimized with fixed N_{α}-C-H angle; the angle was fixed to a value found in singlet trifluoromethylnitrene. All energies are shown in eV units.

	nitrene $(S_0) + N_2$	nitrene $(T_1) + N_2$	imine $(S_0) + N_2$	imine $(T_1) + N_2$
CH_3N_3	1.99	0.22	-2.11	1.74
CFH_2N_3	1.21	0.47	-2.46	3.37
CF_2HN_3	1.52	0.57	-2.40	2.49
CF_3N_3	2.44	0.63	0.33	6.48

Copies of NMR spectra

Compound 2a

Compound 2b

Compound 2c

Compound 2d

Compound 2e

Compound 2f

Compound 2g

SI27

Compound 2h

Compound 3

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

Compound 4

Compound 5a

Compound 5b

Compound 5c

Compound 5d

Compound 5e

Compound 5f

Compound 5g

Compound 5h

Compound 6a

Compound 6d

Compound 6e

Compound 6f

Compound 7a

Compound 7d

Compound 7e

Compound 7f

