Supporting Information

Diversity-Oriented Approach to Functional Thiophene Dyes by Suzuki Coupling-Lithiation One-Pot Sequences

Lars May¹, Sven Daniel¹ and Thomas J. J. Müller¹

¹ Heinrich-Heine-Universität Düsseldorf, Institut für Organische Chemie und Makromolekulare Chemie, Universitätsstraße 1, D-40225 Düsseldorf, Germany Email: ThomasJJMueller@uni-duesseldorf.de

Table of Contents

1 General Considerations	1
2 Syntheses	2
2.1 Methyl-3-(5-bromothiophen-2-yl)-2-cyanoacrylate (3k)	2
2.2 General procedure 1 (GP1) for the synthesis of thienyl dibromides 5	3
2.3 3,7-Dibromo-10-(4-iodophenyl)-10 <i>H</i> -phenothiazine (11)	5
2.4 3,7-Dibromo-10-(4-(thiophen-2-yl)phenyl)-10 <i>H</i> -phenothiazine (5c)	6
2.5 5-(4-Methoxyphenyl)thiophene-2-carbaldehyde (12)	7
2.6 General procedure 2 (GP2) for the synthesis of thiophens 1 via Suzuki	
-Lithiation-Formylation-Knoevenagel sequence (SLiForK)	8
2.7 General procedure 3 (GP3) for the synthesis of thiophens 6 via twofold	
Suzuki-Lithiation-Formylation-Knoevenagel sequence (S ² LiForK)	12
2.8 General procedure 4 (GP4) for the preparation of DSSC-dyes 7 via	
S ² LiForK and saponification	14
2.9 1-Bromo-2,4-bis(hexyloxy)benzene (3e)	19
2.10 General procedure 5 (GP5) for the synthesis of thiophens 8 via Suzuki	
-Lithiation-Borylation-Suzuki sequence (SLiBS)	20
3 ¹ H- and ¹³ C-NMR spectra	28
4 Cyclovoltammetric data	56
5 Data of Quantum chemical calculations	57
6 References	76

1 General Considerations

All reactions were carried out in flame-dried Schlenk tubes by using syringes under nitrogen atmosphere. Dry solvents for reactions and analytics were directly used from a MB-SPS 800 solvent drying system (MBraun). 4,4,5,5-Tetramethyl-2-(thiophen-2-yl)-1,3,2-dioxaborolane (**2a**), ^[1] tris(4-bromophenyl)amine (**9b**), ^[2] 4-bromo-*N*,*N*-diphenylaniline (**3d**), ^[3] 2-(4-(hexyl-oxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**2c**), ^[4] 9,9-dihexyl-*N*,*N*-diphenyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9*H*-fluoren-2-amine (**2d**), ^[5] 10-(4-iodo-phenyl)-10*H*-phenothiazine (**10**) and ^[6] 2-(2,2-dibromovinyl)thiophene (**5b**) ^[7] were synthesized according to literature procedures as indicated. Commercial grade reagents were purchased from Sigma Aldrich, Alfa Aesar, ABCR, Fluorochem and ACROS and used as supplied without further purification. Crude mixtures were adsorbed on Celite® 545 (0.02-0.20 mm) from Carl Roth GmbH Co.KG. The purification of products was performed on silica gel 60 M (0.04–0.063 mm) from Macherey–Nagel by using the flash technique under a pressure of 2 bar. For TLC silica gel coated aluminium plates (60, F₂₅₄) from Merck were employed and analyzed with UV light at 254 or 365 nm.

¹H, ¹³C, and 135-DEPT NMR spectra were recorded at 293 K or 353 K on 300 MHz (Bruker AVIII 300), 500 MHz (Bruker Avance DRX 500) or 600 MHz (Bruker Avance III 600) and the resonances of the residues of non-deuterated CDCl₃ (¹H δ = 7.26 ppm, ¹³C δ = 77.00 ppm), acetone-d₆ (¹H δ = 2.05 ppm, ¹³C δ = 29.84 ppm), DMSO-d₆ (¹H δ = 2.50 ppm, ¹³C δ = 39.52 ppm) or THF-d₈ (¹H δ = 3.58 ppm, ¹³C δ = 67.57 ppm) were locked as internal standards. The multiplicities of signals are abbreviated as follows: s = singlet, d = doublet, t = triplet, dd = doublet of doublets and m = multiplet. The assignments of C_{quat}, CH, CH₂ and CH₃ nuclei are based on DEPT spectra.

IR spectra were recorded on a Shimadzu IR Affinity-1 with ATR technique. The intensities of IR signals are abbreviated as s (strong), m (medium) and w (weak).

EI mass spectra were recorded on Triple-Quadrupole mass spectrometer TSQ 7000 (Finnigan MAT). ESI mass spectra were recorded on the Ion-Trap-API-mass spectrometer Finnigan LCQ Deca (Thermo Quest) and high-resolution ESI mass spectra were recorded on a UHR-QTOF maXis 4G apparatus (Bruker Daltonics). MALDI-TOF mass spectra were measured on an UltrafleXtreme apparatus (Bruker Daltonics).

The elemental analyses were carried out on a Perkin Elmer Series II Analyser 2400 at the Institute for Pharmaceutical and Medicinal Chemistry at Heinrich-Heine-University Düsseldorf.

Melting points (uncorrected) were measured with a Büchi B545 apparatus.

Absorption spectra were recorded in dichloromethane high performance liquid chromato-

graphy (HPLC) grade at 293 K on Perkin Elmer UV/vis/NIR Lambda 19 spectrometer. For the determination of the extinction coefficients ε absorption measurements at five different concentrations were carried out. Emission spectra were recorded in dichloromethane HPLC grade at 293 K on a Perkin Elmer LS55 spectrometer.

Quantum chemical calculations were carried out utilizing the HPC-Cluster lvybridge of the Zentrum for Informations- und Medientechnologie (ZIM) at the Heinrich-Heine-University Düsseldorf.

Cyclic voltammetry experiments (EG&G Princeton Applied Research Model 263A potentiostat) were performed under argon atmosphere in dry and degassed dichloromethane at 293 K using *n*-Bu₄NPF₆ (0.1 M) as electrolyte and at scan rates v of 100, 250, 500 and 1000 mVs⁻¹. The three-electrode array consists of a working electrode with a 2 mm platinum disk, a platinum wire counter electrode, and a Ag/AgCl (3.0 M NaCl) reference electrode. The potentials were corrected by adding the internal standard decamethylferrocene to each measurement. Decamethylferrocene was referenced to the internal redox standard ferrocene ($E_0^{0/+1}$ (deca-methylferrocene) = -95 mV vs. $E_0^{0/+1}$ (ferrocene) = 450 mV).^[8] Therefore the outlined potentials are indirectly referenced to ferrocene.

The preparation of the DSSC devices as well as the measurements of the DSSCs were carried out following a procedure published previously.^[9]

2 Syntheses

2.1 Methyl-3-(5-bromothiophen-2-yl)-2-cyanoacrylate (3k)

In a flame-dried Schlenk vessel with magnetic stir bar under nitrogen atmosphere 2,5dibromothiophene (**3I**) (1.20 g, 5.00 mmol) was dissolved in dry THF (6 mL) and cooled down to -78 °C (isopropanol/dry ice). Then, *n*-butyllithium (3.13 mL, 5.00 mmol, 1.6 M in hexane) was added dropwise via syringe over a period of 10 min to the vigorously stirred solution. Stirring was continued for 30 min at -78°C. Then dry DMF (0.58 mL, 7.50 mmol) was added, stirring was continued for another 90 min at -78 °C and then for 30 min at ambient temperature. To the reaction mixture acetic acid (0.570 mL, 10.0 mmol) was added. After stirring for 15 min at ambient temperature, methyl 2-cyanoacetate (0.88 mL, 10.00 mmol) was added and the stirring was continued for 16 h at ambient temperature. The volatiles were removed by evaporation and the crude product was purified by flash column chromatography (*n*-hexane/ethyl acetate), which led to 1.23 g (4.50 mmol, 90%) of the product **3k** in form of a light-yellow solid, Mp.: 145 °C. R_f(*n*-hexane/ethyl acetate 1:1) = 0.75. ¹H NMR (300 MHz, CDCl₃): δ 3.91 (s, 3H), 7.19 (d, ³J_{HH} = 4.08 Hz, 1H), 7.51 (dd, ³J_{HH} = 4.08 Hz, ⁴J_{HH} = 0.63 Hz, 1H), 8.22 (d, ⁴J_{HH} = 0.62 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 53.5 (CH₃), 99.2 (C_{quat}), 115.7 (C_{quat}),124.6 (C_{quat}), 131.6 (CH), 137.6 (C_{quat}), 138.1 (CH), 146.1 (CH), 163.1 (C_{quat}). MS(EI) *m*/*z* 273 ([⁷⁹Br – M]⁺, 25), 271 ([⁸¹Br – M]⁺, 24), 194 (6), 193 (11), 192 ([M – Br]⁺, 100), 177 (15), 161 ([M – C₅H₄NO₂]⁺, 15), 134 (5), 133 (25), 82 (6). IR: $\tilde{\nu}$ [cm⁻¹] = 3113 (w), 3082 (w), 3024 (w), 2961(w), 2216 (w), 1717 (s), 1589 (s), 1555 (w), 1524 (w), 1503 (w), 1452 (w), 1429 (m), 1412 (s), 1360 (w), 1312 (m), 1246 (s), 1202 (s), 1184 (m), 1113 (w), 1090 (m), 1063 (s), 1011 (w), 980 (m), 961 (w), 934 (w), 901 (w), 866 (s), 806 (s), 758 (s), 664 (w), 629 (w). Anal. calcd. for C₉H₆BrNO₂S (272.1): C 39.73., H 2.22, N 5.15, S 11.78; Found: C 39.96, H 2.04, N 5.11, S 11.64.

2.2 General procedure 1 (GP1) for the synthesis of thienyl dibromides 5

In a Schlenk vessel with magnetic stir bar under nitrogen atmosphere were added 4,4,5,5tetramethyl-2-(thiophen-2-yl)-1,3,2-dioxaborolane (**2a**) (1.00 eq.) and 1,3,5-tribromobenzene (**9a**) (1.60 eq.) or tris(4-bromophenyl)amine (**9b**) (1.10 eq.) and were dissolved in toluene (3.5 mL/mmol). Then potassium carbonate (3.00 eq., 2 M in H₂O) was added and the biphasic, vigorously stirred solution was degassed with nitrogen for 5 min. Then tetrakis(triphenylphosphine)palladium(0) (1 mol%) was added and the reaction mixture was stirred at 80 °C overnight. The reaction was quenched by the addition of 50 mL H₂O, the organic layer was separated and the aqueous phase was extracted with dichloromethane three times. The combined organic phases were dried with anhydrous magnesium sulfate. The volatiles were removed by evaporation and the crude product was purified by flash column chromatography. For Experimental details see table 1.

9	2a	Product 5
[g] (mmol)	[g] (mmol)	yield [g] (%)
1,3,5-tribromobenzene 9a		5a
5.318 (16.89) tris(4-bromophenyl)amine 9b	2.218 (10.56)	1.944 (61) 5d
7.000 (14.52)	2.773 (13.20)	3.017 (48)

Table 1: Experimental details GP1.

2.2.1 2-(3,5-Dibromophenyl)thiophene (5a)

The crude product was synthesized following **GP1** and purified by flash column chromatography (*n*-hexane), which led to 1.944 g (6.110 mmol, 61%) of the product **5a** in form of a colorless solid, Mp.: 60 °C. $R_f(n$ -hexane) = 0.74. ¹H-NMR (300 MHz, Acetone-d₆): δ 7.16 (dd, ${}^{3}J_{HH} = 5.11$ Hz, ${}^{3}J_{HH} = 3.68$ Hz, 1H), 7.57 (dd, ${}^{3}J_{HH} = 5.10$ Hz, ${}^{4}J_{HH} = 1.15$ Hz, 1H), 7.62 (dd, ${}^{3}J_{HH} = 3.69$ Hz, ${}^{4}J_{HH} = 1.16$ Hz, 1H), 7.65 (t, ${}^{4}J_{HH} = 1.71$ Hz, 1H), 7.82 (d, ${}^{4}J_{HH} = 1.72$ Hz, 2H). ¹³C-NMR (75 MHz, acetone-d₆): 124.1 (C_{quat}), 126.4 (CH), 127.9 (CH), 128.0 (CH), 129.4 (CH), 133.1 (CH), 139.0 (C_{quat}), 141.1 (C_{quat}). MS(EI) *m*/*z*: 320 ([2⁸¹Br – M]⁺, 50), 318 ([⁷⁹Br ⁸¹Br – M]⁺, 100), 316 ([2⁷⁹Br – M]⁺, 50), 159 ([M – 2Br]⁺, 16), 158 ([M – 2Br]⁺, 98), 114 (18), 113 (14), 79 (16). IR: $\tilde{\nu}$ [cm⁻¹] = 3067 (w), 1784 (w), 1582 (m), 1549 (m), 1526 (m), 1443 (m), 1418 (m), 1346 (w), 1331 (w), 1288 (w), 1215 (w), 1105 (w), 1092 (w), 1057 (w), 999 (w), 982 (w), 895 (w), 858 (m), 833 (m), 820 (s), 754 (m), 743 (m), 729 (m), 692 (s), 664 (m). Anal. calcd. for C₁₀H₆Br₂S (318.0): C 37.77, H 1.90, S 10.08; Found: C 38.01, H 1.92, S 10.07.

2.2.2 2-(3,5-Dibromophenyl)thiophene (5d)

The crude product was synthesized following **GP1** and purified by flash column chromatography (*n*-hexane/CH₂Cl₂ 20:1), which led to 3.017 g (6.220 mmol, 48%) of the product **5d** in form of a colorless solid, Mp.: 54 °C. R_f(*n*-hexane) = 0.39. ¹H NMR (300 MHz, Acetone-d₆): δ 7.00 - 7.07 (m, 4H), 7.07 - 7.17 (m, 3H), 7.38 - 7.43 (m, 2H), 7.43 - 7.50 (m, 4H), 7.58 - 7.65 (m, 2H).¹³C NMR (75 MHz, acetone-d₆): δ 116.2 (C_{quat}), 123.8 (CH), 125.52 (CH), 125.54 (CH), 126.7 (CH), 127,7 (CH), 129.1 (CH), 130.7 (C_{quat}), 133.3 (CH), 144.4 (C_{quat}), 147.1 (C_{quat}), 147.4 (C_{quat}). MS(EI) *m/z*. 478 ([2⁸¹Br - M]⁺, 50), 485 ([⁷⁹Br ⁸¹Br - M]⁺,

100), 483 ($[2^{79}Br - M]^+$, 50), 405 ($[^{81}Br - M - Br]^+$, 8), 403 ($[^{79}Br - M - Br]^+$, 7), 325 ($[M - 2Br]^+$, 20), 249 ($[M - Br - C_6H_4Br]^+$, 19), 223 (13), 204 (18), 163 (36), 140 (16), 115 (27), 76 (25), 63 (14), 50 (11). IR: $\tilde{\nu}$ [cm⁻¹] = 3065 (w), 3028 (w), 1605 (w), 1578 (w), 1533 (w), 1499 (m), 1481 (s), 1450 (w), 1431 (w), 196 (w), 1310 (s), 1269 (s), 1209 (w), 1192 (w), 1175 (w), 1103 (w), 1071 (m), 1051 (w), 1007 (m), 959 (w), 916 (w), 893 (w), 849 (w), 814 (s), 768 (w), 727 (w), 692 (s), 667 (w), 621 (w). Anal. calcd. for C₂₂H₁₅Br₂NS (485.2): C 54.56, H 3.12, N 2.89, S 6.61; Found: C 54.53, H 3.18, N 2.81, S 6.75.

2.3 3,7-Dibromo-10-(4-iodophenyl)-10H-phenothiazine (11)

In a Schlenk vessel with magnetic stir bar under nitrogen atmosphere 10-(4-lodphenyl)-10Hphenothiazin (10) (2.719 g, 5.430 mmol) was dissolved in dry THF (20 mL). Then N-bromosuccinimide (1.933 g, 10.86 mmol) was added in one portion and the reaction mixture was stirred at ambient temperature for 17 h. The reaction was guenched by the addition of 50 mL of a saturated sodium thiosulfate solution, the organic layer was separated and the aqueous phase was extracted with dichloromethane three times. The combined organic phases were dried with anhydrous magnesium sulfate. The volatiles were removed by evaporation and the crude product was purified by flash column chromatography using gradient elution (nhexane/dichloromethane 20:1 \rightarrow 10:1), which led to 3.023 g (5.410 mmol, 99%) of the product **11** in form of a light-yellow powder. Mp.: 235 °C. $R_f(n-hexane) = 0.52$. ¹H NMR (300 MHz, DMSO-d₆): δ 6.06 (d, ${}^{3}J_{HH}$ = 8.80 Hz, 2H), 7.11 (dd, ${}^{3}J_{HH}$ = 8.81 Hz, ${}^{4}J_{HH}$ = 2.34 Hz, 2H), 7.20 - 7.27 (m, 2H), 7.31 (d, ${}^{4}J_{HH}$ = 2.31 Hz 2H), 7.97 - 8.05 (m, 2H). ${}^{13}C$ NMR (150 MHz, DMSO-d₆): δ 99.6 (C_{auat}), 114.5 (C_{auat}), 117.9 (CH), 121.4 (C_{auat}), 128.6 (CH), 130.2 (CH), 132.5 (CH), 139.5 (C_{ouat}), 140.3 (CH), 142.3 (C_{ouat}). MS(EI) *m/z*. 561 ([2⁷⁹Br-M]⁺, 10), 559 ([⁷⁹Br⁸¹Br-M]⁺, 21), 557 ([2⁸¹Br-M]⁺, 9), 513 (14), 511 (13), 487 (13), 485 (26), 483 (18), 482 (21), 481 (100), 480 (26), 479 ($[M - Br]^+$, 97), 430 ($[2^{79}Br - M - I]^+$, 6), 432 ($[^{79}Br^{81}Br - M - I]^+$, 13), 434 ($[2^{81}Br-M]^+$, 8), 401 ($[M - 2Br]^+$, 25), 400 ($[M - 2Br]^+$, 90), 356 (11), 354 ($[M - Br - 2Br]^+$), 400 ($[M - 2Br]^$ I_{1}^{+} , 18), 353 ([M – Br – I]⁺, 12), 351 ([M – Br – I]⁺, 10), 278 ([⁸¹Br-M – C₆H₃BrI]⁺, 24), 276 $([^{79}Br-M - C_6H_3BrI]^+, 23), 275 (10), 274 ([M - 2Br - I]^+, 18), 273 ([M - 2Br - I]^+, 74), 272 ([M - 2Br - I]^+, 28), 28), 28), 28)$ 2Br - I]⁺, 43), 271 (30), 242 (10), 241 (43), 239 (17), 228 (13), 197 (42), 176 (12), 163 (11),

153 (16), 137 (44), 136 (21), 76 (21), 58 (10). IR: $\tilde{\nu} [\text{cm}^{-1}] = 3076$ (w), 3053 (w), 1877 (w), 1477 (m), 1452 (s), 1416 (w), 1406 (w), 1379 (w), 1364 (w), 1304 (s), 1269 (m), 1258 (m), 1242 (m), 1188 (w), 1148 (w), 1117 (w), 1094 (m), 1084 (w), 1053 (w), 1011 (m), 941 (w), 922 (w), 866 (m), 826 (s), 810 (s), 781 (w), 764 (w), 710 (m), 698 (w). Anal. calcd. for C₁₈H₁₀Br₂INS (559.1): C 38.67, H 1.80, N 2.51, S 5.73; Found: C 38.67, H 1.69, N 2.49, S 5.86.

2.4 3,7-Dibromo-10-(4-(thiophen-2-yl)phenyl)-10*H*-phenothiazine (5c)

In a flame-dried Schlenk vessel with magnetic stir bar under nitrogen atmosphere thiophene (178 mg, 2.12 mmol) was dissolved in dry THF (20 mL) and cooled down to -78 °C (isopropanol/dry ice). Then, n-butyllithium (1.33 mL, 2.12 mmol, 1.6 M in hexane) was added via syringe. The reaction solution was stirred for 2 h at -78°C, whereas zinc dibromide (1.13 g, 5.00 mmol) were vacuum dried at 120 °C for 1.5 h. After the dried zinc dibromide had been cooled to ambient temperature, dry THF (5 mL) was added. Then the resulting zinc dibromide solution (2.54 mL, 2.54 mmol) was dropped into the reaction mixture at -78 °C, which was stirred at ambient temperature for 30 min then. Tetrakis(triphenylphosphine)palladium(0) (74.0 mg, 64.0 µmol) and 3,7-Dibromo-10-(4-iodophenyl)-10Hphenothiazine (11) (1.19 g, 2.12 mmol) were added and the reaction solution was stirred at ambient temperature for 20 h. The volatiles were removed by evaporation and the crude product was purified by flash column chromatography using gradient elution (nhexane/dichloromethane $30:1 \rightarrow 10:1$), which led to 795 mg (1.54 mmol, 73%) of the product **5c** in form of a light-yellow solid. Mp.: 205 °C. R_f (*n*-hexane/ethyl acetate 30:1) = 0.43. ¹H NMR (300 MHz, THF-d₈): δ 6.15 (d, ${}^{3}J_{HH}$ = 8.80 Hz, 2H), 6.98 (dd, ${}^{3}J_{HH}$ = 8.79 Hz, ${}^{4}J_{HH}$ = 2.31 Hz, 2H), 7.13 (dd, ${}^{3}J_{HH}$ = 5.11 Hz, ${}^{4}J_{HH}$ = 3.62 Hz, 1H), 7.18 (d, ${}^{4}J_{HH}$ = 2.31 Hz, 2H), 7.38 -7.44 (m, 2H), 7.46 (dd, ${}^{3}J_{HH} = 5.11$ Hz, ${}^{4}J_{HH} = 1.13$ Hz, 1H), 7.52 (dd, ${}^{3}J_{HH} = 3.64$ Hz, ${}^{4}J_{HH} = 1.13$ Hz, 1H), 7.52 (dd, ${}^{3}J_{HH} = 3.64$ Hz, ${}^{4}J_{HH} =$ 1.16 Hz, 1H), 7.90 - 7.97 (m, 2H). ¹³C-NMR (75 MHz, THF-d₈): δ 115.5 (C_{auat}), 118.3 (CH), 122.6 (C_{auat}), 125.1 (CH), 126.7 (CH), 129.09 (CH), 129.13 (CH), 129.6 (CH), 130.7 (CH), 132.1 (CH), 136.1 (C_{quat}), 140.2 (C_{quat}), 143.8 (C_{quat}), 144.1 (C_{quat}). MS(ESI) m/z. 513.3 $([2^{79}Br-M]^+)$, 515.3 $([^{79}Br^{81}Br-M]^+)$, 517.3 $([2^{81}Br-M]^+)$. IR: $\tilde{\nu}$ [cm⁻¹] = 1533 (w), 1497 (w), 1477 (w), 1456 (s), 1431 (w), 1404 (w), 1391 (w), 1379 (w), 1298 (m), 1269 (w), 1258 (m), 1240 (m), 1213 (w), 1192 (w), 1148 (w), 1128 (w), 1099 (w), 1082 (w), 1047 (w), 1020 (w), 959 (w), 878 (w), 853 (w), 839 (m), 827 (w), 804 (s), 766 (w), 746 (w), 723 (m), 694 (s), 669 (w). Anal. calcd. for C₂₂H₁₃Br₂NS₂ (515.3): C 51.28, H 2.54, N 2.72, S 12.44; Found: C 51.30, H 2.43, N 2.79, S 12.70.

2.5 5-(4-Methoxyphenyl)thiophene-2-carbaldehyde (12)

Compound **12** is known in the literature ^[10], but was synthesized following another procedure:

In a flame-dried Schlenk vessel with magnetic stir bar under nitrogen atmosphere were filled 4,4,5,5-tetramethyl-2-(thiophen-2-yl)-1,3,2-dioxaborolane (2a) (210 mg, 1.00 mmol), 4-iodoanisole (3a) (246 mg, 1.05 mmol), cesium fluoride (456 mg, 3.00 mmol), bis(dibenzylideneacetone)palladium(0) (29.0 mg, 50.0 µmol) and tri-tert-butyl phosphonium tetrafluoroborate (29.0 mg, 0.100 mmol) and dissolved in dry THF (10 mL). The reaction mixture was stirred at 70 °C for 30 min. Then the reaction mixture was cooled slowly to ambient temperature and then to -78 °C (isopropanol/dry ice). To the cooled, viscous reaction mixture was dropped nbutyllithium (1.25 mL, 2.00 mmol, 1.6 M in hexane). Vigorous stirring was continued at -78 °C for 2 h. Then dry DMF (150 µL, 2.00 mmol) was added and the stirring was continued for another 90 min at -78 °C. Then the reaction mixture was stirred for 30 min at ambient temperature, before the reaction was quenched by adding water (10 mL). The organic layer was separated and the aqueous phase was extracted with dichloromethane three times. The combined organic phases were dried with anhydrous magnesium sulfate. The volatiles were removed by evaporation and the crude product was purified by flash column chromatography (n-hexane/ethyl acetate 5:1), which led to 98.0 mg (0.450 mmol, 45%) of the product 12 in form of a beige solid. Mp.: 184 °C. $R_t(n-hexane/ethyl acetate 5:1) = 0.36$. ¹H NMR (300 MHz, CDCl₃): δ 3.85 (s, 3H), 6.93-6.98 (m, 2H), 7.30 (d, ${}^{3}J_{HH}$ = 3.94 Hz, 1H), 7.59-7.64 (m, 2H), 7.71 (d, ${}^{3}J_{HH}$ = 3.96 Hz, 1H), 9.86 (s,1H). 13 C NMR (75 MHz, CDCl₃): δ 55.6 (CH₃), 114.8 (CH), 123.2 (CH), 126.1 (C_{auat}), 128.0 (CH), 137.6 (CH), 141.9 (C_{auat}), 154.7 (C_{auat}), 161.0 (C_{auat}), 182.6 (CH). MS(EI) *m*/*z*: 219 ([M + H]⁺, 15), 218 ([M]⁺, 100), 217 ([M - H]⁺, 31), 203 $([M - CH_3]^+, 45), 175 ([C_{10}H_7OS]^+, 27), 147 (40), 145 (28), 115 (10), 102 (17), 77 (11).$ IR: $\tilde{\nu}$ $[cm^{-1}] = 2980$ (w), 2891 (w), 1647 (s), 1601 (m), 1506 (w), 1449 (m), 1439 (m), 1418 (m),

1385 (w), 1288 (m), 1256 (m), 1223 (m), 1182 (m), 1113 (w), 1057 (m), 1024 (m), 957 (w), 833 (m), 802 (s), 756 (m), 689 (m), 667 (m).

2.6 General procedure 2 (GP2) for the synthesis of thiophens 1 via Suzuki-Lithiation-Formylation-Knoevenagel sequence (SLiForK)

In a flame-dried Schlenk vessel with magnetic stir bar under nitrogen atmosphere were filled 4,4,5,5-tetramethyl-2-(thiophen-2-yl)-1,3,2-dioxaborolane (2a) (1.00 eq.), an aryl halide 3 (1.05 eq), cesium fluoride (3.00 eq.), bis(dibenzylideneacetone)palladium(0) (5 mol%) and tritert-butyl phosphonium tetrafluoroborate (10 mol%) and dissolved in dry THF (8 mL/mmol). The reaction mixture was stirred at 70 °C until full conversion of the starting materials could be observed via TLC. Then, the reaction mixture was cooled slowly to ambient temperature and then to -78 °C (isopropanol/dry ice). To the cooled, viscous reaction mixture was dropped *n*-butyllithium (2.00 eq., 1.6 M in hexane). Vigorous stirring was continued at -78 °C for 2 h. After that dry DMF (2.00 eg.) was added and the stirring was continued at -78 °C for another 90 min. Then the reaction mixture was stirred at ambient temperature for 30 min. Acetic acid (10.00 eq.) was added and stirring was continued at ambient temperature for another 15 min. Then a CH-acidic compound 4 (2.00 eq.) was added. The reaction mixture was stirred overnight at ambient temperature. The next day volatiles were removed by evaporation and the mostly intense coloured crude product was purified by flash column chromatography and additional recrystallisation if necessary. For Experimental details see table 2.

2a	Aryl halide 3	<i>CH</i> -comp. 4	t _{Suzuki}	t _{Knoevenagel}	Yield 1
[mg] (mmol)	[mg] (mmol)	[mg] (mmol)	[h]	[h]	[mg] (%)
	4-iodoanisole 3a	^b 4a			1a
105 (0.50)	124 (0.530)	99.0 (1.00)	1	15	131 (88)
	3a	^c 4b			1b
210 (1.00)	246 (1.05)	132 (2.00)	1.5	16.5	118 (44)
	3a	^d 4c			1c
210 (1.00)	246 (1.05)	324 (2.00)	1.5	16.5	68.0 (19)
	3a	^e 4d			1d
210 (1.00)	246 (1.05)	294 (2.00)	1.5	16.5	175 (50)
	^a 3b	^b 4a			1e
486 (2.31)	788 (2.43)	482 (4.86)	24	24	612 (61)

Table 2: Experimental details GP2.

a: 4-bromo-*N*,*N*-diphenylaniline ; b: methyl 2-cyanoacetate; c: malononitrile;

d: 2-(4-nitrophenyl)acetoneitrile; e: 3-methyl-2-thioxothiazolidin-4-one.

2.6.1 2-Cyano-3-(5-(4-methoxyphenyl)thiophen-2-yl)acrylate (1a)

The crude product was synthesized following **GP2** and purified by flash column chromatography (*n*-hexane/ethyl acetate 5:1), which led to 131 mg (0.470 mmol, 88%) of the product **1a** in form of an orange solid. Mp.: 145 - 150 °C. R₁ (*n*-hexane/ethyl acetate 3:1) = 0.30. ¹H NMR (300 MHz, acetone-d₆): δ 3.78 (s, 3H), 3.88 (s, 3H), 7.03 - 7.10 (m, 2H), 7.59 (d, ³J_{HH} = 4.06 Hz, 1H), 7.73 - 7.80 (m, 2H), 7.69 (dd, ³J_{HH} = 4.08 Hz, ⁴J_{HH} = 0.59 Hz, 1H), 8.43 (d, ⁴J_{HH} = 0.52 Hz, 1H). ¹³C NMR (150 MHz, acetone-d₆): δ 53.3 (CH₃), 55.9 (CH₃), 97.7 (C_{quat}), 115.7 (CH), 116.7 (C_{quat}), 124.6 (CH), 126.3 (C_{quat}), 128.8 (CH), 134.8 (C_{quat}), 142.0 (CH), 147.6 (CH), 155.4 (C_{quat}), 162.1 (C_{quat}), 163.9 (C_{quat}). MS(EI) *m/z*: 300 ([M + H]⁺, 18), 299 ([M]⁺, 100), 284 ([M – CH₃]⁺, 32), 278 (12), 277 (29), 268 ([M – CH₃O]⁺, 10), 262 (18), 240 ([M – C₂H₃O₂]⁺, 9), 196 (16), 192 ([M – C₇H₇O]⁺, 9), 183 (18), 149 (14). IR: $\tilde{\nu}$ [cm⁻¹] = 3038 (w), 3007 (w), 2953 (w), 2837 (w), 2216 (w), 1709 (s), 1607(w), 1578 (s), 1557 (w), 1526 (w), 1495 (m), 1427 (s), 1393 (w), 1368 (w), 1337 (w), 1280 (m), 1252 (s), 1211 (s), 1204 (s), 1180 (s), 1117 (m), 1080 (m), 1063 (s), 1024 (s), 1009 (m), 955 (m), 930 (w), 799 (s), 758 (s), 719 (w), 692 (m), 662 (m), 629 (m). Anal. calcd. for C₁₆H₁₃NO₃S (299.3): C 64.20, H 4.38, N 4.68, S 10.71; Found: C 64.23, H 4.51, N 4.68, S 10.41.

2.6.2 2-((5-(4-Methoxyphenyl)thiophen-2-yl)methylene)malononitrile (1b) [11]

The crude product was synthesized following **GP2** and purified by flash column chromatography (*n*-hexane/ethyl acetate 1:1) and recrystallization from ethanol, which led to 118 mg (0.440 mmol, 44%) of the product **1b** in form of an orange solid. Mp.: 191 °C. $R_f(n + \text{hexane/ethyl} \text{ acetate } 3:1) = 0.35$. ¹H NMR (300 MHz, DMSO-d₆): δ 3.83 (s, 3H), 7.02 - 7.10 (m, 2H), 7.72 (d, ³J_{HH} = 4.11 Hz, 1H), 7.73 - 7.80 (m, 2H), 7.91 (dd, ³J_{HH} = 4.14 Hz, ⁴J_{HH} = 0.59 Hz, 1H), 8.60 (d, ⁴J_{HH} = 0.56 Hz, 1H). ¹³C NMR (150 MHz, THF-d₈): δ 55.5 (CH₃), 73.7 (C_{quat}), 114.0 (C_{quat}), 114.7 (C_{quat}), 115.0 (CH), 124.5 (CH), 128.1 (CH), 133.1 (C_{quat}), 142.7 (CH), 152.6 (CH), 155.5 (C_{quat}), 161.0 (C_{quat}). MS(EI) *m*/*z* 267 ([M + H]⁺, 18), 266 ([M]⁺, 100), 252 ([M - CH₃]⁺, 11), 251 ([M - CH₃]⁺, 65), 223 (46), 196 (11). IR: $\tilde{\nu}$ [cm⁻¹] = 3098 (w), 3026 (w), 2980 (w), 2959 (w), 2938 (w), 2839 (w), 2218 (m), 1607 (w), 1568 (s), 1558 (m), 1493 (w), 1435 (m), 1417 (m), 1360 (w), 1331 (m), 1292 (w), 1250 (m), 1209 (m), 1177 (s), 1144 (m), 1125 (w), 1113 (w), 1080 (s), 1034 (m), 939 (m), 903 (w), 826 (s), 804 (s), 783 (s), 748 (w), 683 (m), 669 (m), 631 (w), 606 (s).

2.6.3 3-(5-(4-Methoxyphenyl)thiophen-2-yl)-2-(4-nitrophenyl)acrylonitrile (1c)

The crude product was synthesized following **GP2** and purified by flash column chromatography (*n*-hexane/ethyl acetate 1:1) and suspension in boiling ethanol, which led to 68 mg (0.19 mmol, 19%) of the product **1c** in form of a red powder. Mp.: 210 °C. R_f (*n*-hexane/ethyl acetate 3:1) = 0.35. ¹H NMR (300 MHz, DMSO-d₆): δ 3.82 (s, 3H), 7.01 - 7.09 (m, 2H), 7.61 (d, ³*J*_{HH} = 3.96 Hz, 1H), 7.68 - 7.75 (m, 2H), 7.82 (d, ³*J*_{HH} = 4.02 Hz, 1H), 7.93 - 8.01 (m, 2H), 8.27 - 8.37 (m, 2H), 8.52 (s, 1H). ¹³C NMR (150 MHz, DMSO-d₆, 80 °C): δ 55.1 (CH₃), 102.8 (C_{quat}), 114.6 (CH), 117.2 (C_{quat}), 123.3 (CH), 123.9 (CH), 125.0 (C_{quat}), 126.0 (CH), 127.2 (CH), 135.0 (C_{quat}), 137.4 (CH), 138.3 (CH), 139.8 (C_{quat}), 146.7 (C_{quat}), 150.0 (C_{quat}), 160.0 (C_{quat}). MS(EI) *m/z*. 363 ([M + H]⁺, 22), 362 ([M]⁺, 100), 347 ([M – CH₃]⁺, 22),

273 (12), 272 (13), 240 ($[M - C_6H_4NO_2]^+$, 13). IR: $\tilde{\nu} [cm^{-1}] = 2978$ (w), 1599 (w), 1570 (m), 1512 (s), 1501 (m), 1491 (m), 1439 (m), 1431 (s), 1416 (m), 1369 (w), 1337 (s), 1296 (m), 1258 (s), 1219 (m), 1175 (s), 1148 (w), 1111 (m), 1067 (m), 1026 (s), 1009 (m), 989 (m), 959 (w), 934 (m), 893 (w), 835 (s), 806 (s), 797 (m), 748 (s), 686 (s), 679 (w), 652 (m). Anal. calcd. for $C_{20}H_{14}N_2O_3S$ (362.4): C 66.13, H 3.89, N 7.73, S 8.85; Found: C 66.29, H 3.94, N 7.72, S 8.65.

2.6.4 5-((5-(4-Methoxyphenyl)thiophen-2-yl)methylene)-3-methyl-2-thioxothiazo-lidin -4-one (1d)

The crude product was synthesized following **GP2** and purified by flash column chromatography (*n*-hexane/ethyl acetate 1:1) and suspension in boiling ethanol, which led to 175 mg (0.500 mmol, 50%) of the product **1d** in form of an orange solid. Mp.: 195 - 197 °C. $R_f(n$ -hexane/ethyl acetate 3:1) = 0.50. ¹H NMR (600 MHz, DMSO-d₆, 80 °C): δ 3.42 (s, 3H), 3.83 (s, 3H), 7.00 - 7.07 (m, 2H), 7.56 (d, ${}^3J_{HH}$ = 3.97 Hz, 1H), 7.69 (d, ${}^3J_{HH}$ = 4.05 Hz, 1H), 7.70 - 7.72 (m, 2H), 8.00 (s, 1H). ¹³C NMR (150 MHz, DMSO-d₆, 80 °C): δ 30.8 (CH₃), 55.1 (CH₃), 114.6 (CH), 118.8 (C_{quat}), 124.2 (CH), 124.9 (C_{quat}), 125.4 (CH), 127.0 (CH), 135.2 (C_{quat}), 136.8 (CH), 151.6 (C_{quat}), 160.0 (C_{quat}), 166.2 (C_{quat}), 191.9 (C_{quat}). MS(EI) *m/z*: 348 ([M + H]⁺, 10), 347 ([M]⁺, 51), 247 (16), 246 ([M - C₃H₃NOS]⁺, 100), 231 ([M - C₃H₃NOS - CH₃]⁺, 57), 203 (21), 123 (18). IR: $\tilde{\nu}$ [cm⁻¹] = 2945 (w), 1697 (s), 1605 (w), 1582 (s), 1526 (w), 1433 (m), 1420 (s), 1348 (m), 1285 (s), 1248 (s), 1204 (m), 1182 (m), 1173 (m), 1113 (s), 1067 (s), 1055 (m), 1028 (s), 1007 (m), 988 (m), 957 (m), 939 (m), 923 (m), 907 (m), 878 (w), 826 (s), 812 (m), 789 (s), 731 (s), 700 (m), 652 (m), 640 (m), 627 (m). Anal. calcd. for C₁₆H₁₃NO₂S₃ (347.5): C 55.31, H 3.77, N 4.03, S 27.68; Found: C 55.33, H 3.80, N 4.03, S 27.38.

2.6.5 Methyl 2-cyano-3-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)acrylate (1e)

The crude product was synthesized following **GP2** and purified by flash column chromatography (*n*-hexane/ethyl acetate 5:1), which led to 612 mg (1.41 mmol, 61%) of the product **1e** in form of a dark red solid. Mp.: 171 °C. R_f (*n*-hexane/ethyl acetate 5:1) = 0.29. ¹H NMR (300 MHz, acetone-d₆): δ 3.87 (s, 3H), 7.01 - 7.08 (m, 2H), 7.11 - 7.19 (m, 6H), 7.32 - 7.40 (m, 4H), 7.60 (d, ³*J*_{HH} = 4.08 Hz, 1H), 7.67 - 7.74 (m, 2H), 7.97 (dd, ³*J*_{HH} = 4.08 Hz, ⁴*J*_{HH} = 0.59 Hz, 1H), 8.42 (d, ⁴*J*_{HH} = 0.58 Hz, 1H). ¹³C NMR (150 MHz, THF-d₈): δ 53.3 (CH₃), 97.6 (C_{quat}), 116.7 (C_{quat}), 122.9 (CH), 124.5 (CH), 125.0 (CH), 126.2 (CH), 126.7 (C_{quat}), 128.3 (CH), 130.5 (CH), 134.9 (C_{quat}), 141.9 (CH), 147.4 (CH), 147.9 (C_{quat}), 150.3 (C_{quat}), 155.4 (C_{quat}), 164.0 (C_{quat}). MS(MALDI) *m/z*: 436.167 ([M]⁺). IR: $\tilde{\nu}$ [cm⁻¹] = 3090 (w), 2957 (w), 1722 (m), 1695 (w), 1574 (s), 1558 (m), 1458 (s), 1427 (s), 1315 (m), 1292 (s), 1279 (s), 1254 (s), 1213 (s), 1188 (s), 1179 (s), 1155 (m), 1125 (w), 1092 (w), 1067 (s), 1028 (m), 1003 (m), 968 (m), 955 (m), 939 (m), 918 (w), 895 (w), 843 (m), 814 (s), 804 (m), 752 (s), 723 (m), 696 (s), 664 (m), 638 (m). Anal. calcd. for C₂₇H₂₀N₂O₂S (436.5): C 74.29, H 4.62, N 6.42, S 7.34; Found: C 74.01, H 4.77, N 6.25, S 7.14.

2.7 General procedure 3 (GP3) for the synthesis of thiophens 6 via twofold Suzuki-Lithiation-Formylation-Knoevenagel sequence (S²LiForK)

In a flame-dried Schlenk vessel with magnetic stir bar under nitrogen atmosphere were filled 4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane (**2b**) (2.10 eq.), thienyl bromide **5a** or **5b** (1.00 eq.), cesium fluoride (6.00 eq.), bis(dibenzylideneacetone)palladium(0) (5 mol%) and tri-*tert*-butylphosphonium tetrafluoroborate (10 mol%) and dissolved in dry THF (8 mL/mmol). The reaction mixture was stirred at 70 °C until full conversion of the starting materials could be observed via TLC. Then, the reaction mixture was slowly cooled to ambient temperature and then to -78 °C (isopropanol/dry ice). To the cooled, viscous reaction mixture was dropped *n*-butyllithium (2.00 eq., 1.6 M in hexane). Vigorous stirring was continued at -78 °C for another 90 min. Then the reaction mixture was stirred at ambient temperature for 30 min,

Acetic acid (15.00 eq.) was added and stirring was continued at ambient temperature for another 15 min. Then methyl 2-cyanoacetate (**4a**) (2.00 eq.) was added. The reaction mixture was stirred at ambient temperature overnight. The next day volatiles were removed by evaporation and the intense coloured crude products were purified by flash column chromatography. For Experimental details see table 3.

2b	Thienyl bromide 5	t _{Suzuki}	t _{Knoevenagel}	Yield 6
[mg] (mmol)	[mg] (mmol)	[h]	[h]	[mg] (%)
	5a			6a
223 (1.09)	165 (0.520)	2	15	168 (77)
	5b			6b
429 (2.10)	268 (1.00)	3.5	16	186 (50)

 Table 3: Experimental details GP3.

2.7.1 Methyl 3-(5-([1,1':3',1"-terphenyl]-5'-yl)thiophen-2-yl)-2-cyanoacrylate (6a)

The crude product was synthesized following **GP3** and purified by flash column chromatography (*n*-hexane/ethyl acetate 5:1), which led to 168 mg (0.400 mmol, 77%) of the product **6a** in form of an orange solid. Mp.: 192 - 202 °C. R_{*I*} (*n*-hexane/ethyl acetate 5:1) = 0.32. ¹H NMR (300 MHz, CDCl₃): δ 3.42 (s, 3H), 6.95 - 7.03 (m, 2H), 7.04 - 7.12 (m, 4H), 7.37 - 7.44 (m, 4H), 7.52 (t, ⁴*J*_{HH} = 1.65 Hz, 1H), 7.57 (d, ⁴*J*_{HH} = 1.65 Hz, 2H), 7.59 (d, ³*J*_{HH} = 4.05 Hz, 1H), 7.69 (dd, ³*J*_{HH} = 4.05 Hz, ⁴*J*_{HH} = 0.60 Hz, 1H), 8.19 (d, ⁴*J*_{HH} = 0.60 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 53.1 (CH₃), 97.0 (C_{quat}), 115.9 (C_{quat}), 123.6 (CH), 126.3 (CH), 126.6 (CH), 127.2 (CH), 128.1 (CH), 129.0 (CH), 133.7 (C_{quat}), 134.9 (C_{quat}), 139.4 (C_{quat}), 142.0 (CH), 142.3 (C_{quat}), 147.4 (CH), 153.2 (C_{quat}), 162.8 (C_{quat}). MS(EI) *m/z*: 422 ([M + H]⁺, 30), 421 ([M]⁺, 100), 363 ([M - C₂H₃O₂]⁺, 12), 362 ([M - C₂H₃O₂]⁺, 12), 340 (11), 211 (14), 195 (20), 181 (29). IR: $\tilde{\nu}$ [cm⁻¹] = 3061(w), 3022 (w), 2953 (w), 2930 (w), 2870 (w), 1715 (s), 1578 (s), 1497 (w), 1433 (s), 1406 (m), 1368 (m), 1323 (w), 1267 (s), 1206 (m), 1142 (m),

1126 (w), 1096 (m), 1076 (m), 1059 (m), 1034 (w), 914 (w), 864 (m), 816 (s), 748 (s), 743 (s), 692 (s), 650 (m), 611 (m). Anal. calcd. for $C_{27}H_{19}NO_2S$ (421.5): C 76.94, H 4.54, N 3.32, S 7.61; Found: C 77.08, H 4.62, N 3.27, S 7.38.

2.7.2 Methyl 2-cyano-3-(5-(2,2-diphenylvinyl)thiophen-2-yl)acrylate (6b)

The crude product was synthesized following GP3 and purified by flash column chromatography (n-hexane/ethyl acetate 5:1), which led to 186 mg (0.500 mmol, 50%) of the product **6b** in form of a red solid. Mp.: 165 °C. R_f (*n*-hexane/ethyl acetate 3:1) = 0.33. ¹H NMR (300 MHz, acetone-d₆): δ 3.82 (s, 3H), 7.15 (dd, ³J_{HH} = 4.05 Hz, ⁴J_{HH} = 0.65 Hz, 1H), 7.26 - 7.32 (m, 2H), 7.32 - 7.41 (m, 3H), 7.41 - 7.46 (m, 2H), 7.50 - 7.60 (m, 4H), 7.79 (dd, ${}^{3}J_{HH} = 4.08$ Hz, ${}^{4}J_{HH} = 0.64$ Hz, 1H), 8.19 (d, ${}^{4}J_{HH} = 0.64$ Hz, 1H). 13 C NMR (75 MHz, acetoned₆): δ 53.3 (CH₃), 98.1 (C_{quat}), 116.3 (C_{quat}), 121.0 (CH), 128.0 (CH), 129.3 (CH), 129.4 (CH), 129.9 (CH), 130.5 (CH), 130.7 (CH), 131.4 (CH), 136.6 (C_{quat}), 138.7 (CH), 139.3 (C_{quat}), 141.7 (C_{quat}), 146.1 (C_{quat}), 146.9 (CH), 152.2 (C_{quat}), 163.8 (C_{quat}). MS(EI) *m/z*. 372 ([M + H]⁺, 27), 371 ($[M]^+$, 100), 340 ($[M - CH_3O]^+$, 3), 338 (15), 312 ($[M - C_2H_3O_2]^+$, 8), 310 (13), 293 (13), 278 (11), 277 (10), 271 (12), 58 (10). IR: $\tilde{\nu}$ [cm⁻¹] = 2949 (w), 2868 (w), 1719 (w), 1622 (w), 1599 (w), 1557 (m), 1497 (w), 1472 (w), 1460 (w), 1447 (w), 1427 (m), 1391 (w), 1369 (w), 1317 (m), 1287 (w), 1254 (m), 1211 (w), 1182 (m), 1109 (w), 1090 (w), 1078 (w), 1053 (w), 1020 (w), 991 (w), 962 (w), 933 (w), 903 (w), 828 (s), 804 (m), 772 (m), 758 (m), 741 (w), 702 (m), 664 (w). Anal. calcd. for C₂₃H₁₇NO₂S (371.5): C 74.37, H 4.61, N 3.77, S 8.63; Found: C 74.18, H 4.65, N 3.77, S 8.43.

2.8 General procedure 4 (GP4) for the preparation of DSSC-dyes 7 via twofold Suzuki-Lithiation-Formylation-Knoevenagel sequence (S²LiForK) and saponification

In a flame-dried Schlenk vessel with magnetic stir bar under nitrogen atmosphere were filled pinacol ester **2c** or **2d** (2.10 eq.), thiophene derivative **5c** or **5d** (1.00 eq.), cesium fluoride (6.00 eq.), bis(dibenzlidene-acetone)palladium(0) (5 mol%) and tri-*tert*-butylphosphonium tetrafluoroborate (10 mol%) or S-Phos (10 mol%) as ligand instead and dissolved in dry THF (8 mL/mmol). The reaction mixture was stirred at 70 °C until full conversion of the starting

materials could be observed via TLC. Then the reaction mixture was cooled slowly to ambient temperature and then to -78 °C (isopropanol/dry ice). To the cooled, viscous reaction mixture was dropped *n*-butyllithium (2.00 eq., 1.6 M in hexane). Vigorous stirring was continued at -78 °C for 2 h. Then dry DMF (2.00 eq.) was added and the stirring was continued at -78 °C for another 90 min. Then, the reaction mixture was stirred at ambient temperature for 30 min. Acetic acid (15.00 eq.) was added and stirring at ambient temperature for another 15 min followed. Then methyl 2-cyanoacetate (4a) (2.00 eq.) was added. The reaction mixture was stirred at ambient temperature overnight. The next day volatiles were removed by evaporation and the intense coloured crude products were purified by flash column chromatography. The isolated methyl esters were saponificated directly. In a Schlenk vessel with magnetic stir bar under nitrogen atmosphere were dissolved the ester and lithium hydroxide (10.00 eq.) in a 5:1 THF/H₂O mixture. The reaction mixture was stirred at ambient temperature until full conversion of the ester could be observed via TLC. Then the mixture was acidified (pH \approx 2) using hydrochloric acid (1 M). The organic layer was separated and the aqueous phase was extracted with dichloromethane three times. The combined organic phases were dried with anhydrous magnesium sulfate. The volatiles were removed by evaporation and the crude product was purified by flash column chromatography. For Experimental details see table 4.

5	2	Ligand	t _{Suzuki}	t _{Knoev.}	t _{sapon.}	Yield 7
[mg] (mmol)	[mg] (mmol)		[h]	[h]	[h]	[mg] (%)
5c	2c ^a	HP ^t Bu ₃ BF ₄				7a
557 (1.08)	688 (2.26)		5.5	13	2	374 (43)
5d	2c ^a	S-Phos				7b
200 (0.410)	271 (0.890)		16	19	24	127 (40)
5d	2d ^b	S-Phos				7c
243 (0.500)	659 (1.05)		17	16	4	156 (22)

Table 4: Experimental details GP4.

a: 4,4,5,5-tetramethyl-2-(4-(hexyloxy)phenyl)-1,3-dioxolane; b: 9,9-dihexyl-*N*,*N*-diphenyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9*H*-fluoren-2-amine.

2.8.1 3-(5-(4-(3,7-Bis(4-(hexyloxy)phenyl)-10*H*-phenothiazin-10-yl)phenyl)thiophen-2yl)-2-cyanoacrylic acid (7a)

The crude product was synthesized following **GP4**. The ester intermediate was purified by flash column chromatography (n-hexane/ethyl acetate 6:1). The acid was purified by flash chromatography gradient elution column using (dichloromethane \rightarrow dichloromethane/methanol 20:1), which led to 374 mg (0.460 mmol, 43%) of the product 7a in form of a dark red solid. Mp.: 125 °C. R_f (dichloromethane /methanol 10:1) = 0.28. ¹H NMR (600 MHz, THF-d₈): δ 0.89 - 0.95 (m, 6H), 1.33 - 1.40 (m, 8H), 1.44 - 1.53 (m, 4H), 1.74 - 1.80 (m, 4H), 3.97 (t, ${}^{3}J_{HH}$ = 6.48 Hz, 4H), 6.49 (d, ${}^{3}J_{HH}$ = 8.56 Hz, 2H), 6.88 - 6.94 (m, 4H), 7.16 (dd, ${}^{3}J_{HH} = 8.61$ Hz, ${}^{4}J_{HH} = 2.20$ Hz, 2H), 7.35 (d, ${}^{4}J_{HH} = 2.16$ Hz, 2H), 7.42 - 7.47 (m, 4H), 7.48 -7.52 (m, 2H), 7.66 (d, ${}^{3}J_{HH}$ = 4.00 Hz, 1H), 7.91 (d, ${}^{3}J_{HH}$ = 4.01 Hz, 1H), 8.00 - 8.04 (m, 2H), 8.39 (s, 1H). ¹³C NMR (150 MHz, Acetone-d₆): δ 14.4 (CH₃), 23.6 (CH₂), 26.8 (CH₂), 30.3 (CH₂), 32.6 (CH₂), 68.6 (CH₂), 101.0 (C_{quat}), 115.5 (CH), 116.7 (C_{quat}), 118.8 (CH), 123.6 (C_{quat}), 125.5 (CH), 125.7 (CH), 125.8 (CH), 127.1 (C_{quat}), 128.1 (CH), 129.5 (CH), 130.3 (CH), 132.8 (C_{quat}), 132.9 (C_{quat}), 136.8 (C_{quat}), 137.0 (C_{quat}), 140.0 (C_{quat}), 143.0 (C_{quat}), 143.9 (C_{quat}), 146.6 (CH), 153.2 (C_{quat}), 159.9 (C_{quat}). MS(ESI-HRMS) m/z: Calcd. for $C_{50}H_{48}N_2O_4S_2$: 804.3050, Found: 804.3045 ([M]⁺). IR: $\tilde{\nu}$ [cm⁻¹] = 3032 (w), 3024 (w), 2951 (w), 2926 (w), 2857 (w), 2222 (w), 1719 (w), 1686 (w), 1607 (m), 1570 (s), 1516 (w), 1491 (m), 1464 (s), 1439 (m), 1412 (s), 1385 (m), 1356 (w), 1307 (m), 1283 (m), 1256 (s), 1236 (s), 1221 (s), 1198 (s), 1175 (s), 1111 (w), 1061 (m), 1047 (w), 1017 (m), 936 (w), 922 (w), 882 (w), 802 (s), 762 (m), 745 (w), 729 (m), 718 (w), 698 (w), 677 (w), 640 (m), 631 (m).

2.8.2 3-(5-(4-(Bis(4'-(hexyloxy)-[1,1'-biphenyl]-4-yl)amino)phenyl)thiophen-2-yl)-2cyanoacrylic acid (7b)

The crude product was synthesized following **GP4**. The ester intermediate was purified by flash column chromatography (n-hexane/ethyl acetate 5:1). The acid was purified by flash chromatography using gradient elution (dichloromethane column \rightarrow dichloromethane/methanol 10:1), which led to 127 mg (0.160 mmol, 40%) of the product 7b in form of a dark red solid. Mp.: 95 °C. R_f (dichloromethane /methanol 10:1) = 0.13. ¹H NMR (300 MHz, CDCl₃): δ 0.88 - 0.95 (m, 6H), 1.30 - 1.42 (m, 8H), 1.42 - 1.54 (m, 4H), 1.75 - 1.88 (m, 4H), 4.00 (t, ${}^{3}J_{HH}$ = 6.57 Hz, 4H), 6.92 - 7.01 (m, 4H), 7.09 - 7.17 (m, 2H), 7.17 - 7.24 (m, 4H), 7.34 (d, ${}^{3}J_{HH}$ = 3.88 Hz, 1H), 7.46 - 7.55 (m, 8H), 7.55 - 7.62 (m, 2H), 7.77 (d, ${}^{3}J_{HH}$ = 3.90 Hz, 1H), 8.32 (s, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 14.2 (CH₃), 22.8 (CH₂), 25.9 (CH₂), 29.4 (CH₂), 31.8 (CH₂), 68.3 (CH₂), 93.2 (C_{quat.}), 106.0 (C_{quat.}), 115.0 (CH), 122.3 (CH), 123.51 (CH), 123.53 (CH), 125.6 (CH), 125.7 (C_{quat}), 127.6 (CH), 127.7 (CH), 127.8 (CH), 127.9 (CH), 132.8 (C_{quat.}), 133.8 (C_{quat.}), 136.8 (C_{quat.}), 140.5 (C_{quat.}), 145.4 (C_{quat.}), 149.5 (C_{quat.}), 156.5 (C_{quat.}), 158.8 (C_{quat.}). MS(ESI-HRMS) *m*/*z*: Calcd. for C₅₁H₅₂N₂O₄S: 774.3491, Found: 774.3486 ([M]⁺). IR: $\tilde{\nu}$ [cm⁻¹] = 3032 (w), 2949 (w), 2926 (w), 2857 (w), 2216 (w), 1684 (w), 1595 (m), 1574 (s), 1559 (s), 1516 (w), 1493 (s), 1472 (m), 1427 (m), 1410 (m), 1354 (w), 1323 (m), 1283 (s), 1244 (s), 1221 (s), 1175 (s), 1110 (m), 1096 (m), 1063 (m), 1036 (m), 1015 (m), 999 (m), 959 (w), 936 (m), 847 (w), 818 (s), 806 (s), 762 (m), 725 (m), 718 (m), 691 (m), 679 (m), 635 (m).

2.8.3 3-(5-(4-(Bis(4-(7-(diphenylamino)-9,9-dihexyl-9*H*-fluoren-2-yl)phenyl)amino) phenyl)thiophen-2-yl)-2-cyanoacrylic acid (7c)

The crude product was synthesized following **GP4**. The ester intermediate was purified by flash column chromatography (n-hexane/ethyl acetate 6:1). The acid was purified by flash column chromatography using gradient elution (dichloromethane \rightarrow dichloromethane/methanol 10:1), which led to 156 mg (0.110 mmol, 22%) of the product 7c in form of a dark red solid. Mp.: 140 °C. R_f (dichloromethane /methanol 10:1) = 0.29. ¹H NMR (300 MHz, CDCl₃): δ 0.63 - 0.76 (m, 8H), 0.80 (t, ${}^{3}J_{HH}$ = 6.93 Hz, 12H), 1.01 - 1.11 (m, 16H), 1.11 - 1.22 (m, 8H), 1.81 - 2.03 (m, 8H), 6.97 - 7.07 (m, 6H), 7.10 - 7.17 (m, 10H), 7.18 - 7.26 (m, 7H), 7.26 - 7.32 (m, 7H), 7.38 (d, ${}^{3}J_{HH}$ = 4.04 Hz, 1H), 7.51 - 7.70 (m, 14H), 7.97 (d, ${}^{3}J_{HH}$ = 4.03 Hz, 1H), 8.34 (s, 1H). ¹³C NMR (150 MHz, CDCl₃): δ14.2 (CH₃), 22.7 (CH₂), 23.9 (CH₂), 29.8 (CH₂), 31.7 (CH₂), 40.5 (CH₂), 55.3 (C_{ouat.}), 95.8 (C_{ouat.}), 116.1 (C_{ouat.}), 119.6 (CH), 120.5 (CH), 121.0 (CH), 122.58 (CH), 122.62 (CH), 123.6 (CH), 123.8 (CH), 123.92 (CH), 123.94 (CH), 125.6 (CH), 125.8 (CH), 126.0 (C_{quat.}), 127.7 (CH), 128.2 (CH), 129.3 (CH), 133.9 (C_{quat.}), 136.1 (C_{quat.}), 137.5 (C_{quat.}), 137.7 (C_{quat.}), 138.5 (C_{quat.}), 140.3 (C_{quat.}), 140.5 (CH), 145.8 (C_{quat.}), 147.2 (C_{quat.}), 147.9 (CH), 148.1 (C_{quat.}), 151.6 (C_{quat.}), 152.5 (C_{quat.}), 156.4 (C_{auat.}). MS(ESI-HRMS) *m/z*: Calcd. for C₁₀₀H₁₀₀N₄O₂S: 1420.7562, Found: 1420.7555 ([M]⁺). IR: $\tilde{\nu}$ [cm⁻¹] = 2926 (w), 2849 (w), 1715 (w), 1695 (w), 1568 (m), 1516 (w), 1489 (m), 1464 (m), 1456 (m), 1418 (m), 1319 (m), 1269 (m), 1219 (m), 1180 (m), 1063 (w), 1028 (w), 1011 (w), 876 (w), 814 (m), 748 (m), 725 (m), 694 (s), 665 (m), 605 (m).

2.9 1-Bromo-2,4-bis(hexyloxy)benzene (3e)

Compound **3e** is known in the literature ^[12], but was synthesized following another procedure:

In a Schlenk vessel with magnetic stir bar under nitrogen atmosphere resorcinol (13) (1.10 g, 10.0 mmol) was dissolved in DMF (50 mL) and cooled down to 0 °C (ice bath). Then N-bromosuccinimide (1.78 g, 10.0 mmol) was added portion wise and the reaction mixture was stirred at 0 °C for 2 h. Then the reaction mixture was stirred at ambient temperature for 23 h. The reaction was guenched by the addition of a saturated sodium thiosulfate solution (30 mL). The organic layer was separated and the aqueous phase was extracted with dichloromethane three times. The combined organic phases were dried with anhydrous magnesium sulfate. The volatiles were removed by evaporation, which led to crude 4-bromobenzene-1,3-diol (1.89 g, 10.0 mmol) in form of a yellowish oil. In a Schlenk vessel with magnetic stir bar under nitrogen atmosphere 4-bromobenzene-1,3-diol (1.89 g, 10.0 mmol), 1-bromohexane (3.38 mL, 24.0 mmol) and potassium carbonate (5.53 g, 40.0 mmol) were filled. The reagents were diluted with acetone (30 mL) and the resulting suspension was stirred at 50 °C for 18 h. Then the volatiles were removed by evaporation and the crude product was purified by flash column chromatography (n-hexane), which led to 1.60 g (4.49 mmol, 45%) of the product **3e** in form of a colorless oil. R_f (*n*-hexane): 0.28. ¹H NMR (300 MHz, CDCl₃): δ 0.86-0.96 (m, 6H), 1.29-1.40 (m, 8H), 1.41 - 1.53 (m, 4H), 1.69-1.88 (m, 4H), 3.92 (t, ${}^{3}J_{HH}$ = 6.56 Hz, ${}^{3}J_{HH}$ = 6.56 Hz, 2H), 3.98 (t, ${}^{3}J_{HH}$ = 6.53 Hz, ${}^{3}J_{HH}$ = 6.53 Hz, 2H), 6.37 (dd, ${}^{4}J_{HH}$ = 2.70 Hz, ${}^{3}J_{HH}$ = 8.69 Hz, 1H), 6.47 (d, ${}^{4}J_{HH}$ = 2.69 Hz, 1H), 7.37 (d, ³J_{HH}= 8.68 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 14.1 (CH₃), 22.7 (CH₂), 25.8 (CH₂) 25.9 (CH₂), 29.2 (CH₂), 29.4 (CH₂), 31.7 (CH₂), 31.8 (CH₂), 68.6 (CH₂), 69.4 (CH₂), 101.8 (CH), 103.1 (C_{quat}), 106.9 (CH), 133.2 (CH), 156.4 (C_{quat}), 159.9 (C_{quat}). MS(EI) m/z (%): 358 ([⁸¹Br-M]⁺, 19), 356 ([⁷⁹Br-M]⁺, 18), 274 ([⁸¹Br-M - C₆H₁₃]⁺, 16), 272 ([⁷⁹Br-M - C₆H₁₃]⁺, 17), 190 $([^{81}Br-M - C_{12}H_{26}]^+, 99), 188 ([^{79}Br-M - C_{12}H_{26}]^+, 100), 55 (17).$ IR: $\tilde{\nu} [cm^{-1}] = 2953$ (w), 2928 (m), 2870 (w), 2859 (w), 1578 (m), 1487 (m), 1468 (m), 1427 (w), 1416 (w), 1379 (w), 1304 (m), 1281 (m), 1254 (w), 1182 (s), 1138 (m), 1121 (w), 1055 (m), 1018 (m), 934 (w), 907 (w), 833 (w), 820 (w), 783 (w), 760 (w), 725 (w), 687 (w), 644 (w), 624 (w).

2.10 General procedure 5 (GP5) for the synthesis of thiophens 8 via Suzuki-Lithiation-Borylation-Suzuki sequence (SLiBS)

In a flame-dried Schlenk vessel with magnetic stir bar under nitrogen atmosphere were filled 4,4,5,5-Tetramethyl-2-(thiophen-2-yl)-1,3,2-dioxaborolane (**2a**) (1.00 eq.), aryl halide **3** (1.05 eq.), cesium fluoride (3.00 eq.), bis(dibenzylideneacetone)palladium(0) (5 mol%) and tri-*tert*-butyl-phosphonium tetrafluoroborate (10 mol%) and dissolved in dry THF (8 mL/mmol). The reaction mixture was stirred at 70 °C until full conversion of the starting materials could be observed via TLC. Then, the reaction mixture was cooled slowly to ambient temperature and then to -78 °C (isopropanol/dry ice). To the cooled, viscous reaction mixture was dropped *n*-butyllithium (2.00 eq., 1.6 M in hexane). Vigorous stirring was continued at -78 °C for 2 h. Then, trimethyl borate (2.00 eq.) was added and the stirring was continued at ambient temperature for 30 min. Then, another aryl halide **3** (1.20 eq.) and a second portion of cesium fluoride (3.00 eq.) were added. The reaction mixture was stirred at 70 °C overnight. The next day volatiles were removed by evaporation and the crude product was purified by flash column chromatography. For Experimental details see table 5.

2a	1 st Aryl halide 3	2 nd Aryl halide 3	t _{Suzuki 1}	t _{Suzuki 2}	Yield 8
[mg] (mmol)	[mg] (mmol)	[mg] (mmol)	[h]	[h]	[mg] (%)
					•
	I	I			8a
105 (0.500)			2	18	104 (70)
	3a 123 (0.530)	3a 140 (0.600)			
					8b
105 (0.500)	OMe	Br	2	23.5	125 (86) ^a
	3a 123 (0.530)	3f 109 (0.600)			
		Br. S			8c
105 (0.500)	I—OMe		1.5	18	108 (79)
	3a 123 (0.530)	3g 101 (0.620)			
			15	16	84
110 (0.520)	Br — F	Br————————————————————————————————————	1.0	10	84 (60)
- (3c 96.0 (0.550)	3f 113 (0.620)			- ()
	()				

 Table 5: Experimental details GP5.

2a	1 st Aryl halide 3	2 nd Aryl halide 3	t _{Suzuki 1}	t _{Suzuki 2}	Yield 8
[mg] (mmol)	[mg] (mmol)	[mg] (mmol)	[h]	[h]	[mg] (%)
105 (0.500)	оме За 123 (0.530)	Br NO ₂ 3h 121 (0.600)	1.5	18	8e 127 (82)
105 (0.500)	I—ОМе 3a 123 (0.530)	I → CO ₂ Me 3i 157 (0.600)	1.5	16	8f 35 (22)
105 (0.500)	Br F 3c 92.0 (0.530)	IOMe 3a 140 (0.600)	1.5	17.5	8g 137 (96)
105 (0.500)	I—ОМе 3a 123 (0.530)	Br F 3c 104 (0.600)	1	18.5	8g 134 (94)
105 (0.500)	BrNMe ₂ 3d 105 (0.520)	BrCN 3f 109 (0.600)	1.5	18	8h 48 (36)
105 (0.500)	оме 3а 123 (0.530)	Me 3j 131 (0.600)	2	18	8i 123 (87)
94.0 (0.450)	HexO Br OHex 3e 167 (0.470)	Br S CO ₂ Me NC 3k 147 (0.540)	17	20.5	8j 123 (36)
94.0 (0.450)	HexO Br OHex 3e 169 (0.470)	I → CO₂Me 3i 142 (0.540)	2	18	8k 176 (79)

a: Tetrakis(triphenylphosphine)palladium(0) was used as catalyst.

2.10.1 2,5-Bis(4-methoxyphenyl)thiophene (8a) ^[13]

The crude product was synthesized following **GP5** and purified by flash column chromatography (*n*-hexane/ethyl acetate 10:1, which led to 104 mg (0.351 mmol, 70%) of the product **8a** in form of a yellow solid. Mp.: 218 °C. R_f (*n*-hexane/ethyl acetate 20:1): 0.43. ¹H NMR (600 MHz, DMSO-d₆, 373 K): δ 3.81 (s, 6H), 6.99 (d, ³J_{HH} = 8.64 Hz, 4H), 7.28 (s, 2H), 7.57 (d, ³J_{HH} = 8.65 Hz, 4H). ¹³C NMR (150 MHz, DMSO-d₆, 373 K): δ 54.9 (CH₃), 114.3 (CH), 122.9 (CH), 126.1 (CH), 126.2 (C_{quat}), 141.4 (C_{quat}), 158.7 (C_{quat}). MS(EI) m/z (%): 297 ([M + H]⁺, 20), 296 ([M]⁺, 100), 282 ([M - CH₃ + H]⁺, 14), 281 ([M - CH₃]⁺, 73), 266 ([M - OCH₃]⁺, 10), 238 (13), 210 (25), 148 (11). IR: $\tilde{\nu}$ [cm⁻¹] = 3013 (w), 2957 (w), 2914 (w), 2839 (w), 1605 (w), 1493 (m), 1456 (w), 1439 w), 1412 (w), 1296 (w), 1281 (w), 1248 (m), 1180 (m), 1153 (w), 1018 (m), 968 (w), 831 (s), 793 (s), 637 (m), 617 (m).

2.10.2 4-(5-(4-Methoxyphenyl)thiophen-2-yl)benzonitrile (8b) ^[14]

The crude product was synthesized following **GP5** with the exception that tetrakis(triphenylphosphine)palladium(0) was used as catalyst and purified by flash column chromatography (*n*-hexane/ethyl acetate 10:1), which led to 125 mg (0.430 mmol, 86%) of the product **8b** in form of a light yellow solid. Mp.: 160 °C. R_f (*n*-hexane/ethyl acetate 10:1): 0.23. ¹H NMR (600 MHz, acetone-d₆): δ 3.85 (s, 3H), 7.00-7.04 (m, 2H), 7.41 (d, ³*J*_{HH}= 3.84 Hz, 1H), 7.65 (d, ³*J*_{HH}= 3.90 Hz, 1H), 7.65-7.68 (m, 2H), 7.79-7.82 (m, 2H), 7.87-7.90(m, 2H). ¹³C NMR (75 MHz, acetone-d₆): δ 55.8 (CH₃), 111.1 (C_{quat}), 115.4 (CH), 119.3 (C_{quat}), 124.6 (CH), 126.5 (CH), 127.2 (C_{quat}), 127.7 (CH), 127.8 (CH), 133.7 (CH), 139.4 (C_{quat}), 140.6 (C_{quat}), 146.7 (C_{quat}), 160.9 (C_{quat}). MS(EI) m/z (%): 291 ([M]⁺, 10), 150 (10), 127 (16), 85 (11), 57 (12), 71 (15). IR: $\tilde{\nu}$ [cm⁻¹] = 3053 (w), 3026 (w), 2965 (w), 2839 (w), 2230 (w), 1599 (w), 1537 (w), 1495 (w), 1452 (w), 1435 (w), 1398 (w), 1294 (w), 1277 (w), 1252 (w), 1177 (m), 1142 (w), 1126 (w), 1113 (w), 1070 (w), 1024 (m), 939 (w), 849 (w), 829 (m), 820 (w), 799 (s), 743 (w), 719 (w), 704 (w), 679 (w).

2.10.3 5-(4-Methoxyphenyl)-2,2'-bithiophene (8c) ^[15]

The crude product was synthesized following **GP5** and purified by flash column chromatography (*n*-hexane/ethyl acetate 20:1), which led to 108 mg (0.397 mmol, 79%) of the product **8c** in form of a beige solid. Mp.: 153-155 °C. R_f (*n*-hexane/ethyl acetate 20:1): 0.37. ¹H NMR (600 MHz, CDCl₃): δ 3.84 (s, 3H), 6.90-6.94 (m, 2H), 7.03 (dd, ³*J*_{HH}= 3.55 Hz, ³*J*_{HH}= 5.09 Hz, 1H), 7.10-7.13 (m, 2H), 7.18 (dd, ⁴*J*_{HH}= 1.18 Hz, ³*J*_{HH}= 3.59 Hz, 1H), 7.21 (dd, ⁴*J*_{HH}= 1.16 Hz, ³*J*_{HH}= 5.10 Hz, 1H), 7.51-7.55 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 55.5 (CH₃), 114.5 (CH), 122.8 (CH), 123.5 (CH), 124.3 (CH), 124.7 (CH), 127.0 (CH), 127.1 (C_{quat}), 127.9 (CH) 135.8 (C_{quat}), 137.7 (C_{quat}), 143.3 (C_{quat}), 159.4 (C_{quat}). MS(EI) m/z (%): 273 ([M + H]⁺, 18), 272 ([M]⁺, 100), 259 (10), 258 (16), 257 ([M - CH₃]⁺, 98), 229 (41), 136 (10). IR: $\tilde{\nu}$ [cm⁻¹] = 3098 (w), 3082 (w), 3067 (w), 2835 (w), 1601 (w), 1572 (w), 1522 (w), 1495 (w), 1460 (w), 1429 (w), 1417 (w), 1364 (w), 1312 (w), 1287 (w), 1265 (w), 1244 (m), 1223 (w), 1180 (m), 1113 (w), 1067 (w), 1049 (w), 1030 (m), 957 (w), 885 (w), 831 (m), 826 (s), 797 (s), 691 (m), 640 (w).

2.10.4 4-(5-(4-Fluorophenyl)thiophen-2-yl)benzonitrile (8d) ^[14]

The crude product was synthesized following **GP5** and purified by flash column chromatography (*n*-hexane/ethyl acetate 10:1), which led to 84 mg (0.30 mmol, 60%) of the product **8d** in form of a yellow solid. Mp.: 162 °C. R_f (*n*-hexane/ethyl acetate 10:1): 0.42. ¹H NMR (300 MHz, CDCl₃): δ 7.07-7.15 (m, 2H), 7.25 (d, ³J_{HH}= 3.97 Hz, 1H), 7.39 (d, ³J_{HH}= 3.87, 1H), 7.56-7.63 (m, 2H), 7.63-7.72 (m, 4). ¹³C NMR (75 MHz, CDCl₃): δ 110.6 (C_{quat}), 116.2 (d, ²J_{CF}= 22.02 Hz, CH), 118.9 (C_{quat}), 124.5 (d, ⁵J_{CF}= 1.24 Hz, CH), 125.8 (CH), 126.2 (CH), 127.6 (d, ³J_{CF}= 8.10 Hz, CH), 130.1 (d, ⁴J_{CF}= 3.40 Hz, C_{quat}), 132.9 (CH), 138.5 (C_{quat}), 141.1 (d, ⁶J_{CF}= 2.29 Hz, C_{quat}), 145.0 (C_{quat}), 162.8 (d, ¹J_{CF}= 248.51 Hz, C_{quat}) MS(EI) m/z (%): 280 ([M + H]⁺, 19), 279 ([M]⁺, 100), 207 (13), 146 (14), 139 (14), 131 (12), 129 (19), 128 (11), 117 (46), 115 (11), 105 (10), 103 (18), 91 (40), 85 (13), 77 (12), 57 (10). IR: $\tilde{\nu}$ [cm⁻¹] = 2218 (w), 1061 (m), 1543 (w), 1495 (m), 1450 (m), 1412 (w), 1339 (w), 1300 (w), 1275 (w), 1227 (m), 1177 (w), 1161 (m), 1123 (w), 1099 (w), 1069 (w), 1013 (w), 945 (w), 829 (m), 793 (s).

2.10.5 2-(4-Methoxyphenyl)-5-(4-nitrophenyl)thiophene (8e) ^[16]

The crude product was synthesized following **GP5** and purified by flash column chromatography (*n*-hexane/ethyl acetate 5:1), which led to 127 mg (0.408 mmol, 82%) of the product **8e** in form of an orange solid. Mp.: 151 °C. R_f (*n*-hexane/ethyl acetate 5:1): 0.53. ¹H NMR (300 MHz, acetone-d₆): δ 3.85 (s, 3H), 6.98-7.06 (m, 2H), 7.44 (d, ³*J*_{HH}= 3,90 Hz, 1H), 7.63-7.73 (m, 3H), 7.91-7.97 (m, 2H), 8.24-8.31 (m, 2H). ¹³C NMR (75 MHz, acetone-d₆): δ 55.7 (CH₃), 115.4 (C_{quat}), 124.8 (C_{quat}), 125.3 (C_{quat}), 126.4 (C_{quat}), 127.1 (CH), 127.9 (C_{quat}), 128.5 (C_{quat}), 140.1 (CH), 141.4 (CH), 147.4 (CH), 147.5 (CH), 160.9 (CH). MS(EI) m/z (%): 311 ([M]⁺, 5), 296 ([M – CH₃]⁺, 1), 250 ([M – CH₃NO₂]⁺, 1). IR: $\tilde{\nu}$ [cm⁻¹] = 3098 (w), 3021 (w), 2959 (w), 2920 (w), 2837 (w), 2436 (w), 2359 (w), 1589 (m), 1501 (m), 1487 (m), 1439 (m), 1329 (s), 1317 (s), 1275 (m), 1246 (m), 1184 (m), 1150 (w), 1105 (s), 1069 (m), 1022 (m), 1009 (m), 963 (w), 851 (s), 829 (s), 799 (s), 748 (s), 689 (m), 673 (w).

2.10.6 Methyl 4-(5-(4-methoxyphenyl)thiophen-2-yl)benzoate (8f) ^[17]

The crude product was synthesized following **GP5** and purified by flash column chromatography (*n*-hexane/ethyl acetate 10:1), which led to 35 mg (0.11 mmol, 22%) of the product **8f** in form of a beige solid. Mp.: 220 °C. R_f (*n*-hexane/ethyl acetate 10:1): 0.25. ¹H NMR (600 MHz, CDCl₃): δ 3.85 (s, 3H), 3.93 (s, 3H), 6.91-6.96 (m, 2H), 7.21 (d, ³*J*_{HH}= 3.79 Hz, 1H), 7.38 (d, ³*J*_{HH}= 3.77, 1H), 7.55-7.58 (m, 2H), 7.66-7.69 (m, 2H), 8.02-8.05 (m, 2H). ¹³C-NMR (125 MHz, CDCl₃): δ 52.2 (CH₃), 55.6 (CH₃), 114.5 (CH), 123.4 (CH), 125.2 (CH), 125.6 (CH), 127.1 (C_{quat}), 127.3 (CH), 128.8 (C_{quat}), 130.5 (CH), 138.9 (C_{quat}), 141.3 (C_{quat}), 145.5 (C_{quat}), 159.8 (C_{quat}), 166.9 (C_{quat}). MS(MALDI-TOF) m/z (%): 324 ([M]⁺). IR: $\tilde{\nu}$ [cm⁻¹] = 2999 (w), 2951 (w), 2841 (w), 1705 (s), 1599 (m), 1499 (m), 1452 (m), 1427 (m), 1410 (w), 1287 (m), 1273 (s), 1249 (s), 1178 (s), 1111 (s), 1026 (m), 1014 (m), 962 (m), 939 (w), 852 (m), 831 (s), 799 (s), 768 (s), 696 (m).

2.10.7 2-(4-Fluorophenyl)-5-(4-methoxyphenyl)thiophene (8g) ^[18]

The crude product was synthesized following **GP5** and purified by flash column chromatography (*n*-hexane/ethyl acetate 10:1), which led to 137 mg (0.482 mmol, 96%) of the product **8g** in form of a beige solid, if 1-bromo-4-fluorobenzene (**3c**) was coupled first. If 4-iodoanisole (**3a**) was coupled first, the yield was 94% (see table 5). Mp.: 171 °C. R_f (*n*-hexane/ethyl acetate 10:1): 0.57. ¹H NMR (300 MHz, CDCl₃): δ 3.85 (s, 3H), 6.90-6.96 (m, 2H), 7.03-7.11 (m, 2H), 7.14-7.20 (m, 2H), 7.52-7.60 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 55.5 (CH₃), 114.6 (CH), 116.0 (d, ²*J*_{CF}= 21.86 Hz, CH), 123.1 (CH), 124.1 (d, ⁵*J*_{CF}= 0.93 Hz, CH), 127.1 (CH), 127.4 (d, ³*J*_{CF}= 8.15 Hz, CH), 130.9 (d, ⁴*J*_{CF}=3.36 Hz, C_{quat}), 141.7 (C_{quat}), 143.9 (C_{quat}), 159.6 (C_{quat}), 162.4 (d, ¹*J*_{CF}= 247.27 Hz, C_{quat}). MS(EI) m/z (%): 285 ([M + H]⁺, 19), 284 ([M]⁺, 100), 270 (14), 269 ([M - CH₃]⁺, 86), 240 (45), 239 (13). IR: $\tilde{\nu}$ [cm⁻¹] = 3011 (w), 2957 (w), 2918 (w), 2839 (w), 1601 (w), 1491 (m), 1456 (m), 1439 (w), 1406 (w), 1292 (m), 1275 (w), 1242 (m), 1180 (m), 1159 (m), 1115 (m), 1099 (m), 1072 (m), 1032 (m), 1011 (m), 970 (w), 955 (w), 939 (w), 833 (s), 810 (m), 795 (s), 762 (w), 743 (w), 700 (w), 633 (m), 617 (m).

2.10.8 4-(5-(4-(Dimethylamino)phenyl)thiophen-2-yl)benzonitrile (8h) ^[17]

The crude product was synthesized following **GP5** and purified by flash column chromatography (*n*-hexane/ethyl acetate 10:1) and recrystallization from acetone, which led to 48 mg (0.16 mmol, 36%) of the product **8h** in form of a yellow solid. Mp.: 272 °C. R_f (*n*-hexane): 0.38. ¹H NMR (300 MHz, CDCl₃): δ 3.02 (s, 6H), 7.17 (d, ³J_{HH}=3.84 Hz, 1H), 7,37 (d, ³J_{HH}=3.86 Hz, 1H), 7.51-7.55 (m, 2H), 7.62-7.69 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 40.9 (CH₃), 43.7 (CH₃), 100.2 (C_{quat}), 110.1 (C_{quat}), 113.3 (C_{quat}), 119.1 (C_{quat}), 122.5 (CH, 125.6 (CH), 125.9 (CH), 126.3 (CH), 127.1 (CH), 132.8 (CH), 132.9 (C_{quat}), 139.1 (C_{quat}), 147.3 (C_{quat}). MS(EI) m/z (%): 305 ([M + H]⁺, 22), 304 ([M]⁺, 100), 303 ([M]⁺, 33), 289 (13), 288 (17), 261 (6), 151 (19), 143 (18). IR: $\tilde{\nu}$ [cm⁻¹] = 2990 (w), 2893 (w), 2806 (w), 2357 (w), 2220 (w), 1597 (m), 1491 (m), 1356 (w), 1325 (w), 1287 (w), 1256 (w), 1223 (m), 1198 (w), 1177 (w), 1123 (w), 1111 (w), 1065 (m), 937 (w), 835 (m), 810 (m), 795 (s), 756 (w), 719 (w).

2.10.9 2-(4-Methoxyphenyl)-5-(p-tolyl)thiophene (8i)^[19]

The crude product was synthesized following **GP5** and purified by flash column chromatography (*n*-hexane/ethyl acetate 20:1), which led to 123 mg (0.439 mmol, 87%) of the product **8i** in form of a colourless solid. Mp.: 172 °C. R_f (*n*-hexane/ethyl acetate 20:1): 0.43. ¹H NMR (300 MHz, CDCl₃): δ 2.37 (s, 3H), 3.84 (s, 3H), 6.90-6.96 (m, 2H), 7.15-7.24 (m, 4H), 7.45-7.62 (m, 4H). ¹³C NMR (150 MHz, CDCl₃): δ 21.3 (CH₃), 55.5 (CH₃), 114.4 (CH), 123.0 (CH), 123.6 (CH), 125.6 (CH), 127.0 (CH), 127.4 (C_{quat}), 129.7 (CH), 131.8 (C_{quat}), 137.3 (C_{quat}), 142.9 (C_{quat}), 143.2 (C_{quat}), 159.3 (C_{quat}). MS(EI) m/z (%): 281 ([M + H]⁺, 6), 280 ([M]⁺, 30), 265 ([M – CH₃]⁺, 27), 237 (10), 131 (10), 127 (18), 85 (11), 71 (16), 57 (13). IR: $\tilde{\nu}$ [cm⁻¹] = 3075 (w), 2957 (w), 2911 (w), 2855 (w), 2839 (w), 2721 (w), 1607 (w), 1543 (w), 1495 (m), 1468 (w), 1456 (m), 1441 (w), 1414 (w), 1377 (w), 1290 (w), 1273 (w), 1248 (m), 1180 (m), 1125 (w), 1113 (w), 1070 (w), 1030 (m), 970 (w), 939 (w), 829 (s), 795 (s), 681 (w), 633 (w), 617 (m).

2.10.10 Methyl 3-(5'-(2,4-bis(hexyloxy)phenyl)-[2,2'-bithiophen]-5-yl)-2-cyano-acrylate (8j)

The crude product was synthesized following **GP5** and purified by flash column chromatography (*n*-hexane/ethyl acetate 8:1) and recrystallization from *n*-hexane, which led to 91 mg (0.16 mmol, 36%) of the product **8j** in form of red crystals. Mp.: 109 °C. R_f (*n*-hexane/ethyl acetate 8:1): 0.32. ¹H NMR (300 MHz, CDCl₃): δ 0.87-0.98 (m, 6H), 1.33-1.55 (m, 10H), 1.43-1.51 (m, 2H), 1.77-1.83 (m, 2H), 1.93 (dq, ⁴J_{HH}= 6.52 Hz, ⁴J_{HH}= 6.52 Hz, ⁴J_{HH}= 6.42 Hz, ³J_{HH}= 8.28 Hz, 2H), 3.91 (s, 3H), 3.99 (t, ³J_{HH}= 6.54 Hz, 2H), 4.09 (t, ³J_{HH}= 6.45 Hz, 2H), 6.50-6.56 (m, 2H), 7.22 (d, ³J_{HH}= 4.08 Hz, 1H), 7.36 (d, ³J_{HH}= 3.79 Hz, 2H), 7.57 (d, ³J_{HH}= 9.19 Hz, 1H), 7.67 (d, ³J_{HH}= 4.08 Hz, 1H), 8.25 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 14.1 (CH₃), 14.2 (CH₃), 22.7 (CH₂), 22.8 (CH₂), 25.9 (CH₂), 26.1 (CH₂), 29.3 (CH₂), 29.4 (CH₂), 31.6 (CH₂), 31.7 (CH₂), 53.2 (CH₃), 68.5 (CH₂). 69.2 (CH₂), 96.5 (C_{quat}), 100.2 (CH), 106.3 (CH), 115.6 (C_{quat}), 116.4 (C_{quat}), 123.8 (CH), 125.0 (CH), 126.7 (CH), 128.9 (CH),

133.7 (C_{quat}), 133.9 (C_{quat}), 139.4 (CH), 143. (C_{quat}), 146.5 (CH), 149.1 (C_{quat}), 156.6 (C_{quat}), 160.7 (C_{quat}), 163.9 (C_{quat}). MS(EI) m/z (%): 552 ([M + H]⁺, 32), 551 ([M]⁺, 100), 467 ([M - C₆H₁₂]⁺, 32), 466 ([M - C₆H₁₃]⁺, 10), 384 ([M - C₁₂H₂₅]⁺, 17), 383 ([M - C₁₂H₂₆]⁺, 71), 382 ([M - C₁₂H₂₇]⁺, 18). IR: $\tilde{\nu}$ [cm-1] = 3649 (m), 3628 (m), 2924 (w), 2858 (w), 2210 (w), 1716 (w), 1604 (w), 1516 (m), 1554 (s), 1533 (w), 1506 (w), 1423 (m), 1373 (w), 1284 (w), 1251 (m), 1209 (m), 1178 (m), 1126 (w), 1055 (m), 1035 (w), 831 (w), 806 (m), 786 (s), 690 (w), 667 (w), 611 (s). Anal. calcd. for C₃₁H₃₇NO₄S₂ (551.8): C 72.84, H 7.74, S 6.48; Found: 72.98, H 7.47, S 6.77.

2.10.11 Methyl 4-(5-(2,4-bis(hexyloxy)phenyl)thiophen-2-yl)benzoate (8k)

The crude product was synthesized following GP5 and purified by flash column chromatography (n-hexane/ethyl acetate 20:1, which led to 176 mg (0.356 mmol, 79%) of the product **8k** in form of a light yellow solid. Mp.: 104 °C. R_f (*n*-hexane/ethyl acetate 20:1): 0.28. ¹H NMR (300 MHz, CDCl₃): δ 0.85-0.97 (m, 6H), 1.33-1.54 (m, 10H), 1.44-1.52 (m, 2H), 1.77-1.83 (m, 2H), 1.87-1.93 (m, 2H), 3.93 (s, 3H), 3.99 (t, ${}^{3}J_{HH}$ = 6.56 Hz, ${}^{3}J_{HH}$ = 6.56 Hz, 2H), 4.08 (t, ${}^{3}J_{HH}$ = 6.43 Hz, ${}^{3}J_{HH}$ = 6.43 Hz, 2H), 6.50-6.57 (m, 2H), 7.39 (q, ${}^{3}J_{HH}$ = 3.95 Hz, 2H), 7.55-7.60 (m, 1H), 7.65-7.71 (m, 2H), 8.00-8.06 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 13.9 (CH₃), 14.0 (CH₃), 22.4 (CH₂), 22.5 (CH₂), 25.6 (CH₂), 25.9 (CH₂), 29.1 (CH₂), 29.2 (CH₂), 31.4 (CH₂), 31.5 (CH₂), 51.9 (CH₃), 68.2 (CH₂), 68.9 (CH₂), 100.1 (CH), 105.8 (CH), 115.9 (C_{auat}), 124.2 (CH), 124.9 (CH), 125.0 (CH), 128.1 (C_{auat}), 128.7 (CH), 130.1 (CH), 139.2 (C_{quat}), 140.8 (C_{quat}), 141.2 (C_{quat}), 156.3 (C_{quat}), 159.9 (C_{quat}), 166.7 (C_{quat}). MS(EI) m/z (%): 495 ([M + H]⁺, 30), 494 ([M]⁺, 100), 410 ([M - C₆H₁₂]⁺, 16), 409 ([M - C₆H₁₃]⁺, 6), 327 ([M – $C_{12}H_{26}]^+$, 12), 326 ([M – $C_{12}H_{24}]^+$, 58), 325 ([M – $C_{12}H_{25}]^+$, 11), 55 (10). IR: \tilde{v} [cm⁻ ¹] = 2949 (w), 2926 (w), 2870 (w), 1712 (s), 1600 (m), 1573 (w), 1558 (w), 1537 (w), 1492 (w), 1467 (w), 1435 (m), 1303 (w), 1276 (s), 1255 (m), 1222 (w), 1182 (s), 1130 (m), 1107 (s), 1024 (m), 997 (w), 964 (w), 894 (w), 848 (w), 835 (m), 823 (w), 798 (m), 767 (s), 727. Anal. calcd. for C₃₀H₃₈O₄S (494.7): C 72.84, H 7.74, S 6.48; Found: C 72.98, H 7.47, S 6.77.

3 ¹H- and ¹³C-NMR spectra

Figure 2: ¹³C-NMR spectrum of 3k (CDCl₃, 293K, 75MHz).

140 130 120 110 ppm

60 50 40 30

Figure 4: ¹³C-NMR spectrum of **5a** (acetone-d₆, 293K, 75MHz).

180 170

-20000

--10000

-0

3.3 2-(3,5-Dibromophenyl)thiophene (5d)

Figure 5: ¹H-NMR spectrum of 5d (acetone-d₆, 293K, 300MHz).

Figure 6: ¹³C-NMR spectrum of 5d (acetone-d₆, 293K, 75MHz).

Figure 8: ¹³C-NMR spectrum of **11** (DMSO-d₆, 293K, 75MHz).

3.5 3,7-Dibromo-10-(4-(thiophen-2-yl)phenyl)-10*H*-phenothiazine (5c)

Figure 10: ¹³C-NMR spectrum of 5c (THF-d₈, 293K, 75MHz).

3.6 5-(4-Methoxyphenyl)thiophene-2-carbaldehyde (12)

Figure 12: ¹³C-NMR spectrum of 12 (CDCI₃, 293K, 75MHz).

3.7 2-Cyano-3-(5-(4-methoxyphenyl)thiophen-2-yl)acrylate (1a)

Figure 13: ¹H-NMR spectrum of 1a (acetone-d₆, 293K, 600MHz).

Figure 14: ¹³C-NMR spectrum of 1a (acetone-d₆, 293K, 150MHz).

Figure 15: ¹H-NMR spectrum of 1b (DMSO-d₆, 293K, 300MHz).

Figure 16: ¹³C-NMR spectrum of 1b (DMSO-d₆, 293K, 75MHz).

3.9 3-(5-(4-Methoxyphenyl)thiophen-2-yl)-2-(4-nitrophenyl)acrylonitrile (1c)

Figure 17: ¹H-NMR spectrum of 1c (DMSO-d₆, 353K, 600MHz).

Figure 18: ¹³C-NMR spectrum of 1c (DMSO-d₆, 353K, 150 MHz).

Figure 20: ¹³C-NMR spectrum of 1d (DMSO-d₆, 353K, 150MHz).

Figure 21: ¹H-NMR spectrum of **1e** (acetone-d₆ + 20% THF-d₈, 293K, 600MHz).

Figure 22: ¹³C-NMR spectrum of **1e** (DMSO-d₆ + 20% THF-d₈, 293K, 150MHz).

38

Figure 24: ¹³C-NMR spectrum of **6a** (DMSO-d₆ + 30% THF-d₈, 293K, 75MHz).

Figure 26: ¹³C-NMR spectrum of 6b (acetone-d₆, 293K, 75MHz).

Figure 28: ¹³C-NMR spectrum of 7a (THF-d₈, 293K, 75MHz).

160 150 140 130 120 110

100 90 80 70 60 50 40 30 20 10 0 -10

20 210 200 190 180 170

3.15 3-(5-(4-(Bis(4'-(hexyloxy)-[1,1'-biphenyl]-4-yl)amino)phenyl)thiophen-2-yl)-2cyanoacrylic acid (7b)

Figure 30: ¹³C-NMR spectrum of 7b (CDCI₃, 293K, 75MHz).

3.16 3-(5-(4-(Bis(4-(7-(diphenylamino)-9,9-dihexyl-9*H*-fluoren-2-yl)phenyl)amino) phenyl)thiophen-2-yl)-2-cyanoacrylic acid (7c)

Figure 32: ¹³C-NMR spectrum of 7c (CDCl₃, 293K, 150MHz).

Figure 33: ¹H-NMR spectrum of 3e (CDCl₃, 293K, 300MHz).

Figure 34: ¹³C-NMR spectrum of 3e (CDCI₃, 293K, 75MHz).

Figure 36: ¹³C-NMR spectrum of 8a (DMSO-d₆, 373K, 150MHz).

Figure 37: ¹H-NMR spectrum of 8b (actone-d₆, 293K, 600MHz).

Figure 38: ¹³C-NMR spectrum of 8b (actone-d₆, 293K, 75MHz).

3.20 5-(4-Methoxyphenyl)-2,2'-bithiophene (8c)

Figure 39: ¹H-NMR spectrum of 8c (CDCI₃, 293K, 600MHz).

Figure 40: ¹³C-NMR spectrum of 8c (CDCI₃, 293K, 75MHz).

3.21 4-(5-(4-Fluorophenyl)thiophen-2-yl)benzonitrile (8d)

Figure 41: ¹H-NMR spectrum of 8d (CDCl₃, 293K, 300MHz).

Figure 42: ¹³C-NMR spectrum of 8d (CDCI₃, 293K, 75MHz).

Figure 43: ¹H-NMR spectrum of 8e (acetone-d₆, 293K, 300MHz).

Figure 44: ¹³C-NMR spectrum of 8e (acetone-d₆, 293K, 75MHz).

Figure 45: ¹H-NMR spectrum of 8f (CDCl₃, 293K, 500MHz).

Figure 46: ¹³C-NMR spectrum of 8f (CDCI₃, 293K, 125MHz).

Figure 48: ¹³C-NMR spectrum of 8g (CDCl₃, 293K, 125MHz).

3.25 4-(5-(4-(Dimethylamino)phenyl)thiophen-2-yl)benzonitrile (8h)

Figure 49: ¹H-NMR spectrum of 8h (CDCl₃, 293K, 500MHz).

Figure 50: ¹³C-NMR spectrum of 8h (CDCl₃, 293K, 125MHz).

3.26 2-(4-Methoxyphenyl)-5-(p-tolyl)thiophene (8i)

Figure 51: ¹H-NMR spectrum of 8i (CDCl₃, 293K, 300MHz).

Figure 52: ¹³C-NMR spectrum of 8i (CDCI₃, 293K, 150MHz).

Figure 54: ¹³C-NMR spectrum of **8j** (CDCl₃, 293K, 125MHz).

Figure 56: ¹³C-NMR spectrum of 8k (CDCl₃, 293K, 125MHz).

4 Cyclovoltammetric data

Figure 57: Cyclic voltammograms of the dyes **7a-c** (0.1 m $[Bu_4N][PF_6]$, v = 100 mV/s, Ptworking, Ag/AgCI-reference and Pt-counter electrode, $[Me_{10}Fc]/[Me_{10}Fc]^+$ as an internal standard; $Me_{10}Fc =$ decamethylferrocene).

	$E_0^{0/+1}$ a	$E_0^{+1/+2}$ a
	[mV]	[mV]
7a	664	1264
7b	860	1348
7c	793	942

Table 6: Cyclovoltammetric data of the dyes 7a-c.

a: 0.1 M $[Bu_4N][PF_6]$, v = 100 mV/s, Pt-working-, Ag/AgCl-reference- and Pt-counter electrode, $[Me_{10}Fc]/[Me_{10}Fc]^+$ as internal standard ($Me_{10}Fc =$ decamethylferrocene).

5 Data of Quantum chemical calculations

The ground state geometries of the dyes **7a-c** were optimized using the Gaussian09 program package,^[20] the PBEh1PBE ^[21] and the 6-31G** basis set ^[22]. The optimized geometries were confirmed as minima by analytical frequency analyses. Excitation energies were calculated with TDDFT ^[23] methods implemented in the Gaussian09 program package using the same functional and basis set. The polarizable continuum model (PCM) with dichloromethane as a solvent was applied for the calculations each. ^[24]

Hexyl groups were trunctated to methyl groups in order to save computation time as alkyl side chains to not change the electronic structure of the π -system very much.

We performed several benchmark calculations on the excitation energies of compound **7b** (Table 7). The results should not only match the experimental data well, but also be as cheap as possible in terms of computational time due to the large atom number of **7c**, which we wanted to compare with the same functional and basis set. The PBEh1PBE functional gave the most balanced results and therefore was employed (Table 8). With cam-B3LYP we could obtain closer energies, but we needed larger basis sets for the calculations, so that the calculations on the UV/vis spectra of **7c** failed due to too high computational cost.

Functional	Basis set	Excitation energy	$\Delta E_{\text{DFT-exp.}}$
		[eV]	[eV]
B3LYP	6-31G(d,p)	2.084	-0.401
B3LYP	6-311G(d,p)	2.106	-0.379
B3LYP	6-311+G(d,p)	2.055	-0.430
cam-B3LYP	6-311G(d,p)	2.776	0.291
cam-B3LYP	6-311+G(d,p)	2.716	0.231
cam-B3LYP	6-311++G(d,p)	2.716	0.231
PBE1PBE	6-311G(d,p)	2.246	-0.239
PBE1PBE	6-311+G(d,p)	2.198	-0.287
PBEh1PBE	6-31G(d,p)	2.222	-0.263
2	-5		

Table 7 Comparison of the TDDFT calculated excitation energy corresponding to the longest wavelength absorption bands of **7b** varying functional and basis set.

^aRecorded in CH₂Cl₂, $c = 10^{-5}$ M, T = 293 K; ^b6-311G(d,p) was used instead.

Table 8 Comparison of the TDDFT calculated excitation energy corresponding to the longest wavelength
absorption bands of the dyes 7a-7c using B3LYP and PBEh1PBE.

dye	$\lambda_{ m abs}\left(arepsilon ight)^{ m a}$ [nm] ([Lmol ⁻¹ cm ⁻¹])	$\lambda_{ m abs,calcd}$ (oscillatory strength) ^b [nm]				
		PBEh1PBE/	∆ E _{DFT-exp.}	B3LYP/	⊿E _{DFT-exp.}	
		6-31G(d,p)	[eV]	6-31G(d,p)	[eV]	
7a	465 (11400)	494 (1.1231)	0.157	614 (1.1672) ^c	0.647	

7b	49	99 (30400	D)		55	58 (0	.922	28)		-0.26	63	595 (0.86	610)	0.40	1
7c	50	00 (2910	D)		57	7 (0	.709	94)		0.33	1	633 (0.48	896)	0.52	1
^a Recorded	in	CH ₂ Cl ₂ ,	С	=	10 ⁻⁵	м,	Т	=	293	K;	⁵pcm	(CH_2CI_2)	was	applied	each;
^c 6-311G(d,p) wa	as used ins	stea	d.											

5.1.1 Computed xyz-Coordinates of Compound 7a (PBEh1PBE/6-31G** PCM CH₂Cl₂)

Figure 58: Optimized ground state geometry of 7a (PBEh1PBE/6-31G** PCM CH₂Cl₂).

-2.88709	-0.90575	0.58170
-1.90454	-1.07447	-0.39998
-0.81569	-0.16266	-0.44449
-1.18468	1.20880	-0.40573
-2.08570	1.63807	0.57489
-2.72747	0.44505	1.72104
-3.96751	-1.77918	0.65857
-4.09354	-2.84397	-0.24127
-3.12495	-2.97712	-1.24728
-2.05652	-2.09622	-1.33764
-0.72311	2.12946	-1.34674
-1.09409	3.46400	-1.26207
-1.96508	3.91408	-0.25876
-2.47038	2.97314	0.64628
-5.23012	-3.78291	-0.14938
0.50519	-0.57796	-0.27254
-2.36178	5.33446	-0.17448
	-2.88709 -1.90454 -0.81569 -1.18468 -2.08570 -2.72747 -3.96751 -4.09354 -3.12495 -2.05652 -0.72311 -1.09409 -1.96508 -2.47038 -5.23012 0.50519 -2.36178	-2.88709 -0.90575 -1.90454 -1.07447 -0.81569 -0.16266 -1.18468 1.20880 -2.08570 1.63807 -2.72747 0.44505 -3.96751 -1.77918 -4.09354 -2.84397 -3.12495 -2.97712 -2.05652 -2.09622 -0.72311 2.12946 -1.09409 3.46400 -1.96508 3.91408 -2.47038 2.97314 -5.23012 -3.78291 0.50519 -0.57796 -2.36178 5.33446

С	-6.50612	-3.34928	0.24492
С	-7.56963	-4.23013	0.33132
С	-7.39111	-5.58455	0.02440
С	-6.13008	-6.03756	-0.36984
С	-5.07099	-5.13829	-0.45202
С	1.55515	0.35409	-0.16443
С	2.86105	-0.06431	0.00607
С	3.19918	-1.42431	0.08565
С	2.14474	-2.34810	0.00244
С	0.83455	-1.94330	-0.16758
С	-1.45695	6.35853	-0.49787
С	-1.82089	7.69117	-0.41903
С	-3.11208	8.04712	-0.01120
С	-4.02876	7.04456	0.31372
С	-3.64674	5.70899	0.22862
0	-8.48937	-6.36772	0.13721
С	-8.35546	-7.74189	-0.17320
0	-3.37483	9.37415	0.03569
С	-4.66495	9.77771	0.45479
С	4.56961	-1.87139	0.25694
С	5.01669	-3.11775	0.67619
С	6.40879	-3.21139	0.73626
С	7.06853	-2.04385	0.36503
S	5.90537	-0.81758	-0.07641
С	8.47502	-1.90523	0.35340
С	9.27589	-0.84469	0.02377
С	10.73725	-1.03313	0.11859
С	8.77536	0.41297	-0.40195
0	11.41581	0.06742	-0.23096
0	11.27504	-2.06341	0.47138
Ν	8.36164	1.44331	-0.75197
Н	-4.70757	-1.63721	1.44042
Н	-3.23015	-3.75843	-1.99339
Н	-1.33026	-2.19566	-2.13820
Н	-0.06972	1.79164	-2.14492
Н	-0.73163	4.16142	-2.01057
Н	-3.15655	3.28471	1.42801
Н	-6.67480	-2.29840	0.46187
Н	-8.55704	-3.88888	0.62527

Н	-5.95889	-7.08189	-0.60347
Н	-4.09147	-5.51282	-0.73539
Н	1.34720	1.41617	-0.19256
Н	3.63389	0.69343	0.10478
Н	2.35097	-3.41229	0.05676
Н	0.05836	-2.69653	-0.21378
Н	-0.44197	6.10674	-0.79161
Н	-1.11475	8.47956	-0.65904
Н	-5.03885	7.28876	0.62128
Н	-4.38229	4.94337	0.45838
Н	-9.34187	-8.18231	-0.02841
Н	-8.04292	-7.88981	-1.21342
Н	-7.63850	-8.23604	0.49268
Н	-4.66374	10.86735	0.43070
Н	-5.44248	9.40275	-0.22087
Н	-4.87968	9.43915	1.47501
Н	4.34834	-3.92290	0.95495
Н	6.94730	-4.09820	1.05226
Н	9.02418	-2.79525	0.65724
Н	12.35867	-0.13853	-0.14290

SCF Done: E(RPBEh1PBE) = -2745.65550123 A.U. after 1 cycles Sum of electronic and zero-point Energies= -2745.070724 Sum of electronic and thermal Energies= -2745.029869 Sum of electronic and thermal Enthalpies= -2745.028924 Sum of electronic and thermal Free Energies= -2745.150387

5.1.2 Computed Excitations of Compound 7a (PBEh1PBE/6-31G** PCM CH₂Cl₂)

Excited State 1: Singlet-A 2.5083 eV 494.30 nm f=1.1231 <S**2>=0.000

173 ->174 0.70148

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -2745.56332297

Copying the excited state density for this state as the 1-particle RhoCl density.

Excited State 2: Singlet-A 3.1818 eV 389.66 nm f=0.0229 <S**2>=0.000 172 ->174 0.70415

Excited State	3: Singlet-A	3.2721 eV 378.91 nm f=0.2233 <s**2>=0.000</s**2>
170 ->174	-0.18019	
171 ->174	0.67454	
Excited State	4: Singlet-A	3.4455 eV 359.85 nm f=0.0160 <s**2>=0.000</s**2>
170 ->174	0.68100	
171 ->174	0.18157	
Excited State	5: Singlet-A	3.8298 eV 323.73 nm f=0.1925 <s**2>=0.000</s**2>
169 ->174	0.22426	
173 ->175	0.65005	
Excited State	6: Singlet-A	3.9089 eV 317.19 nm f=0.1862 <s**2>=0.000</s**2>
173 ->176	0.68018	
Excited State	7: Singlet-A	3.9152 eV 316.67 nm f=0.0595 <s**2>=0.000</s**2>
163 ->174	-0.10789	
169 ->174	0.63746	
173 ->175	-0.21635	
Excited State	8: Singlet-A	4.1268 eV 300.44 nm f=0.0066 <s**2>=0.000</s**2>
164 ->174	-0.13410	
166 ->174	0.50786	
173 ->177	-0.15860	
173 ->178	0.39692	
173 ->180	0.11191	
Excited State	9: Singlet-A	4.2234 eV 293.56 nm f=0.0402 <s**2>=0.000</s**2>
163 ->174	0.21431	
164 ->174	0.11461	
170 ->175	-0.15644	
173 ->177	0.46214	
173 ->178	0.33766	
173 ->179	-0.20413	
Excited State	10: Singlet-A	4.2421 eV 292.27 nm f=0.0764 <s**2>=0.000</s**2>
163 ->174	0.19292	
164 ->174	0.17156	
166 ->174	-0.31616	

173 ->177	-0.31279		
173 ->178	0.34777		
173 ->179	0.23366		
Excited State	11: Singlet-A	4.3272 eV 286.52 nm f=0.00	071 <s**2>=0.000</s**2>
163 ->174	0.54159		
164 ->174	0.13938		
166 ->174	0.17812		
173 ->178	-0.23541		
173 ->179	0.10611		
173 ->180	0.18246		
Excited State	12: Singlet-A	4.4448 eV 278.94 nm f=0.9	111 <s**2>=0.000</s**2>
161 ->174	-0.18025		
168 ->174	-0.12962		
171 ->176	-0.18800		
172 ->175	0.60414		
Excited State	13: Singlet-A	4.4492 eV 278.67 nm f=0.0	649 <s**2>=0.000</s**2>
161 ->174	0.66337		
172 ->175	0.16340		
Excited State	14: Singlet-A	4.4696 eV 277.40 nm f=0.0	345 <s**2>=0.000</s**2>
168 ->174	0.68522		
172 ->175	0.11687		
Excited State	15: Singlet-A	4.4988 eV 275.59 nm f=0.0	123 <s**2>=0.000</s**2>
167 ->174	0.67116		
173 ->179	0.15351		

5.1.3 Computed xyz-Coordinates of intra conformation of Compound 7a (PBEh1PBE/ 6-31G** PCM CH₂Cl₂)

Figure 59: Optimized ground state geometry of intra-**7b** (PBEh1PBE/6-31G^{**} PCM CH₂Cl₂).

С	2.63821	1.64459	0.62665
С	1.38061	1.30434	0.10201
Ν	0.91404	-0.02427	0.16282
С	1.80537	-1.11579	0.10846
С	3.09922	-1.00812	0.64336
S	3.56692	0.44474	1.53623
С	3.12181	2.94390	0.53961
С	2.35888	3.97297	-0.02612
С	1.09342	3.63482	-0.51553
С	0.61724	2.33097	-0.46467
С	1.44022	-2.34187	-0.45832
С	2.32878	-3.40875	-0.49439
С	3.63148	-3.29530	0.00116
С	3.99778	-2.06471	0.56009
С	2.87706	5.35354	-0.10072
С	4.58308	-4.42293	-0.05713
С	-0.46329	-0.26711	-0.13340
С	4.24195	5.60686	-0.31389
С	4.73238	6.89885	-0.38859
С	3.86702	7.99085	-0.25444
С	2.50562	7.76330	-0.04231
С	2.02938	6.45713	0.03367
С	4.56816	-5.32911	-1.13016
С	5.45596	-6.38897	-1.19179
С	6.40007	-6.57875	-0.17587
С	6.43464	-5.68964	0.90030
С	5.53160	-4.63103	0.94864
С	-1.36372	-0.41237	0.91927

С	-2.70538	-0.65692	0.66054
С	-3.17486	-0.75524	-0.65707
С	-2.25960	-0.59880	-1.71004
С	-0.91784	-0.36113	-1.45116
0	4.43894	9.21597	-0.34436
С	3.59739	10.34668	-0.22451
0	7.22801	-7.64107	-0.32455
С	8.20738	-7.85742	0.67316
С	-4.58287	-1.01870	-0.94613
С	-5.12112	-1.58172	-2.08951
С	-6.51575	-1.69913	-2.03650
С	-7.07002	-1.22756	-0.85374
S	-5.81876	-0.62185	0.19768
С	-8.46419	-1.24947	-0.57756
С	-9.16061	-0.83935	0.52318
С	-8.54122	-0.27264	1.67148
С	-10.63116	-0.95647	0.60770
0	-11.28005	-0.60572	1.57076
0	-11.17612	-1.49229	-0.49266
Ν	-8.02753	0.19030	2.60644
Н	4.09694	3.16413	0.96469
Н	0.47502	4.39572	-0.98206
Н	-0.36119	2.11048	-0.87484
Н	0.44167	-2.47358	-0.85786
Н	1.98992	-4.35338	-0.90876
Н	5.00470	-1.92079	0.94113
Н	4.92792	4.77530	-0.44854
Н	5.78669	7.08855	-0.56322
Н	1.81290	8.58851	0.07623
Н	0.97187	6.29988	0.22638
Н	3.86301	-5.18621	-1.94401
Н	5.44575	-7.08014	-2.02861
Н	7.14672	-5.81593	1.70762
Н	5.55654	-3.96724	1.80830
Н	-1.00171	-0.34257	1.93970
Н	-3.38907	-0.79433	1.49317
Н	-2.60368	-0.64231	-2.73805
Н	-0.21615	-0.23767	-2.27039
Н	4.24317	11.21805	-0.33337

Н	2.83278	10.36370	-1.01001
Н	3.10734	10.38146	0.75556
Н	8.76569	-8.74083	0.36325
Н	8.89380	-7.00639	0.75356
Н	7.75038	-8.04493	1.65191
Н	-4.51906	-1.92326	-2.92245
Н	-7.12201	-2.12592	-2.82777
Н	-9.06763	-1.66367	-1.38146
Н	-12.13298	-1.52884	-0.34543

SCF Done: E(RPBEh1PBE) = -2745.65255068 A.U. after 1 cycles Sum of electronic and zero-point Energies= -2745.067799 Sum of electronic and thermal Energies= -2745.026814 Sum of electronic and thermal Enthalpies= -2745.025869 Sum of electronic and thermal Free Energies= -2745.148348

5.2.1 Computed xyz-Coordinates of Compound 7b (PBEh1PBE/6-31G** PCM CH₂Cl₂)

Figure 60: Optimized ground state geometry of 9b (PBEh1PBE/6-31G** PCM CH₂Cl₂).

С	1.33763	0.14188	0.48268
С	2.62838	-0.34881	0.43189
С	2.91950	-1.59204	-0.15497
С	1.84513	-2.32070	-0.69522
С	0.55185	-1.83650	-0.65309
С	0.26907	-0.59302	-0.06035
Ν	-1.03552	-0.09894	-0.01391

С	-1.27966	1.29776	-0.03819
С	-2.14494	-0.97906	0.03425
С	-2.20201	1.86768	0.84444
С	-2.46347	3.22964	0.80162
С	-1.80342	4.07273	-0.10378
С	-0.87439	3.48745	-0.97593
С	-0.62245	2.12321	-0.95585
С	-3.26540	-0.74659	-0.76939
С	-4.36069	-1.59591	-0.70845
С	-4.37317	-2.71443	0.13685
С	-3.24083	-2.93670	0.93354
С	-2.14931	-2.08106	0.89578
С	-2.07961	5.52324	-0.14239
С	-5.53447	-3.62568	0.18669
С	4.27156	-2.11797	-0.21151
С	4.66882	-3.42830	-0.44376
С	6.05554	-3.59342	-0.42997
С	6.75992	-2.41840	-0.18683
S	5.64742	-1.08687	0.01281
С	-2.04975	6.23658	-1.35202
С	-2.30905	7.59516	-1.39472
С	-2.61096	8.29318	-0.21941
С	-2.64638	7.60513	0.99530
С	-2.38167	6.23855	1.02041
С	-5.92068	-4.24888	1.38474
С	-7.00589	-5.10621	1.43420
С	-7.74931	-5.37129	0.27797
С	-7.38435	-4.76267	-0.92478
С	-6.28927	-3.90370	-0.95695
0	-2.85165	9.61859	-0.36175
С	-3.17280	10.35953	0.79998
0	-8.79313	-6.22197	0.42545
С	-9.57605	-6.50993	-0.71722
С	8.17039	-2.34807	-0.12051
С	9.01306	-1.29569	0.11665
С	10.46480	-1.56686	0.11671
С	8.56472	0.02824	0.36104
0	11.18780	-0.46588	0.35849
0	10.95847	-2.65909	-0.07884

Ν	8.19375	1.11338	0.56110
Н	1.14415	1.09580	0.96064
Н	3.42335	0.23431	0.88916
Н	2.02943	-3.26850	-1.19081
Н	-0.25137	-2.41356	-1.09785
Н	-2.72339	1.23412	1.55514
Н	-3.20567	3.64432	1.47729
Н	-0.33199	4.11153	-1.67990
Н	0.09362	1.69183	-1.64833
Н	-3.27799	0.11086	-1.43478
Н	-5.22916	-1.37867	-1.32333
Н	-3.20829	-3.80057	1.59098
Н	-1.28847	-2.27022	1.52941
Н	3.96904	-4.24158	-0.59045
Н	6.55816	-4.54285	-0.57898
Н	-1.84361	5.71185	-2.28050
Н	-2.29491	8.13898	-2.33392
Н	-2.86661	8.12010	1.92318
Н	-2.38850	5.72612	1.97829
Н	-5.37432	-4.03897	2.29984
Н	-7.30585	-5.57700	2.36502
Н	-7.93393	-4.95659	-1.83862
Н	-6.00508	-3.46039	-1.90715
Н	-3.33458	11.38559	0.46962
Н	-4.08688	9.98497	1.27539
Н	-2.35387	10.34045	1.52856
Н	-10.35301	-7.19908	-0.38632
Н	-10.04461	-5.60517	-1.12196
Н	-8.97992	-6.98894	-1.50274
Н	8.68299	-3.29432	-0.28735
Н	12.12084	-0.72732	0.34182

SCF Done: E(RPBEh1PBE) = -2348.79463362 A.U. after 1 cycles Sum of electronic and zero-point Energies= -2348.189982 Sum of electronic and thermal Energies= -2348.149358 Sum of electronic and thermal Enthalpies= -2348.148414 Sum of electronic and thermal Free Energies= -2348.271111

5.2.2 Computed Excitations of Compound 7b (PBEh1PBE/6-31G** PCM CH₂Cl₂)

Excited State 1: Singlet-A 2.2224 eV 557.89 nm f=0.9228 <S**2>=0.000 166 ->167 0.70266 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -2348.71296247 Copying the excited state density for this state as the 1-particle RhoCl density. Excited State 2: Singlet-A 3.1486 eV 393.78 nm f=0.0896 <S**2>=0.000 164 ->167 0.16121 165 ->167 0.68585 Excited State 3: Singlet-A 3.1774 eV 390.20 nm f=0.4298 <S**2>=0.000 164 ->167 0.66905 165 ->167 -0.16542166 ->169 -0.10891 Excited State 4: 3.6241 eV 342.11 nm f=0.7619 <S**2>=0.000 Singlet-A 166 ->168 0.69510 Excited State 5: Singlet-A 3.7091 eV 334.27 nm f=0.2810 <S**2>=0.000 163 ->167 0.49491 164 ->167 0.14186 166 ->169 0.47247 3.8057 eV 325.79 nm f=0.0586 <S**2>=0.000 Excited State 6: Singlet-A 163 ->167 -0.47254 166 ->169 0.47255 166 ->170 -0.16297 Excited State 7: Singlet-A 3.8560 eV 321.54 nm f=0.0965 <S**2>=0.000 159 ->167 0.12893 166 ->169 0.14612 166 ->170 0.65001 4.1391 eV 299.55 nm f=0.0117 <S**2>=0.000 Excited State 8: Singlet-A 158 ->167 -0.40675 159 ->167 0.50992 166 ->170 -0.14881 166 ->174 0.10085

Excited State	9: Singlet-A	4.2229 eV 293.60 nm f=0.0016 <s**2>=0.000</s**2>
157 ->167	0.12195	
159 ->167	0.10641	
160 ->167	-0.22919	
162 ->167	0.61234	
Excited State	10: Singlet-A	4.2836 eV 289.44 nm f=0.0158 <s**2>=0.000</s**2>
155 ->167	-0.12995	
156 ->167	0.19980	
157 ->167	0.51033	
158 ->167	0.24082	
159 ->167	0.17375	
162 ->167	-0.15090	
166 ->172	-0.10316	
166 ->173	0.10783	
166 ->174	0.11395	
Excited State	11: Singlet-A	4.3656 eV 284.00 nm f=0.0320 <s**2>=0.000</s**2>
158 ->167	0.24230	
159 ->167	0.34682	
161 ->167	-0.21282	
166 ->172	0.33606	
166 ->173	-0.21398	
166 ->174	-0.29068	
Excited State	12: Singlet-A	4.3844 eV 282.78 nm f=0.0009 <s**2>=0.000</s**2>
159 ->167	0.10573	
160 ->167	-0.24767	
161 ->167	0.59532	
162 ->167	-0.19613	
166 ->174	-0.11327	
Excited State	13: Singlet-A	4.4088 eV 281.22 nm f=0.0002 <s**2>=0.000</s**2>
160 ->167	0.61111	
161 ->167	0.28642	
162 ->167	0.17358	
Excited State	14: Singlet-A	4.4253 eV 280.17 nm f=0.0133 <s**2>=0.000</s**2>
162 ->167	0.13998	

165 ->170	0.10240	
166 ->171	-0.17568	
166 ->172	0.27685	
166 ->173	0.43418	
166 ->175	-0.35819	
Excited State	15: Singlet-A	4.4339 eV 279.63 nm f=0.0002 <s**2>=0.000</s**2>
154 ->167	0.68548	
154 ->169	0.10755	

5.3.1 Computed xyz-Coordinates of Compound 7c (PBEh1PBE/6-31G** PCM CH₂Cl₂)

Figure 61: Optimized ground state geometry of 7c (PBEh1PBE/6-31G** PCM CH₂Cl₂).

С	-3.51517	0.46822	-1.06499
С	-4.74480	-0.34589	-1.15461
С	-5.19932	-1.08266	-0.04671
С	-6.34705	-1.84847	-0.14911
С	-7.06959	-1.89787	-1.35398
С	-6.63338	-1.17126	-2.46013
С	-5.47831	-0.40520	-2.35113
С	-7.00800	-2.70815	0.91695
С	-8.19676	-3.26604	0.15018
С	-8.21707	-2.78113	-1.16866
С	-9.16394	-4.14801	0.59820
С	-10.18889	-4.54662	-0.27511
С	-10.21315	-4.04871	-1.58804
С	-9.22988	-3.17823	-2.04027
---	-----------	----------	----------
Ν	-11.18808	-5.44279	0.16052
С	-11.64983	-6.46127	-0.70421
С	-11.71172	-5.34035	1.46903
С	-11.98794	-4.08597	2.02773
С	-12.49537	-3.99031	3.31836
С	-12.75278	-5.13754	4.06600
С	-12.48752	-6.38646	3.50848
С	-11.96313	-6.49185	2.22539
С	-13.01221	-6.78051	-0.76100
С	-13.46036	-7.78955	-1.60574
С	-12.56635	-8.48291	-2.41879
С	-11.21174	-8.16070	-2.37018
С	-10.75154	-7.16586	-1.51525
С	-6.07130	-3.82702	1.39350
С	-7.46867	-1.86212	2.11256
С	-2.42487	0.05196	-0.28770
С	-1.26833	0.81253	-0.19745
С	-1.15689	2.01569	-0.90126
С	-2.23221	2.43946	-1.68917
С	-3.39209	1.68144	-1.75738
Ν	0.03524	2.77785	-0.82939
С	-0.01270	4.16413	-0.66280
С	1.27824	2.10376	-0.91880
С	2.32060	2.40239	-0.03526
С	3.53041	1.72963	-0.12621
С	3.73889	0.72452	-1.08163
С	2.68126	0.42991	-1.95390
С	1.47445	1.11032	-1.88340
С	0.99186	4.98915	-1.19803
С	0.94424	6.35967	-1.02871
С	-0.10497	6.97497	-0.32349
С	-1.10693	6.14304	0.20393
С	-1.06549	4.77094	0.04330
С	5.02311	-0.00166	-1.16002
С	5.53397	-0.42428	-2.39834
С	6.73810	-1.11331	-2.49255
С	7.45284	-1.38872	-1.32835
С	6.95632	-0.96944	-0.08162

С	5.75701	-0.28513	0.00518
С	8.71698	-2.08618	-1.11111
С	8.98817	-2.09540	0.26763
С	7.89059	-1.38535	1.04365
С	9.60659	-2.69037	-1.99807
С	10.74924	-3.30542	-1.50237
С	11.02849	-3.30891	-0.12586
С	10.13535	-2.68870	0.76294
Ν	12.19501	-3.93492	0.36161
С	13.41007	-3.83162	-0.35272
С	12.15157	-4.66795	1.56978
С	8.43606	-0.16484	1.79833
С	7.19711	-2.34359	2.02260
С	13.19606	-4.56953	2.49731
С	13.15384	-5.29946	3.67964
С	12.06704	-6.12265	3.96634
С	11.02275	-6.21532	3.04865
С	11.06452	-5.50341	1.85545
С	14.25731	-4.94018	-0.47299
С	15.45887	-4.83202	-1.16356
С	15.82765	-3.62842	-1.76057
С	14.98121	-2.52723	-1.65091
С	13.78622	-2.62033	-0.94668
С	-0.13651	8.41722	-0.15627
С	0.90952	9.31726	-0.31050
С	0.53586	10.64143	-0.06951
С	-0.80312	10.79406	0.27614
S	-1.59858	9.23934	0.28167
С	-1.40215	12.04086	0.56994
С	-2.68122	12.36453	0.93407
С	-2.98743	13.79003	1.17014
С	-3.71608	11.40706	1.09569
0	-4.26528	13.98395	1.52012
0	-2.18122	14.69177	1.06218
Ν	-4.56188	10.61818	1.22768
Н	-4.65758	-1.02805	0.89449
Н	-7.17470	-1.20649	-3.40142
Н	-5.11940	0.13888	-3.21995
Н	-9.14203	-4.53939	1.61129

Н	-11.01484	-4.35402	-2.25256
Н	-9.26809	-2.80656	-3.06044
Н	-11.80221	-3.18981	1.44416
Н	-12.70440	-3.00959	3.73571
Н	-13.15571	-5.05917	5.07085
Н	-12.67638	-7.28986	4.08113
Н	-11.74587	-7.46687	1.80098
Н	-13.71453	-6.23376	-0.13976
Н	-14.52038	-8.02419	-1.63757
Н	-12.92114	-9.26517	-3.08243
Н	-10.50133	-8.69741	-2.99222
Н	-9.69347	-6.92801	-1.47063
Н	-5.18910	-3.40532	1.88599
Н	-6.58191	-4.47395	2.11398
Н	-5.73539	-4.44338	0.55491
Н	-6.60836	-1.41513	2.62101
Н	-8.13515	-1.05683	1.79128
Н	-8.00401	-2.48350	2.83770
Н	-2.47621	-0.89199	0.24669
Н	-0.43766	0.47028	0.41157
Н	-2.15836	3.37023	-2.24275
Н	-4.22232	2.04452	-2.35577
Н	2.18100	3.16948	0.71999
Н	4.33216	1.99679	0.55584
Н	2.79889	-0.35647	-2.69355
Н	0.67029	0.86500	-2.56989
Н	1.80377	4.54621	-1.76441
Н	1.71909	6.96772	-1.48453
Н	-1.92013	6.57332	0.78238
Н	-1.84369	4.15523	0.48067
Н	4.98721	-0.18597	-3.30609
Н	7.11253	-1.42111	-3.46488
Н	5.36268	0.01123	0.97413
Н	9.41046	-2.70197	-3.06658
Н	11.43995	-3.79427	-2.18167
Н	10.35516	-2.68408	1.82676
Н	7.62356	0.37155	2.29900
Н	9.15580	-0.47593	2.56237
Н	8.93680	0.52812	1.11640

Н	7.90357	-2.69224	2.78277
Н	6.37166	-1.83927	2.53529
Н	6.79569	-3.21674	1.50062
Н	14.03863	-3.91914	2.28482
Н	13.97237	-5.21135	4.38811
Н	12.03439	-6.68558	4.89384
Н	10.17235	-6.85902	3.25396
Н	10.25512	-5.58960	1.13744
Н	13.96804	-5.88361	-0.02101
Н	16.10419	-5.70169	-1.24668
Н	16.76341	-3.54952	-2.30493
Н	15.25806	-1.57998	-2.10452
Н	13.13768	-1.75527	-0.85112
Н	1.91813	9.01438	-0.56269
Н	1.21353	11.48620	-0.12739
Н	-0.73461	12.89795	0.49421
Н	-4.38338	14.93636	1.65489

Sum of electronic and zero-point Energies= -3847.514460 Sum of electronic and thermal Energies= -3847.441938 Sum of electronic and thermal Enthalpies= -3847.440993 Sum of electronic and thermal Free Energies= -3847.637534

5.3.2 Computed Excitations of Compound 7c (PBEh1PBE/6-31G** PCM CH₂Cl₂)

Excited State 1: Singlet-A 2.1500 eV 576.66 nm f=0.7094 <S**2>=0.000 298 -> 301 0.22892 300 -> 301 0.66567

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -3848.62081748

Copying the excited state density for this state as the 1-particle RhoCl density.

Excited State 2: Singlet-A 2.3603 eV 525.30 nm f=0.0319 <S**2>=0.000 299 -> 301 0.70511 Excited State 3: Singlet-A 2.4973 eV 496.48 nm f=0.3929 <S**2>=0.000 298 -> 301 0.66071 300 -> 301 -0.23410

Excited State	4: Singlet-A	3.1563 eV 392.81 nm f=1.9932 <s**2>=0.000</s**2>
299 -> 303	0.26270	
300 -> 302	0.62756	
Excited State	5: Singlet-A	3.2673 eV 379.47 nm f=0.9619 <s**2>=0.000</s**2>
295 -> 301	-0.10794	
296 -> 301	0.24791	
297 -> 301	0.42111	
299 -> 302	0.28781	
300 -> 303	0.37365	
Excited State	6: Singlet-A	3.3421 eV 370.98 nm f=0.1607 <s**2>=0.000</s**2>
296 -> 301	0.21745	
297 -> 301	0.40635	
298 -> 303	0.10088	
299 -> 302	-0.39611	
300 -> 303	-0.30899	
Excited State	7: Singlet-A	3.4175 eV 362.79 nm f=0.0104 <s**2>=0.000</s**2>
296 -> 301	0.60406	
297 -> 301	-0.34791	
Excited State	8: Singlet-A	3.5582 eV 348.45 nm f=0.0250 <s**2>=0.000</s**2>
298 -> 302	0.50275	
299 -> 303	-0.41826	
300 -> 302	0.11222	
300 -> 303	0.10667	
Excited State	9: Singlet-A	3.5772 eV 346.60 nm f=0.0148 <s**2>=0.000</s**2>
297 -> 301	-0.12154	
298 -> 302	-0.10365	
298 -> 303	0.27526	
299 -> 302	-0.41409	
299 -> 303	0.11065	
300 -> 303	0.43878	
Excited State	10: Singlet-A	3.7679 eV 329.05 nm f=0.0868 <s**2>=0.000</s**2>
295 -> 301	-0.12192	
298 -> 302	0.43490	

299 -> 303	0.45056				
300 -> 302	-0.27228				
Excited State	11: Singlet-A	3.7798 eV	328.02 nm	f=0.0624	<s**2>=0.000</s**2>
295 -> 301	0.62126				
297 -> 301	0.11269				
298 -> 303	-0.11461				
299 -> 303	0.11460				
300 -> 304	0.13709				
Excited State	12: Singlet-A	3.8210 eV	324.48 nm	f=0.0107	<s**2>=0.000</s**2>
298 -> 303	0.12273				
298 -> 305	0.36448				
300 -> 305	0.53068				
Excited State	13: Singlet-A	3.8456 eV	322.41 nm	f=0.0182	<s**2>=0.000</s**2>
295 -> 301	0.20657				
298 -> 303	0.47428				
299 -> 302	0.20714				
299 -> 306	0.22280				
300 -> 303	-0.13286				
300 -> 304	-0.18085				
300 -> 305	-0.13659				
300 -> 307	0.18711				
Excited State	14: Singlet-A	3.8696 eV	320.40 nm	f=0.0220	<s**2>=0.000</s**2>
298 -> 306	-0.17369				
299 -> 307	0.44658				
300 -> 306	0.44818				
Excited State	15: Singlet-A	3.8774 eV	319.76 nm	f=0.0212	<s**2>=0.000</s**2>
298 -> 303	-0.26740				
298 -> 305	0.11428				
298 -> 307	-0.15392				
299 -> 306	0.38279				
299 -> 309	0.11238				
300 -> 307	0.41542				

6 References

- G. Trippé-Allard, J.-C. Lacroix, Synthesis of nitro- and amino-functionalized π-conjugated oligomers incorporating 3,4-ethylenedioxythiophene (EDOT) units Tetrahedron 2013, 69, 861-866; DOI: 10.1016/j.tet.2012.10.088.
- [2] M. Paramasivam, A. Gupta, N. Jagadeesh Babu, K. Bhanuprakash, S. V. Bhosale, V. Jayathirtha Rao, Funnel shaped molecules containing benzo/pyrido[1,2,5]thiadiazole functionalities as peripheral acceptors for organic photovoltaic applications RSC Adv. 2016, 6, 66978-66989. DOI: 10.1039/C6RA06616J
- [3] H.-Y. Wang, G. Chen, X.-P. Xu, H. Chen, S.-J. Ji, The synthesis and photophysical properties of novel poly(diarylamino)styrenes Dyes and Pigments 2011, 88, 358-365. DOI: 10.1016/j.dyepig.2010.08.003
- W. Huang, L. Su, Z. Bo, Hyperbranched Polymers with a Degree of Branching of 100% Prepared by Catalyst Transfer Suzuki-Miyaura Polycondensation J. Am. Chem. Soc. 2009, 131, 10348–10349. DOI: 10.1021/ja9033846
- [5] (a) D. W. Price, J. M. Tour, Tetrahedron Lett. Biphenyl- and fluorenyl-based potential molecularelectronic devices 2003, 59, 3131 3156. DOI: 10.1016/S0040-4020(03)00334-X; (b) D. Sahu, H. Padhy, D. Patra, D. Kekuda, C.-W. Chu, I.-H. Chiang, H.-C. Lin, Polymer Synthesis and application of H-Bonded cross-linking polymers containing a conjugated pyridyl H-Acceptor side-chain polymer and various carbazole-based H-Donor dyes bearing symmetrical cyanoacrylic acids for organic solar cells 2010, 51, 6182 6192. DOI: 10.1016/j.polymer.2010.10.018; (c) P. Chen, H.-M. Wang, G.-J. Liu, S. X.-A. Sean, Design, synthesis and properties of near-infrared molecular switches containing a fluorene ring Org. Biomol. Chem. 2016, 14, 4456–4463. DOI: 10.1039/C6OB00379F; (d) H. Zhang, X. Liu, T.-T. Lu, P. Lv, W.-Y. Lai, Monodisperse Six-Armed Starbursts based on Truxene-Cored Multibranched Oligofluorenes: Design, Synthesis, and Stabilized Lasing Characteristics Chem. Eur.J. 2019, 25, 3909–3917. DOI: DOI:10.1002/chem.201805813
- [6] D. Hanss, O. S. Wenger, Conformational Effects on Long-Range Electron Transfer: Comparison of Oligo-p-phenylene and Oligo-p-xylene Bridges, Eur. J. Inorg. Chem. 2009, 3778–3790. DOI: 10.1002/ejic.200900396
- [7] A. Rosiak, W. Frey, J. Christoffers, Synthesis of Tetrahydropyran-4-ones and Thiopyran-4-ones from Donor-Substituted α-Bromostyrene Derivatives Eur. J. Org. Chem. 2006, 4044-4054. DOI: 10.1002/ejoc.200600372

- [8] P. Zanello, in: *Ferrocenes* A. Togni (Ed.), T. Hayashi(Ed.), Wiley VHC, Weinheim **1995**, 317-430.
- [9] T. Meyer, D. Ogermann, A. Pankrath, K. Kleinermanns, T. J. J. Müller, *Phenothiazinyl Rhodanylidene Merocyanines for Dye-Sensitized Solar Cells J. Org. Chem.* 2012, 77, 3704. DOI: 10.1021/jo202608w
- [10] A. Mitsch, M. Altenkämper, I. Sattler, M. Schlitzer, Non-Thiol Farnesyltransferase Inhibitors: Utilization of the Far Aryl Binding Site by Arylthienylacryloylaminobenzophenones Arch. Pharm. Chem. Life Sci. 2005, 338, 9–17. DOI: DOI 10.1002/ardp.200400886
- [11] D. Mignani, F. Leising, R. Meyrueix, H. Samson, Synthesis of new thiophene compounds with large second order optical non-linearities Tetrahedron Lett. 1990, 33, 4743-4746.
- [12] M. J. Braun, I. Jung, Dye-sensitized solar cells, metal complex dyes therefor, and methods for making such dyes, Solvay SA EP2720238 (A1), 16.04.2014.
- [13] X. W. a Wan-Li He, Z. Yang, D. Wang, H. Cao, Z.-G. Zheng, Z. Liu, X. Liu, The effects of asymmetric bent-shaped compounds on the temperature range and electro-optical performances of liquid crystalline blue phases RSC Adv. 2016, 6, 110750-110757, DOI: 10.1039/C6RA22704J.
- [14] M. A. Ismail, M. M. Youssef, R. K. Arafa, S. S. Al-Shihry, W. M. El-Sayed, Synthesis and antiproliferative activity of monocationic arylthiophene derivatives Eur. J. Med. Chem. 2017, 126, 789-798, DOI: 10.1016/j.ejmech.2016.12.007.
- [15] K. Kobayashi, M. S. M. Ahmed, A. Mori, Introduction of ethynylene and thienylene spacers into 2,5-diarylthiazole and 2,5-diarylthiophene Tetrahedron 2006, 62, 9548-9553, DOI: 10.1016/j.tet.2006.07.097.
- [16] R. Chandra, M. Kunga, H. F. Kung, Design, synthesis, and structure–activity relationship of novel thiophene derivatives for b-amyloid plaque imaging Bioorganic & Med. Chem. Lett. 2006, 16, 1350–1352, DOI: 10.1016/j.bmcl.2005.11.055.
- [17] G. Kirsch, D. Prim, F. Leising, G. Mignani, New thiophene derivatives as potential materials for non linear optics Heterocy. Chem. **1994**, 31, 1005 – 1010, DOI: 10.1002/jhet.5570310451.
- [18] T. Komiyama, Dr. Y. Minami, Y. Furuya, Prof. Dr. T. Hiyama, *Palladium/Copper Dual Catalysis for the Cross-Coupling of Aryl(trialkyl)silanes with Aryl Bromides Angew.*

Chem. **2018**, *130*, 2005-2008, DOI: 10.1002/ange.201712081, *Angew. Chem. Int. Ed.* **2018**, *57*, 1987-1990, DOI: 10.1002/anie.201712081.

- [19] S. Tanaka, D. Tanaka, A. Sugie, A. Mori, Generation of metalated thiophenes with Grignard reagent and catalytic secondary amine for the cross coupling reaction with aryl halides Tetrahedron Lett. 2012, 53, 1173-1176, DOI: 10.1016/j.tetlet.2011.12.108.
- [20] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- [21] (a) C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B 1988, 37, 785–789. DOI: 10.1103/PhysRevB.37.785; (b) A. D. Becke, A new mixing of Hartree-Fock and local density-functional theories J. Chem. Phys. 1993, 98, 1372–1377. DOI: 10.1063/1.464304; (c) A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange J. Chem. Phys. 1993, 98, 5648- 5652. DOI: 10.1063/1.464913; (d) K. Kim, K. D. Jordan, Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer J. Phys. Chem. 1994, 98, 10089–10094. DOI: 10.1021/j100091a024; (e) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields J. Phys. Chem. 1994, 98, 11623–11627. DOI: 10.1021/j100096a001
- [22] W. J. Hehre, R. Ditchfeld and J. A. Pople, Self-Consistent Molecular Orbital Methods.
 XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules J. Chem. Phys. 1972, 56, 2257. DOI: 10.1063/1.1677527
- [23] (a) Bauernschmitt R, Ahlrichs R., *Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory Chem Phys Lett* **1996**, *256*,

454-464. DOI: 10.1016/0009-2614(96)00440-X; (b) M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, *Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory:* Characterization and correction of the time-dependent local density approximation ionization threshold J Chem Phys **1998**, *108*, 4439-4449. DOI: 10.1063/1.475855; (c) R. E. Stratmann, G. E. Scuseria, M. J. Frisch, An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules J Chem Phys **1998**, *109*, 8218-8224. DOI: 10.1063/1.477483

[24] G. Scalmani, M. J. Frisch, Continuous surface charge polarizable continuum models of solvation. I. General formalism J. Chem. Phys. 2010, 132, 114110-114115. DOI 10.1063/1.3359469