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Figure S1. 1H NMR (400 MHz, CDCl3) spectrum of calix[6]arene 7.  

 

Figure S2. 13C NMR (100 MHz, CDCl3) spectrum of calix[6]arene 7.  
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Figure S3. 2D HSQC (400 MHz, CDCl3) spectrum of calix[6]arene 7.  

 

Figure S4. ESI-MS (+) spectrum of calix[6]arene 7.   
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Figure S5. 1H NMR (400 MHz, CDCl3) spectrum of pseudorotaxane P[78]. 

 

Figure S6. 13C NMR (100 MHz, CDCl3) spectrum of pseudorotaxane P[78]. 
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Figure S7. 2D edited HSQC spectrum (400 MHz, CDCl3) of pseudorotaxane P[78] (cross-peaks correlating 
secondary carbons in red contours). The most representative assignments have been indicated with letters 
according to the above sketch. 
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Figure S8. 1H NMR (400 MHz, CDCl3) spectrum of calix[6]arene 9. 

 

Figure S9. 13C NMR (100 MHz, CDCl3) spectrum of calix[6]arene 9. 
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Figure S10. 2D edited HSQC spectrum (400 MHz, CDCl3) of pseudorotaxane 9 (cross-peaks correlating 
secondary carbons in red contours). The most representative assignments have been indicated with letters 
according to the above sketch.  
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Figure S11. Superimposed 1H-13C 2D HSQC spectra (expanded region) in CDCl3 of pseudorotaxane P[78] 
(black contour lines) and of self-threaded calix[6]arene 9 (red contour lines). The linkage between the axial 
component and the calix[6]arene wheel was confirmed by the disappearing of the cross-peak relative to the 
methylester group (o) at (F2,F1) = 3.69, 52.0 ppm and by the downfield shift of the cross-peak relative to the 
methylene group (1) from (F2,F1) = 3.58, 62.1 ppm (black contour lines) to (F2,F1) = 4.16, 63.2 ppm (red contour 

lines). The F2 projection is relative to pseudorotaxane P[78]. For the labels, see the scheme above the 
spectrum.  
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Figure S12. ESI-MS (+) spectrum of calix[6]arene 9 
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Figure S13. 1H NMR (400 MHz, CDCl3) spectrum of calix[6]arene 11. 

 

Figure S14. 13C NMR (100 MHz, CDCl3) spectrum of calix[6]arene 11.  
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Figure S15. Expanded region of the 2D TOCSY (400 MHz, CDCl3) spectrum of calix[6]arene 11 (mixing time = 
0.08 s): the green and blue lines denote the correlations of the two alkyl chains appended to the 
bispyridinium core.  
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Figure S16. 2D ed.HSQC spectrum (400 MHz, CDCl3) of calix[6]arene 11 (secondary carbons in red). 
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Figure S17. ESI-MS (+) (Orbitrap LQ) spectrum of calix[6]arene 11. The inset shows the real and the simulated 
spectra of the doubly charged specie indicated by the arrow. 
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Figure S18. DOSY (400 MHz) spectra of a 7 (top) and 12 mM (down) solution in C6D6 of calix[6]arene 9. The 

measured diffusion coefficients are indicated on the spectra. 

  

D = 3.07×10-6 cm2s-1

D = 2.95×10-6 cm2s-1
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Figure S19. DOSY (400 MHz) spectra of a 22 mM (top) and 30 mM (down) solution in C6D6 of calix[6]arene 

9. The measured diffusion coefficients are indicated on the spectra. 

 

D = 2.51×10-6 cm2s-1

D = 2.53×10-6 cm2s-1
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Figure S20. DOSY (400 MHz) spectra of a 7 mM solution in C6D6 of pseudorotaxane P[110]. The measured 

diffusion coefficients are indicated on the spectra. 

 

D = 2.99×10-6 cm2s-1
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Figure S21. DOSY (400 MHz) spectra of a 50 mM solution in C6D6 of calix[6]arene-based [2]rotaxane 12 (top), 

and of calix[6]arene 9 (bottom). The measured diffusion coefficients are indicated on the spectra. 

  

D = 7.66 x 10-6 cm2/sec

D = 6.14 x 10-6 cm2/sec
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Figure S22. Differential pulse voltammetry of a 1.8 × 10-4 M solution of [1]pseudorotaxane 9 in CH3CN in 
presence of 100 equivalents of TBAPF6. The asterisk indicates the redox process of Fc/Fc∙+. 

 

Figure S23. Differential pulse voltammetry of a 1.5 × 10-4 M solution of [1]rotaxane 11 in CH3CN in presence 
of 100 equivalents of TBAPF6. The asterisk indicates the redox process of Fc/Fc∙+. 
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Figure S24. Differential pulse voltammetry of a 2.4 × 10-4 M solution of [1]pseudorotaxane 9 in CH2Cl2 in 
presence of 100 equivalents of TBAPF6. The asterisk indicates the redox process of Fc/Fc∙+. 

 

Figure S25. Differential pulse voltammetry of a 1.4 × 10-4 M solution of [1]rotaxane 11 in CH2Cl2 in presence 
of 100 equivalents of TBAPF6. The asterisk indicates the redox process of Fc/Fc∙+. 
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Figure S26. Cyclic voltammograms at different scan rates of a 1.6 × 10-4 M solution of [1]pseudorotaxane 9 in 
CH3CN in presence of 100 equivalents of TBAPF6. The asterisk indicates the redox wave of ferrocene used as 
an internal standard. 

 

Figure S27. Cyclic voltammograms at different scan rates of a 1.8 × 10-4 M solution of [1]pseudorotaxane 9 in 
CH2Cl2 in presence of 100 equivalents of TBAPF6. The asterisk indicates the redox wave of ferrocene used as 
an internal standard. The weak bump on the cathodic wave at about -0.8 V is assigned to traces of oxygen.  
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Figure S28. Simulated (top) and experimental (bottom, 1.5 × 10-4 M, scan rate 100 mV/s) cyclic 
voltammograms of [1]pseudorotaxane 9 in CH3CN. Digital simulations of the experimental CVs were obtained 
on the basis of the mechanism illustrated in Scheme 2 (main text) by using the software package DigiSim 
3.05.[1] The voltammetric curves were simulated with the mechanism reported in Scheme 2, by fixing the 
values of the reduction potentials of the free (E1

f and E2
f) and complexed (E1

c and E2
c) species to the ones of 

10 and 11, respectively. A value of 1 cm s-1, representative of a reversible process under our conditions,[2] 
was employed in the simulation for the free species; the value of the heterogeneous electron-transfer rate 
constant was estimated from the variation in the peak-to-peak separation as a function of the scan rate by 
using the Nicholson method[3] for the complexed species. The charge-transfer coefficients were taken as 0.5 
in all cases. The quality of the simulation was judged by comparing the values of the peak potentials with the 
experimental data. 
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Figure S29. EPR spectrum of the radical cation 11+• in CH2Cl2. 
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