Supplementary Information

Stereoselective assembly of 3,4-epoxypyrrolines via nucleophilic addition induced domino cyclization of 6-halo-1-oxa-4azahexatrienes

Ilia A. Smetanin, ${ }^{a}$ Anastasiya V. Agafonova, ${ }^{a}$ Nikolai V. Rostovskii, ${ }^{a}$ Alexander F. Khlebnikov, ${ }^{a}$ DmitryS. Yufit ${ }^{b}$ and Mikhail S. Novikov* ${ }^{a}$
${ }^{a}$ St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab.,St. Petersburg, 199034, Russia.${ }^{b}$ University of Durham, Department of Chemistry, South Road, Durham DH1 3LE, U.K.
Email: m.novikov@spbu.ru
Table of Contents

1. General experimental details S2
2. Synthesis of aminal $\mathbf{4 a}$. S2
3. Synthesis of epoxypyrrolines $\mathbf{5 a} \mathbf{- z b}$ S3
4. Gram-scale synthesis of epoxypyrroline $\mathbf{5 j}$ S18
5. Synthesis of halohydrins $\mathbf{6 a}-\mathbf{d}$ S19
6. Synthesis of epoxypyrrolines 5zd,5ze S21
7. Synthesis of pyrrole 11 S22
8. Synthesis of oxazatrienes $\mathbf{1 2 a}-\mathbf{c}$ S23
9. Synthesis of compound 13 S24
10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S26
11. X-ray data of compounds $\mathbf{5 c}, \mathbf{6 b}, \mathbf{1 3}$ S66
12. Calculation details S70
13. References S76

1. General experimental details

All solvents were distilled and dried prior to use. 1,2-Dichloroethane (DCE) and dichloromethane were washed with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, water, then distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ and stored over anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$. Melting points were determined on a hot stage microscope and are uncorrected. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100 \mathrm{MHz})$ NMR spectra were recorded on a Bruker AVANCE 400 spectrometer in solvent indicated below. Chemical shifts (δ) are reported in ppm downfield from tetramethylsilane. IR spectra were recorded on a Shimadzu IR Affinity-1 spectrophotometer in KBr. Crystallographic data for the structures 5c (CCDC 1936159), $\mathbf{6 b}$ (CCDC 1936158), 13 (CCDC 1936916) have been deposited with the Cambridge Crystallographic Data Centre. Photochemical experiments were carried out with a mercury lamp Tungsram HGOK 400 (main radiation bands 310, 360, 365 nm). Column chromatography was performed on silica gel 60 M ($0.04-0.063 \mathrm{~mm}$). Thin-layer chromatography (TLC) was conducted on aluminum sheets precoated with SiO_{2} ALUGRAM SIL G/UV254. 2 H -Azirines $\mathbf{1 a - d}, f,{ }^{1} \mathbf{1 e},{ }^{2} \mathbf{1 g},{ }^{3} \mathbf{1 h},{ }^{4} \mathbf{1 i}{ }^{5}$ diazo compounds $\mathbf{2 a},{ }^{6} \mathbf{2 b}, \mathbf{c}, \mathbf{e}, \mathbf{f}, \mathbf{i},{ }^{7} \mathbf{2 d},{ }^{8} \mathbf{2 g},{ }^{9} \mathbf{2 h}{ }^{10}$ and oxazatrienes $\mathbf{3 a -}$ $\mathbf{e}, \mathbf{z b}, \mathbf{z c}{ }^{4}$ were prepared by the reported procedures.

2. Synthesis of aminal 4a

Methyl (E)-2-bromo-3-\{[1-methoxy-1,3-dioxo-2-(phenethylamino)-3-phenylpropan-2-yl]-amino\}-3-phenylacrylate (4a)

To a solution of oxazatriene $\mathbf{3 a}(129 \mathrm{mg}, 0.3 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ a solution of 2-phenylethan-1-amine ($40 \mathrm{mg}, 0.33 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added dropwise under stirring. The mixture was stirred at room temperature for 30 min , the solvent was removed under reduced pressure, and the residue was purified by column chromatography (hexane/EtOAc, 5:1) to give 4a ($147 \mathrm{mg}, 89 \%$) as a colorless solid. M.p. $88-89{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 2.50-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.89-3.07(\mathrm{~m}, 5 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 6.61(\mathrm{~d}, 2 \mathrm{H}, J 7.3 \mathrm{~Hz}), 6.84-6.96$ (br. s, 1H), 6.99-7.24 (m, 12H), 8.33-8.36(m, 2H), $11.68(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ $36.4,43.1,52.0,52.6,80.4,85.0,126.5,128.5,128.8,129.1,129.4,129.9,130.1,133.4,134.0$, 135.8, 139.9 (signal of one carbon is overlapped), 160.6, 167.8, 169.4, 189.2. HRMS-ESI: [M + $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{28}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{5}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 551.1176; found 551.1178.

3. Synthesis of epoxypyrrolines 5

3.1. Synthesis of dimethyl 2,5-diphenyl-4-(2-phenylethyl)-6-oxa-3-azabicyclo[3.1.0]hex-2-ene-1,4-dicarboxylate (5a)

To a solution of oxazatriene $\mathbf{3 a}(129 \mathrm{mg}, 0.3 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ a solution of 2-phenylethan-1-amine ($40 \mathrm{mg}, 0.33 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added dropwise under stirring. The mixture was stirred at room temperature for 30 min and the solvent was removed under reduced pressure. The residue was dissolved in anhydrous acetonitrile (5 mL) and dry $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($124 \mathrm{mg}, 0.9 \mathrm{mmol}$) was added. The resulting mixture was refluxed for 1 h under stirring. The reaction mixture was washed with water $(10 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, from 10:1 to $4: 1$) to give $\mathbf{5 a}$ ($89 \mathrm{mg}, 63 \%$) as a colorless oil (unseparated mixture of diastereomers 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.18$ (br. s, 1 H), 2.52 (br. s, 1 H), $2.70-2.98(\mathrm{~m}, 2 \mathrm{H}), 3.05-$ $3.35(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.67$ and $3.69(2 \mathrm{~s}, 6 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 7.10-7.64(\mathrm{~m}, 13 \mathrm{H}), 7.82(\mathrm{~d}$, $2 \mathrm{H}, J 7.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.7,37.1,45.1,45.5,52.6,52.7,52.82,52.83$, $67.8,69.8,75.2,78.7,91.4,92.9,126.0,126.1,127.9,128.0,128.1,128.16,128.23,128.3$, $128.5,128.67,128.7,128.8,128.9,129.2,129.4,129.5,131.6,131.75,131.8,139.2,139.7$ (signals of three carbons are overlapped), 164.3, 164.9, 168.0, 169.7, 172.3, 172,4. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 471.1914; found 471.1905.

3.2. General procedures for the preparation of epoxypyrrolines $\mathbf{5 b} \mathbf{- 5 z b}$

Procedure A (from oxazatrienes 3)

To a solution of oxazatrienes $\mathbf{3 a - e}(0.3 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ a solution of nucleophile (quantities are indicated below) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added dropwise under stirring. The mixture was stirred at room temperature for 24 h , the solvent was removed under reduced pressure and the residue was purified by column chromatography to give pure epoxypyrroline $\mathbf{5 b}-\mathbf{g}, \mathbf{j}-\mathbf{z}$. In the case of compounds $\mathbf{5 h}, \mathbf{i}, \mathbf{5 z}$ the reaction mixture was washed with water $(2 \times 1 \mathrm{~mL})$, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under reduced pressure and the residue was crystallized from hexane/ $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ mixture to give pure $\mathbf{5 h}, \mathbf{i}, \mathbf{5 z a}$.

Procedure B (from azirines 1)

To a solution of diazo compound $\mathbf{2 a - h}$ (quantities are indicated below) and azirine $\mathbf{1 a - i}$ (0.5 mmol) in anhydrous 1,2 -dichloroethane (1.5 mL) at reflux under argon $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(2 \mathrm{~mol} \%$) was added. The stirred mixture was heated under reflux until nitrogen evolution stopped. The resulting mixture was evaporated under reduced pressure, and the residue was filtered through a pad of silica gel using toluene/EtOAc 30:1 mixture as eluent. The filtrate was concentrated under reduced pressure, and the residue was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL). A solution of nucleophile (quantities are indicated below) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added dropwise to the resulting mixture under stirring. The mixture was stirred at room temperature for 24 h , the solvent was removed under reduced pressure and the residue was purified by column chromatography to give epoxypyrroline $\mathbf{5 b} \mathbf{- 5 z a}$.

Procedure C (from halohydrins 6)

To a solution of halohydrin $\mathbf{6 a - d}(0.3 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ under stirring 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) ($91 \mathrm{mg}, 0.6 \mathrm{mmol}$) was added. The reaction mixture was stirred at room temperature for 12 h , then washed with water $(2 \times 1 \mathrm{~mL})$, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was crystallized from $\mathrm{Et}_{2} \mathrm{O} /$ hexane mixture to give epoxypyrroline $\mathbf{5 b}, \mathbf{d}, \mathbf{z}, \mathbf{z b}$.

Dimethyl
 rac-(1R,4R,5S)-5-methyl-2-phenyl-4-(piperidin-1-yl)-6-oxa-3-azabicyclo-

 [3.1.0]hex-2-ene-1,4-dicarboxylate (5b)

Compound 5b (124 mg, 95\%) was obtained as a colorless solid according to procedure A from oxazatriene 3a ($129 \mathrm{mg}, 0.3 \mathrm{mmol}$) and piperidine ($77 \mathrm{mg}, 0.9 \mathrm{mmol}$) using hexane/EtOAc mixture (from 5:1 to 2:1) as eluent for chromatography. Compound 5b ($174 \mathrm{mg}, 80 \%$) was also obtained according to procedure B from azirine $\mathbf{1 a}(127 \mathrm{mg}, 0.5 \mathrm{mmol})$, diazo compound 2a ($714 \mathrm{mg}, 3.5 \mathrm{mmol}$) and piperidine ($128 \mathrm{mg}, 1.5 \mathrm{mmol}$) using hexane/EtOAc mixture (from 10:1 to 2:1) as eluent for chromatography. Compound $\mathbf{5 b}$ ($126 \mathrm{mg}, 95 \%$) was also obtained according to the procedure C from chlorohydrin $\mathbf{6 a}(141 \mathrm{mg}, 0.3 \mathrm{mmol})$. M.p. $141-142{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.42-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.71(\mathrm{~m}, 4 \mathrm{H}), 2.70-2.84(\mathrm{~m}, 2 \mathrm{H}), 3.02-$ 3.15 (m, 2H), 3.59 (s, 3H), 3.69 (s, 3H), 7.33-7.43 (m, 5H), 7.44-7.57 (m, 3H), 7.79-7.86 (m, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.4,26.3,50.2,52.6,52.7,68.1,73.4,98.1,128.1$ (2C),
128.4, 128.7, 129.2, 130.8, 131.6, 132.0, 164.7, 169.0, 171.8. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}^{+}[\mathrm{M}+\mathrm{H}]^{+} 435.1914$; found $435.1921 . \nu_{\mathrm{max} / \mathrm{cm}^{-1}} 1756(\mathrm{C}=\mathrm{O}), 1613(\mathrm{C}=\mathrm{N})$.

4-Ethyl 1-methyl rac-(1R,4R,5S)-5-methyl-2-phenyl-4-(piperidin-1-yl)-6-oxa-3-azabicyclo-[3.1.0]hex-2-ene-1,4-dicarboxylate (5c)

Compound $\mathbf{5 c}$ ($118 \mathrm{mg}, 88 \%$) was obtained as a colorless solid according to procedure A from oxazatriene $\mathbf{3 b}$ ($133 \mathrm{mg}, 0.3 \mathrm{mmol}$) or $\mathbf{3 z c}(120 \mathrm{mg}, 0.3 \mathrm{mmol})$ and piperidine ($77 \mathrm{mg}, 0.9 \mathrm{mmol}$) using hexane/EtOAc mixture (from 5:1 to 2:1) as eluent for chromatography. Compound $\mathbf{5 c}$ (173 $\mathrm{mg}, 77 \%$) was also obtained according to procedure B from azirine $\mathbf{1 a}$ ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound $\mathbf{2 b}(1.31 \mathrm{~g}, 6 \mathrm{mmol})$ and piperidine ($128 \mathrm{mg}, 1.5 \mathrm{mmol}$) using hexane/EtOAc mixture (from $10: 1$ to 2:1) as eluent for chromatography. M.p. $141-142{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.17$ (t, $3 \mathrm{H}, J 7.3 \mathrm{~Hz}$), $1.40-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.70(\mathrm{~m}, 4 \mathrm{H}), 2.69-$ $2.86(\mathrm{~m}, 2 \mathrm{H}), 2.98-3.16(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 4.02-4.24(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.59(\mathrm{~m}, 8 \mathrm{H}), 7.75-7.87$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.8,24.5,26.3,50.2,52.7,61.9,68.2,73.2,98.0,128.0$, 128.1, 128.3, 128.7, 129.2, 130.8, 131.5, 132.1, 164.8, 168.3, 171.9. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 449.2071$; found 449.2064. $v_{\max / \mathrm{cm}^{-1}} 1757(\mathrm{C}=\mathrm{O}), 1749(\mathrm{C}=\mathrm{O}), 1613$ ($\mathrm{C}=\mathrm{N}$).

4-Ethyl 1-methyl rac-(1R,4R,5S)-5-methyl-2-phenyl-4-(piperidin-1-yl)-6-oxa-3-azabicyclo-

 [3.1.0]hex-2-ene-1,4-dicarboxylate (5d)

Compound 5d (44 mg, 38\%) was obtained as a colorless solid according to procedure A from oxazatriene $\mathbf{3 c}$ ($115 \mathrm{mg}, 0.3 \mathrm{mmol}$) using hexane/EtOAc mixture (from 5:1 to 2:1) as eluent for chromatography. Compound $\mathbf{5 d}(66 \mathrm{mg}, 34 \%)$ was also obtained according to procedure B from azirine $\mathbf{1 a}(127 \mathrm{mg}, 0.5 \mathrm{mmol})$, diazo compound $\mathbf{2 c}(234 \mathrm{mg}, 1.5 \mathrm{mmol})$ and piperidine (128 mg , 1.5 mmol) using hexane/EtOAc mixture (from $10: 1$ to $2: 1$) as eluent for chromatography. Compound $5 \mathbf{d}$ ($112 \mathrm{mg}, 97 \%$) was also obtained according to procedure C from chlorohydrin $\mathbf{6 b}$ ($127 \mathrm{mg}, 0.3 \mathrm{mmol}$). M.p. $135-136{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-h e x a n e\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.28(\mathrm{t}$,
$3 \mathrm{H}, J 7.1 \mathrm{~Hz}), 1.41-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.72(\mathrm{~m}, 7 \mathrm{H}), 2.67-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.87-3.05(\mathrm{~m}, 2 \mathrm{H})$, $3.78(\mathrm{~m}, 3 \mathrm{H}), 4.27(\mathrm{q}, 2 \mathrm{H}, J 7.1 \mathrm{~Hz}), 7.38-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.68-7.80(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 13.5,14.0,24.5,26.4,49.7,52.8,62.0,67.5,70.0,96.4,128.0,128.6,131.5,132.2$, 165.5, 168.7, 172.3. HRMS-ESI: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{5}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$409.1734; found 409.1733. $v_{\mathrm{max}} / \mathrm{cm}^{-1} 1750(\mathrm{C}=\mathrm{O}), 1599(\mathrm{C}=\mathrm{N})$.

Dimethyl rac-(1R,4R,5S)-5-(4-cyanophenyl)-2-phenyl-4-(piperidin-1-yl)-6-oxa-3-azabicyclo-

 [3.1.0]hex-2-ene-1,4-dicarboxylate (5e)

Compound $\mathbf{5 e}$ ($111 \mathrm{mg}, 80 \%$) was obtained as a colorless solid according to procedure A from oxazatriene 3d ($137 \mathrm{mg}, 0.3 \mathrm{mmol}$) and piperidine ($77 \mathrm{mg}, 0.9 \mathrm{mmol}$) using hexane/EtOAc mixture (from 5:1 to 2:1) as eluent for chromatography. Compound 5e (138 mg, 60\%) was also obtained according to procedure B from azirine $\mathbf{1 a}$ ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound $2 \mathbf{2 d}$ ($229 \mathrm{mg}, 1.0 \mathrm{mmol}$) and piperidine ($128 \mathrm{mg}, 1.5 \mathrm{mmol}$) using hexane/EtOAc mixture (from 10:1 to 2:1) as eluent for chromatography. M.p. $174-175{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.39-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.76(\mathrm{~m}, 4 \mathrm{H}), 2.61-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.89-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~s}$, $3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 7.42-7.62(\mathrm{~m}, 5 \mathrm{H}), 7.66-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.81(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.3,26.3,50.3,52.9,53.0,68.4,72.6,98.1,113.3,118.0,128.1,128.8,129.1$, 131.6, 131.9, 132.1, 136.1, 164.1, 168.9, 171.6. HRMS-ESI: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{5}{ }^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}$482.1686; found 482.1668. $v_{\max / \mathrm{cm}^{-1}} 2229(\mathrm{C} \equiv \mathrm{N}), 1757(\mathrm{C}=\mathrm{O}), 1741(\mathrm{C}=\mathrm{O}), 1604$ ($\mathrm{C}=\mathrm{N}$).

Dimethyl rac-(1R,4R,5S)-2-(4-methoxyphenyl)-5-phenyl-4-(piperidin-1-yl)-6-oxa-3-azabicyclo[3.1.0]hex-2-ene-1,4-dicarboxylate (5f)

Compound $\mathbf{5 f}$ ($113 \mathrm{mg}, 81 \%$) was obtained as a colorless solid according to procedure A from oxazatriene $3 \mathbf{e}(138 \mathrm{mg}, 0.3 \mathrm{mmol})$ and piperidine ($77 \mathrm{mg}, 0.9 \mathrm{mmol}$) using hexane/EtOAc mixture (from 5:1 to 2:1) as eluent for chromatography. Compound $\mathbf{5 f}$ ($144 \mathrm{mg}, 62 \%$) was also
obtained according to procedure B from azirine $\mathbf{1 b}$ ($142 \mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound 2a ($714 \mathrm{mg}, 3.5 \mathrm{mmol}$) and piperidine ($128 \mathrm{mg}, 1.5 \mathrm{mmol}$) using hexane/EtOAc mixture (from 10:1 to $2: 1$) as eluent for chromatography. M.p. $160-162{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.40-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.68(\mathrm{~m}, 4 \mathrm{H}), 2.67-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.98-3.13(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~s}$, $3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 6.91-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.71-7.83(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 24.4,26.3,50.2,52.6,52.7,55.4,68.0,73.5,97.9,114.1,124.7$, 128.1, 128.3, 129.1, 129.9, 130.9, 162.4, 164.9, 169.3, 170.8. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$465.2020; found 465.2029.

Dimethyl rac-(1R,4R,5S)-4-(3,4-dihydroisoquinolin-2(1H)-yl)-2,5-diphenyl-6-oxa-3-azabicyclo[3.1.0]hex-2-ene-1,4-dicarboxylate (5g)

Compound $\mathbf{5 g}$ ($179 \mathrm{mg}, 74 \%$) was obtained as a colorless oil according procedure B from azirine 1a ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound 2a ($714 \mathrm{mg}, 3.5 \mathrm{mmol}$) and $1,2,3,4-$ tetrahydroisoquinoline ($200 \mathrm{mg}, 1.5 \mathrm{mmol}$) using hexane/EtOAc mixture (from 10:1 to $2: 1$) as eluent for chromatography. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.85-3.08(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.36(\mathrm{~m}$, $2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 4.02$ and $4.40(\mathrm{AB}-\mathrm{q}, 2 \mathrm{H}, \mathrm{J} 15 \mathrm{~Hz}), 7.00-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.17$ $(\mathrm{m}, 3 \mathrm{H}), 7.33-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.47-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.81-7.90(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 29.8,47.5,51.3,52.8,52.9,68.2,73.6,97.5,125.4,125.8,126.6,128.0,128.1,128.5$, 128.6, 128.7, 129.4, 130.3, 131.8, 131.9, 134.5, 135.0, 164.7, 168.7, 172.5. HRMS-ESI: [M+H] ${ }^{+}$ calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 483.1914$; found 483.1919. $v_{\mathrm{max} / \mathrm{cm}^{-1}} 1756(\mathrm{C}=\mathrm{O}), 1740(\mathrm{C}=\mathrm{O})$, $1609(\mathrm{C}=\mathrm{N})$.

Dimethyl rac-(1R,4R,5S)-4-(4-carbamoylpiperidin-1-yl)-2,5-diphenyl-6-oxa-3-azabicyclo-[3.1.0]hex-2-ene-1,4-dicarboxylate (5h)

Compound $\mathbf{5 h}$ ($125 \mathrm{mg}, 87 \%$) was obtained as a colorless solid according to procedure A from oxazatriene 3a ($129 \mathrm{mg}, 0.3 \mathrm{mmol}$) and piperidine-4-carboxamide ($115 \mathrm{mg}, 0.9 \mathrm{mmol}$). Compound $\mathbf{5 h}$ ($177 \mathrm{mg}, 74 \%$) was also obtained according to procedure B from azirine $\mathbf{1 a}$ (127 $\mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound 2a ($714 \mathrm{mg}, 3.5 \mathrm{mmol}$) and piperidine-4-carboxamide (192 mg , 1.5 mmol) using EtOAc as eluent for chromatography. M.p. $115-117^{\circ} \mathrm{C}$ (hexane $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.71-2.00(\mathrm{~m}, 4 \mathrm{H}), 2.09-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{td}, 1 \mathrm{H}, J 11.4 \mathrm{~Hz}, J$ $2.6 \mathrm{~Hz}), 2.79$ (td, 1H, J $11.4 \mathrm{~Hz}, J 2.6 \mathrm{~Hz}$), 3.23 (d, 1H, J 11.5 Hz), 3.49 (d, 1H, J 11.5 Hz), 3.59 (s, 3H), 3.65 (s, 3H), 5.72 (br. d, 2H, J 57.8 Hz), 7.30-7.42 (m, 5H), 7.43-7.60 (m, 3H), 7.75$7.81(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.2$ (2C), 42.8, 48.3, 49.4, 52.7, 52.8, 68.0, 73.2, $97.6,127.9,128.0,128.5,128.7,129.4,130.2,131.8$, (signal of one carbon is overlapped), 164.6, 168.7, 172.3, 177.5. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$478.1973; found 478.1969. $\nu_{m a x} / \mathrm{mm}^{-1} 1745(\mathrm{C}=\mathrm{O}), 1687(\mathrm{C}=\mathrm{O}), 1609(\mathrm{C}=\mathrm{N})$.

Dimethyl rac-(1R,4R,5S)-4-(4-benzhydrylpiperazin-1-yl)-2,5-diphenyl-6-oxa-3-azabicyclo-[3.1.0]hex-2-ene-1,4-dicarboxylate (5i)

Compound $\mathbf{5 i}$ ($157 \mathrm{mg}, 87 \%$) was obtained as a colorless solid according to procedure A from oxazatriene $\mathbf{3 a}$ ($129 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-benzhydrylpiperazine ($227 \mathrm{mg}, 0.9 \mathrm{mmol}$). Compound $\mathbf{5 i}(225 \mathrm{mg}, 75 \%)$ was also obtained according to procedure B from azirine $\mathbf{1 a}$ ($127 \mathrm{mg}, 0.5$ mmol), diazo compound $\mathbf{2 a}(714 \mathrm{mg}, 3.5 \mathrm{mmol})$ and 1-benzhydrylpiperazine ($378 \mathrm{mg}, 1.5$ mmol) using EtOAc as eluent for chromatography. M.p. 222-226 ${ }^{\circ} \mathrm{C}$ (dec., hexane/ $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.51$ (br. s, 4H), 2.80-2.95 (m, 2H), 3.14$3.27(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.28(\mathrm{~m}, 2 \mathrm{H})$, $7.31-7.46(\mathrm{~m}, 9 \mathrm{H}), 7.46-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.78-7.88(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 49.2$, 52.1, 52.6, 52.8, 68.0, 73.4, 76.1, 97.3, 126.8, 126.81, 127.91, 127.93, 127.95, 128.1, 128.36, $128.37,128.5,128.7,129.4,130.3,131.7,131.9,142.8$ (signal of one carbon is overlapped), 164.7, 168.5, 172.2. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{5}^{+}[\mathrm{M}+\mathrm{H}]^{+} 602.2649$; found 602.2641. $\nu_{m a x} / \mathrm{cm}^{-1} 1762(\mathrm{C}=\mathrm{O}), 1743(\mathrm{C}=\mathrm{O}), 1609(\mathrm{C}=\mathrm{N})$.

Dimethyl rac-(1R,4R,5S)-4-(morpholin-4-yl)-2,5-phenyl-6-oxa-3-azabicyclo[3.1.0]hex-2-ene-

 1,4-dicarboxylate ($\mathbf{5 j}$)

Compound $\mathbf{5 j}$ ($174 \mathrm{mg}, 80 \%$) was obtained as a colorless solid according to procedure B from azirine 1a ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound 2a ($714 \mathrm{mg}, 3.5 \mathrm{mmol}$) and morpholine (131 $\mathrm{mg}, 1.5 \mathrm{mmol}$) using hexane/EtOAc mixture (from 10:1 to $2: 1$) as eluent for chromatography. M.p. $154-155{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.79-2.94(\mathrm{~m}, 2 \mathrm{H}), 3.09-3.23$ $(\mathrm{m}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.80(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.44-7.60(\mathrm{~m}, 3 \mathrm{H})$, $7.76-7.89(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 49.4,52.7,52.8,67.1,68.0,73.2,97.0,127.8$, 128.0, 128.5, 128.7, 129.4, 130.2, 131.7, 131.8, 164.5, 168.2, 172.4. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{6}^{+}[\mathrm{M}+\mathrm{H}]^{+}$437.1707; found 437.1701.

Dimethyl rac-(1R,4R,5S)-5-(4-chlorophenyl)-4-(morpholin-4-yl)-2-phenyl-6-oxa-3-azabi-cyclo[3.1.0]hex-2-ene-1,4-dicarboxylate (5k)

Compound $\mathbf{5 k}$ ($188 \mathrm{mg}, 80 \%$) was obtained as a colorless solid according to procedure B from azirine 1a ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound $\mathbf{2 e}$ ($835 \mathrm{mg}, 3.5 \mathrm{mmol}$) and morpholine ($131 \mathrm{mg}, 1.5 \mathrm{mmol}$) using hexane/EtOAc mixture (from 10:1 to 2:1) as eluent for chromatography. M.p. $184-186 ~^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.84$ (dt, $2 \mathrm{H}, J 10 \mathrm{~Hz}, J 4.6 \mathrm{~Hz}$), 3.11 (dt, 2H, J $10 \mathrm{~Hz}, J 4.6 \mathrm{~Hz}$), 3.63 ($\mathrm{s}, 3 \mathrm{H}$), 3.72 ($\mathrm{s}, 3 \mathrm{H}$), 3.76 (t, $4 \mathrm{H}, J 4.6 \mathrm{~Hz}), 7.30-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.84(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 49.5,52.9,53.0,67.1,68.2,72.6,96.9,128.0,128.75$, 128.81, 128.9, 129.3, 131.6, 132.0, 135.7, 164.3, 168.2, 172.4. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{24}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 471.1317$; found 471.1321. $v_{\max / \mathrm{cm}^{-1}} 1743(\mathrm{C}=\mathrm{O}), 1610(\mathrm{C}=\mathrm{N})$.

Dimethyl rac-(1R,4R,5S)-5-(4-bromophenyl)-4-(morpholin-4-yl)-2-phenyl-6-oxa-3-azabicyclo[3.1.0]hex-2-ene-1,4-dicarboxylate (51)

Compound $\mathbf{5 1}$ (201 mg, 78\%) was obtained as a colorless solid according to procedure B from azirine 1a ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound $\mathbf{2 f}(991 \mathrm{mg}, 3.5 \mathrm{mmol}$) and morpholine (131 $\mathrm{mg}, \quad 1.5 \mathrm{mmol}$) using hexane/EtOAc mixture (from $10: 1$ to $2: 1$) as eluent for chromatography. M.p. $198-199{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.83$ (dt, $2 \mathrm{H}, J 9.8 \mathrm{~Hz}, J 4.6 \mathrm{~Hz}), 3.11(\mathrm{dt}, 2 \mathrm{H}, J 9.8 \mathrm{~Hz}, J 4.6 \mathrm{~Hz}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.77$ (t, $4 \mathrm{H}, J 4.6 \mathrm{~Hz}), 7.24-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.60(\mathrm{~m}, 5 \mathrm{H}), 7.77-7.84(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 49.5,52.9,53.0,67.1,68.2,72.6,96.9,124.0,128.1,128.8,129.3,129.6$, 131.6, 131.8, 132.0, 164.3, 168.2, 172.4. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{24}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{6}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 515.0812$; found 515.0808. $v_{\max / \mathrm{cm}^{-1}} 1741(\mathrm{C}=\mathrm{O}), 1608(\mathrm{C}=\mathrm{N})$.

Dimethyl rac-(1R,4R,5S)-5-(3-bromophenyl)-4-(morpholin-4-yl)-2-phenyl-6-oxa-3-azabicyclo[3.1.0]hex-2-ene-1,4-dicarboxylate (5m)

Compound $\mathbf{5 m}$ (193 mg, 75\%) was obtained as a colorless solid according to procedure B from azirine 1a ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound $\mathbf{2 g}$ ($991 \mathrm{mg}, 3.5 \mathrm{mmol}$) and morpholine ($131 \mathrm{mg}, 1.5 \mathrm{mmol}$) using hexane/EtOAc mixture (from 10:1 to 2:1) as eluent for chromatography. M.p. $128-129{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.77-2.90$ (m, 2H), 3.06-3.18 (m, 2H), $3.64(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.77$ (t, 4H, J 4.7 Hz), 7.23-7.31 (m, $1 \mathrm{H}), 7.31-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.61(\mathrm{~m}, 5 \mathrm{H}), 7.76-7.86(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 49.5,52.9,53.0,67.1,68.1,72.4,97.0,122.5,126.7,128.1,128.8,130.1,131.0$, 131.6, 132.0, 132.5, 132.7, 164.2, 168.1, 172.3. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{24}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$515.0812; found 515.0805. $\nu_{\max / \mathrm{cm}^{-1}} 1756(\mathrm{C}=\mathrm{O}), 1735(\mathrm{C}=\mathrm{O}), 1606$ ($\mathrm{C}=\mathrm{N}$).

Dimethyl rac-(1R,4R,5S)-4-(morpholin-4-yl)-5-(4-nitrophenyl)-2-phenyl-6-oxa-3-azabi-cyclo[3.1.0]hex-2-ene-1,4-dicarboxylate (5n)

Compound $\mathbf{5 n}$ ($180 \mathrm{mg}, 75 \%$) was obtained as a colorless solid according to procedure B from azirine 1a ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound 2 h ($299 \mathrm{mg}, 1.2 \mathrm{mmol}$) and morpholine ($131 \mathrm{mg}, 1.5 \mathrm{mmol}$) using hexane/EtOAc mixture (from 10:1 to 2:1) as eluent for chromatography. M.p. $205-207{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.76-2.88$ (m, 2H), 3.04-3.16 (m, 2H), 3.63 (s, 3H), 3.70-3.81 (m, 7H), 7.47-7.52 (m, 2H), 7.54-7.66 $(\mathrm{m}, 3 \mathrm{H}), 7.78-7.83(\mathrm{~m}, 2 \mathrm{H}), 8.23-8.28(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 49.5,53.1$, $53.2,67.1,68.5,72.3,97.0,123.7,128.1,128.8,129.2,131.3,132.2,137.4,148.4,163.9$, 168.1, 172.2. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{8}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$482.1558; found 482.1550 .

Dimethyl rac-(1R,4R,5S)-4-(morpholin-4-yl)-5-phenyl-2-(4-methylphenyl)-6-oxa-3-aza-bicyclo[3.1.0]hex-2-ene-1,4-dicarboxylate (50)

Compound $\mathbf{5 0}$ ($153 \mathrm{mg}, 68 \%$) was obtained as a colorless solid according to procedure B from azirine 1c ($134 \mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound 2a ($714 \mathrm{mg}, 3.5 \mathrm{mmol}$) and morpholine ($131 \mathrm{mg}, 1.5 \mathrm{mmol}$) using hexane/EtOAc mixture (from 10:1 to 2:1) as eluent for chromatography. M.p. $73-75^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.44(\mathrm{~s}, 3 \mathrm{H})$, 2.80-2.92 (m, 2H), 3.10-3.21 (m, 2H), 3.61 (s, 3H), 3.69 (s, 3H), 3.77 (t, 4H, J 4.7 Hz), 7.28-7.30 (m, 2H), 7.31-7.42 (m, 5H), 7.68-7.73 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $21.6,49.5,52.7,52.8,67.2,68.1,73.2,96.9,127.9,128.1,128.5,129.0,129.41,129.43$, 130.3, 142.5, 164.6, 168.3, 172.2. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 451.1864; found 451.1857. $v_{\max / \mathrm{cm}^{-1}} 1750(\mathrm{C}=\mathrm{O}), 1735(\mathrm{C}=\mathrm{O}), 1605(\mathrm{C}=\mathrm{N})$.

Dimethyl rac-(1R,4R,5S)-2-(4-chlorophenyl)-4-(morpholin-4-yl)-5-phenyl-6-oxa-3-azabi-cyclo[3.1.0]hex-2-ene-1,4-dicarboxylate (5p)

Compound 5p (195 mg, 83\%) was obtained as a colorless solid according to procedure B from azirine 1d ($144 \mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound 2a ($714 \mathrm{mg}, 3.5 \mathrm{mmol}$) and morpholine ($131 \mathrm{mg}, 1.5 \mathrm{mmol}$) using hexane/EtOAc mixture (from 10:1 to 2:1) as eluent for chromatography. M.p. $126-127^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.77-2.91$ (m, 2H), 3.07-3.21 (m, 2H), $3.61(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{t}, 4 \mathrm{H}, J 4.6 \mathrm{~Hz}), 7.31-7.43$ (m, $5 \mathrm{H}), 7.44-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.76(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 49.4,52.8,52.9$, $67.1,67.8,73.4,97.1,127.9,128.6,129.1,129.4,129.6,130.0,130.2,138.2,164.4,168.1$, 171.5. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{24}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$471.1317; found 471.1317. $\nu_{\max / \mathrm{cm}^{-1}} 1741(\mathrm{C}=\mathrm{O}), 1621(\mathrm{C}=\mathrm{N})$.

Dimethyl rac-(1R,4R,5S)-2-(4-bromophenyl)-4-(morpholin-4-yl)-5-phenyl-6-oxa-3-aza-bicyclo[3.1.0]hex-2-ene-1,4-dicarboxylate (5q)

Compound $\mathbf{5 q}$ ($207 \mathrm{mg}, 80 \%$) was obtained as a colorless solid according to procedure B from azirine 1e ($167 \mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound 2a ($714 \mathrm{mg}, 3.5 \mathrm{mmol}$) and morpholine ($131 \mathrm{mg}, 1.5 \mathrm{mmol}$) using hexane/EtOAc mixture (from 10:1 to 2:1) as eluent for chromatography. M.p. $138-140{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.78-2.90$ (m, 2H), 3.09-3.19 (m, 2H), 3.62 (s, 3H), 3.69 (s, 3H), 3.78 (t, 4H, J 4.7 Hz), 7.31-7.44 (m, $5 \mathrm{H}), 7.59-7.73(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 49.5,52.8,53.0,67.2,67.8,73.5$, $97.1,126.7,127.9,128.6,129.56,129.58,130.0,130.6,132.1,164.4,168.1,171.6$. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{24}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$515.0812; found 515.0819.

Dimethyl rac-(1R,4R,5S)-4-(morpholin-4-yl)-2-(4-nitrophenyl)-5-phenyl-6-oxa-3-azabi-cyclo[3.1.0]hex-2-ene-1,4-dicarboxylate (5r)

Compound $\mathbf{5 r}$ ($195 \mathrm{mg}, 81 \%$) was obtained as a colorless solid according to procedure B from azirine $\mathbf{1 f}$ ($150 \mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound $\mathbf{2 a}$ ($714 \mathrm{mg}, 3.5 \mathrm{mmol}$) and morpholine ($131 \mathrm{mg}, 1.5 \mathrm{mmol}$) using hexane/EtOAc mixture (from $10: 1$ to $2: 1$) as eluent for chromatography. M.p. $165-167{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.78-2.91$ $(\mathrm{m}, 2 \mathrm{H}), 3.08-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{t}, 4 \mathrm{H}, J 4.7 \mathrm{~Hz}), 7.29-7.46(\mathrm{~m}$, $5 \mathrm{H}), 7.92-8.04(\mathrm{~m}, 2 \mathrm{H}), 8.30-8.40(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 49.4,52.9,53.0$, 67.1, 67.6, 73.7, 97.4, 123.9, 127.8, 128.6, 129.1, 129.6, 129.7, 137.2, 149.6, 164.1, 167.7, 171.1. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{8}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$482.1558; found 482.1560. $\nu_{m a x} / \mathrm{cm}^{-1} 1740(\mathrm{C}=\mathrm{O}), 1603(\mathrm{C}=\mathrm{N})$.

Dimethyl rac-(1R,4R,5S)-4-(morpholin-4-yl)-2-(naphthalen-2-yl)-5-phenyl-6-oxa-3-aza-bicyclo[3.1.0]hex-2-ene-1,4-dicarboxylate (5s)

Compound 5s (187 mg, 77\%) was obtained as a colorless solid according to procedure B from azirine $\mathbf{1 g}$ ($152 \mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound $2 \mathrm{a}(714 \mathrm{mg}, 3.5 \mathrm{mmol}$) and morpholine ($131 \mathrm{mg}, 1.5 \mathrm{mmol}$) using hexane/EtOAc mixture (from 10:1 to 2:1) as eluent for chromatography. M.p. $167-169{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.84-2.97$ (m, 2H), 3.15-3.27 (m, 2H), $3.63(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{t}, 4 \mathrm{H}, J 4.7 \mathrm{~Hz}), 7.36-7.47(\mathrm{~m}$, $5 \mathrm{H}), 7.52-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.86-8.01(\mathrm{~m}, 4 \mathrm{H}), 8.26$ (br. s, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $49.5,52.8,52.9,67.2,68.2,73.4,97.1,124.4,126.8,127.8,127.9,128.55,128.61,128.9$, 129.0, 129.2, 129.5, 130.2, 132.8, 134.9, 164.6, 168.3, 172.5. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 487.1864$; found 487.1856. $v_{\max / \mathrm{cm}^{-1}} 1756(\mathrm{C}=\mathrm{O}), 1604(\mathrm{C}=\mathrm{N})$.

Dimethyl rac-(1R,4R,5S)-2-(furan-2-yl)-4-(morpholin-4-yl)-5-phenyl-6-oxa-3-azabicyclo-

 [3.1.0]hex-2-ene-1,4-dicarboxylate (5t)

Compound 5t (149 mg, 77\%) was obtained as a colorless solid according to procedure B from azirine $\mathbf{1 h}$ ($122 \mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound $\mathbf{2 a}$ ($714 \mathrm{mg}, 3.5 \mathrm{mmol}$) and morpholine ($131 \mathrm{mg}, 1.5 \mathrm{mmol}$) using hexane/EtOAc mixture (from 10:1 to 2:1) as eluent for chromatography. M.p. $153-155{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.79-2.92$ (m, 2H), 3.07-3.20 (m, 2H), $3.66(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.77$ (t, 4H, J 4.6 Hz$), 6.60(\mathrm{dd}, 1 \mathrm{H}, ~ J$ $3.5 \mathrm{~Hz}, 1.7 \mathrm{~Hz}), 7.08(\mathrm{~d}, 1 \mathrm{H}, J 3.5 \mathrm{~Hz}), 7.31-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.65(\mathrm{~d}, 1 \mathrm{H}, J 1.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 49.4,52.8,52.9,67.1,67.7,73.1,96.9,112.5,115.9,127.8,128.5$, 129.5, 129.8, 146.2, 147.1, 162.3, 163.9, 168.0. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{7}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 427.1500$; found 427.1504. $v_{\max / \mathrm{cm}^{-1}} 1758(\mathrm{C}=\mathrm{O}), 1616(\mathrm{C}=\mathrm{N})$.

1-Benzyl 4-methyl 4-(morpholin-4-yl)-2,5-diphenyl-6-oxa-3-azabicyclo[3.1.0]hex-2-ene-1,4-dicarboxylate (5u)

Compound $\mathbf{5 u}$ ($197 \mathrm{mg}, 77 \%$) (unseparated mixture of diastereomers, 10:1) was obtained as a colorless oil according to procedure B from azirine $\mathbf{1 i}$ ($165 \mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound 2a ($714 \mathrm{mg}, 3.5 \mathrm{mmol}$) and morpholine ($131 \mathrm{mg}, 1.5 \mathrm{mmol}$) using hexane/EtOAc mixture (from 10:1 to 2:1) as eluent for chromatography. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.79-2.94$ $(\mathrm{m}, 2 \mathrm{H}), 3.07-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.64$ and $3.72(2 \mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{t}, 4 \mathrm{H}, J 4.6 \mathrm{~Hz}), 5.00$ and 5.13 (AB-q, 2H, J 12 Hz), 6.99-7.03 (m, 2H), 7.18-7.60 (m, 11H), 7.76-7.85 (2m, 2H). ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 49.4,52.60,52.64,67.2,67.6,68.1,73.3,97.0,127.9,128.0,128.10$, $128.14,128.39$, $128.42,128.47,128.5,128.6,129.4,130.1,131.67,131.69,134.3,163.8$, 163.9, 168.0, 168.2, 172.7 (other signals are overlapped). HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$513.2020; found 513.2027.

Dimethyl rac-(1R,4R,5S)-2,5-diphenyl-4-(pyrrolidin-1-yl)-6-oxa-3-azabicyclo[3.1.0]hex-2-ene-1,4-dicarboxylate (5v)

Compound 5v (158 mg, 75\%) was obtained as a colorless solid according to procedure B from azirine 1a ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound $\mathbf{2 a}(714 \mathrm{mg}, 3.5 \mathrm{mmol})$ and pyrrolidine ($107 \mathrm{mg}, 1.5 \mathrm{mmol}$) using hexane/EtOAc mixture (from $10: 1$ to $2: 1$) as eluent for chromatography. M.p. $169-170{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.71-1.92$ (m, 4H), 2.88-3.05 (m, 2H), 3.10-3.29 (m, 2H), $3.62(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 7.31-7.43$ (m, $5 \mathrm{H}), 7.44-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.79-7.85(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.2,49.4,52.7$, $52.8,67.5,73.9,96.1,127.8,128.0,128.6,128.7,129.4,129.9,131.6,132.0,164.8,168.4$, 172.2. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$421.1758; found 421.1757. $V_{m a x} / \mathrm{cm}^{-1} 1755(\mathrm{C}=\mathrm{O}), 1609(\mathrm{C}=\mathrm{N})$.

Dimethyl 4-(1H-imidazol-1-yl)-2,5-diphenyl-6-oxa-3-azabicyclo[3.1.0]hex-2-ene-1,4-dicarboxylate (5w)

Compound $\mathbf{5 w}$ ($101 \mathrm{mg}, 81 \%$) (unseparated mixture of diastereomers, $7: 1$) was obtained as a colorless solid according to procedure A from oxazatriene 3a ($129 \mathrm{mg}, 0.3 \mathrm{mmol}$) and imidazole ($61 \mathrm{mg}, 0.9 \mathrm{mmol}$) using EtOAc as eluent for chromatography. Compound 5w ($156 \mathrm{mg}, 75 \%$) was also obtained according to procedure B from azirine $\mathbf{1 a}$ ($127 \mathrm{mg}, 0.5$ mmol), diazo compound 2a ($714 \mathrm{mg}, 3.5 \mathrm{mmol}$) and imidazole ($102 \mathrm{mg}, 1.5 \mathrm{mmol}$) using EtOAc as eluent for chromatography. M.p. $152-158{ }^{\circ} \mathrm{C}$ (dec., hexane/ $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.53$ and $3.63(2 \mathrm{~s}, 3 \mathrm{H}), 3.83$ and $3.89(2 \mathrm{~s}, 3 \mathrm{H}), 6.99-7.12(\mathrm{~m}$, $2 \mathrm{H}), 7.22-7.72(\mathrm{~m}, 9 \mathrm{H}), 7.81-7.97(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 53.1$ (2C), 53.7, 53.9, 70.0, 70.3, 74.2, 80.2, 89.7, 90.6, 117.2, 118.4, 127.1, 127.8, 127.9, 128.3, 128.4, $128.5,128.55,128.6,128.9,129.0,129.1,129.5,130.0,130.3,130.5,130.8,133.0,133.1$, 135.1, 136.5, 163.2, 163.3, 165.55, 165.6, 175.8, 176.2. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{5}^{+}[\mathrm{M}+\mathrm{H}]^{+}$418.1397; found 418.1391. $v_{\text {max }} / \mathrm{cm}^{-1} 1764(\mathrm{C}=\mathrm{O})$, $1735(\mathrm{C}=\mathrm{O}), 1599$ ($\mathrm{C}=\mathrm{N}$).

Dimethyl rac-(1R,4R,5S)-4-(dimethylamino)-2,5-diphenyl-6-oxa-3-azabicyclo[3.1.0]hex-2-ene-1,4-dicarboxylate (5x)

Compound 5x (144 mg, 73\%) was obtained as a colorless solid according to procedure B from azirine 1a ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound 2a ($714 \mathrm{mg}, 3.5 \mathrm{mmol}$) and 2 M solution of dimethylamine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml}, 2.0 \mathrm{mmol})$ using hexane/EtOAc mixture (from 10:1 to 2:1) as eluent for chromatography. M.p. $128-130{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.63$ ($\mathrm{s}, 6 \mathrm{H}$), 3.61 ($\mathrm{s}, 3 \mathrm{H}$), 3.67 ($\mathrm{s}, 3 \mathrm{H}$), 7.26-7.45 (m, 5H), 7.44-7.61 (m, 3H), 7.76-7.91 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 41.9,52.7,52.8,67.9,73.4,97.6$, 127.7, 128.0, 128.6, 128.7, 129.4, 130.1, 131.7, 131.9, 164.6, 168.7, 172.5. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}^{+}[\mathrm{M}+\mathrm{H}]^{+} 395.1601$; found 395.1595. vmax $/ \mathrm{cm}^{-1} 1745(\mathrm{C}=\mathrm{O}), 1726$ $(\mathrm{C}=\mathrm{O}), 1611(\mathrm{C}=\mathrm{N})$.

Dimethyl rac-(1R,4R,5S)-4-(diethylamino)-2,5-diphenyl-6-oxa-3-azabicyclo[3.1.0]hex-2-ene-1,4-dicarboxylate (5y)

Compound $\mathbf{5 y}$ ($165 \mathrm{mg}, 78 \%$) was obtained as a colorless solid according to procedure B from azirine 1a ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound 2a ($714 \mathrm{mg}, 3.5 \mathrm{mmol}$) and diethylamine ($110 \mathrm{mg}, 1.5 \mathrm{mmol}$) using hexane/EtOAc mixture (from $10: 1$ to $2: 1$) as eluent for chromatography. M.p. $101-103{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.09(\mathrm{t}$, $6 \mathrm{H}, J 7.1 \mathrm{~Hz}), 2.92-3.10(\mathrm{~m}, 4 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 7.32-7.57(\mathrm{~m}, 8 \mathrm{H}), 7.77-7.87$ $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.5,44.9,52.4,52.7,68.8,74.0,98.8,127.9,128.0$, $128.3,128.6,129.2,131.1,131.5,132.2,164.6,169.9,170.5$. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$423.1914; found 423.1917. $v_{\text {max } / \mathrm{cm}^{-1}} 1755(\mathrm{C}=\mathrm{O}), 1740(\mathrm{C}=\mathrm{O}), 1608$ ($\mathrm{C}=\mathrm{N}$).

[3.1.0]hex-2-ene-1,4-dicarboxylate (5z)

Compound $\mathbf{5 z}$ ($183 \mathrm{mg}, 78 \%$) was obtained as a colorless solid according to procedure B from azirine 1a ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound $\mathbf{2 a}(714 \mathrm{mg}, 3.5 \mathrm{mmol})$ and N-benzyl- N-methylamine ($182 \mathrm{mg}, 1.5 \mathrm{mmol}$) using hexane/EtOAc mixture (from $10: 1$ to $2: 1$) as eluent for chromatography. Compound $\mathbf{5 z}$ ($140 \mathrm{mg}, 99 \%$) was also obtained according to procedure C from chlorohydrin 6c (152 mg, 0.3 mmol). M.p. $76-78{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{hexane}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.49(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.98$ and $4.12(\mathrm{AB}-\mathrm{q}, 2 \mathrm{H}, J 14 \mathrm{~Hz}), 7.22-7.62$ (m, 13H), 7.85-7.94 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 37.4,52.5,52.8,58.0,68.6,73.9$, $97.8,126.7,127.9,128.0,128.1,128.4,128.5,128.7,129.3,130.7,131.7,131.9,139.8,164.6$, 169.1, 172.1. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$471.1914; found 471.1920.

Dimethyl rac-(1R,4S,5R)-4-[2-(diethylamino)ethylsulfanyl]-2,5-diphenyl-6-oxa-3-azabi-cyclo[3.1.0]hex-2-ene-1,4-dicarboxylate (5za)

Compound 5za (171 mg, 71\%) was obtained as a colorless solid according to procedure B from azirine 1a ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$), diazo compound 2a ($714 \mathrm{mg}, 3.5 \mathrm{mmol}$) and 2-($N, N-$ diethylamino)ethanethiol (200 mg , 1.5 mmol). M.p. $77-79{ }^{\circ} \mathrm{C}$ (hexane/ $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.97$ (t, 6H, J 7.2 Hz), 2.42-2.57 (m, 4H), 2.63-2.84 (m, 3H), 2.88-2.99 (m, 1H), $3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.65(\mathrm{~s}, 3 \mathrm{H}), 7.34-7.61(\mathrm{~m}, 8 \mathrm{H}), 7.80-7.90(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.8,28.0,46.8,52.4,52.9,53.2,69.2,79.0,86.9,128.0$, 128.3, 128.5, 128.7, 128.9, 129.8, 131.5, 132.0, 164.4, 166.8, 171.7. HRMS-ESI: [M+Na] ${ }^{+}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 505.1768$; found 505.1779. $v_{\text {max }} / \mathrm{cm}^{-1} 1754(\mathrm{C}=\mathrm{O}), 1735$ (C=O), 1599 ($\mathrm{C}=\mathrm{N}$).

Dimethyl rac-(1R,4R,5S)-5-cyclopropyl-4-(morpholin-4-yl)-2-phenyl-6-oxa-3-azabicyclo-[3.1.0]hex-2-ene-1,4-dicarboxylate (5zb)

Compound $\mathbf{5 z b}$ ($113 \mathrm{mg}, \mathbf{9 4 \%}$) was obtained as a colorless solid according to procedure C from bromohydrin $\mathbf{6 d}(144 \mathrm{mg}, 0.3 \mathrm{mmol})$. M.p. $135-136{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.46-0.57(\mathrm{~m}, 1 \mathrm{H}), 0.60-0.87(\mathrm{~m}, 3 \mathrm{H}), 1.30-1.41(\mathrm{~m}, 1 \mathrm{H}), 2.74-3.04(\mathrm{~m}$, $4 \mathrm{H}), 3.68-3.82(\mathrm{~m}, 7 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 7.34-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.64-7.84(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.0,3.3,7.0,49.2,52.8,53.1,67.3,68.2,72.3,96.2,127.8,128.7,131.77$, 131.8, 165.1, 168.7, 173.1. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$401.1707; found 401.1711. $v_{\max / \mathrm{cm}^{-1}} 1748(\mathrm{C}=\mathrm{O}), 1602(\mathrm{C}=\mathrm{N})$.

4. Gram-scale synthesis of epoxypyrroline $\mathbf{5 j}$

To a solution of diazo compound $\mathbf{2 a}(5.712 \mathrm{~g}, 28.0 \mathrm{mmol})$ and azirine $\mathbf{1 a}(1.016 \mathrm{~g}, 4.0 \mathrm{mmol})$ in anhydrous 1,2-dichloroethane (10 mL) at reflux under inert atmosphere $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (35 $\mathrm{mg}, 2 \mathrm{~mol} \%$) was added. The stirred mixture was heated under reflux until nitrogen evolution stopped (1.5 min). The resulting mixture was evaporated under reduced pressure, and the residue was filtered through a pad of silica gel using toluene/EtOAc 30:1 mixture as eluent. The filtrate was concentrated under reduced pressure, and the residue was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. A solution of morpholine ($1.044 \mathrm{~g}, 12 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL) was added dropwise to the resulting mixture under stirring. The mixture was stirred at room temperature for 24 h , the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (hexane/EtOAc, from 10:1 to 2:1) to afford epoxypyrroline $\mathbf{5 j}$ ($1.33 \mathrm{~g}, 76 \%$).

5. Synthesis of halohydrins 6a-d

General procedure for preparation of halohydrins 6a-c

To a solution of oxazatriene $\mathbf{3 z b}-\mathbf{z d}(0.3 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ a solution of the amine (quantities are indicated below) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added dropwise under stirring. The mixture was stirred at room temperature for 6 h , the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel.

Dimethyl rac-(2R,3S,4S)-4-chloro-3-hydroxy-3,5-diphenyl-2-(piperidin-1-yl)-3,4-dihydro-

 $\mathbf{2 H}$-pyrrole-2,4-dicarboxylate (6a)

Compound 6a ($116 \mathrm{mg}, 82 \%$) was obtained as a colorless solid according to the general procedure from oxazatriene $\mathbf{3 z b}$ ($116 \mathrm{mg}, 0.3 \mathrm{mmol}$) and piperidine ($28 \mathrm{mg}, 0.33 \mathrm{mmol}$) using hexane/EtOAc mixture (5:1) as eluent for column chromatography. M.p. 137-139 ${ }^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O} /$ hexane). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.35-1.80(\mathrm{~m}, 6 \mathrm{H}), 2.60-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.88-3.65$ (m, 2H), $3.75(\mathrm{~s}, 6 \mathrm{H}), 6.79\left(\right.$ br. s, 1H), 7.30-7.70 (m, 8H), 7.96-8.19 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.7,26.7,49.2,51.9,52.9,77.1,86.2,97.5,127.1,128.0(2 \mathrm{C}), 128.1,129.6$, 131.1, 132.3, 137.0, 167.0, 168.7, 169.8. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{28}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{5}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 471.1681$; found 471.1689. $v_{\max / \mathrm{cm}^{-1}} 1750(\mathrm{C}=\mathrm{O}), 1741(\mathrm{C}=\mathrm{O}), 1626(\mathrm{C}=\mathrm{N})$.

2-Ethyl 4-methyl rac-(2R,3S,4S)-4-chloro-3-hydroxy-3-methyl-5-phenyl-2-(piperidin-1-yl)-

 3,4-dihydro-2H-pyrrole-2,4-dicarboxylate (6b)

Compound $\mathbf{6 b}$ ($46 \mathrm{mg}, 36 \%$) was obtained as a colorless solid according to the general procedure from oxazatriene 3zc ($101 \mathrm{mg}, 0.3 \mathrm{mmol}$) and piperidine ($28 \mathrm{mg}, 0.33 \mathrm{mmol}$) using hexane/EtOAc mixture (from $10: 1$ to $5: 1$) as eluent for chromatography. M.p. $124-126{ }^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O} /$ hexane). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.26(\mathrm{t}, 3 \mathrm{H}, J 7.3 \mathrm{~Hz}), 1.48-1.73(\mathrm{~m}, 6 \mathrm{H}), 1.83(\mathrm{~s}$, $3 \mathrm{H}), 2.73-3.07(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.11-4.34(\mathrm{~m}, 2 \mathrm{H}), 5.67$ (br. s, 1H), $7.35-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.90-8.00(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2,22.0,24.7,26.8$,
49.4, 53.0, 61.3, 78.2, 83.4, 96.3, 128.0, 129.2, 131.0, 131.9, 166.6, 167.8, 168.4. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{28}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{5}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 423.1681; found 423.1704.

Dimethyl rac-(2R,3S,4S)-2-(benzyl(methyl)amino)-4-chloro-3-hydroxy-3,5-diphenyl-3,4-di-hydro-2H-pyrrole-2,4-dicarboxylate (6c)

Compound 6c (136 mg, 89\%) was obtained as a colorless solid according to the general procedure from oxazatriene $\mathbf{3 z b}(116 \mathrm{mg}, 0.3 \mathrm{mmol})$ and N-benzyl- N-methylamine ($40 \mathrm{mg}, 0.33$ mmol) using hexane/EtOAc mixture (5:1) as eluent for column chromatography. M.p. 118-120 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.54$ (br. $\mathrm{s}, 3 \mathrm{H}$), 3.72 (s, 3H), 3.79-3.91 (m, 4 H), 4.38 (br. s, 1H), 6.67 (br. s, 1H), 7.26-7.57 (m, 11H), 7.62-7.72 (m, 2H), 8.06-8.16 (m, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 37.1,52.2,52.8,56.5,77.7,85.6,99.0,127.16,127.2$, 128.0, 128.1, 128.3, 128.4, 128.7, 129.6, 131.2, 132.3, 136.4, 138.6, 166.4, 169.1, 170.0. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{28}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 507.1681; found 507.1691. $v_{m a x} / \mathrm{cm}^{-1}$ $1748(\mathrm{C}=\mathrm{O}), 1616(\mathrm{C}=\mathrm{N})$.

Dimethyl rac-(2R,3S,4S)-4-bromo-3-cyclopropyl-3-hydroxy-2-(morpholin-4-yl)-5-phenyl-3,4-dihydro-2H-pyrrole-2,4-dicarboxylate (6d)

To a solution of diazo compound $\mathbf{2 i}(101 \mathrm{mg}, 0.6 \mathrm{mmol})$ and azirine $\mathbf{1 a}(76 \mathrm{mg}, 0.3 \mathrm{mmol})$ in anhydrous 1,2-dichloroethane (1 mL) at reflux under argon $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(2 \mathrm{~mol} \%)$ was added. The stirred mixture was heated under reflux until nitrogen evolution stopped. The resulting mixture was evaporated under reduced pressure, and the residue was filtered through a pad of silica gel using toluene/EtOAc 30:1 mixture as eluent. The filtrate was concentrated under reduced pressure, and the residue was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. A solution of morpholine ($29 \mathrm{mg}, 0.33 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added dropwise to the resulting mixture under stirring. The mixture was stirred at room temperature for 6 h , the solvent was removed under reduced pressure and the residue was purified by column chromatography on
silica gel using hexane/EtOAc mixture (5:1). Compound 6d (122 mg, 85\%) was obtained as a colorless solid. M.p. $155-157{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{hexane}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.39-0.50(\mathrm{~m}$, $1 \mathrm{H}), 0.51-0.61(\mathrm{~m}, 1 \mathrm{H}), 0.62-0.81(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.99(\mathrm{~m}, 1 \mathrm{H}), 3.06-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.41$ $(\mathrm{m}, 2 \mathrm{H}), 3.63-3.88(\mathrm{~m}, 10 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.92-8.00(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.1,3.6,14.7,49.0,52.1,53.2,67.6,71.4,84.1,95.9,128.1,129.2,131.2$, 131.7, 166.5, 167.4, 170.3. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{26}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 481.0969$; found 481.0961 .

6. Synthesis of epoxypyrrolines 5zd,5ze

Dimethyl rac-(1R,4R,5S)-4-(morpholin-4-yl)-2-phenyl-5-(3-(pyridin-2-yl)phenyl)-6-oxa-3-azabicyclo[3.1.0]hex-2-ene-1,4-dicarboxylate (5zd)

The mixture of epoxypyrroline $\mathbf{5 1}(103 \mathrm{mg}, 0.2 \mathrm{mmol})$, 2-(tributylstannyl)pyridine ($220 \mathrm{mg}, 0.6$ $\mathrm{mmol})$, $\mathrm{CuI}(11 \mathrm{mg}, 30 \mathrm{~mol} \%)$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(23 \mathrm{mg}, 10 \mathrm{~mol} \%)$ in anhydrous 1,4-dioxane (2 mL) was placed in a screw-capped tube, degassed with argon and then heated at $100{ }^{\circ} \mathrm{C}$ for 2 h under stirring. The resulting mixture was cooled, the solvent was evaporated under reduced pressure and the residue was purified by column chromatography (hexane/EtOAc, from 2:1 to 1:2) to give compound $\mathbf{5 z d}(71 \mathrm{mg}, 69 \%)$ as a colorless solid. M.p. $114-116{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.83-2.97(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, 3.79 (t, 4H, J 4.7 Hz), 7.22-7.28 (m, 1H), 7.43-7.61 (m, 5H), 7.69-7.81 (m, 2H), 7.81-7.89 (m, $2 \mathrm{H}), 8.01-8.12(\mathrm{~m}, 2 \mathrm{H}), 8.67-8.70(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 49.5,52.9$ (2C), $67.2,68.4,73.3,97.0,120.2,122.5,126.4,127.7,128.1,128.4,128.7,129.0,130.8,131.8$, $131.9,136.8,139.5,149.8,156.1,164.5,168.3,172.5$. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$514.1973; found 514.1969.

Dimethyl rac-(1R,4R,5S)-4-(morpholin-4-yl)-5-phenyl-2-(4-(pyridin-2-yl)phenyl)-6-oxa-3-azabicyclo[3.1.0]hex-2-ene-1,4-dicarboxylate (5ze)

The mixture of epoxypyrroline $\mathbf{5 q}$ ($103 \mathrm{mg}, 0.2 \mathrm{mmol}$), 2-(tributylstannyl)pyridine ($110 \mathrm{mg}, 0.3$ $\mathrm{mmol}), \mathrm{CuI}(11 \mathrm{mg}, 30 \mathrm{~mol} \%)$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(23 \mathrm{mg}, 10 \mathrm{~mol} \%)$ in anhydrous 1,4-dioxane (2 mL) was placed in a screw-capped tube, degassed with argon and then heated at $100{ }^{\circ} \mathrm{C}$ for 2 h under stirring. The resulting mixture was cooled, the solvent was evaporated under reduced pressure and the residue was purified by column chromatography (hexane/EtOAc, from 2:1 to 1:2) to give compound 5ze ($90 \mathrm{mg}, 88 \%$) as a colorless solid. M.p. $175-177{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.81-2.95(\mathrm{~m}, 2 \mathrm{H}), 3.11-3.24(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, 3.78 (t, 4H, J4.7 Hz), 7.25-7.34 (m, 1H), 7.37-7.45 (m, 5H), 7.76-7.85 (m, 2H), 7.90-7.94 (m, $2 \mathrm{H}), 8.12-8.15(\mathrm{~m}, 2 \mathrm{H}), 8.73-8.76(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 49.5,52.7,52.9$, $67.2,68.1,73.3,97.1,120.8,122.8,127.1,127.9,128.5,129.5,130.2,132.0,136.9,142.5$, 149.9, 156.1, 164.5, 168.2, 172.1. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 514.1973; found 514.1965.

7. Synthesis of pyrrole 11

Dimethyl 3,5-diphenyl-1H-pyrrole-2,4-dicarboxylate (11)

To a solution of epoxypyrroline $\mathbf{5 j}$ ($218 \mathrm{mg}, 0.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ mixture ($3 / 3 \mathrm{~mL}$) Pd / C ($80 \mathrm{mg}, 10 \mathrm{wt} \%$) was added, and the resulting suspension was stirred overnight under an atmosphere of hydrogen. After the completion of the reaction (control by TLC) the reaction mixture was filtered and evaporated to give after recrystallization from hexane/EtOAc mixture ($1: 1$) compound $\mathbf{1 1}(152 \mathrm{mg}, 91 \%)$ as a colorless solid. M.p: 123-124 ${ }^{\circ} \mathrm{C}$ (EtOAc-hexane) (lit., ${ }^{11}$ $124-125^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 7.32-7.52(\mathrm{~m}, 8 \mathrm{H}), 7.56-$ 7.67 (m, 2H), 9.55 (br. s, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 51.0,51.5,114.6,119.3,127.16$, 127.19, 128.4, 128.8, 129.0, 129.9, 131.1, 133.5, 134.0, 139.0, 161.4, 165.0. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 336.1230; found 336.1231.

8. Synthesis of oxazatrienes 12a-c

General procedure

The solution of epoxypyrroline $\mathbf{5 j}, \mathbf{k}, \mathbf{n}(0.4 \mathrm{mmol})$ in anhydrous toluene $(10 \mathrm{~mL})$ was stirred and irradiated by UV lamp for 4 h . The resulting mixture was evaporated under reduced pressure and the residue was purified by column chromatography (hexane/EtOAc, 1:1) to give oxazatriene 12a-c.

Methyl 2-benzoyl-3-[(2-methoxy-1-morpholino-2-oxoethylidene)amino]-3-phenylacrylate (12a)

Compound 12a (unseparated mixture of $\mathrm{C}=\mathrm{C}$ isomers $1: 1$) ($164 \mathrm{mg}, 94 \%$) was obtained as a yellow oil according to the general procedure from epoxypyrroline $\mathbf{5 j}$ ($174 \mathrm{mg}, 0.4 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 3.00-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.31-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.65$ and 3.77-3.85 $(2 \mathrm{~m}, 10 \mathrm{H}), 7.09-7.21$ and $7.26-7.54(2 \mathrm{~m}, 8 \mathrm{H}), 7.78-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.91-7.99(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 45.6,46.2,51.3,51.6,52.5,52.7,65.8,66.4,115.0,117.6,127.75,127.8$, 128.0, 128.1, 128.5, 128.8, 128.9, 129.0, 129.3, 129.6, 131.9, 132.4, 137.2, 137.8, 138.2, 138.6, $149.3,150.3,161.2,161.27,161.28,162.3,165.7,167.3,194.3,194.5$. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 437.1707$; found 437.1719.

Methyl 2-(4-chlorobenzoyl)-3-[(2-methoxy-1-morpholino-2-oxoethylidene)amino]-3-phenylacrylate (12b)

Compound 12b (unseparated mixture of $\mathrm{C}=\mathrm{C}$ isomers $1: 0.9$) ($181 \mathrm{mg}, 96 \%$) was obtained as a yellow oil according to the general procedure from epoxypyrroline $\mathbf{5 k}$ ($188 \mathrm{mg}, 0.4 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.07-3.19(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.69$ and $3.76-3.87$ $(2 \mathrm{~m}, 10 \mathrm{H}), 7.11-7.49(\mathrm{~m}, 7 \mathrm{H}), 7.74-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.92(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 45.7,46.3,51.5,51.7,52.7,52.8,66.0,66.5,114.6,117.3,127.9,128.0,128.4,128.5$,
128.53, 128.9, 129.6, 129.8, 130.4, 130.6, 136.7, 137.1, 137.14, 137.7, 138.3, 138.8, 149.3, 150.6, 161.25, 161.29, 161.7, 162.8, 165.6, 167.1, 193.2, 193.4. HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{24}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$471.1317; found 471.1321.

Methyl 3-[(2-methoxy-1-morpholino-2-oxoethylidene)amino]-2-(4-nitrobenzoyl)-3-phenylacrylate (12c)

Compound 12c (unseparated mixture of isomers $1: 1$) ($179 \mathrm{mg}, 93 \%$) was obtained as a yellow oil according to the general procedure from epoxypyrroline $\mathbf{5 n}(192 \mathrm{mg}, 0.4 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.80-4.10(\mathrm{~m}, 14 \mathrm{H}), 6.90-7.63(\mathrm{~m}, 5 \mathrm{H}), 7.74-8.50(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 45.8,46.4,51.6,52.8,66.1,66.4,114.1,117.0,123.3,128.1,128.8,129.7$, $130.0,137.0,137.5,143.3,149.5,150.9,161.1,163.3,164.2,165.5,167.0,193.1$ (other signals are overlapped). HRMS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{8}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$482.1558; found 482.1563.

9. Synthesis of compound 13

Methyl (Z)-3-(2-methoxy-2-oxoacetamido)-2-(4-nitrobenzoyl)-3-phenylacrylate (13)

To a solution of oxazatriene $\mathbf{1 2 c}(192 \mathrm{mg}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ a saturated solution of HCl in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added, and the resulting emulsion was stirred overnight. The reaction mixture was washed with 10% solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, from 8:1 to 2:1) to give $\mathbf{1 3}(67 \mathrm{mg}, 41 \%)$ as a colorless solid. M.p. $177-178^{\circ} \mathrm{C}(E t O A c-h e x a n e)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 7.11-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.80-7.87(\mathrm{~m}, 2 \mathrm{H})$, 8.12-8.20 (m, 2H), $12.55(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 52.8, 54.2, 113.9, 123.6, 128.2,
128.3, 129.7, 130.2, 131.6, 141.8, 150.1, 152.3, 153.8, 160.2, 166.3, 190.7. HRMS-ESI: [M+H] ${ }^{+}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{8}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 413.0979$; found 413.0971.

10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 a}$

 Nへべ

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 c}$

[^0]${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 d}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 e}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 f}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 g}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5} \mathbf{h}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 i}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 j}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 k}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 1}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 m}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 n}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $5 \mathbf{5}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 p}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 q}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 r}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 s}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 t}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 u}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 v}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 w}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 x}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 y}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 z}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 5za

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 z b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 z d}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 z e}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6} \mathbf{b}$

$\begin{array}{lllllllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 c}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 d}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 1}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 12a

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 12b

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 12c

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 3}$

11. X-ray data of compounds $5 \mathbf{c}, \mathbf{6 b}, 13$

Single crystals of compounds $\mathbf{5 c}, \mathbf{6 b}$ and $\mathbf{1 3}$ were grown by slow evaporation of their solutions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane mixture at room temperature. For single crystal X-ray diffraction experiment suitable crystals were fixed on a micro mount and placed on a diffractometer and measured at a temperature of 100 K using monochromated $\mathrm{MoK} \alpha$ radiation. The structures have been solved by the direct methods by means of the SHELX program ${ }^{12}$ incorporated in the OLEX2 program package. ${ }^{13}$ Empirical absorption correction was applied in CrysAlisPro program complex ${ }^{14}$ using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The crystallographic data and some parameters of refinement are placed in Tables S1-S3.

Figure S1. X-ray crystal ctructure of compound 5c with 50% ellipsoid probability (CCDC 1936159)

Table S1. Crystal data and structure refinement for compound 5c

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a / \AA
b/Å
c/Å
dax48
$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}$
448.50

120
monoclinic
C2/c
32.8032(8)
8.35859(13)
19.6012(5)

$\alpha /{ }^{\circ}$	90.00
$\beta /{ }^{\circ}$	$121.849(3)$
$\gamma /{ }^{\circ}$	90.00
$\mathrm{Volume} / \AA^{3}$	$4565.24(17)$
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.305
μ / mm^{-1}	0.091
$\mathrm{~F}(000)$	1904.0
Crystal size $/ \mathrm{mm}^{3}$	$0.59 \times 0.39 \times 0.23$
Radiation	$\mathrm{Mo} \mathrm{K} \alpha(\lambda=0.7107)$
2Θ range for data collection $/{ }^{\circ}$	5.28 to 61
Index ranges	$-46 \leq \mathrm{h} \leq 46,-11 \leq \mathrm{k} \leq 11,-27 \leq 1 \leq 27$
Reflections collected	60028
Independent reflections	$6943\left[\mathrm{R}_{\text {int }}=0.0497, \mathrm{R}_{\text {sigma }}=0.0251\right]$
Data/restraints/parameters	$6943 / 0 / 410$
Goodness-of-fit on F^{2}	1.043
Final R indexes $[\mathrm{I}=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0409, \mathrm{wR}_{2}=0.1000$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0520, \mathrm{wR}_{2}=0.1080$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.48 /-0.21$

Figure S2. X-ray crystal ctructure of compound $\mathbf{6 b}$ with 50% ellipsoid probability (CCDC 1936158)

Table S2. Crystal data and structure refinement for compound $\mathbf{6 b}$

Identification code
dax43
Empirical formula
Formula weight
Temperature/K
$\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{5}$
422.90

120

Crystal system
Space group
a/Å
b/Å
c/ \AA
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ \AA^{3}
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection ${ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
monoclinic
P2 ${ }_{1}$ /c
8.9966(3)
10.4109(3)
$22.3370(7)$
90.00
92.301(10)
90.00
2090.46(11)

4
1.344
0.218
896.0
$0.44 \times 0.4 \times 0.08$
$\mathrm{MoK} \alpha(\lambda=0.71073)$
3.64 to 60
$-12 \leq \mathrm{h} \leq 12,-14 \leq \mathrm{k} \leq 14,-31 \leq 1 \leq 31$
36120
$6112\left[\mathrm{R}_{\text {int }}=0.0314, \mathrm{R}_{\text {sigma }}=0.0210\right]$
6112/0/370
0.997
$\mathrm{R}_{1}=0.0340, \mathrm{wR}_{2}=0.0878$
$\mathrm{R}_{1}=0.0465, \mathrm{wR}_{2}=0.0960$
0.40/-0.21

Figure S3. X-ray crystal ctructure of compound $\mathbf{1 3}$ with 50% ellipsoid probability (CCDC 1936916)

Table S3. Crystal data and structure refinement for compound $\mathbf{1 3}$

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/ \AA
b/Å
c/Å
$\alpha{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ \AA^{3}
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[I>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
smi12
$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8}$
412.35

100(2)
monoclinic
$\mathrm{P} 2_{1} / \mathrm{n}$
11.9680(4)
11.1729(4)
13.8802(4)

90
92.759(3)

90
1853.86(10)

4
1.477
0.116
856.0
$0.30 \times 0.22 \times 0.12$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
6.818 to 54.988
$-15 \leq \mathrm{h} \leq 14,-12 \leq \mathrm{k} \leq 14,-18 \leq 1 \leq 18$
12802
$4254\left[\mathrm{R}_{\text {int }}=0.0379, \mathrm{R}_{\text {sigma }}=0.0396\right]$
4254/0/273
1.041
$\mathrm{R}_{1}=0.0393, \mathrm{wR}_{2}=0.0844$
$\mathrm{R}_{1}=0.0550, \mathrm{wR}_{2}=0.0952$
0.31/-0.25

12. Calculation details

All calculations were performed by using the Gaussian 09 suite of quantum chemical programs. ${ }^{15}$ Geometry optimizations of dimethylamine, compounds $\mathbf{3 z b}, \mathbf{6 e}, \mathbf{7 a}, \mathbf{8 a}$ and transition states TS1-TS3 were performed at the DFT B3LYP/6-31+G(d,p) level using PCM model for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Stationary points on the respective potential-energy surfaces were characterized at the same level of theory by evaluating the corresponding Hessian indices. Careful verification of the unique imaginary frequencies for transition states was carried out to check whether the frequency indeed pertains to the desired reaction coordinate. Single point calculations of energies for stationary points were carried out at the DFT wB97XD/cc-pVTZ level using PCM solvation model for toluene. Thermal corrections to Gibbs free energies obtained in the optimization calculations were used.

Table S4. Energies (au) and cartesian coordinates of stationary points for dimethylamine, compounds 3zb,6e,7a,8a and transition states TS1-TS3 calculated at wB97XD/cc-pVTZ level ($\mathrm{PCM}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Zero-point correction $=0.418346$
Thermal correction to Energy $=0.447078$
Thermal correction to Enthalpy $=0.448022$
Thermal correction to Gibbs Free Energy $=0.358145$
$\mathrm{E}_{0}=-1797.6268591, \mathrm{E}=-1797.5981271$,
$\mathrm{H}=-1797.5971831, \mathrm{G}=-1797.6870601$.
Imaginary frequency $=0$.

C	1.29559625	1.10545968	0.70210801
C	-0.24033975	1.36734068	0.26198001
C	-0.83390475	-0.04228832	0.24474701
N	-0.08300475	-0.94882432	0.75175801
C	1.18743625	-0.43940932	1.22892101
C	-0.91640475	2.22759068	1.35009701
Cl	-0.44146975	2.16816168	-1.36254999
O	1.61147225	1.93415768	1.78712401
C	2.28597725	1.32634068	-0.43262699
C	-2.17229175	-0.38872332	-0.28780599
C	2.34171025	-1.34957232	0.72174701
N	1.19156325	-0.40506332	2.72512201
C	2.48514425	-0.58720332	3.41419001
C	0.14108225	-1.19194732	3.39557901
C	-2.43664275	-1.72845632	-0.63076699
C	-3.69176475	-2.10587432	-1.10372999
C	-4.70833975	-1.15285632	-1.23572999
C	-4.45751775	0.17936668	-0.89617499
C	-3.19775975	0.56162768	-0.43147199
C	3.25974425	2.32607968	-0.32719099
C	4.17971325	2.53602768	-1.35997199
C	4.13859025	1.74877768	-2.51275599
C	3.16577425	0.74987668	-2.62739799
C	2.24644825	0.54498368	-1.59846999
O	3.51885325	-1.06756632	0.83524901
O	1.90437925	-2.50235032	0.20348901
C	2.92526225	-3.42850432	-0.24307299
O	-1.40653475	1.71715368	2.34088001
O	-0.87832875	3.53162868	1.10871501
C	-1.42864275	4.39250368	2.13758701
H	1.34230125	1.38990668	2.57170501

Zero-point correction $=0.417567$
Thermal correction to Energy $=0.447190$
Thermal correction to Enthalpy $=0.448134$
Thermal correction to Gibbs Free Energy $=0.356143$
$\mathrm{E}_{0}=-1797.6046046, \mathrm{E}=-1797.5749816$,
$\mathrm{H}=-1797.5740376, \mathrm{G}=-1797.6660286$.
Imaginary frequency $=0$.

			0.52815023
C	-1.48801404	0.91555469	0.493
C	1.39914196	1.40083369	0.20792323
C	1.23374496	0.04183169	-0.24906777
N	0.16413096	-0.55433331	-0.73286077
C	-1.15764404	-0.01656631	-0.70603177
C	1.01702696	2.57664569	-0.47884377
Cl	2.43705396	1.61031069	1.65329923
O	-1.88846904	2.05503369	0.33879523
C	-1.34874004	0.35588469	1.90501923
C	2.43170196	-0.86744831	-0.20560577
C	-2.22495404	-1.15518731	-0.70129677
N	-1.41104104	0.79234269	-2.01684277
C	-2.81628804	1.24261769	-2.29110277
C	-0.86612204	0.10212369	-3.23360477
C	2.29627096	-2.21345731	0.16752223
C	3.39748296	-3.07223131	0.14930223
C	4.64757296	-2.60047231	-0.26446977
C	4.79029796	-1.26344331	-0.65201177
C	3.69272396	-0.40182531	-0.61363577
C	-1.63211704	1.21788269	2.98089723
C	-1.54896804	0.76278569	4.29447223
C	-1.18471104	-0.56367431	4.55441223
C	-0.90348604	-1.42926031	3.49339723
C	-0.98379804	-0.97442231	2.17674923
O	-3.35077104	-0.95979331	-0.27866377
O	-1.79820504	-2.30197531	-1.21503777
C	-2.75918104	-3.39059931	-1.24763077
O	0.38836996	2.62475069	-1.57136777
O	1.42046796	3.73872769	0.09787523
C	1.09301896	4.95313669	-0.60128977
H	-0.77941804	1.63974069	-1.86096177

H	2.34354025	-0.28157432	4.45418301	H	-2.75977004	2.00819569	-3.06592877
H	2.83280425	-1.63039632	3.40474201	H	-3.40471904	0.40001269	-2.65393377
H	3.25443625	0.03954068	2.96690001	H	-3.25695204	1.66028769	-1.39318377
H	0.18388825	-0.94830132	4.46012701	H	-0.99453404	0.78401169	-4.07451577
H	-0.84383075	-0.92151632	3.02216901	H	0.18667496	-0.11696631	-3.08449577
H	0.28640325	-2.27561632	3.28013001	H	-1.41791204	-0.82034531	-3.41478077
H	-1.64622775	-2.46310232	-0.52464799	H	1.32339096	-2.58179431	0.47326323
H	-3.87720475	-3.14181132	-1.37103699	H	3.27936596	-4.10808531	0.45412223
H	-5.68715375	-1.44638732	-1.60315599	H	5.50352796	-3.26883131	-0.28608577
H	-5.24090975	0.92461768	-0.99354299	H	5.75566196	-0.89222231	-0.98367877
H	-3.03013375	1.60177868	-0.17891499	H	3.80667896	0.63558269	-0.91266077
H	3.30109825	2.93366568	0.56855101	H	-1.91533104	2.24314869	2.76998323
H	4.92906825	3.31584868	-1.25828299	H	-1.76773804	1.43896069	5.11518723
H	4.85407525	1.91012968	-3.31374999	H	-1.12088704	-0.92018531	5.57814123
H	3.11937525	0.13118168	-3.51879699	H	-0.62015504	-2.45873931	3.68890723
H	1.49378825	-0.22901932	-1.71945299	H	-0.74811804	-1.66100131	1.37215823
H	2.37982625	-4.28709932	-0.63057899	H	-2.22140704	-4.22834231	-1.68663277
H	3.56105325	-3.72025132	0.59480801	H	-3.61671904	-3.11310831	-1.86268877
H	3.53146025	-2.96894532	-1.02588599	H	-3.08649404	-3.62619331	-0.23367377
H	-1.30524875	5.40404068	1.75606501	H	1.49532696	5.75429869	0.01854423
H	-2.48397075	4.16200268	2.29231501	H	1.55807096	4.97086269	-1.58984877
H	-0.87495975	4.25753168	3.06829401	H	0.01116696	5.06153369	-0.70554977
```Zwitterion 8a```   ```Zero-point correction \(=0.419218\) \\ Thermal correction to Energy \(=0.448002\) \\ Thermal correction to Enthalpy \(=0.448946\) \\ Thermal correction to Gibbs Free Energy \(=0.360024\) \[ \mathrm{E}_{0}=-1797.6039113, \mathrm{E}=-1797.5751273, \] \[ \mathrm{H}=-1797.5741833, \mathrm{G}=-1797.6631053 . \] \\ Imaginary frequency \(=0\).```				Zero-point correction $=0.415736$Thermal correction to Energy $=0.445695$Thermal correction to Enthalpy $=0.446639$Thermal correction to Gibbs Free Energy $=0.352807$$\mathrm{E}_{0}=-1797.5902829, \mathrm{E}=-1797.5603239$,$\mathrm{H}=-1797.5593799, \mathrm{G}=-1797.6532119$.Imaginary frequency $=1$.			
				3			
C	1.18993494	0.60307697	0.15225807				
C	-0.43388706	0.50059297	-0.25275593				
C	-0.87936806	-0.82102103	0.35582507				
N	-0.06084506	-1.33608503	1.20669807				
C	1.13136794	$-0.53571403$	1.38664507	C	-1.70755412	0.97493476	0.63161231
C	-1.09371806	1.67781597	0.46807307				
Cl	-0.74078306	0.57096397	$-2.04022193$	C	1.03698488	1.79750476	-0.62192869
O	1.50798994	1.80735397	0.54893707	C	0.93798888	0.40774676	-0.69690569
C	2.07286594	0.04018697	-0.99445193	N	-0.16285312	-0.38851624	-0.83466169



  Zero-point correction $=0.418406$   Thermal correction to Energy $=0.446918$   Thermal correction to Enthalpy $=0.447862$   Thermal correction to Gibbs Free Energy $=0.359460$ $\begin{aligned} & E_{0}=-1797.5967545, E=-1797.5682425, \\ & H=-1797.5672985, G=-1797.6557005 . \end{aligned}$   Imaginary frequency $=1$.	TS3   Zero-point correction $=0.419212$   Thermal correction to Energy $=0.447174$   Thermal correction to Enthalpy $=0.448118$   Thermal correction to Gibbs Free Energy $=0.361469$ $\begin{aligned} & E_{0}=-1797.6037276, E=-1797.5757656 \\ & H=-1797.5748216, G=-1797.6614706 \end{aligned}$   Imaginary frequency $=1$.
$\begin{array}{lllll}\text { C } & 1.18342686 & -0.72645067 & 0.00002480 \\ \mathrm{C} & & 0.83102814 & \end{array}$	$\begin{array}{lllll}\text { C } & 1.20201565 & 0.82726179 & 0.39590971\end{array}$
$\begin{array}{lllll}\text { C } & -0.83102814 & -0.78065267 & 0.41928880\end{array}$	$\begin{array}{lllll}\text { C } & -0.40399735 & 0.82115779 & -0.07558629\end{array}$
$\begin{array}{lllll}\text { C } & -1.15824314 & 0.55551633 & -0.15857920\end{array}$	$\begin{array}{lllll}\text { C } & -0.90636735 & -0.55795621 & 0.32635671\end{array}$
$\begin{array}{lllll}\mathrm{N} & -0.29981614 & 1.12886633 & -0.93781220\end{array}$	$\mathrm{N} \quad 1 \quad-0.12669235-1.22169821 \quad 1.10648371$
C $\quad 0.93014386$ 0.40729033 -1.13673220	$\begin{array}{lllll}\text { C } & 1.10175565 & -0.51863621 & 1.39784871\end{array}$
C $\quad-1.23261014-1.95155367-0.36782620$	$\begin{array}{lllll}\text { C } & -1.06693035 & 1.89477879 & 0.79263871\end{array}$
$\begin{array}{llll}\mathrm{Cl} & -1.19039314 & -0.90768667 & 2.17528380\end{array}$	$\begin{array}{lllll}\mathrm{Cl} & -0.66417235 & 1.14989079 & -1.84271529\end{array}$
$\begin{array}{lllll}\text { O } & 1.57647586 & -1.85486667 & -0.40281120\end{array}$	$\begin{array}{lllll}\text { O } & 1.49590065 & 1.92137479 & 1.05858871\end{array}$
$\begin{array}{llllll}\text { C } & 1.77738986 & -0.18495667 & 1.29783080\end{array}$	$\begin{array}{lllll}\text { C } & 2.12992765 & 0.51330979 & -0.79990029\end{array}$
$\begin{array}{lllll}\text { C } & -2.42500414 & 1.27648233 & 0.13242480\end{array}$	C $\quad-2.20162835-1.14079221-0.09070729$
$\begin{array}{llllll}\text { C } & 2.14129686 & 1.36497833 & -1.22952720\end{array}$	$\begin{array}{lllll}\text { C } & 2.31223065 & -1.45960521 & 1.32790871\end{array}$
$\begin{array}{lllll}\mathrm{N} & 0.80164086 & -0.32311767 & -2.50731020\end{array}$	$\begin{array}{lllll}\mathrm{N} & 0.98359965 & 0.06478179 & 2.82865871\end{array}$
$\begin{array}{lllll}\text { C } & 2.02913486 & -0.98902067 & -3.07647220\end{array}$	$\begin{array}{llll}\text { C } & 2.25140365 & 0.55212379 & 3.48454771\end{array}$
$\begin{array}{lllll}\text { C } & 0.18009286 & 0.54167733 & -3.56782320\end{array}$	$\begin{array}{lllll}\text { C } & 0.22344265 & -0.81199421 & 3.78058971\end{array}$
$\begin{array}{lllll}\text { C } & -2.46158914 & 2.68112633 & 0.07021480 \\ \mathrm{C} & -3.65322314 & 3.36857833 & 0.29684980\end{array}$	$\begin{array}{lllll}\text { C } & -2.35934935 & -2.53942021 & -0.07454029\end{array}$
$\begin{array}{lllll}\text { C } & -3.65322314 & 3.36857833 & 0.29684980\end{array}$	$\begin{array}{lllll}\text { C } & -3.57757735 & -3.11831221 & -0.42478329\end{array}$
$\begin{array}{lllll}\text { C } & -4.82851314 & 2.66212633 & 0.57741480\end{array}$	$\begin{array}{lllll}\text { C } & -4.66122335 & -2.30936521 & -0.78589129\end{array}$
$\begin{array}{lllll}\text { C } & -4.80315614 & 1.26532733 & 0.63627880\end{array}$	$\begin{array}{lllll}\text { C } & -4.51615935 & -0.91919921 & -0.80065629\end{array}$
$\begin{array}{lllll}\text { C } & -3.60800314 & 0.57655233 & 0.42382080\end{array}$	$\begin{array}{lllll}\text { C } & -3.29294935 & -0.33748521 & -0.46390729\end{array}$
$\begin{array}{lllll}\text { C } & 2.64293286 & -1.03585667 & 2.00124280\end{array}$	$\begin{array}{lllll}\text { C } & 3.14790965 & 1.43055079 & -1.08302129\end{array}$
$\begin{array}{lllll}\text { C } & 3.24903186 & -0.62240067 & 3.18914980\end{array}$	$\begin{array}{lllll}\text { C } & 4.03949665 & 1.21348179 & -2.13800729\end{array}$
$\begin{array}{lllll}\text { C } & 3.00151386 & 0.65723233 & 3.69561280\end{array}$	$\begin{array}{lllll}\text { C } & 3.92578065 & 0.06712479 & -2.92941229\end{array}$
$\begin{array}{lllll}\text { C } & 2.13912286 & 1.51344433 & 3.00475980\end{array}$	$\begin{array}{lllll}\text { C } & 2.90996265 & -0.85545221 & -2.65774629\end{array}$
C $\quad 1.529082861 .095191331 .81942080$	$\begin{array}{lllll}\text { C } & 2.01900265 & -0.63133821 & -1.60502429\end{array}$
$\begin{array}{lllll}\mathrm{O} & 3.27566886 & 0.96613333 & -1.41794220\end{array}$	$\begin{array}{lllll}\text { O } & 3.44491965 & -1.12697421 & 1.62540671\end{array}$
$\begin{array}{lllll}\text { O } & 1.81894786 & 2.64664933 & -1.05015420\end{array}$	$\begin{array}{lllll}\text { O } & 1.99439165 & -2.67160621 & 0.85964071\end{array}$
C $\quad 2.92208786$	$\begin{array}{lllll}\text { C } & 3.09802465 & -3.58682521 & 0.66294371\end{array}$
O $\quad-1.23386014-1.95482867-1.60850020$	$\begin{array}{lllll}\mathrm{O} & -1.31878235 & 1.67692879 & 1.97156671\end{array}$
$\begin{array}{lllll}\text { O } & -1.50620614 & -3.04978167 & 0.33933380\end{array}$	$\begin{array}{lllll}\mathrm{O} & -1.31532735 & 3.03928579 & 0.17885771\end{array}$


C	-1.78338114	-4.25447667	-0.41123320	C	-1.85302335	4.10960379	0.99556871
H	0.11003186	-1.07219767	-2.28319920	H	0.43417465	0.92362879	2.65170471
H	1.67234486	-1.70166167	-3.82181420	H	1.93831965	1.19147879	4.31141571
H	2.65744086	-0.23675367	-3.54840120	H	2.81695765	-0.29779821	3.85796571
H	2.55411886	-1.50399467	-2.28089620	H	2.81524265	1.12527979	2.75702371
H	0.07480486	-0.06852467	-4.46493720	H	0.16455365	-0.28679121	4.73393771
H	-0.78999814	0.89540933	-3.23152720	H	-0.77202235	-0.99984921	3.38964871
H	0.83692886	1.38788133	-3.7722020	H	0.76084265	-1.75227621	3.90621071
H	-1.54755814	3.22113833	-0.15141820	H	-1.51645335	-3.16011821	0.20894171
H	-3.66639614	4.45371433	0.25668680	H	-3.68265535	-4.19902721	-0.41783029
H	-5.75716814	3.19740433	0.75230580	H	-5.61117335	-2.76025121	-1.05722829
H	-5.71224014	0.71162833	0.85044680	H	-5.35316035	-0.28575921	-1.07769629
H	-3.59991614	-0.50681667	0.47627680	H	-3.20000735	0.74227579	-0.48876229
H	2.83449086	-2.02258267	1.59447780	H	3.22319865	2.31204079	-0.45594329
H	3.91727486	-1.29764267	3.71636780	H	4.82284265	1.93920579	-2.33989729
H	3.47370986	0.98344333	4.61787580	H	4.61702865	-0.10598821	-3.74948829
H	1.93355586	2.50812533	3.39016580	H	2.80479565	-1.74726821	-3.26961429
H	0.85457886	1.77831933	1.31610980	H	1.23203465	-1.35739021	-1.42736329
H	2.46523786	4.55786533	-0.86146120	H	2.64674565	-4.49668421	0.27108271
H	3.43890786	3.57027233	-1.99984020	H	3.59928865	-3.78217321	1.61277371
H	3.61928986	3.33190433	-0.23808420	H	3.80852465	-3.16681821	-0.05167729
H	-1.95539014	-5.02215167	0.34141180	H	-1.97755935	4.94884579	0.31415471
H	-2.67182314	-4.11780967	-1.03085920	H	-2.81165035	3.80948579	1.42199871
H	-0.92878114	-4.51322267	-1.03835420	H	-1.14853435	4.35602779	1.79140771

## 13. References

1. N. V. Rostovskii, A. V. Agafonova, I. A. Smetanin, M. S. Novikov, A. F. Khlebnikov and G. L. Starova, Metal-catalyzed isomerization of 5 -heteroatom-substituted isoxazoles as a new route to 2-halo-2H-azirines, Synthesis, 2017, 49, 4478-4488.
2. A. V. Agafonova, I. A. Smetanin, N. V. Rostovskii, A. F. Khlebnikov and M. S. Novikov, Synthesis of 2-halo-2 H -azirine-2-carboxylic acid amides and esters by isomerization of 5-(dialkylamino/alkoxy)-substituted isoxazoles, catalyzed by iron(II) sulfate, Chem. Hetetocycl. Com., 2017, 53, 1068-1071.
3. I. A. Smetanin, M. S. Novikov, A. V. Agafonova, N. V. Rostovskii, A. F. Khlebnikov, I. V. Kudryavtsev, M. A. Terpilowski, M. K. Serebriakova, A. S. Trulioff and N. V. Goncharov, A novel strategy for the synthesis of thermally stable and apoptosis-inducing 2,3-dihydroazetes, Org. Biomol. Chem., 2016, 14, 4479-4487.
4. I. A. Smetanin, M. S. Novikov, N. V. Rostovskii, A. F. Khlebnikov, G. L. Starova and D. S. Yufit, 4-Halo-2-azabuta-1,3-dienes as intermediates in the rhodium carbenoid-initiated transformation of 2-halo-2H-azirines into 2,3-dihydroazetes and 2,5-dihydrooxazoles, Tetrahedron, 2015, 71, 4616-4628.
5. A. V. Agafonova, I. A. Smetanin, N. V. Rostovskii, A. F. Khlebnikov and M. S. Novikov, Easy access to 2-fluoro- and 2-iodo-2H-azirines via the Halex reaction, Synthesis, 2019, 51, 4582-4589.
6. K. E. Coffey, G. K. Murphy, Dichlorination of $\alpha$-diazo- $\beta$-dicarbonyls using (dichloroiodo)benzene, Synlett, 2015, 26, 1003-1007.
7. Z. Long, Z. Wang, D. Zhou, D. Wan and J. You, Rh(III)-catalyzed regio- and chemoselective [4 $+1]$-annulation of azoxy compounds with diazoesters for the synthesis of 2 H -indazoles: roles of the azoxy oxygen atom, Org. Lett., 2017, 19, 2777-2780.
8. N. V. Rostovskii, M. S. Novikov, A. F. Khlebnikov, V. A. Khlebnikov, S. M. Korneev, Rh(II)carbenoid mediated 2 H -azirine ring-expansion as a convenient route to non-fused photo- and thermochromic 2H-1,4-oxazines, Tetrahedron, 2013, 69, 4292-4301.
9. J. Wang, M. Wang, K. Chen, S. Zha, C. Song and J. Zhu, C-H activation-based traceless synthesis via electrophilic removal of a directing group. Rhodium(III)-catalyzed entry into indoles from $N$-nitroso and $\alpha$-diazo- $\beta$-keto compounds, Org. Lett., 2016, 18, 1178-1181.
10. Y. Jiang, V. Z. Y. Khong, E. Lourdusamya and C. Park, Synthesis of 2-aminofurans and 2unsubstituted furansviacarbenoid-mediated [3+2] cycloaddition, Chem. Commun., 2012, 48, 31333135.
11. Z. Chen, L. Zheng, J. Liu, Divergent Synthesis of Multisubstituted Unsymmetric Pyrroles and Pyrrolin-4-ones from Enamino Esters via Copper-Catalyzed Aerobic Dimerization, Eur. J. Org. Chem., 2019, 2019, 3051-3060.
12. G. M. Sheldrick, A short history of SHELX, Acta Crystallogr., 2008, A64, 112-122.
13. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, J. Appl. Crystallogr., 2009, 42, 339341.
14. CrysAlisPro, Agilent Technologies, Version 1.171.36.32.
15. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

[^0]:    

