Supporting Information for

Phenanthroline-Strapped Calix[4]pyrroles. Anion Receptors Displaying

Affinity Reversal as a Function of Solvent Polarity

Nam Jung Heo,^{a,#} Ju Hyun Oh,^{a,#} Jeong Tae Lee,^b Qing He,^{*,c} Jonathan L. Sessler,^{*,d} and Sung Kuk Kim^{*,a}

^aDepartment of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea, ^bDepartment of Chemistry and Institute of Applied Chemistry, Hallym University, Chuncheon 24252, Korea, ^cState Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China, and ^dDepartment of Chemistry, The University of Texas at Austin, 105 E. 24th Street-Stop A5300, Austin, Texas 78712-1224, USA

1. General experimental and synthetic details	S2 - S4
2. ¹ H NMR spectral data for titrations with anions	S5 – S37
3. NMR spectra and HRMS data	S39 - S45
4. X-ray experimental for the complex $2 \cdot \text{TBACl}$	S46 - S47
5. Energies and geometrical coordinates of the optimized structures in the gas phase	se S48-52
6. References	S53

1. General experimental and synthetic details

Solvents and reagents used for the synthetic work were purchased from Aldrich, TCI, or Alfa Aesar and used without further purification. Compounds **1** and **4** were prepared as reported previously.^{1,2} NMR spectra were recorded on a Bruker Advance-300 MHz instrument. The NMR spectra were referenced to residual solvent peaks and the spectroscopic solvents were purchased from either Cambridge Isotope Laboratories or Aldrich. Chemical ionization (CI) and electrospray ionization (ESI) mass spectra were recorded on a VG ZAB-2E instrument and a VG AutoSpec apparatus, respectively. TLC analyses were carried out using Sorbent Technologies silica gel (200 mm) sheets. Column chromatography was performed on Sorbent silica gel 60 (40–63 mm).

Compound 5: To a solution of compound **3** (0.8 g, 2.98 mmol), compound **4** (1.3 g, 5.98 mmol),¹ EDCI (1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide, 1.02 6.57 mmol) and HOBt g, (hydroxybenzotriazole, 0.92 g, 6.01 mmol) in DMF (30 mL), DIPEA (N,N-diisopropylethylamine, 2.08 mL, 11.99 mmol) was added via syringe. The resulting solution was stirred overnight at room temperature and concentrated under reduced pressure. To the resulting reaction mass, dichloromethane and water were added. The organic phase was separated off and washed with water. The organic layer was then dried over anhydrous MgSO₄ and filtered. The filtrate was evaporated *in vacuo* to give a yellowish sticky solid. Recrystallization of the resulting crude product from acetonitrile gave compound 7 (0.87 g, 44% yield) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 8.59 (d, J = 8.3 Hz, 2H), 8.51 (broad t, J = 6.1 Hz, 2H), 8.45 (d, J = 8.3 Hz, 2H), 7.93 (s, 2H), 7.86 (broad s, 4H), 6.59 (t, J = 2.6, 1.7 Hz, 4H), 6.09 (t, J = 2.7 Hz, 8H), 3.50 (q, J = 6.8 Hz, 4H), 2.13 (dd, J = 17.1, 9.1 Hz, 4H), 2.01 (s, 4H), 1.61 (s, 6H) ppm. ¹³C NMR (75 MHz, DMSO-*d*₆) δ 164.2, 150.4, 144.2, 138.73, 128.3, 121.6, 116.9, 106.7, 104.1, 79.6, 55.2, 38.7, 25.4 ppm. HRMS (ESI) *m/z* 689.3323 [M + H⁺] calc. for C₄₀H₄₂N₈O₂, found 689.3324.

Compound 1: To compound **7** (0.87 g, 1.50 mmol) in acetone (600 ml) was added via syringe BF₃•OEt₂ (boron trifluoride diethyl etherate, 1 mL, 8.10 mmol). The reaction mixture was stirred for 4 hours at room temperature and then quenched with TEA and concentrated under reduced pressure. To this crude product, dichloromethane and water were added. The organic phase was separated off and washed with water. The organic layer was then dried over anhydrous MgSO₄, filtered, and evaporated *in vacuo* to give a yellowish solid. The crude product obtained in this way was purified by column chromatography over silica gel (eluent: acetone/dichloromethane (1/9)) to give 0.11 g (11% yield) of **2** as a yellowish solid. ¹H NMR (300 MHz, CDCl₃) δ 8.68 (d, *J* = 8.3 Hz, 4H), 8.63 (broad t, *J* = 6.1 Hz, 2H), 8.50 (d, *J* = 8.3 Hz, 2H), 7.98 (s, 2H), 7.07 (broad s, 4H), 5.90 (t, *J* = 3.1 Hz, 4H), 5.82 (t, *J* = 3.0 Hz, 4H), 3.63 (q, *J* = 6.4 Hz, 4H), 2.00 (m, 4H), 1.63 (p, 4H), 1.46 (s, 12H), 1.41 (s, 6H) ppm. ¹³C NMR (75 MHz, DMSO-*d*₆) δ 164.5, 150.8, 144.6, 138.8, 138.7, 135.9, 128.5, 122.0, 104.2, 103.0, 40.2, 31.3, 30.5, 28.1, 26.6 ppm. HRMS (ESI) *m/z* 747.4129 [M + H⁺] calc. for C₄₆H₄₆N₈O₂, found 747.4135.

2. ¹H NMR spectral data for titrations with anions

a) Treatment used where binding between receptors and anions is governed by a binding/release equilibrium that is slow on the NMR time scale:

Equilibrium:

$$A+B \longrightarrow AB$$

Equilibrium constant: $K_a = \frac{[AB]}{[A][B]} = \frac{[AB]}{(c(A) - [AB])(c(B) - [AB])}$ (1)

c(A) and c(B) are the initial concentrations of A and B, and [A], [B] and [AB] are the equilibrium concentrations of the three species.

A and B is in slow exchange with the complex AB on the ¹H NMR time scale.

Two signals for one specific proton on A can be seen in the spectrum, corresponding to complexed and uncomplexed forms of A:

Single-point Methods

 K_a is determined from the integrals of complexed and uncomplexed A. If I(A) denotes the integral of a signal for one specific proton of A and I(AB) the integral for the same proton in the complex, the concentration of AB at equilibrium is shown by eq 2. The equilibrium expression is obtrained after substituting into eq. (1):

$$[AB] = \frac{I(AB)}{I(A) + I(AB)} c(A)$$
(2)

$$K_a = \frac{I(AB)}{I(A)(c(B) - \frac{I(AB)}{I(A) + I(AB)}c(A))}$$
(3)

b) Treatment used where binding between receptors and anions is governed by a binding/release equilibrium that is fast on the NMR time scale:

Binding constants of receptors with anions were calculated using the equation $y = (b \times x)/(1 + x \times Ka)$, where x = [G], y = $|\delta_0 - \delta|$ (δ is the chemical shift of an indicative receptor proton

signal at a certain anion concentration and δ_0 is the chemical shift of the receptor signal for the anion-free form).

Figure S1. Partial ¹H NMR spectra recorded during the titration of **1** (3 mM) with tetraethylammonium bicarbonate (TEAHCO₃) in CDCl₃.

Figure S2. Partial ¹H NMR spectra recorded during the titration of 1 (3 mM) with tetraethylammonium bicarbonate (TEAHCO₃) in aqueous DMSO- d_6 solution (15% D₂O in DMSO- d_6).

Figure S3. ¹H NMR spectra recorded during the titration of 2 (3 mM) with tetraethylammonium bicarbonate (TEAHCO₃) in aqueous DMSO- d_6 solution (15% D₂O in DMSO- d_6).

Figure S4. Partial ¹H NMR spectra recorded during the titration of **1** (3 mM) with sodium bicarbonate (NaHCO₃) in aqueous DMSO- d_6 solution (15% D₂O in DMSO- d_6).

Figure S5. ¹H NMR spectra recorded during the titration of **2** (3 mM) with sodium bicarbonate (NaHCO₃) in aqueous DMSO- d_6 solution (15% D₂O in DMSO- d_6) and the corresponding isotherm for the binding of NaHCO₃ obtained using BindFit v5.0 available from URL: "http://app.supramolecular.org/bindfit/". The data was fitted based on the chemical shift changes of the signal corresponding to H_a.

Figure S6. Partial 1H NMR spectra of (a) **1** (3 mM) only, (b) **1** + excess TBAF (tetrabutylammonium fluoride), (c) **1** + excess TBACl, (d) **1** + excess TBABr, (e) **1** + excess TBAI, (f) **1** + excess TBAH₂PO₄, (g) **1** + excess (TBA)₃HP₂O₇, (h) **1** + excess TBAHSO₄, and (i) **1** + excess (TBA)₂SO₄ in CDCl₃.

Figure S7. Partial ¹H NMR spectra recorded during the titration of 1 (3 mM) with TBACl in CDCl₃ and the corresponding binding isotherm. The data was fitted based on the chemical shift changes of the signal corresponding to H_f .

Figure S8. Partial ¹H NMR spectra recorded during the titration of **1** (3 mM) with TBABr in CDCl₃ and the corresponding binding isotherm. The data was fitted based on the chemical shift changes of the signal corresponding to H_f .

Figure S9. Partial ¹H NMR spectra recorded during the titration of 1 (3 mM) with TBAI in CDCl₃ and the corresponding binding isotherm. The data was fitted based on the chemical shift changes of the signal corresponding to H_f .

Figure S10. Partial ¹H NMR spectra recorded during the titration of 1 (3 mM) with TBAH₂PO₄ in CDCl₃ and the corresponding binding isotherm. The data was fitted based on the chemical shift changes of the signal corresponding to H_{f} .

Figure S11. Partial ¹H NMR spectra recorded during the titration of **1** (3 mM) with (TBA)₃HP₂O₇ in CDCl₃ and the corresponding binding isotherm. The data was fitted based on the chemical shift changes of the signal corresponding to H_f .

Figure S12. Partial ¹H NMR spectra recorded during the titration of 1 (3 mM) with tetrabutylammonium hydrogen sulfate (TBAHSO₄) in CDCl₃, and the corresponding binding isotherm, which yields. The data was fitted based on the chemical shift changes of the signal corresponding to H_f .

Figure S13. ¹H NMR spectra recorded during the titration of 1 (3 mM) with (TBA)₂SO₄ in CDCl₃ and the corresponding binding isotherm. The data was fitted based on the chemical shift changes of the signal corresponding to H_f .

Figure S14. Partial ¹H NMR spectra of (a) **2** (3 mM) only, (b) **2** + excess TBAF (tetrabutylammonium fluoride), (c) **2** + excess TBACl, (d) **2** + excess TBABr, (e) **2** + excess TBAI, (f) **2** + excess TBAH₂PO₄, (g) **2** + excess (TBA)₃HP₂O₇, (h) **2** + excess TBAHSO₄, and (i) **2** + excess (TBA)₂SO₄ in CDCl₃.

Figure S15. Partial ¹H NMR spectra recorded during the titration of 2 (3 mM) with TBACl in CDCl₃ and the corresponding binding isotherm for TBACl. The data was fitted based on the chemical shift changes of the signal corresponding to H_e .

Figure S16. Partial ¹H NMR spectra recorded during the titration of **2** (3 mM) with TBABr in CDCl₃ and the corresponding binding isotherm. The data was fitted based on the chemical shift changes of the signal corresponding to the methyl protons on the calix[4]pyrrole framework.

Figure S17. Partial ¹H NMR spectra recorded during the titration of 2 (3 mM) with TBAI in CDCl₃.

Figure S18. Partial ¹H NMR spectra recorded during the titration of **2** (3 mM) with TBAH₂PO₄ in CDCl₃ and the corresponding binding isotherm. The data was fitted based on the chemical shift changes of the signal corresponding to H_a .

Figure S19. Partial ¹H NMR spectra recorded during the titration of **2** (3 mM) with $(TBA)_3HP_2O_7$ in CDCl₃ and the corresponding binding isotherm. The data was fitted based on the chemical shift changes of the signal corresponding to H_a.

Figure S20. Partial ¹H NMR spectra recorded during the titration of **2** (3 mM) with TBAHSO₄ in CDCl₃ and the corresponding binding isotherm. The data was fitted based on the chemical shift changes of the signal corresponding to H_c .

Figure S21. ¹H NMR spectra recorded during the titration of 2 (3 mM) with (TBA)₂SO₄ in CDCl₃ and the corresponding binding isotherm. The data was fitted based on the chemical shift changes of the signal corresponding to H_c .

Figure S22. Partial ¹H NMR spectra of **2** recorded at different concentrations corresponding to (a) 1.5 mM, (b) 3 mM and (c) 6 mM of receptor **2** in CDCl₃.

Figure S23. Partial ¹H NMR spectra recorded during the titration of 2 (1.4 mM) with LiCl in $CD_3OD/CDCl_3$ (1/9, v/v).

Figure S24. Partial ¹H NMR spectra of **2** (3 mM) recorded in (a) CDCl₃, (b) DMSO- $d_{6_{1}}$ and (b) 15% D₂O in DMSO- $d_{6_{2}}$.

Figure S25. Partial ¹H NMR spectra of (a) **1** (3 mM) only, (b) **1** + excess TBAF (tetrabutylammonium fluoride), (c) **1** + excess TBACl, (d) **1** + excess TBABr, (e) **1** + excess TBAI, (f) **1** + excess TBAH₂PO₄, (g) **1** + excess (TBA)₃HP₂O₇, (h) **1** + excess TBAHSO₄, and (i) **1** + excess (TBA)₂SO₄ in 15% aqueous DMSO solution (15% D₂O in DMSO-*d*₆).

Figure S26. Partial ¹H NMR spectra recorded during the titration of **1** (3 mM) with TBAF in aqueous DMSO- d_6 solution (15% D₂O in DMSO- d_6) and the corresponding binding isotherm. The data was fitted based on the chemical shift changes of the signal corresponding to H_c.

Figure S27. Partial ¹H NMR spectra recorded during the titration of **1** (3 mM) with TBACl in 15% aqueous DMSO- d_6 solution (15% D₂O in DMSO- d_6).

Figure S28. ¹H NMR spectra recorded during the titration of **1** (3 mM) with (TBA)₃HP₂O₇ in 15% D₂O in DMSO- d_6 .

Figure S29. Partial ¹H NMR spectra of (a) **2** (3 mM) only, (b) **2** + excess TBAF (tetrabutylammonium fluoride), (c) **2** + excess TBACl, (d) **2** + excess TBABr, (e) **2** + excess TBAI, (f) **2** + excess TBAH₂PO₄, (g) **2** + excess (TBA)₃HP₂O₇, (h) **2** + excess TBAHSO₄, and (i) **2** + excess (TBA)₂SO₄ in 15% aqueous DMSO solution (15% D₂O in DMSO-*d*₆).

Figure S30. Partial ¹H NMR spectra recorded during the titration of **2** (3 mM) with tetrabutylammonium chloride (TBACl) in 15% aqueous DMSO solution (15% D₂O in DMSO- d_6) and the corresponding binding isotherm. The data was fitted based on the chemical shift changes of the signal corresponding to H_e.

Figure S31. Partial ¹H NMR spectra recorded during the titration of **2** (3 mM) with tetrabutylammonium bromide (TBABr) in 15% aqueous DMSO solution (15% D₂O in DMSO- d_6) and the corresponding binding isotherm. The data was fitted based on the chemical shift changes of the signal corresponding to H_e.

Figure S32. Partial ¹H NMR spectra recorded during the titration of **2** (3 mM) with tetrabutylammonium iodide (TBAI) in 15% aqueous DMSO solution (15% D₂O in DMSO-*d*₆).

Figure S33. Partial ¹H NMR spectra recorded during the titration of **2** (3 mM) with tris(tetrabutylammonium) hydrogen pyrophosphate ((TBA)₃HP₂O₇) in 15% aqueous DMSO solution (15% D₂O in DMSO- d_6) and the corresponding binding isotherm. The data was fitted based on the chemical shift changes of the signal corresponding to H_a.

3. NMR spectra and HRMS data

Figure S34. ¹H NMR spectrum of 7 recorded in CDCl₃.

Figure S35. ¹³C NMR spectrum of 7 recorded in DMSO-*d*₆.

Figure S36. ¹H NMR spectrum of 2 recorded in CDCl₃.

Figure S37. ¹H NMR spectrum of 2 recorded in DMSO-*d*₆.

Figure S38. ¹³C NMR spectrum of 2 recorded in DMSO-*d*₆.

Target Compound Screening Report

Figure S39. High resolution ESI mass spectrum of 7.

Figure S40. High resolution ESI mass spectrum of 2.

4. X-ray experimental for the complex 2. TBACl

Single crystals of 2 ·TBACl complex were obtained as colorless prisms via the slow evaporation of a CHCl₃/CH₃OH solution of receptor 2 in the presence of excess TBACl. A suitable crystal was selected and the data were collected on a Rigaku AFC12 diffractometer with a Saturn 724+ CCD with MoK α irradiation ($\lambda = 0.71075$ Å). The crystal was kept at 100.15 K during data collection. Using Olex2,³ the structure was solved with the ShelXT⁴ structure solution program using Direct Methods and refined with the ShelXL⁵ refinement package using Least Squares minimization. Tables of positional and thermal parameters, bond lengths and angles, torsion angles and figures are in the CIF. CCDC deposition number: 1965677.

Figure S41. View of **2**·TBACl complex. Displacement ellipsoids are scaled to the 50% probability level.

Table 1 Crystal data and structur	e refinement for 2-TBACl.
Identification code	2-TBACl
Empirical formula	$C_{63}H_{82}Cl_4N_9O_3$
Formula weight	1155.17
Temperature/K	173.15
Crystal system	triclinic
Space group	P-1
a/Å	13.0780(8)
b/Å	14.7017(11)
c/Å	16.4585(12)
α/°	89.009(6)
β/°	84.136(6)
$\gamma/^{\circ}$	81.419(6)
Volume/Å ³	3112.7(4)
Ζ	2
$\rho_{calc}g/cm^3$	1.233
μ/mm^{-1}	0.242
F(000)	1230.0
Crystal size/mm ³	$0.080\times0.078\times0.059$
Radiation	MoK α ($\lambda = 0.71075$ Å)
2Θ range for data collection/°	3.166 to 45.542
Index ranges	$-14 \le h \le 14, -15 \le k \le 15, -17 \le l \le 17$
Reflections collected	26770
Independent reflections	$8306 [R_{int} = 0.1213, R_{sigma} = 0.1537]$
Data/restraints/parameters	8306/456/711
Goodness-of-fit on F ²	1.036
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.1052, wR_2 = 0.2447$
Final R indexes [all data]	$R_1 = 0.2048, wR_2 = 0.3060$
Largest diff. peak/hole / e Å ⁻³	0.46/-0.47
CCDC number	1965677

5. Energies and geometrical coordinates of the optimized structures in the gas phase

All calculations were carried out with the Gaussian 09 suite⁶ of programs using the X3LYP density functional.⁷ Complexation energies were corrected for basis set superposition error (BSSE) using the counterpoise correction method.^{8,9}

1·HCO₃⁻ complex

Number of negative frequencies: 0

Counterpoise corrected energy =	-2674.641528069306
BSSE energy =	0.007267290393
sum of fragments =	-2674.551805908503
complexation energy =	-60.86 kcal/mole (raw)
complexation energy =	-56.30 kcal/mole (corrected)

Cartesian coordinates:

Symbol	Х	Y	Ζ
0	-1.92576300	2.88093900	-1.85268600
0	-2.76392000	4.68294900	-0.78148000
0	-2.66890500	-4.76611700	-1.72977600
0	-1.48391100	-2.94255800	-1.10119200
Ν	3.22955500	0.84108800	-1.70270800
Н	2.27172200	0.51659700	-1.55555800
Ν	1.81475400	2.23263600	1.09794800
Н	1.54504000	1.34206500	0.67494700
Ν	1.22484600	-0.74037100	2.53808900
Н	0.45891200	-0.59839100	1.86753700
Ν	2.83862400	-2.12449800	-0.24801000
Н	2.16904600	-1.34945600	-0.27306300
Ν	-3.86221400	1.28685900	-0.68429400
Ν	-3.81543500	-1.51354000	-0.85257400
С	4.29268900	0.02975600	-2.02103500
С	5.42352100	0.82775100	-2.00157700
Н	6.43254700	0.50620900	-2.22170100
С	5.01757100	2.14649100	-1.65380800
Н	5.66335700	3.00892000	-1.55961200
С	3.64569100	2.12983800	-1.46695400
С	2.65997500	3.23733700	-1.10136100
С	2.38858100	3.27831100	0.39901100
С	2.65055000	4.27884500	1.31649500
Н	3.10450800	5.23595100	1.09969200
С	2.23208100	3.81863100	2.59361200
Н	2.30052300	4.36681600	3.52274500
С	1.71682500	2.54427300	2.43988200
С	1.07518800	1.62993000	3.48141300
С	1.64494300	0.21778100	3.43717200
С	2.63723500	-0.35955500	4.21038600

Н	3.18281500	0.12536200	5.00817800
С	2.81485300	-1.69305400	3.76245800
Н	3.53204000	-2.40675300	4.14507700
С	1.92990600	-1.91387700	2.72131300
С	1.79592600	-3.14962200	1.83213200
С	2.83497100	-3.10678200	0.71805100
С	3.89707800	-3.94926600	0.44169500
Н	4.18006600	-4.82378600	1.01112400
С	4.55431200	-3.45128100	-0.71770700
Н	5.42193300	-3.88397100	-1.19612100
С	3.88171400	-2.31595000	-1.13162000
С	4.09791500	-1.44104100	-2.36221400
С	3.28531000	4.58166600	-1.52611500
Н	2.63675300	5.42232400	-1.26413400
Н	3.45598300	4.59071800	-2.60777700
Н	4.24618100	4.73944300	-1.02851900
С	1.35179800	2.21810800	4.88090000
Н	0.92390900	1.56635700	5.64900100
Н	0.89475900	3.20872200	4.97467000
Н	2.42425400	2.32090500	5.07122900
С	-0.46345900	1.61494400	3.28222000
H	-0.75383900	1.22357100	2.30462000
Н	-0.85011500	2.63697700	3.37301900
H	-0.93866200	0.99242800	4.05105700
С	2.05740700	-4.40270700	2.69564300
H	1.93232400	-5.31696900	2.10476800
H	1.35389400	-4.42833900	3.53349600
H	3.07221300	-4.406/8/00	3.10293800
C	2.87714200	-1.59344200	-3.31048900
H	1.94824400	-1.260/3000	-2.83/55400
H	2.75424300	-2.64589700	-3.59209600
H C	3.0235/500	-1.00021200	-4.22101/00
	J.34002/UU 5 51715200	-1.9403/100	-3.1125/500
п 11	5.51/15200	-1.32014000	-4.00301400
п u	5.21415100	-2.90130900	-2 48156200
С	1 33798700	-1.00529000	-2.40130200
с ц	1 60899200	2 89776900	-2 96287700
н	0 89476000	2.05053300	-1 60342600
C	0.26682600	4,09151400	-1,77731900
H	0.01345200	4,28168200	-0.72921000
H	0.63991800	5.04247900	-2.17943300
C	-1.00585700	3.75878400	-2.55940700
H	-1.55422300	4.66976200	-2.81080600
Н	-0.77535000	3.20375300	-3.47183700
С	-2.77706700	3.49020600	-1.03437600
С	-3.86776700	2.59885000	-0.48392600
С	-4.90304500	3.28385900	0.19127100
Н	-4.81024000	4.35252600	0.33573300
С	-5.99975700	2.56994000	0.60430800
Н	-6.83562900	3.05915300	1.09846800
С	-6.04894300	1.18093000	0.37323500
С	-4.91930000	0.56702600	-0.24548200
С	-4.92877800	-0.88644100	-0.41508900

С	-6.11479700	-1.60198600	-0.07132900
С	-6.12915700	-2.99500600	-0.28436600
Н	-7.02925800	-3.56061300	-0.05577800
С	-4.99829700	-3.61776000	-0.75205400
Н	-4.94435300	-4.68570200	-0.92286500
С	-3.84662500	-2.83372300	-0.98406000
С	-2.59981000	-3.61317600	-1.33692800
С	-0.22519100	-3.66570000	-1.21519600
Н	0.49111400	-2.90068200	-1.51339700
Н	-0.32616100	-4.41583200	-2.00211700
С	0.15598200	-4.29611800	0.12261400
Н	1.08356300	-4.85636500	-0.04941500
Н	-0.61211400	-5.03345300	0.38515000
С	0.34642300	-3.25980600	1.25742100
Н	-0.31710700	-3.49789800	2.09792800
Н	0.00453200	-2.28908600	0.89919500
С	-7.20104300	0.41040500	0.73126800
Н	-8.04427400	0.92387200	1.18630100
С	-7.24259600	-0.92598500	0.49417400
Н	-8.12211200	-1.51181500	0.74933800
С	-0.37497100	-0.10319100	-0.43849900
0	-0.95653000	-0.24853300	0.65834100
0	-1.10531300	0.02792000	-1.57173600
0	0.89054300	-0.06453200	-0.60861200
Н	-2.04606600	-0.01022500	-1.30336400

2·HCO₃⁻ complex

Number of negative frequencies: 0	
Counterpoise corrected energy =	-2634.946344239856
BSSE energy =	0.007224049726
sum of fragments =	-2634.829374015003
complexation energy =	-77.93 kcal/mole (raw)
complexation energy =	-73.40 kcal/mole (corrected)

Cartesian coordinates:

Symbol	Х	Y	Z	
0	-3.45666900	4.61181100	-2.04407000	
0	-2.78369800	-4.84106400	-1.03151500	
Ν	3.39580000	1.21429400	-1.34190700	
Н	2.47745200	0.82023800	-1.14552100	
Ν	1.86436500	1.99376500	1.61266900	
Н	1.39144300	1.36693300	0.96026800	

N	1.43974800	-1.23060400	2.20854500
Н	1.10551600	-0.77347300	1.36295400
N	2.93494900	-2.00010100	-0.75224100
Н	2.17779800	-1.31874400	-0.73533600
N	-4.04080500	1.38385200	-0.74299000
N	-3.92830900	-1.46428000	-0.67226400
С	4.41323200	0.55132900	-1.99258700
C	5.50273800	1.40230300	-1.99878000
H	6.46736900	1.19464500	-2.44061000
С	5.12298700	2.60216800	-1.33523800
H	5.74733300	3.47163400	-1.18312200
C	3.80734500	2.46491400	-0.93295100
C	2.86544600	3.44007100	-0.23140800
C	2.64460100	3,06464000	1,22845300
C	3.14272200	3,63291900	2.38600300
н	3 79256900	4 49531800	2 44090300
C	2 65388300	2 87723300	3 48660200
с н	2 85790900	3 06590200	4 53132400
C	1 86201800	1 86022300	2 98579600
C	1 04923900	0 79397700	3 71024400
C	1 54927900	-0.62084500	3 44154500
C	2 09443700	-1 55745500	4 29987000
с ц	2 30384800	-1 /0860800	5 3/997000
C	2 31545800	-2 75209400	3 56108700
с ц	2 72704000	-3 67/31000	3 94684500
C	1 90344000	-2 52977800	2 26059300
C	1 89510700	-3 /5837500	1 0500/200
C	3 00508400	-3 10710500	0.06806400
C	4 19341700	-3.74786300	-0.22712700
U U	4.19341700	-3.74700300	-0.22712700
п С	4.55527500	-3.00158600	-1 24547700
U U	5 79930000	-3 24277300	-1 70276200
п С	4 05091000	-3.24277300 -1.91786900	-1.55879400
C	4.03091000	-1.91700900	-2 60817300
C	3 50486100	0.02///400 / 9/1/5900	-0.28570500
U U	2 22262600	4.0414J000 5.57501200	-0.20370300
п u	2.00000000	5 16059700	-1 32546700
п u	1 49094300	J.100J9700 A 02712400	-1.32340700
n C	1 13465300	1 06130700	5 22453800
U U	0 53467500	0.32670900	5 77054500
п u	0.35407500	2 0615900	5 15157600
п u	2 16604000	2.00130000	5 50/21700
п С	2.10004000	0.99751400	2.20604700
U U	-0.44270200	0.90494700	2 22860200
п 11	-0.39981700	1 00700500	2.22009200
	-0.82094900	1.90760500	3.52938800
H G	-1.03904900	0.16802600	3.84691800
	2.10243000	-4.90181800	1.5454/000
H	2.09386400	-3.6U415UUU	0./0/54600
п 11	1.30362300	- J. I / 000000	2.24386400
п С	3.0602/500	-5.00/99/00	2.06346000
	2.9/850200	-0.81032100	-3.54280500
H T	2.04608900	-0.59119100	-3.01325900
н 	2.86242600	-1./8/89000	-4.02559900
Н	3.10659700	-0.04893600	-4.32117100

С	5.45266600	-1.15910300	-3.46803800
Н	5.58139300	-0.40392800	-4.24985000
Н	5.32859200	-2.13691400	-3.94390100
Н	6.36490700	-1.18582800	-2.86408300
С	1.52038600	3.45120900	-1.02607000
Н	1.76451100	3.68667400	-2.07081800
Н	1.10379700	2.44037800	-1.03741700
С	0.43772400	4.42287700	-0.54383800
Н	0.15910500	4.21385400	0.49593000
Н	0.83132000	5.44610300	-0.55667100
С	-0.81268400	4.41491200	-1.43454400
Н	-1.33459300	5.37391500	-1.37303500
Н	-0.52256100	4.29409800	-2.48800600
С	-3.09097300	3.61996400	-1.40464200
С	-4.18069500	2.70021400	-0.87218900
С	-5.37670300	3.39005800	-0.56235100
Н	-5.41510400	4.45742700	-0.73499200
С	-6.42996300	2.68186800	-0.05122300
Н	-7.35499800	3.17598000	0.23634500
С	-6.32322500	1.28374300	0.09147200
C	-5.10401300	0.65517300	-0.30299100
C	-5.03171600	-0.80722900	-0.23403700
С	-6.16431600	-1.51117600	0.28026800
C	-6.10679200	-2.91864200	0.33466300
Н	-6.95723100	-3.46876100	0.73090200
С	-4.99070300	-3.56655400	-0.12309500
Н	-4.88045400	-4.64324900	-0.12234000
С	-3.92154500	-2.79374600	-0.62749200
C	-2.73516100	-3.60802800	-1.12076300
C	-0.46699600	-3.61035900	-2.03384700
Н	0.14471000	-2.83854000	-2.50497400
Н	-0.71299000	-4.36795300	-2.78788300
С	0.31709700	-4.27322900	-0.88504500
Н	1.29257900	-4.56179100	-1.29652400
Н	-0.19566400	-5.19284800	-0.58921400
С	0.51054200	-3.35304500	0.33666700
H	-0.26907000	-3.54892600	1.08236400
Н	0.36217100	-2.31696400	0.02407100
С	-7.42018300	0.52846400	0.61020200
Н	-8.31614900	1.06326300	0.91481900
С	-7.33916300	-0.82146900	0.71135000
Н	-8.16707400	-1.40680000	1.10331600
С	-0.27936300	0.07550200	-0.93217600
0	-0.56162100	-0.40222900	-2.03641600
0	-1,28583900	0.63034700	-0.16407000
0	0.86612200	0.12621700	-0.36496800
Н	-2.15072900	0.48503900	-0.61206600
N	-1.80384000	3.39827600	-1.07348000
N	-1.69345900	-2,93373700	-1.62118300
Н	-1.52650500	2.53887400	-0.60028600
Н	-1.70807500	-1.91752000	-1.70127200

6. References

- Ko, S.; Kim, S. K.; Share, A.; Lynch, V. M.; Park, J.; Namkung, W.; Rossom, W. V.; Busschaert, N.; Gale, P. A.; Sessler, J. L.; Shin, I. *Nat. Chem.* 2014, 6, 885-892.
- He, Q.; Williams, N. J.; Oh, J. H.; Lynch, V. M.; Kim, S. K.; Moyer, B. A.; Sessler, J. L. Angew. Chem., Int. Ed. 2018, 57, 11924-11928.
- Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
- 4. Sheldrick, G.M. Acta Cryst. 2015, A71, 3.
- 5. Sheldrick, G.M. Acta Cryst. 2015, C71, 3.
- Gaussian 09, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
- 7. Xu, X., Goddard, W. A. Proc. Natl. Acad. Sci. USA 2004, 101, 2673-2677.
- 8. Boys, S. F., Bernardi, F. Mol. Phys. 1970, 19, 553-566.
- 9. van Duijneveldt, F. B., van Duijneveldt-van de Rijdt, J. G. C. M., van Lenthe, J. H. *Chem. Rev.* **1994**, *94*, 1873-1885.