Electronic Supporting Information for:

Synthesis and Properties of a Redox-switchable Calix[6]arene-based Molecular Lasso

Guido Orlandini, Lorenzo Casimiro, Margherita Bazzoni, Beatrice Cogliati, Alberto Credi, Marco Lucarini, Serena Silvi, Arturo Arduini, and Andrea Secchi

Contents:

Figure S1. ¹ H NMR spectrum of 7	S2
Figure S2. ¹³ C-NMR spectrum of 7	S2
Figure S3. 2D HSQC NMR spectrum of 7	S3
Figure S4. ESI-MS(+) spectrum of 7	S3
Figure S5. ¹ H NMR spectrum of pseudorotaxane P[7]	S4
Figure S6. ¹³ C NMR spectrum of pseudorotaxane P[7⊃8]	S4
Figure S7. 2D ed.HSQC spectrum of pseudorotaxane P[7-8]	S5
Figure S8. ¹ H NMR spectrum of [1]pseudorotaxane 9	S6
Figure S9. ¹³ C NMR spectrum of [1]pseudorotaxane 9	S6
Figure S10. 2D Edited HSQC spectrum of [1]pseudorotaxane 9	S7
Figure S11. Superimposed HSQC spectra of pseudorotaxanes P[7-8] and 9	S8
Figure S12. ESI-MS(+) spectrum of [1]pseudorotaxane 9	S9
Figure S13. ¹ H NMR spectrum of [1]rotaxane 11	S10
Figure S14. ¹³ C NMR spectrum of [1]rotaxane 11	S10
Figure S15. 2D TOCSY spectrum of [1]rotaxane 11	S11
Figure S16. 2D Edited HSQC spectrum of [1]rotaxane 11	S12
Figure S17. HR-MS spectrum of rotaxanes [1] 11	S13
Figure S18-21. DOSY experiments	S14-17
Figure S22. DPV of [1]pseudorotaxane 9 in CH ₃ CN	S18
Figure S23. DPV of [1]rotaxane 11 in CH ₃ CN	S18
Figure S24. DPV of [1]pseudorotaxane 9 in CH ₂ Cl ₂	S19
Figure S25. DPV of [1]rotaxane 11 in CH ₂ Cl ₂	S19
Figure S26. CV of [1]pseudorotaxane 9 in CH ₃ CN.	S20
Figure S27. CV of [1]pseudorotaxane 9 in CH ₂ Cl ₂	S20
Figure S28. Simulated and experimental CV of [1]pseudorotaxane 9 in CH ₂ Cl ₂	S21
Figure S29. EPR spectrum of the radical cation 11 ⁺⁺ in CH ₂ Cl ₂ .	S22
References	S22

ppm

Figure S2. ¹³C NMR (100 MHz, CDCl₃) spectrum of calix[6]arene 7.

Figure S3. 2D HSQC (400 MHz, CDCl₃) spectrum of calix[6]arene 7.

Figure S4. ESI-MS (+) spectrum of calix[6]arene 7. S3

Figure S6. ¹³C NMR (100 MHz, CDCl₃) spectrum of pseudorotaxane P[7⊃8].

S4

P[**7**⊃**8**]

Figure S7. 2D edited HSQC spectrum (400 MHz, $CDCl_3$) of pseudorotaxane P[**7** \supset **8**] (cross-peaks correlating secondary carbons in red contours). The most representative assignments have been indicated with letters according to the above sketch.

Figure S9. 13 C NMR (100 MHz, CDCl₃) spectrum of calix[6]arene 9.

Figure S10. 2D edited HSQC spectrum (400 MHz, CDCl₃) of pseudorotaxane **9** (cross-peaks correlating secondary carbons in red contours). The most representative assignments have been indicated with letters according to the above sketch.

Figure S11. Superimposed ¹H-¹³C 2D HSQC spectra (expanded region) in CDCl₃ of pseudorotaxane P[**7** \supset **8**] (black contour lines) and of self-threaded calix[6]arene **9** (red contour lines). The linkage between the axial component and the calix[6]arene wheel was confirmed by the disappearing of the cross-peak relative to the methylester group (*o*) at (*F*₂,*F*₁) = 3.69, 52.0 ppm and by the downfield shift of the cross-peak relative to the methylene group (*1*) from (*F*₂,*F*₁) = 3.58, 62.1 ppm (black contour lines) to (*F*₂,*F*₁) = 4.16, 63.2 ppm (red contour lines). The *F*₂ projection is relative to pseudorotaxane P[**7** \supset **8**]. For the labels, see the scheme above the spectrum.

Figure S12. ESI-MS (+) spectrum of calix[6]arene 9

Figure S14. ¹³C NMR (100 MHz, CDCl₃) spectrum of calix[6]arene 11.

Figure S15. Expanded region of the 2D TOCSY (400 MHz, CDCl₃) spectrum of calix[6]arene **11** (mixing time = 0.08 s): the green and blue lines denote the correlations of the two alkyl chains appended to the bispyridinium core.

Figure S16. 2D ed.HSQC spectrum (400 MHz, CDCl₃) of calix[6]arene 11 (secondary carbons in red).

Figure S17. ESI-MS (+) (Orbitrap LQ) spectrum of calix[6]arene **11**. The inset shows the real and the simulated spectra of the doubly charged specie indicated by the arrow.

Figure S18. DOSY (400 MHz) spectra of a 7 (top) and 12 mM (down) solution in C_6D_6 of calix[6]arene **9**. The measured diffusion coefficients are indicated on the spectra.

Figure S19. DOSY (400 MHz) spectra of a 22 mM (top) and 30 mM (down) solution in C_6D_6 of calix[6]arene **9**. The measured diffusion coefficients are indicated on the spectra.

Figure S20. DOSY (400 MHz) spectra of a 7 mM solution in C_6D_6 of pseudorotaxane P[**1** \supset **10**]. The measured diffusion coefficients are indicated on the spectra.

Figure S21. DOSY (400 MHz) spectra of a 50 mM solution in C_6D_6 of calix[6]arene-based [2]rotaxane **12** (top), and of calix[6]arene **9** (bottom). The measured diffusion coefficients are indicated on the spectra.

Figure S22. Differential pulse voltammetry of a 1.8×10^{-4} M solution of [1]pseudorotaxane **9** in CH₃CN in presence of 100 equivalents of TBAPF₆. The asterisk indicates the redox process of Fc/Fc⁻⁺.

Figure S23. Differential pulse voltammetry of a 1.5×10^{-4} M solution of [1]rotaxane **11** in CH₃CN in presence of 100 equivalents of TBAPF₆. The asterisk indicates the redox process of Fc/Fc⁺.

Figure S24. Differential pulse voltammetry of a 2.4×10^{-4} M solution of [1]pseudorotaxane **9** in CH₂Cl₂ in presence of 100 equivalents of TBAPF₆. The asterisk indicates the redox process of Fc/Fc⁻⁺.

Figure S25. Differential pulse voltammetry of a 1.4×10^{-4} M solution of [1]rotaxane **11** in CH₂Cl₂ in presence of 100 equivalents of TBAPF₆. The asterisk indicates the redox process of Fc/Fc⁻⁺.

Figure S26. Cyclic voltammograms at different scan rates of a 1.6×10^{-4} M solution of [1]pseudorotaxane **9** in CH₃CN in presence of 100 equivalents of TBAPF₆. The asterisk indicates the redox wave of ferrocene used as an internal standard.

Figure S27. Cyclic voltammograms at different scan rates of a 1.8×10^{-4} M solution of [1]pseudorotaxane **9** in CH₂Cl₂ in presence of 100 equivalents of TBAPF₆. The asterisk indicates the redox wave of ferrocene used as an internal standard. The weak bump on the cathodic wave at about -0.8 V is assigned to traces of oxygen.

Figure S28. Simulated (top) and experimental (bottom, 1.5×10^{-4} M, scan rate 100 mV/s) cyclic voltammograms of [1]pseudorotaxane **9** in CH₃CN. Digital simulations of the experimental CVs were obtained on the basis of the mechanism illustrated in Scheme 2 (main text) by using the software package DigiSim 3.05.^[1] The voltammetric curves were simulated with the mechanism reported in Scheme 2, by fixing the values of the reduction potentials of the free (E_1^{f} and E_2^{f}) and complexed (E_1^{c} and E_2^{c}) species to the ones of **10** and **11**, respectively. A value of 1 cm s⁻¹, representative of a reversible process under our conditions,^[2] was employed in the simulation for the free species; the value of the heterogeneous electron-transfer rate constant was estimated from the variation in the peak-to-peak separation as a function of the scan rate by using the Nicholson method^[3] for the complexed species. The charge-transfer coefficients were taken as 0.5 in all cases. The quality of the simulation was judged by comparing the values of the peak potentials with the experimental data.

Figure S29. EPR spectrum of the radical cation $11^{+\bullet}$ in CH₂Cl₂.

References

[1] *DigiSim* 3.05; BioAnalytical Systems: West Lafayette, IN; www.bioanalytical.com.

[2] Bard, A. J.; Faulkner, L. R. *Electrochemical Methods. Fundamentals and Applications*; Wiley: New York, 1980. Chapter 6.

[3] R. S. Nicholson, R. S. Anal. Chem. **1965**, 37, 1351.