Domino synthesis of fully substituted pyridines by silver-catalyzed chemoselective hetero-dimerization of isocyanides

Zhongyan Hu, ‡ Mingyue Zhang, ‡ Qinghua Zhou, Xianxiu Xu* and Bo Tang*

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China. Table of contents

1. General Information	.1
2. Experimental Procedures	.1
2.1 Synthesis of the starting materials	.1
2.2 Synthesis of procedures 3 , 4 , 5	.1
2.3 References	3
3. Analytical data of compounds 3, 4, 5	.3
4. Copies of ¹ H NMR and ¹³ C NMR spectra of compounds 3, 4, 5	19
5. X-ray Crystallographic Data of compound 3ba, 3qa 6	62

1. General Information

All reagents were purchased from commercial sources and used without further purification, unless otherwise indicated. All reactions were carried out without any particular precautions to extrude moisture or oxygen, unless otherwise indicated. All reactions were monitored by TLC, which was performed on precoated aluminum sheets of silica gel 60 (F254). The products were purified by flash column chromatography on silica gel (300–400 mesh). NMR spectra were obtained on a Bruker 400 spectrometer, with CDCl₃ or DMSO- d_6 as solvents. All chemical shifts are given in ppm. High-resolution mass spectra (HRMS) were recorded on a Bruker micro TOF IV focus spectrometer.

2. Experimental Procedures

2.1 Synthesis of starting materials.

Isocyanides **1** were synthesized according to known literature procedure.¹ α -substituted isocyanoacetamides **2** were synthesized according to known literature procedure.²

2.2 Synthesis of products 3,4 and 5.

2.2.1 General synthetic procedures of **3** (taking **3a** for example)

 Ag_2CO_3 (20.7 mg, 30 mol%) was added to a solution of isocyanide **1a** (50.3 mg, 0.25 mmol) and isocyanoacetamides **2a** (64.6 mg, 0.25 mmol) in CH₃CN (2 mL). Then the tube was sealed and the reaction mixture was set in a pre-heated (100 °C) metal block under stirring for 3 hours. After cooled to room temperature, the reaction mixture was concentrated in vacuo and the residue was purified by flash column chromatography (silica gel; petroleum: ethyl acetate = 10:1) to give pyridin-4-ol product **3aa** (75.3 mg, 70% yield) as a white solid.

2.2.2 Gram-scale synthesis of 3aa

 Ag_2CO_3 (0.438 g, 30 mol%) was added to a solution of isocyanide **1a** (1.066 g, 5.3 mmol) and isocyanoacetamides **2a** (1.369 g, 5.3 mmol) in CH₃CN (35 mL) in a sealed tube. Then the reaction mixture

was set in a pre-heated (100 $^{\circ}$ C) metal block under stirring for 3 hours. The reaction mixture was cooled to room temperature and the solvent was removed in vacuo. The crude product was purified by flash column chromatography (silica gel; petroleum: ethyl acetate = 10:1) to afford pyridin-4-ol **3aa** (1.23 g, 53% yield) as a white solid.

2.2.3 Synthetic procedures of 3qa

Ag₂CO₃ (24.8 mg, 30 mol%) was added to a solution of isocyanide **1q** (0.091 g, 0.3 mmol) and isocyanoacetamides **2a** (0.077 g, 0.3 mmol) in CH₃CN (2 mL) in a sealed tube. Then the reaction mixture was set in a pre-heated (100 °C) metal block under stirring for 3 hours. The reaction mixture was cooled to room temperature and the solvent was removed in vacuo. The crude product was purified by flash column chromatography (silica gel; petroleum: ethyl acetate = 15:1-10:1) to afford **3qa** (64 mg, 40% yield) as a yellow solid.

2.2.4 Synthetic procedures of 4a

Under a nitrogen atmosphere, BBr₃ (378 uL, 0.4 mmol, 0.1 M in CH₂Cl₂) was added to a stirred mixture of **3ga** (92.5 mg, 0.2 mmol) in 2 mL of dry CH₂Cl₂ at 0 °C. Then, the reaction was stirred at 25 °C overnight. After quenching the reaction with EtOH (1 mL), the volatiles were removed under reduced pressure, and the residue was dissolved in EtOH (4 mL). The resulting mixture was heated at reflux for 3 h, cooled to ambient temperature, and filtered. The filtrate was evaporated all the volatiles under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/EtOAc/CH₂Cl₂ = 6/1/1, v/v/v) to afford **4a** as a white solid (56.3 mg, 70%).³

2.2.5 Synthetic procedures of 5 (taking 5a for example)

A round bottom flask with a magnetic stirring bar was charged with **3ha** (0.3 mmol, 139.9 mg), K_2CO_3 (3.0 equiv., 124.4 mg), CuI (0.5 equiv., 28.6 mg) in DMF solvent (1 mL). The reaction mixture was heated at 80 °C for 48 h. After regular TLC monitoring, the mixture was poured into cold ice water and neutralized carefully using 1N hydrochloric acid which gave the precipitated product. It was filtered and washed with water under vacuum. The product was recrystallised with methanol to get a yellowish solid. Further purification by column chromatography (hexane/ethyl acetate, 10:1) afforded the desired product **5a**.⁴

2.3 References

[1] Y. Gao, Z. Hu, J. Dong, J. Liu and X. Xu, Org. Lett., 2017, 19, 5292.

[2] Z. Hu, J. Dong, Y. Men, Z. Lin, J. Cai and X. Xu, Angew. Chem., Int. Ed., 2017, 56, 1805.

[3] Z. Wang, Z. Liu, J. Lou and Z. Yu, Org. Lett., 2018, 20, 6007.

[4] P. Iram and A. Naseem, *Tetrahedron Lett.*, 2017, 58, 2302.

3. Analytical data of compounds 3, 4, 5

3aa, Ethyl 4-hydroxy-5-(4-methylbenzyl)-6-morpholino-3-phenylpicolinate. White solid in 70% yield, 90.8 mg, m.p. 196-198 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.94 (t, 3H), 2.30 (s, 3H), 3.17 (t, J = 4.6 Hz, 4H), 3.77 (t, J = 4.6 Hz, 4H), 4.04-4.09 (m, 4H), 5.53 (s, 1H), 7.06-7.11 (m, 4H), 7.30-7.32 (m, 2H), 7.40-7.49 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 21.0, 31.1, 50.9, 61.1, 67.0, 115.1, 119.8, 127.8, 128.7, 129.2, 129.3, 129.8, 132.4, 135.7, 136.0, 146.0, 159.7, 162.1, 166.8. HRMS (ESI-TOF) m/z calculated for C₂₆H₂₈N₂NaO₄⁺ ([M+Na]⁺) 455.1941, found 455.1930.

3ba, Ethyl 4-hydroxy-5-(4-methylbenzyl)-6-morpholino-3-*(p***-tolyl)picolinate.** White solid in 60% yield, 80.3 mg, m.p. 187-189 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 0.99 (t, *J* = 7.2 Hz, 3H), 2.30 (s, 3H), 2.39 (s, 3H), 2

3H), 3.15 (t, J = 4.6 Hz, 4H), 3.77 (t, J = 4.6 Hz, 4H), 4.06 (s, 2H), 4.09 (q, J = 7.1 Hz, 2H), 5.60 (s, 1H), 7.05-7.10 (m, 4H), 7.19 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 21.0, 21.2, 31.1, 50.9, 61.1, 67.0, 115.1, 119.8, 127.8, 129.1, 129.1, 129.7, 130.0, 135.6, 136.1, 138.6, 146.1, 159.8, 161.9, 166.9. **HRMS** (ESI-TOF) m/z calculated for C₂₇H₃₁N₂O₄⁺ ([M+H]⁺) 447.2278, found 447.2276.

3ca, Ethyl 4-hydroxy-3-(4-methoxyphenyl)-5-(4-methylbenzyl)-6-morpholinopicolinate. White solid in 45% yield, 62.4 mg, m.p. 166-168 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 1.02 (t, J = 7.0 Hz, 3H), 2.30 (s, 3H), 3.15 (t, J = 4.6 Hz, 4H), 3.77 (t, J = 4.6 Hz, 4H), 3.84 (s, 3H), 4.07 (s, 2H), 4.10 (q, J = 7.2 Hz, 2H), 5.59 (s, 1H), 6.99 (d, J = 8.8 Hz, 2H), 7.06-7.11 (m, 4H), 7.23 (d, J = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 21.0, 31.1, 50.9, 55.3, 61.1, 67.0, 114.7, 115.0, 119.3, 124.0, 127.8, 129.2, 131.1, 135.7, 136.1, 146.3, 159.9, 160.0, 161.9, 166.9. **HRMS** (ESI-TOF) m/z calculated for C₂₇H₃₁N₂O₅⁺ ([M+H]⁺) 463.2227, found 463.2237.

3da, Ethyl-3-(4-chlorophenyl)-4-hydroxy-5-(4-methylbenzyl)-6-morpholinopicolinate. White solid in 50% yield, 70.0 mg, m.p. 184-186 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 1.02 (t, J = 7.2 Hz, 3H), 2.30 (s, 3H), 3.15 (t, J = 4.6 Hz, 4H), 3.76 (t, J = 4.6 Hz, 4H), 4.06 (s, 2H), 4.10 (q, J = 7.2 Hz, 2H), 5.50 (s, 1H), 7.08 (s, 1H), 7.24 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 13.7, 21.0, 31.1, 50.8, 61.2, 67.0, 115.1, 118.8, 127.8, 129.3, 131.1, 131.3, 134.8, 135.6, 136.0, 146.0, 159.8, 162.2, 166.5. **HRMS** (ESI-TOF) m/z calculated for C₂₆H₂₈ClN₂O₄⁺ ([M+H]⁺) 467.1732, found 467.1727.

3ea, Ethyl-3-(4-bromophenyl)-4-hydroxy-5-(4-methylbenzyl)-6-morpholinopicolinate. White solid in 60% yield, 92.1 mg, m.p. 197-199 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 1.03 (t, J = 7.2 Hz, 3H), 2.30 (s, 3H), 3.17 (t, J = 4.6 Hz, 4H), 3.78 (t, J = 4.6 Hz, 4H), 4.07 (s, 2H), 4.11 (q, J = 7.2 Hz, 2H), 5.39 (s, 1H), 7.08 (s, 4H), 7.18 (d, J = 8.0 Hz, 2H), 7.59 (d, J = 8.4 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 13.7, 21.0, 31.2, 50.9, 61.3, 67.0, 115.0, 118.8, 122.9, 127.7, 129.4, 131.5, 132.3, 135.5, 136.0, 145.9, 159.7, 162.2, 166.5. **HRMS** (ESI-TOF) m/z calculated for C₂₆H₂₈BrN₂O₄⁺ ([M+H]⁺) 511.1227, found 511.1221.

3fa, Ethyl 4-hydroxy-5-(4-methylbenzyl)-6-morpholino-3-*(o-tolyl)***picolinate.** White solid in 50% yield, 66.9 mg, m.p. 157-159 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.92 (t, J = 7.0 Hz, 3H), 2.12 (s, 3H), 2.30 (s, 3H), 3.17-3.19 (m, 4H), 3.77-3.79 (m, 4H), 4.05 (q, J = 8.0 Hz, 2H), 4.08 (s, 2H), 5.28 (s, 1H), 7.06 (s, 4H), 7.13 (d, J = 7.2 Hz, 1H), 7.23-7.27 (m, 1H), 7.31-7.33 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 13.5, 19.7, 20.1, 31.1, 50.9, 61.0, 67.1, 115.1, 119.7, 126.6, 127.7, 129.2, 129.2, 130.4, 130.5, 131.5, 135.7, 136.2, 138.1, 145.4, 159.8, 162.1, 166.3. **HRMS** (ESI-TOF) m/z calculated for C₂₇H₃₀N₂NaO₄⁺ ([M+Na]⁺) 469.2098, found 469.2105.

3ga, Ethyl 4-hydroxy-3-(2-methoxyphenyl)-5-(4-methylbenzyl)-6-morpholinopicolinate. White solid in 50% yield, 69.4 mg, m.p. 163-165 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 0.95 (t, *J* = 7.0 Hz, 3H), 2.30 (s, 3H), 3.16 (t, *J* = 4.4 Hz, 4H), 3.76-3.79 (m, 7H), 4.04-4.13 (m, 4H), 5.84 (s, 1H), 6.99-7.10 (m, 6H), 7.19 (dd, *J*₁ = 7.4 Hz, *J*₂ = 1.8 Hz, 1H), 7.38-7.43 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 13.6, 21.0, 31.2, 50.8, 55.8, 61.0, 67.1, 111.4, 115.4, 116.9, 121.5, 121.6, 127.7, 129.1, 130.4, 131.6, 135.5, 136.3, 146.5, 156.8, 160.3, 162.0, 166.9. **HRMS** (ESI-TOF) m/z calculated for C₂₇H₃₁N₂O₅⁺ ([M+H]⁺) 463.2227, found 463.2231.

3ha, Ethyl 3-(2-chlorophenyl)-4-hydroxy-5-(4-methylbenzyl)-6-morpholinopicolinate. White solid in 70% yield, 97.9 mg, m.p. 166-168 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.82 (t, *J* = 7.0 Hz, 3H), 2.37 (s, 3H), 2.91-2.94 (m, 4H), 3.65 (t, *J* = 4.8Hz, 4H), 3.91 (q, *J* = 7.1 Hz, 2H), 4.00-4.08 (m, 2H), 7.06 (s, 4H), 7.21-7.23 (m, 1H), 7.32-7.41 (m, 2H), 7.50-7.52 (m, 1H), 9.70 (s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 13.9, 21.1, 30.7, 51.3, 60.9, 66.7, 116.5, 119.1, 127.4, 128.2, 129.4, 129.5, 130.2, 132.6, 133.8, 134.6, 135.3, 137.0, 147.0, 162.0, 162.4, 166.4. HRMS (ESI-TOF) m/z calculated for C₂₆H₂₈ClN₂O₄⁺ ([M+H]⁺) 467.1732, found 467.1755.

3ia, Ethyl 3-(2-bromophenyl)-4-hydroxy-5-(4-methylbenzyl)-6-morpholinopicolinate. White solid in 50% yield, 76.5 mg, m.p. 169-171 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.82 (t, *J* = 7.0 Hz, 3H), 2.24 (s, 3H), 2.91-2.94 (m, 4H), 3.64-3.67 (m, 4H), 3.91 (q, *J* = 7.1 Hz, 2H), 4.00-4.09 (m, 2H), 7.06 (s, 4H), 7.22 (d, *J* = 7.2 Hz, 1H), 7.30 (t, *J* = 7.4 Hz, 1H), 7.39 (t, *J* = 7.4 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 9.65 (s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 13.9, 21.1, 30.7, 51.3, 60.8, 66.7, 116.4, 121.0, 125.5, 127.9, 128.2, 129.4, 130.3, 132.6, 135.2, 135.9, 137.0, 146.7, 161.9, 162.3, 166.3. HRMS (ESI-TOF) m/z calculated for C₂₆H₂₈BrN₂O₄⁺ ([M+H]⁺) 511.1227, found 511.1238.

3ja, Ethyl 4-hydroxy-5-(4-methylbenzyl)-6-morpholino-3-*(m***-tolyl)picolinate.** White solid in 50% yield, 66.9 mg, m.p. 142-144 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 0.97 (t, J = 7.2 Hz, 3H), 2.30 (s, 3H), 2.37 (s, 3H), 3.15-3.17 (m, 4H), 3.78 (t, J = 4.6 Hz, 4H), 4.06-4.11 (m, 4H), 5.58 (s, 1H), 7.06-7.12 (m, 6H), 7.23 (d, J = 7.6 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 13.6, 21.0, 21.3, 31.1, 50.9, 61.1, 67.1, 115.1, 119.8, 126.8, 127.8, 129.2, 129.3, 129.5, 130.3, 132.2, 135.7, 136.2, 139.2, 146.0, 159.7, 162.0, 166.9. **HRMS** (ESI-TOF) m/z calculated for C₂₇H₃₀N₂NaO₄⁺ ([M+Na]⁺) 469.2098, found 469.2100.

3ka, Ethyl 3-(3-chlorophenyl)-4-hydroxy-5-(4-methylbenzyl)-6-morpholinopicolinate. White solid in 56% yield, 78.3 mg, m.p. 150-152 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.02 (t, J = 7.2 Hz, 3H), 2.31 (s, 3H), 3.17 (t, J = 4.8 Hz, 4H), 3.76 (t, J = 4.8 Hz, 4H), 4.07 (s, 2H), 4.11 (q, J = 7.1 Hz, 2H), 5.59 (s, 1H), 7.08 (s, 4H), 7.18-7.21 (m, 1H), 7.32 (s, 1H), 7.38 (d, J = 4.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 20.9, 31.1, 50.8, 61.2, 66.9, 115.2, 118.6, 127.7, 128.1, 128.6, 129.3, 130.1, 130.2, 134.7, 134.9, 135.6, 135.9, 146.1, 159.8, 162.3, 166.4. HRMS (ESI-TOF) m/z calculated for C₂₆H₂₈ClN₂O₄⁺ ([M+H]⁺) 467.1732, found 467.1734.

3la, Ethyl 3-(2-chloro-4-methylphenyl)-4-hydroxy-5-(4-methylbenzyl)-6-morpholinopicolinate. White solid in 50% yield, 72.0 mg, m.p. 200-202 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.03 (t, J = 7.0 Hz, 3H), 2.30 (s, 3H), 2.38 (s, 3H), 3.17-3.20 (m, 4H), 3.78 (t, J = 4.4 Hz, 4H), 4.08 (s, 2H), 4.11 (q, J = 7.9 Hz, 2H), 5.22 (s, 1H), 7.07 (s, 4H), 7.15 (t, J = 8.8 Hz, 3H), 7.34 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 21.0, 21.1, 31.2, 50.8, 61.2, 67.0, 115.1, 118.3, 127.7, 128.2, 128.6, 129.3, 130.5, 131.5, 134.5, 135.7, 135.9, 140.7, 145.2, 160.0, 162.2, 166.0. HRMS (ESI-TOF) m/z calculated for C₂₇H₃₀ClN₂O₄⁺ ([M+H]⁺) 481.1889, found 481.1898.

3ma, Ethyl 3-(2,4-dichlorophenyl)-4-hydroxy-5-(4-methylbenzyl)-6-morpholinopicolinate. White solid in 52% yield, 78.0 mg, m.p. 160-162 °C **.¹H NMR** (400 MHz, DMSO- d_6) δ 0.90 (t, J = 6.8 Hz, 3H), 2.23 (s, 3H), 2.94 (s, 4H), 3.65 (s, 4H), 3.94-4.03 (m, 4H), 7.05 (s, 4H), 7.27 (d, J = 8.0 Hz, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.69 (s, 1H), 9.76 (s, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 13.9, 21.0, 30.7, 51.2, 60.9, 66.6,

127.5, 128.1, 129.0, 129.3, 133.0, 133.8, 133.8, 135.2, 135.7, 137.0. **HRMS** (ESI-TOF) m/z calculated for $C_{26}H_{26}Cl_2N_2NaO_4^+$ ([M+Na]⁺) 523.1162, found 523.1158.

3na, Ethyl 4-hydroxy-5-(4-methylbenzyl)-6-morpholino-3-(naphthalen-2-yl)picolinate. White solid in 50% yield, 72.3 mg, m.p. 161-163 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.83 (t, J = 7.2 Hz, 3H), 2.31 (s, 3H), 3.19 (t, J = 4.6 Hz, 3H), 3.79 (t, J = 4.6 Hz, 3H), 4.02 (q, J = 7.1 Hz, 2H), 4.10 (s, 2H), 5.70 (s, 1H), 7.11 (q, J = 7.6 Hz, 4H), 7.40 (dd, $J_1 = 8.4$ Hz, $J_2 = 2.0$ Hz, 1H), 7.80 (s, 1H), 7.82-7.85 (m, 1H), 7.87-7.90 (m, 1H), 7.94 (d, J = 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 13.5, 21.0, 31.2, 50.9, 61.1, 67.0, 115.2, 119.7, 126.7, 127.8, 127.5, 127.8, 127.9, 128.8, 129.1, 129.2, 129.9, 133.0, 133.4, 135.7, 136.0, 146.2, 160.0, 162.1, 166.8. HRMS (ESI-TOF) m/z calculated for C₃₀H₃₁N₂O₄⁺ ([M+H]⁺) 483.2278, found 483.2295.

30a, Ethyl 3-(furan-2-yl)-4-hydroxy-5-(4-methylbenzyl)-6-morpholinopicolinate. White solid in 38% yield, 48.1 mg, m.p. 154-156 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.24 (t, *J* = 7.2 Hz, 3H), 2.31 (s, 3H), 3.16 (t, *J* = 4.4 Hz, 4H), 3.76 (t, *J* = 4.4 Hz, 4H), 4.06 (s, 2H), 4.30 (q, *J* = 7.1 Hz, 2H), 6.52-6.55 (m, 2H), 6.77 (s, 1H), 7.08 (s, 4H), 7.54 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 21.0, 31.1, 50.7, 61.6, 66.9, 108.2, 110.1, 111.7, 114.4, 127.7, 129.3, 135.8, 135.8, 143.0, 146.4, 146.6, 160.0, 162.3, 167.1. HRMS (ESI-TOF) m/z calculated for C₂₄H₂₇N₂O₅⁺ ([M+H]⁺) 423.1914, found 423.1923.

3pa, Ethyl 4-hydroxy-5-(4-methylbenzyl)-6-morpholino-3-(thiophen-2-yl)picolinate. White solid in 50% yield, 65.7 mg, m.p. 177-179 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.08 (t, J = 7.2 Hz, 3H), 2.31 (s, 3H), 3.16-3.18 (m, 4H), 3.76 (t, J = 4.8 Hz, 4H), 4.06 (s, 2H), 4.16 (q, J = 7.2 Hz, 2H), 5.90 (s, 1H), 7.07-7.08 (m, 5H), 7.15 (dd, $J_1 = 5.0$ Hz, $J_2 = 3.4$ Hz, 1H), 7.50 (dd, $J_1 = 5.2$ Hz, $J_2 = 1.2$ Hz, 1H). ¹³C NMR (100

MHz, CDCl₃) δ 13.7, 21.0, 31.2, 50.8, 61.4, 67.0, 111.8, 114.4, 127.8, 127.9, 128.4, 129.2, 129.2, 132.2, 135.8, 135.9, 147.4, 160.5, 162.6, 166.6. **HRMS** (ESI-TOF) m/z calculated for C₂₄H₂₇N₂O₄S⁺ ([M+H]⁺) 439.1686, found 439.1691.

3qa, Methyl 4-hydroxy-5-(4-methylbenzyl)-6-morpholino-3-phenylpicolinate. White soild in 44% yield, 46.2 mg, m.p. 195-197 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.30 (s, 3H), 3.16 (t, *J* = 4.6 Hz, 4H), 3.63 (s, 3H), 3.78 (t, *J* = 4.6 Hz, 4H), 4.07 (s, 2H), 5.55 (s, 1H), 7.06-7.10 (m, 4H), 7.29-7.31 (m, 2H), 7.40-7.50 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 21.0, 31.2, 50.9, 52.2, 67.1, 115.4, 120.2, 127.8, 128.8, 129.2, 129.4, 129.7, 132.3, 135.8, 136.0, 145.4, 159.8, 162.0, 167.1. **HRMS** (ESI-TOF) m/z calculated for C₂₅H₂₇N₂O₄⁺ ([M+H]⁺) 419.1965, found 419.1972.

3ra, *tert*-butyl 4-hydroxy-5-(4-methylbenzyl)-6-morpholino-3-phenylpicolinate. White soild in 52% yield, 60.3 mg, m.p. 170-173 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.19 (s, 9H), 2.30 (s, 3H), 3.17 (t, J = 4.8 Hz, 4H), 3.78 (t, J = 4.6 Hz, 4H), 4.06 (s, 2H), 5.45 (s, 1H), 7.08 (q, J = 6.8 Hz, 4H), 7.29-7.32 (m, 2H), 7.42-7.50 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 21.0, 27.5, 31.1, 50.9, 67.1, 81.9, 114.7, 119.4, 127.8, 128.6, 129.2, 129.3, 130.2, 132.9, 135.7, 136.2, 146.9, 159.7, 162.1, 165.8. HRMS (ESI-TOF) m/z calculated for C₂₈H₃₂N₂NaO₄⁺ ([M+Na]⁺) 483.2254, found 483.2259.

3sa, (4-hydroxy-5-(4-methylbenzyl)-6-morpholino-3-phenylpyridin-2-yl)(morpholino)methanone. White soild in 43% yield, 50.7 mg, m.p. 270-272 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.30 (s, 3H), 3.12 (t, *J* = 4.6 Hz, 4H), 3.15 (t, *J* = 4.6 Hz, 2H), 3.26 (t, *J* = 4.6 Hz, 2H), 3.46 (t, *J* = 4.8 Hz, 2H), 3.56 (t, *J* = 4.8 Hz, 2H), 3.76 (t, *J* = 4.8 Hz, 4H), 4.06 (s, 2H), 5.63 (s, 1H), 7.09 (q, *J* = 6.8 Hz, 4H), 7.38-7.44 (m, 3H), 7.46-7.50 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 21.0, 31.1, 41.6, 46.7, 51.0, 66.5, 66.5, 67.0, 113.5, 117.5, 127.8, 129.0, 129.3, 129.5, 130.0, 131.4, 135.8, 136.0, 149.5, 159.5, 162.4, 167.1. **HRMS** (ESI-TOF) m/z calculated for $C_{28}H_{32}N_2O_4^+$ ([M+H]⁺) 474.2387, found 474.2398.

3ta, 3-(4-methylbenzyl)-2-morpholino-5-phenyl-6-tosylpyridin-4-ol. White soild in 34% yield, 42.8 mg, m.p. 214-216 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.29 (s, 3H), 2.43 (s, 3H), 2.90 (t, *J* = 4.6 Hz, 4H), 3.61 (t, *J* = 4.6 Hz, 4H), 3.98 (s, 2H), 5.60 (s, 1H), 7.04 (q, *J* = 7.9 Hz, 4H), 7.28 (d, *J* = 8.4 Hz, 2H), 7.41-7.43 (m, 2H), 7.48-7.56 (m, 3H), 7.76-7.78 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 21.0, 21.6, 31.3, 50.4, 66.7, 115.2, 118.1, 127.7, 129.0, 129.2, 129.3, 129.4, 129.5, 130.9, 135.5, 135.9, 136.5, 144.0, 152.7, 160.5, 161.1. HRMS (ESI-TOF) m/z calculated for C₃₀H₃₁N₂O₄S⁺ ([M+H]⁺) 515.1999, found 515.2003.

3ua, Ethyl 5-(4-methylbenzyl)-6-morpholino-4-oxo-3,3-diphenyl-3,4-dihydropyridine-2-carboxylate. Orange solid in 40% yield, 64.3 mg, m.p. 166-168 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 0.91 (t, J = 7.2 Hz, 3H), 2.24 (s, 3H), 2.34 (s, 6H), 3.56 (s, 8H), 3.69 (s, 2H), 3.93 (q, J = 7.1 Hz, 2H), 6.63 (d, J = 7.6 Hz, 2H), 6.87 (d, J = 7.6 Hz, 2H), 7.10 (s, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 13.5, 20.9, 21.1, 29.7, 48.6, 61.6, 66.2, 67.5, 98.0, 127.4, 128.9, 129.3, 135.0, 135.3, 136.7, 137.4, 158.5, 164.1, 168.4, 194.8. **HRMS** (ESI-TOF) m/z calculated for C₃₂H₃₂N₂NaO₄⁺ ([M+Na]⁺) 559.2567, found 559.2540.

3ab, Ethyl 5-benzyl-4-hydroxy-6-morpholino-3-phenylpicolinate. White solid in 56% yield, 70.2 mg, m.p. 166-168 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.95 (t, J = 7.0 Hz, 3H), 3.16 (t, J = 4.6 Hz, 4H), 3.78 (t, J = 4.6 Hz, 4H), 4.07 (q, J = 7.2 Hz, 2H), 4.12 (s, 2H), 5.52 (s, 1H), 7.17-7.22 (m, 3H), 7.25-7.28 (m, 2H), 7.30-7.33 (m, 2H), 7.41-7.50 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 31.6, 50.9, 61.1, 67.0, 115.1, 119.8, 126.2, 128.0, 128.5, 128.8, 129.4, 129.9, 132.4, 139.3, 146.1, 159.8, 162.2, 166.7. HRMS (ESI-TOF) m/z calculated for C₂₆H₂₇Cl₂N₂O₄⁺ ([M+H]⁺) 419.1965, found 419.1980.

3ac, Ethyl 4-hydroxy-5-(4-methoxybenzyl)-6-morpholino-3-phenylpicolinate. White solid in 60% yield, 80.7 mg, m.p. 171-173 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.95 (t, J = 7.2 Hz, 3H), 3.17 (t, J = 4.6 Hz, 4H), 3.77-3.80 (m, 7H), 4.04-4.10 (m, 4H), 5.52 (s, 1H), 6.81 (d, J = 8.8 Hz, 2H), 7.12-7.14 (m, 2H), 7.30-7.32 (m, 2H), 7.40-7.49 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 30.7, 50.9, 55.2, 61.1, 67.1, 114.0, 115.4, 119.8, 128.8, 128.9, 129.3, 129.9, 131.1, 132.5, 146.1, 158.1, 159.7, 162.1, 166.7. HRMS (ESI-TOF) m/z calculated for C₂₆H₂₈N₂NaO₅⁺ ([M+Na]⁺) 471.1890, found 471.1891.

3ad, Ethyl 5-(4-chlorobenzyl)-4-hydroxy-6-morpholino-3-phenylpicolinate. White solid in 40% yield, 54.2 mg, m.p. 174-176 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.94 (t, *J* = 7.2 Hz, 3H), 3.13 (t, *J* = 4.6 Hz, 4H), 3.77 (t, *J* = 4.6 Hz, 4H), 4.04-4.09 (m, 4H), 5.63 (s, 1H), 7.14 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 7.29-7.31 (m, 2H), 7.41-7.50 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 30.9, 50.9, 61.1, 67.0, 114.8, 119.8, 128.5, 128.9, 129.3, 129.4, 129.8, 131.8, 132.1, 138.0, 146.3, 159.7, 162.1, 166.6. HRMS (ESI-TOF) m/z calculated for C₂₅H₂₆ClN₂O₄⁺ ([M+H]⁺) 453.1576, found 453.1588.

3ae, Ethyl 5-(4-bromobenzyl)-4-hydroxy-6-morpholino-3-phenylpicolinate. White solid in 51% yield, 75.9 mg, m.p. 177-179 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 0.93 (t, *J* = 7.0 Hz, 3H), 3.13 (t, *J* = 4.4 Hz, 4H),

3.76 (t, J = 4.4 Hz, 4H), 4.04-4.08 (m, 4H), 5.71 (s, 1H), 7.08 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 7.2 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.43-7.49 (m, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 13.5, 30.9, 50.9, 61.2, 66.9, 114.6, 119.8, 119.8, 128.9, 129.4, 129.7, 129.8, 131.4, 132.1, 138.5, 146.2, 159.6, 162.0, 166.6. **HRMS** (ESI-TOF) m/z calculated for C₂₅H₂₅BrN₂NaO₄⁺ ([M+Na]⁺) 519.0890, found 519.0886.

3af, Ethyl 4-hydroxy-6-morpholino-5-(4-nitrobenzyl)-3-phenylpicolinate. Yellow solid in 42% yield, 58.4 mg, m.p. 160-162 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.95 (t, J = 7.2 Hz, 3H), 3.14 (t, J = 4.6 Hz, 4H), 3.78 (t, J = 4.6 Hz, 4H), 4.07 (q, J = 7.1 Hz, 2H), 4.19 (s, 2H), 5.61 (s, 1H), 7.29-7.31 (m, 2H), 7.37 (d, J = 8.4 Hz, 2H), 7.43-7.51 (m, 3H), 8.12 (d, J = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 31.5, 51.0, 61.3, 66.9, 113.9, 119.9, 123.6, 128.8, 129.1, 129.6, 129.7, 131.7, 146.4, 146.6, 147.6, 159.6, 162.1, 166.5. HRMS (ESI-TOF) m/z calculated for C₂₅H₂₆N₃O₆⁺ ([M+H]⁺) 464.1816, found 463.1812.

3ag, Ethyl 5-(2-chlorobenzyl)-4-hydroxy-6-morpholino-3-phenylpicolinate. White solid in 65% yield, 88.2 mg, m.p. 158-160 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.95 (t, J = 7.0 Hz, 3H), 3.12 (t, J = 4.4 Hz, 4H), 3.74 (t, J = 4.6 Hz, 4H), 4.08 (q, J = 7.1 Hz, 2H), 4.15 (s, 2H), 5.58 (s, 1H), 6.94 (dd, $J_1 = 6.8$ Hz, $J_2 = 2.4$ Hz, 1H), 7.11-7.18 (m, 2H), 7.33 (d, J = 6.4 Hz, 2H), 7.39 (dd, $J_1 = 7.2$ Hz, $J_2 = 2.4$ Hz, 1H), 7.42-7.51 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 29.7, 50.6, 61.2, 66.9, 113.0, 119.3, 126.8, 127.5, 128.3, 128.9, 129.3, 129.5, 129.8, 132.1, 134.2, 136.6, 146.3, 159.9, 162.1, 166.7. HRMS (ESI-TOF) m/z calculated for C₂₅H₂₅ClN₂NaO₄⁺ ([M+Na]⁺) 475.1395, found 475.1393.

3ah, Ethyl 5-(2-bromobenzyl)-4-hydroxy-6-morpholino-3-phenylpicolinate. White solid in 60% yield, 89.3 mg, m.p. 148-150 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.95 (t, *J* = 7.0 Hz, 3H), 3.12 (t, *J* = 4.4 Hz, 4H), 3.75 (t, *J* = 4.4 Hz, 4H), 4.08 (q, *J* = 7.1 Hz, 2H), 4.13 (s, 2H), 5.54 (s, 1H), 6.92 (d, *J* = 4.0 Hz, 1H), 7.08 (t, *J* = 7.6 Hz, 1H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.43 (d, *J* = 3.4 Hz, 2H), 7.42-7.51 (m, 3H), 7.59 (d, *J* = 4.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 32.7, 50.6, 61.2, 67.0, 113.1, 119.2, 124.9, 127.4, 127.8, 128.4, 128.9, 129.5, 129.8, 132.1, 132.7, 138.2, 146.3, 159.8, 162.1, 166.7. HRMS (ESI-TOF) m/z calculated for C₂₅H₂₅BrN₂NaO₄⁺ ([M+Na]⁺) 519.0890, found 519.0873.

3ai, Ethyl 4-hydroxy-6-morpholino-5-(naphthalen-1-ylmethyl)-3-phenylpicolinate. White solid in 50% yield, 70.2 mg, m.p. 163-165 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.97 (t, *J* = 7.2 Hz, 3H), 3.18 (t, *J* = 4.4 Hz, 4H), 3.68 (t, *J* = 4.4 Hz, 4H), 4.09 (t, *J* = 7.2 Hz, 2H), 4.51 (s, 2H), 5.58 (s, 1H), 7.13 (d, *J* = 6.8 Hz, 1H), 7.33-7.37 (m, 3H), 7.40-7.48 (m, 3H), 7.51-7.60 (m, 2H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 8.24 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 21.0, 27.8, 31.2, 52.8, 61.1, 115.4, 119.7, 127.7, 128.4, 128.7, 129.1, 129.2, 129.3, 129.8, 132.4, 135.7, 136.0, 145.9, 146.4, 159.7, 162.9, 166.7. **HRMS** (ESI-TOF) m/z calculated for C₂₉H₂₉N₂O₄⁺ ([M+H]⁺) 469.2122, found 469.2144.

3aj, Ethyl 5-allyl-4-hydroxy-6-morpholino-3-phenylpicolinate. White solid in 48% yield, 53.1 mg, m.p. 137-139 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 0.93 (t, *J* = 7.0 Hz, 3H), 3.24 (t, *J* = 4.4 Hz, 4H), 3.48 (d, *J* = 5.2 Hz, 2H), 3.84 (t, *J* = 4.4 Hz, 4H), 4.05 (q, *J* = 7.2 Hz, 2H), 5.05-5.13 (m, 2H), 5.58 (s, 1H), 6.02-6.12 (m, 1H), 7.31 (d, *J* = 7.2 Hz, 2H), 7.41-7.50 (m, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 13.6, 30.4, 50.9, 61.1,

67.1, 113.6, 116.0, 119.7, 128.7, 129.2, 129.8, 132.5, 135.3, 145.9, 159.7, 161.8, 166.8. **HRMS** (ESI-TOF) m/z calculated for $C_{21}H_{24}N_2NaO_4^+$ ([M+Na]⁺) 391.1628, found 391.1644.

3ak, Ethyl 5-ethyl-4-hydroxy-6-morpholino-3-phenylpicolinate. White solid in 40% yield, 42.7 mg, m.p. 157-159 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.93 (t, *J* = 7.0 Hz, 3H), 1.24 (t, *J* = 7.4 Hz, 3H), 2.71 (q, *J* = 7.5 Hz, 2H), 3.22 (d, *J* = 4.6 Hz, 4H), 3.86 (t, *J* = 4.6 Hz, 4H), 4.04 (q, *J* = 7.1 Hz, 2H), 5.51 (s, 1H), 7.29-7.31 (m, 2H), 7.42-7.51 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 12.8, 13.6, 19.1, 51.2, 61.0, 67.1, 119.0, 119.9, 128.8, 129.4, 129.9, 132.5, 145.0, 159.3, 161.6, 166.7. HRMS (ESI-TOF) m/z calculated for C₂₀H₂₄N₂NaO₄⁺ ([M+Na]⁺) 379.1628, found 379.1634.

3al, Ethyl 5-butyl-4-hydroxy-6-morpholino-3-phenylpicolinate. White solid in 50% yield, 57.6 mg, m.p. 145-147 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.91-0.97 (m, 6H), 1.35-1.45 (m, 2H), 1.57-1.65 (m, 2H), 2.66 (t, *J* = 8.0 Hz, 2H), 3.20 (t, *J* = 4.6 Hz, 4H), 3.85 (d, *J* = 4.6 Hz, 4H), 4.04 (q, *J* = 7.2 Hz, 2H), 5.50 (s, 1H), 7.29-7.31 (m, 2H), 7.42-7.51 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 13.8, 23.1, 25.4, 30.4, 51.2, 61.0, 67.1, 118.1, 120.0, 128.7, 129.4, 129.9, 132.6, 144.9, 159.3, 161.8, 166.7. HRMS (ESI-TOF) m/z calculated for C₂₂H₂₉N₂O₄⁺ ([M+H]⁺) 385.2122, found 385.2140.

3am, Ethyl 4-hydroxy-5-(4-methylbenzyl)-3-phenyl-6-thiomorpholinopicolinate. White solid in 60% yield, 80.7 mg, m.p. 155-157 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 0.95 (t, J = 7.2 Hz, 3H), 2.30 (s, 3H), 2.73 (t, J = 5.2 Hz, 4H), 3.42 (t, J = 5.2 Hz, 4H), 4.03 (s, 2H), 4.06 (q, J = 7.1 Hz, 2H), 5.58 (s, 1H), 7.06-7.11 (m, 4H), 7.30-7.32 (m, 2H), 7.40-7.50 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 21.0, 27.8, 31.2, 52.8, 61.1, 115.5, 119.7, 127.8, 128.7, 129.2, 129.3, 129.9, 132.4, 135.7, 136.1, 146.0, 159.8, 162.9, 166.7. **HRMS** (ESI-TOF) m/z calculated for C₂₆H₂₉N₂O₃S⁺ ([M+H]⁺) 449.1893, found 449.1904.

3an, Ethyl 4-hydroxy-5-(4-methylbenzyl)-6-(4-methylpiperazin-1-yl)-3-phenylpicolinate. White oil in 40% yield, 53.4 mg. ¹H NMR (400 MHz, CDCl₃) δ 0.95 (t, J = 7.2 Hz, 3H), 2.30 (s, 3H), 2.86 (s, 6H), 4.04-4.10 (m, 4H), 5.46 (s, 1H), 7.06-7.11 (m, 4H), 7.31 (d, J = 6.8 Hz, 2H), 7.40-7.48 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 21.0, 31.4, 42.5, 42.9, 61.0, 113.0, 118.4, 127.8, 128.3, 128.5, 129.0, 129.1, 129.2, 130.0, 130.5, 132.8, 135.5, 136.4, 159.7. HRMS (ESI-TOF) m/z calculated for C₂₇H₃₂N₃O₃⁺ ([M+H]⁺) 446.2438, found 446.2445.

3ao, Ethyl 4-hydroxy-5-(4-methylbenzyl)-3-phenyl-6-(pyrrolidin-1-yl)picolinate. Yellow oil in 43% yield, 53.7 mg. ¹H NMR (400 MHz, CDCl₃) δ 0.95 (t, J = 7.0 Hz, 3H), 1.81-1.84 (m, 4H), 2.31 (s, 3H), 3.53 (t, J = 6.4 Hz, 4H), 4.07 (q, J = 7.2 Hz, 2H), 4.13 (s, 2H), 5.42 (s, 1H), 7.08 (s, 4H), 7.31 (d, J = 7.2 Hz, 2H), 7.37-7.46 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 20.1, 25.6, 30.8, 50.2, 60.9, 108.0, 115.7, 127.6, 128.3, 129.0, 129.2, 130.1, 133.1, 135.3, 137.2, 145.3, 159.5, 167.2. **HRMS** (ESI-TOF) m/z calculated for C₂₆H₂₉N₂O₃⁺ ([M+H]⁺) 417.2173, found 417.2181.

3ap, Ethyl 4-hydroxy-5-(4-methylbenzyl)-3-phenyl-6-(piperidin-1-yl)picolinate. Yellow solid in 35% yield, 45.2 mg, m.p. 149-151 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.93 (t, *J* = 7.2 Hz, 3H), 1.55-1.60 (m, 2H), 1.63-1.67 (m, 4H), 2.30 (s, 3H), 3.12 (t, *J* = 5.4 Hz, 4H), 4.03-4.08 (m, 4H), 5.43 (s, 1H), 7.06 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 7.2 Hz, 2H), 7.38-7.49 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 13.5, 20.9, 24.5, 26.1, 31.2, 51.7, 60.9, 115.4, 119.3, 127.9, 128.5, 129.0, 129.1, 129.9, 132.8, 135.5, 136.5, 145.8, 159.4, 163.4, 166.9. HRMS (ESI-TOF) m/z calculated for C₂₇H₃₁N₂O₃⁺ ([M+H]⁺) 431.2329, found 431.2337.

3aq, Ethyl 6-(azepan-1-yl)-4-hydroxy-5-(4-methylbenzyl)-3-phenylpicolinate. White solid in 51% yield, 68.0 mg, m.p. 100-102 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.82 (t, *J* = 7.2 Hz, 3H), 1.57 (s, 8H), 2.24 (s, 3H), 3.21 (t, *J* = 4.8 Hz, 4H), 3.91 (q, *J* = 7.1 Hz, 2H), 3.99 (s, 2H), 7.23 (d, *J* = 7.2 Hz, 2H), 7.32-7.41 (m, 3H), 9.26 (s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 13.6, 21.0, 27.2, 29.2, 31.4, 52.7, 60.9, 112.1, 117.5, 127.6, 128.4, 129.0, 129.2, 129.9, 132.9, 135.4, 136.4, 145.1, 159.7, 163.3, 167.0. HRMS (ESI-TOF) m/z calculated for C₂₈H₃₃N₂O₃⁺ ([M+H]⁺) 445.2486, found 445.2498.

3ar, Ethyl 4-hydroxy-6-(isoindolin-2-yl)-5-(4-methylbenzyl)-3-phenylpicolinate. Yellow solid in 45% yield, 62.7 mg, m.p. 112-114 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.97 (t, *J* = 7.2 Hz, 3H), 2.31 (s, 3H), 4.09 (q, *J* = 7.1 Hz, 2H), 4.28 (s, 2H), 5.00 (s, 4H), 5.48 (s, 1H), 7.08-7.12 (m, 4H), 7.21 (s, 4H), 7.33 (d, *J* = 6.8 Hz, 2H), 7.39-7.48 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 21.0, 29.7, 30.6, 55.7, 61.0, 108.2, 116.0, 122.3, 126.9, 127.6, 128.5, 129.2, 129.3, 130.2, 133.0, 135.5, 137.1, 137.9, 159.9, 167.1. HRMS (ESI-TOF) m/z calculated for C₃₆H₂₉N₂O₃⁺ ([M+H]⁺) 465.2173, found 465.2174.

3as, ethyl 6-(dimethylamino)-4-hydroxy-5-(4-methylbenzyl)-3-phenylpicolinate. Yellow oil in 17% yield, 16.6 mg. ¹H NMR (400 MHz, CDCl₃) δ 0.94 (t, J = 7.2 Hz, 3H), 2.30 (s, 3H), 2.86 (s, 6H), 4.04-4.09 (m, 4H), 5.46 (s, 1H), 7.06-7.11 (m, 4H), 7.30 (d, J = 6.8 Hz, 2H), 7.37-7.47 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 21.0, 31.4, 42.5, 61.0, 113.0, 118.4, 127.8, 128.5, 129.1, 129.2, 129.9, 132.8, 135.5, 136.3, 145.4, 159.6, 163.1, 167.0. HRMS (ESI-TOF) m/z calculated for C₂₄H₂₆N₂O₃Na⁺ ([M+Na]⁺) 413.1836, found 413.1841.

3at, ethyl 6-(diethylamino)-4-hydroxy-5-(4-methylbenzyl)-3-phenylpicolinate. Yellow oil in 26% yield, 26.6 mg. ¹H NMR (400 MHz, CDCl₃) δ 0.95 (t, J = 7.2 Hz, 3H), 1.10 (t, J = 7.0 Hz, 6H), 2.30 (s, 3H), 3.20 (q, J = 6.9 Hz, 4H), 4.04-4.09 (m, 4H), 5.46 (s, 1H), 7.08 (q, J = 8.0 Hz, 4H), 7.32 (d, J = 7.2 Hz, 2H), 7.40-7.47 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 13.3, 13.6, 21.0, 31.2, 45.5, 60.9, 115.2, 118.5, 127.7, 128.5, 129.0, 129.2, 129.9, 132.8, 135.4, 136.5, 145.4, 159.5, 162.2, 167.0. HRMS (ESI-TOF) m/z calculated for C₂₆H₃₀N₂O₃Na⁺ ([M+Na]⁺) 441.2149, found 441.2148.

4a, 1-hydroxy-2-(4-methylbenzyl)-3-morpholino-5*H***-chromeno[3,4-***b***]pyridin-5-one. White solid in 70% yield, 56.0 mg, m.p. 195-197 °C. ¹H NMR (400 MHz, CDCl₃) \delta 2.26 (s, 3H), 3.13 (t,** *J* **= 4.4 Hz, 4H), 3.79 (t,** *J* **= 4.2 Hz, 4H), 4.01 (s, 2H), 7.02 (d,** *J* **= 8.0 Hz, 2H), 7.11 (d,** *J* **= 8.0 Hz, 2H), 7.32-7.38 (m, 2H), 7.45-7.49 (m, 1H), 8.97 (s, 1H), 9.67 (dd,** *J***₁ = 8.4 Hz,** *J***₂ = 1.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) \delta 15.2, 20.9, 30.5, 49.8, 66.5, 116.2, 117.2, 121.3, 122.1, 125.2, 125.6, 127.7, 127.9, 129.1, 129.7, 135.4, 136.5, 149.1, 151.6, 158.3, 178.0. HRMS (ESI-TOF) m/z calculated for C₂₄H₂₃N₂O₄⁺ ([M+H]⁺) 403.1652, found 403.1661.**

5a, Ethyl 4-(4-methylbenzyl)-3-morpholinobenzofuro[**3**,**2**-*c*]**pyridine-1-carboxylate.** White solid in 58% yield, 74.9 mg. m.p. 112-114 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 1.52 (t, *J* = 7.2 Hz, 3H), 2.29 (s, 3H), 3.23 (t, *J* = 4.6 Hz, 4H), 3.81 (t, *J* = 4.6 Hz, 4H), 4.36 (s, 2H), 4.58 (q, *J* = 7.2 Hz, 2H), 7.05 (d, *J* = 7.6 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 7.37-7.41 (m, 1H), 7.47-7.53 (m, 2H), 8.70 (d, *J* = 7.6 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 14.4, 21.0, 31.1, 51.1, 61.7, 67.1, 111.3, 114.4, 118.5, 121.7, 123.7, 126.0, 128.0, 128.4, 129.2, 135.6, 135.9, 138.8, 157.1, 159.0, 163.4, 166.0. **HRMS** (ESI-TOF) m/z calculated for C₂₆H₂₇N₂O₄⁺ ([M+H]⁺) 431.1965, found 431.1973.

5b, Ethyl 7-methyl-4-(4-methylbenzyl)-3-morpholinobenzofuro[**3**,2-*c*]**pyridine-1-carboxylate.** White solid in 70% yield, 93.3 mg. m.p. 107-109 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 1.52 (t, *J* = 7.2 Hz, 3H), 2.29 (s, 3H), 2.51 (s, 3H), 3.22 (t, *J* = 4.6 Hz, 4H), 3.82 (t, *J* = 4.8 Hz, 4H), 4.35 (s, 2H), 4.57 (q, *J* = 7.1 Hz, 2H), 7.05 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 8.4 Hz, 1H), 7.32 (s, 1H), 8.56 (d, *J* = 8.0 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 14.3, 20.9, 21.8, 31.1, 51.1, 61.6, 67.1, 111.6, 114.6, 118.8, 119.0, 124.9, 125.5, 128.0, 129.2, 135.7, 135.8, 138.2, 139.2, 157.5, 158.7, 163.4, 166.0. **HRMS** (ESI-TOF) m/z calculated for C₂₇H₂₉N₂O₄⁺ ([M+H]⁺) 445.2122, found 445.2137.

4. Copies of ¹H NMR and ¹³C NMR spectra of compounds 3, 4 and 5

¹H NMR spectrum of the compound **3aa** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3ba** (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound 3ba (100 MHz, CDCl_3)

() () here (is a second of the second of th		101
000040000000000000000000000000000000000	20001	2823
	0000	- NO 0
0///77000700000000	0 N O N	0440
4000044440000400	0 0 0 10	m = m m

¹H NMR spectrum of the compound **3ca** (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound 3ca (100 MHz, CDCl_3)

4004046464600004	07000	040
000000000000000000000000000000000000000	830000	96
66666446666666666666	26693	13 23
NY NY NY	2 1 1 1 1	255

¹H NMR spectrum of the compound **3da** (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound 3da (100 MHz, CDCl_3)

000000000000000		
0004000000000000	7-100	N-40 -
97170704000170VFF	0440	441-
	0000	-00
000000077770000	N' IO - O	
000000000000000000000000000000000000000		200
		< \ \ \ \

¹H NMR spectrum of the compound **3ea** (400 MHz, CDCl₃)

¹³C NMR spectrum of the compound **3ea** (100 MHz, CDCl₃)

¹H NMR spectrum of the compound **3fa** (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound $3fa~(100~\text{MHz}, \text{CDCl}_3)$

¹H NMR spectrum of the compound **3ga** (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound 3ga (100 MHz, CDCl_3)

¹H NMR spectrum of the compound **3ha** (400 MHz, DMSO-*d*₆)

¹³C NMR spectrum of the compound **3ha** (100 MHz, DMSO- d_6)

200 180 160 140 120 100 80 60 40 20 0

¹H NMR spectrum of the compound **3ia** (400 MHz, DMSO-*d*₆)

¹³C NMR spectrum of the compound **3ia** (100 MHz, DMSO-*d*₆)

¹H NMR spectrum of the compound **3ja** (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound $3ja~(100~\text{MHz}, \text{CDCl}_3)$

¹H NMR spectrum of the compound 3ka (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound 3ka (100 MHz, CDCl₃)

¹H NMR spectrum of the compound **3la** (400 MHz, CDCl₃)

344 171 127 069 069	222 142 177 193 193 193 193 193 193 193 193 193 193	051 034 016
FFFFFFF	n 4444 n n n n n n n n n n n n n n n n	277

^{13}C NMR spectrum of the compound $3la~(100~\text{MHz}, \text{CDCl}_3)$

¹H NMR spectrum of the compound **3ma** (400 MHz, DMSO-*d*₆)

¹³C NMR spectrum of the compound **3ma** (100 MHz, DMSO- d_6)

¹H NMR spectrum of the compound **3na** (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound 3na (100 MHz, CDCl_3)

¹H NMR spectrum of the compound **3oa** (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound 30a (100 MHz, CDCl_3)

¹H NMR spectrum of the compound **3pa** (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound 3pa (100 MHz, CDCl_3)

¹H NMR spectrum of the compound **3qa** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3ra** (400 MHz, CDCl₃)

¹³C NMR spectrum of the compound **3ra** (100 MHz, CDCl₃)

¹H NMR spectrum of the compound **3sa** (400 MHz, CDCl₃)

 ^{13}C NMR spectrum of the compound 3sa (100 MHz, CDCl_3)

¹H NMR spectrum of the compound **3ta** (400 MHz, CDCl₃)

 ^{13}C NMR spectrum of the compound 3ta (100 MHz, CDCl_3)

¹H NMR spectrum of the compound **3ua** (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound **3ua** (100 MHz, CDCl₃)

¹H NMR spectrum of the compound **3ab** (400 MHz, CDCl₃)

200 180 160 140 120 100 80 60 40 20 0

¹H NMR spectrum of the compound **3ac** (400 MHz, CDCl₃)

200 180 160 140 120 100 80 60 40 20 0

¹H NMR spectrum of the compound **3ad** (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound 3ad (100 MHz, CDCl_3)

¹H NMR spectrum of the compound **3ae** (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound 3ae (100 MHz, CDCl_3)

¹H NMR spectrum of the compound **3af** (400 MHz, CDCl₃)

200 180 160 140 120 100 80 60 40 20 0

¹H NMR spectrum of the compound **3ag** (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound 3ag (100 MHz, CDCl_3)

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10}

¹H NMR spectrum of the compound **3ah** (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound 3ah (100 MHz, CDCl_3)

¹H NMR spectrum of the compound **3ai** (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound 3ai (100 MHz, CDCl_3)

¹H NMR spectrum of the compound **3aj** (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound 3aj (100 MHz, CDCl_3)

¹H NMR spectrum of the compound **3ak** (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound 3ak (100 MHz, CDCl_3)

200 180 160 140 120 100 80 60 40 20 0

¹H NMR spectrum of the compound **3al** (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound 3al (100 MHz, CDCl_3)

1- J (1	4 000004		
- 1- CO	N U U U U U U U	T (V (2) 00	0-40-
NNM		0000	04140
(0 - 0)	st oin minin	0-0-	440000
NO O	4 00000	- NO-	00000
T T T		10001	77000
111		~ 1 1 ~	551 4

¹H NMR spectrum of the compound **3am** (400 MHz, CDCl₃)

200 180 160 140 120 100 80 60 40 20 0

¹H NMR spectrum of the compound **3an** (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound 3an (100 MHz, CDCl_3)

^{13}C NMR spectrum of the compound 3ao (100 MHz, CDCl_3)

^{13}C NMR spectrum of the compound 3aq (100 MHz, CDCl_3)

¹H NMR spectrum of the compound **3ar** (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound 3ar (100 MHz, CDCl_3)

¹H NMR spectrum of the compound **3as** (400 MHz, $CDCl_3$)

 ^{13}C NMR spectrum of the compound 3ar (100 MHz, CDCl_3)

^{13}C NMR spectrum of the compound 3ar (100 MHz, CDCl_3)

¹H NMR spectrum of the compound 4a (400 MHz, CDCl₃)

^{13}C NMR spectrum of the compound $4a~(100~\text{MHz}, \text{CDCl}_3)$

N	0000004000000000				
00	0400-1-0000000000	0	40	40	000
Ō	N900040+00000000	ō	Ő.	D D	400
		Ō	4	P-	LOON
-	070000000000000000000000000000000000000	1000	10	-	
-	004000000000000	E	8	22	222
5.55		100	4	N	6.7 C 4 4
					6 2 2

¹H NMR spectrum of the compound **5a** (400 MHz, CDCl₃)

0+0000000000040000+++0040000000000	000
L0001-000800-000800000000000000000000000	070
> 0 0 0 0 0 0 0 4 4 4 4 4 4 4 0 0 0 0 0	4040
887777777777777777777777777777777777777	2 2 2

^{13}C NMR spectrum of the compound $5a~(100~\text{MHz}, \text{CDCl}_3)$

200 180 160 140 120 100 80 60 40 20 0

^1H NMR spectrum of the compound $5b~(400~\text{MHz}, \text{CDCl}_3)$

^{13}C NMR spectrum of the compound 5b (100 MHz, CDCl_3)

5. X-ray Crystallographic Data of compound 3ba and 3ua

Crystal data:

Empirical formula	$C_{27}H_{30}N_2O_4$
Formula weight	446.53
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P 1 21/c 1
a/Å	22.1582(15)
b/Å	6.7307(3)
c/Å	16.2742(8)
α/°	90.00
β/°	93.660(5)
γ/°	90.00
Volume/Å ³	2422.2(2)
Z	4
Mu (mm-1)	0.662
$\rho_{calc}g/cm^3$	1.224
F(000)	952.0
Crystal size/mm ³	$0.26\times 0.20\times 0.10$
Radiation	CuK\a
Index ranges	$-26 \le h \le 25, -8 \le k \le 7, -19 \le l \le 12$
Reflections collected	8845
Independent reflections	4302 [$R_{int} = 0.0228$]
Data/restraints/parameters	2926/0/302

Goodness-of-fit on F ²	1.043
Final R indexes [$I > = 2\sigma$ (I)]	$R_1 = 0.0569, wR_2 = 0.1418$
Final R indexes [all data]	$R_1 = 0.0883, wR_2 = 0.1685$

Crystal data:

Empirical formula	$C_{34}H_{36}N_2O_4\\$
Formula weight	536.65
Temperature/K	293(2)
Crystal system	triclinic
Space group	P -1
a/Å	9.9182(5)
b/Å	12.2130(7)
c/Å	13.3822(7)
α/°	109.450(5)
β/°	91.850(4)
γ/°	102.819(5)
Volume/Å ³	1480.43(14)
Z	2
Mu (mm-1)	0.627
$\rho_{calc}g/cm^3$	1.204
F(000)	572
Crystal size/mm ³	0.23 imes 0.15 imes 0.07
Radiation	CuK\a

Index ranges	$-11 \le h \le 11, -14 \le k \le 14, -15 \le l \le 12$
Reflections collected	8991
Independent reflections	5129 [$R_{int} = 0.0181$]
Data/restraints/parameters	3342 /0/366
Goodness-of-fit on F ²	1.092
Final R indexes $[I > = 2\sigma(I)]$	$R_1 = 0.0473, wR_2 = 0.1316$
Final R indexes [all data]	$R_1 = 0.0590, wR_2 = 0.1548$